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multiplying  circuit' for Q1 as shown i n  Fig.  10(b).  The 
feedback  voltage  must  be  taken  from  the  emitter of Qz, 
however,  because Q1 will not  tolerate any additional 
loading. This  system will provide  about 6 db  more  gain 
a t   the  expense of 50 per  cent  more  distortion  and  some 
variation of power  gain  with  transistor  parameters. If 
the signal  source  has  a  high  impedance,  this  approach 
may  have  merit. 

CONCLUSION 
The  supporting  data in  this  report  show  that  a single- 

ended  two-watt  amplifier,  which is very  noncritical of 
transistor  parameters  and  which  has  performance  ac- 
ceptable for  high-fidelity  applications, is practical. 
High-temperature IC0 i n  the power  transistor  must be 
controlled,  however,  or  performance is seriously  de- 
graded. 

Nonlinear  Distortion  Reduction  by Comple. 
mentary  Distortion* 

J. ROSS MACDONALDt 

Summary-Nonlinear distortion produced in a given circuit can 
be reduced  by pre- or postdistorting the signal applied to or from the 
circuit. Such complementary distortion cannot reduce the original 
distortion to zero in practice because of distortion of distortion, but it 
can result in greatly reduced output distortion over a limited ampli- 
tude range. General results for the design of pre- or postdistortion 
circuits are given, and the mathematical results are illustrated by 
comparing the total harmonic distortions obtained with pre- and 
postdistortion corrections of increasing complexity applied to a simple 
nonlinear circuit. 

IXTRODCCTION 

T HE correction of an undesired  frequency  distor- 
tion,  such  as  a  droop  in  loudspeaker  output  at 
lonr frequencies, by  means of a complementary 

response  in  the  applied  signal is well known  and  often 
used.  Somewhat less well known  and  understood  is  the 
corresponding  technique for reducing  nonlinear  distor- 
tion. I t  is usually  stated  or implied1s2 that  nonlinear dis- 
tortion  such  as  that  arising  from  the response  char- 
acteristic of Fig. l(a)  can  be cancelled by passing the 
distorted  signal  through  a  circuit  having  the  comple- 
mentary response  characteristic of Fig. 1 (b).  For  exam- 
ple, i t  is  often  expected  that if the  distortion arises  only 
from  a  square-law  term, it may be  completely  cancelled 
by subsequent  transmission  through  a  network  yielding 
square-law  distortion of equal  magnitude  but  opposite 
sign. The  present  work  shows  that  complete  cancellation 
is  impossible  because of distortion of the original  distor- 
tion  and  that  over-all  distortion  reduction is  only possi- 
ble over  a  limited  range of input  signal  amplitude. 

Negative  feedback  is  commonly  regarded as the  great 
panacea  for  distortion.  Nevertheless,  there  are  instances 
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1957. A means  alternative  to  complementary  distortion  correction is 

( a )  ( b )  
Fig. 1-(a) Typical  input-output  characteristic  for a nonlincar 

circuit. (b)  Input-output  characteristic  complementary to t h a t  
of (a). 

where its  application  for  nonlinear  distortion  reduction 
is  inconvenient or impossible.  Such  instances  often  occur 
a t   the  beginning  or  end of a  signal  transmission  systenl. 
In the  audio field, i t  is  difficult to  generate  an  error sig- 
nal  to  correct  any  nonlinear  distortion  arising  in  a rec- 
ord  pickup.  Loudspeaker  nonlinear  distortion,  at  the 
opposite  end of the  system, is usually  more  important 
because of its greater  magnitude.  Because of reverbera- 
tion  and  phase  shifts, i t  is not  generally  practical to 
apply  negative  feedback  between  the  sound  output of a 
loudspeaker  and  its  driver. On the  other  hand,  feedback 
derived  from  a  separate  winding  on  the voice coil will be 
imperfectly  related  to  the  actual  sound  output.  In this 
instance,  where  negative  feedback  is  impractical  or  in- 
efficient,  complementary  nonlinear  distortion  can  greatly 
reduce  the  distortion  present  in  the  speaker  output. 

