
I I I
--~(r-m)-+m--,
Qe·· QB QA

(4)

(5)

(7)

(IO)

V,JVi ~ r-i(,,-i/{3i),

r/Qi ~ z(,,-i/13,)/[r -("-i/13,)2].

ass (Va/"A)', bss (Ve/VB)',

complex-velocity Rayleigh equation becomes

Vi/Vi' ';;; r -i(r/zQ,), (6)

terms in (r/zQi)' have been neglected. To the same order of approxima
it can be shown that for either the Voigt dissipation model considered by
& Healy or for loss arising from creep (Lomnitz r957) VA ';;; VA and VB';;;VB.

Va';;; oo as well and defining
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A damped harmonic wave travelling in the x direction involves the factor
';xlJI"vl-yX], where y'="-+i{3 and "- and 13 are the attenuation and phase factors
fe;pec:tive!y of the wave. For a given type of wave, the phase velocity V is given

w/{3 the complex velocity is V' ~ w/( -iy) ss w/k. Further, when dis-
uel'S1C>ll is present, the real equation (3) is replaced by the corresponding equation
involving the complex velocities V,'. Following Press & Healy, this complex equa

can used to determine a relation between r/QA' r/QB, and r/Qa in low
materials. It is assumed in the following that these. three quantities refer to

all having the same period.
From their definitions, it can be shown that

if the dissipation is relatively low so that r/Q", o- r , (5) can be expanded and
sinlplific:d to yield, with negligible error,

[
Z_ b( r - i(r/zQB) }' ]4 = r6[r_b(r-i(r/2QB))2][r_a(r-i(r/zQA) )'].

r -i(r/zQa) r -i(r/zQe) r -i(r/zQa) (8)

When (8) is expanded retaining terms up to r/Q, only, one obtains an equation
the real part identical with (3) and an equation from the imaginary part

involving the r/Q(s. By using (3) to simplify the latter, or by taking imaginary
logarithms of (8), one finally finds

m ~ -:-~-:-a--,(z--:-c-b-,-)(:-:-r.:b)'c-:---:C-.
a(z-b)(r -b)-be, -a)(z-3b)

Although it is obtained more generally, Equation (9) is a simplified but equivalent
of the equation obtained by Press & Healy (r957).

The result (9) is a simple linear equation connecting the r/Q(s and is valid
to high approximation when none of them exceed o·r. This equation can be used

obtain any unknown r /Qi given the other two and knowledge of m. It is
interestlJIE to note that r/Q is a more sensitive measure of loss than is dispersion

the velocities which, to the present approximation, is negligible.
In order to make (9) useful, the quantity m, which is a complicated function

of VA, VB, and Vo, has been calculated, using a digital computer, as a function of
and is presented in Table r and Figure 1. Table r also gives Ve/vB as a

Iurlction of VB/VA, and the resulting Curve is shown in Figure r with its ordinate

r, Introduction

The surface Rayleigh waves which travel in a solid half-space in addition t
body compressional and shear waves are of particular importance for earthquak
detection at large distances, where they predominate over three-dimension
body waves. As Press & Healy (r957) have pointed out, it is of interest to relat
the absorption coefficients of Rayleigh waves to those of shear and compressiona
waves for materials showing energy dissipation and dispersion. These author
have derived a useful expression for this purpose for low-loss media which w
shall here simplify, slightly generalize, and reduce to numerical applicability.

It will prove most convenient to deal with the specific dissipation factor, r/Q,
for each type of wave, where Z7T/Q is the ratio of energy dissipated per stress
cycle to the peak energy stored (Knopoff & MacDonald r958). The quantity
r/Q is a useful quantity for comparison with experiment because it is independent
of the detailed mechanism of energy dissipation.

Summary

A simple formula is derived relating the specific dissipation
factors for Rayleigh, compressional, and shear waves in relatively
low-loss materials. Calculations and a table are presented which
allow an unknown specific dissipation factor to be obtained directly
from the two known factors for the other types of waves. Results
apply for any realizable ratio of any two of the three elastic phase
velocities.
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z, Dispersion and absorption

Whenever dissipation occurs, the resulting dispersion makes it necessary to
distinguish between three kinds of wave velocities: the elastic velocities in the
absence of dissipation, the corresponding phase velocities with dissipation, an
the complex velocities. Using the subscripts A, B, and C to denote quantities
relating to compressional, shear, and Rayleigh waves, the elastic velocities may be
obtained from

VA = [('\+Z[k)/P)',

VB = [[kip]',

[z - (Va/VB)']4 = r6[ r - (Ve/vAJ2][ r - (Va/VB)2],

where P is the density and ,\ and [k are Lame's moduli.



(II)(VB/VA) = [(I -2V)/2(I -v)]',
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v is Poisson's ratio. For an incompressible body v = i and VA = 00.

he minimum value of v is zero; thus the maximum value of VB/VA is 2-i·, The
ouanl:ity m increases continuously beyond this physical limit, however, and reaches

for VB/VA ~ 0'95 and infinity for VB/VA = 1.
When one or more of the I/Q<'s are appreciably greater than 0'1, the exact

'colmplex equivalent of (3) must be solved using (4) and (5) in their exact forms.
of the resulting cubic equation with complex coefficients will be diffi

but is usually unnecessary since the condition I/Qi«O'I is usually well met
most situations of physical interest.
Finally, it should be pointed out that for VB/VA;' o· 567008 there are three real

of (3) rather than the single one which appears for smaller VB/VA. As
Teffre-~s has shown, however, it is only the smallest of the three roots which

nh",.';col significance for Rayleigh wave transmission.

0'3 0-+
va/v...

Table I

Numerical results

vBlvA »olv» m

0 0'95531 0

0'05 0'95516 3'24Il x 10-4

0-10 0'95469 I '3233 x 10-3

0'15 0'95389 3'0823 x 10-3

0'20 0-9527 1 5'757° X10-3

0'25 o'95 II2 9,6002 x 10-3

0-30 0'94903 1'5008 x 10-2

0'35 0'94633 2'2597 x 10-2

0'40 0'94286 3-3347 x 10-2

0'45 0'93837 4.8851 x 10-2

0-50 0'93253 7-1789 x 10-2

0'55 0'92476 0-10685
0·60 0'91419 0'16257

0·65 0·89937 0-255 12

0-70 0.87785 0'41586

0'75 0·84549 0'70455

'0
0.96

0·95

Vd"'8

0·9+
m

0'

0·01

m

FIG,!. The quantities m (log scale) and valvB versus VBlv.A.
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on the right. Now, if any two of the elastic phase velocities are known, :he thir~
can be obtained using the Fignre or the Table. Then, after the correspondmg value
of m is obtained, the unknown I/Qi can be obtained using (9) and known valu
of the other I/Qi'S.

0·88