There  are  two  ways  by which  complementary  distor- 
tion  correction  may  be  applied.  The  usual  way, which 
will be  designated  postdistortion, is that  illustrated  in 
Fig. 1. Here  the  complementary  distortion  acts  on  the 
originally  distorted  signal.  Comparable  but  not  identical 
results  can  be  obtained,  however, if the  signal  is  first  in- 
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tentionally  predistorted  and  then  passed  through  the 
original  distorting  circuit.  Correction of loudspeaker 
nonlinear  distortion  is  an  instance  where  pre-  but  not 
postdistortion is applicable. 

The  practical  application of complementary  distor- 
tion  requires  that  the  original  distortion  dependence  on 
amplitude  be  known  over  the  amplitude  range of in- 
terest. If the  input-output  response  characteristic is 
very  irregular  or  has  strong  discontinuities  in  slope  or 
value, it cannot  be well represented  by  a  rapidly  con- 
vergent  power  series,  and  complementary  distortion 
correction will not  be  practical. I t  will therefore  be  as- 
sumed  that  the  input-output  characteristic is a smooth 
function  and  can  be  represented  by  a  power  series of the 
form 

m=1 

where M may be  finite  or  infinite, eo is the  input  signal 
and el the  output.  The  zero-order,  or  dc  term,  has  been 
omitted for  simplicity. 

In  general,  the a, coefficients will be  functions of fre- 
quency,  and  the  complementary  distortion  circuit will 
then also  have  to  be  frequency  dependent  to  yield  maxi- 
mum  distortion  reduction  over  the  amplitude  and  fre- 
quency  ranges of interest.  In  practice,  however,  the 
coefficients may  be  frequency  independent  over  much 
of the  range.  While it is  possible to  incorporate  fre- 
quency-sensitive  nonlinear  correcting  elements  in  the 
complementary  distortion  circuit  to  compensate  for  the 
frequency  dependence  of  the  original  distortion,  such 
complications will not be  pursued  further  herein. 

The coefficients  of the input-output-characteristic 
power  series  must  be  known to  allow  design of the  com- 
plementary  distortion  circuit.  Haber  and  Epstein3  have 
given  equations  which  allow  these  coefficients  to  be 
calculated  from  the  results of harmonic  distortion  meas- 
urements  together  with  measurements of the  polarity 
of the  harmonics. As shown  below,  these  coefficients 
may  then be  used to  determine  the  corresponding  co- 
efficients  in the  power  series  describing  the  pre-  or  post- 
complementary  distortion  circuit.  Finally,  the  resulting 
nonlinear  characteristic  can  be  realized  in a practical 
circuit  using  diodes  and  resistors  and  other  components 
and  techniques well known  in  the  analog  computer  art. 
I t  should  be  emphasized that  both  pre  and  post-distor- 
tion  techniques  are  also  applicable  when  the  aim  is 
not  as  linear  amplification  as  possible  but  instead a 
close approximation  to  some  more  complicated  func- 
tional  relationship  between  input  and  output,  such  as, 
for  example,  square-law  output  with  minimum  linear 
and higher-than-second-order output  terms. 

MATHEMATICAL ANALYSIS 

For  postdistortion, (1) may  be used to  represent  the 

from  harmonic  measurements, IRE TRANS. ON ELECTRON DEVICES, 
F. Haber  and B. Epstein,,,“The  parameters of nonlinear  devices 

vol. ED-5, pp. 26-28; January, 1958. 

characteristic of the  device  or  circuit  whose  distortion 
is  to be  reduced  by a subsequent  complementary  distor- 
tion  circuit.  The  characteristic of the  latter  may  then 
be  written 

N 

n=l 

Here  the bnls must  be  determined  in  terms of the am’s 
to  minimize resultant  distortion.  For  convenience,  in 
the  predistortion  case (1) will be  used  to  represent  the 
initial  complementary  distortion  while (2) will then 
describe  the  original  distorting  device  or  circuit.  Thus, 
in  this  case,  the bnls are  assumed  known  and  the am’s 
are  to be  determined  as  functions of them. 

Substituting (2) in (1) yields 

_I s=I 

where  the c,’s are new  coefficients  whose  values,  deter- 
mined  from (3) ,  appear  in  the  second  column of Table  I. 
Now  for  zero output  distortion  in e2, we desire e2=cleo. 
To obtain  the  values of a, or b, which  make  the  higher 
order cB’s zero, we can  set  these c.’s to zero and  solve 
them  individually  to  obtain  the  desired am’s for  predis- 
tortion or the bnls for  postdistortion.  This  procedure 
becomes  very  arduous  as  the  order  increases,  and  a  pref- 
erable  method is to use reversion of seriese4 

On setting e2 = Cleo equal  to ( 2 )  and  solving  for eo, we 
obtain 

If now (1) is reverted  to  yield eo in  terms of el, one  ob- 
tains  (see  Appendix)  an  infinite  series  like (4) and com- 
parison of terms  yields  the  postdistortion b, ’~  directly 
in  terms of the am’s. The  results  up  to  fifth  order  are 
given  in  the  third  column of Table I .  Note  that  when less 
than  an infinite  number of correction  terms  are  used, 
there will remain  residual  distortion  which,  however, 
may  be  much  lower  than  that  originally  present. 

A similar  procedure  can  be  carried  out  for  predistor- 
tion.  Eq. (4) may  be  written  as 

N 

Cleo = n=l bneln. 

Next,  this  series  may  be  reverted  to  yield el in  terms of 
(Cleo) and  the  result  compared  with (1). Using c1=albl, 
the  equations of column 4 of Table I are  obtained. Col- 
umns 3 and 4 of Table  I  are  the  basic  results of the  pres- 
ent  work.  Although  expressions  connecting  the coeffi- 
cients  have  only  been  stated  to  the  fifth  order,  higher- 
order  terms  may  be  readily  obtained  from  the  corre- 
sponding  known  expressions  tabulated  in  the  reversion 
of series m e t h ~ d . ~  

Data,” 3rd Ed., The Macmillan Co., New York, N. Y. ,  p. 11; 1947. 
H. B. Dwight, “Tables of Integrals and  Other  Mathematical 
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(2) u2 ($) ba 

The  above reversion  procedure  shows that  for  either 
pre- or  postdistortion  correction  to  yield e2 =Cleo ex- 
actly,  an infinite  number of complementary  correction 
terms will be  required.  For  postdistortion, for example, 
each  correction  term  acts  on  the  original  distortion  to 
create  higher-order  distortion  terms  which,  in  turn,  re- 
quire  the presence of higher-order  correction  terms  to 
eliminate  them  and so on.  Further,  the  larger  the  num- 
ber of correction  terms,  the  smaller  in  general  the  ampli- 
tude  range  over  which  reduced  distortion is obtained. 
Nevertheless,  a  finite  number of pre-  or  postcorrection 
terms  can effect a  very significant  improvement  in  non- 
linear  distortion  over  a  finite  and  important  amplitude 
range. 

EXAMPLE 
The  square-law  distortion  case, being  simplest, will be 

used to  show how complementary  distortion  may be 
applied  for  over-all  distortion  reduction.  This  case  is 
useful  also as an  example  since  it  can be  solved  directly, 
as  shown  in  the  Appendix.  For  predistortion, we shall 
take N= 2 so tha t  e2 = blel+bze12, while M= 2 for  post- 
distortion  yields el =a1eo+a2eo2. As an  illustration, we 
shall  investigate  in  both  cases how the  residual  total 
harmonic  distortion  (THD)  varies  with normalized 
amplitude  when c2 = 0 only  (one  correction  term),  when 
cz = cs = 0, and  when c2 = cg = c4 = 0. 

For  both  pre-  and  postdistortion,  the  procedure  is  to 
substitute  the  values of a, or b, which  make  the  desired 
c,'s zero into  the  higher-order c's and  thus  evaluate  the 
residual,  nonzero  distortion.  The  results of such  a  calcu- 
lation  with no distortion  terms  omitted  are  summarized 
in  Table 11. For  convenience, we have  set al= bl= 1 in 
the  results of Table 11. The  quantities a1 and bl are 
merely  scale  factors  such as amplification  factors,  and 
no significant  generality  is  lost by  taking  them  unity. 
I t  should  be  emphasized  that  these  results  are  pertinent 
only  to  the  square-law  distortion  case,  as  shown  by  the 

TABLE I1 
EXPRESSIOSS FOR A-OKZERO ti's IN VARIOUS PRE- ASD 

POSTDISTORTIOK CASES 
______ 

C? = o  ce=c$=c4=0 

c3 

C4 0 1 0  

C6 

C6 

C 9  
- 

appearance of only uz and bz. More  complicated  results 
would  be  obtained for cubic  distortion  or for a  combina- 
tion of quadratic  and  cubic  distortion. 

Next,  the  results of Table  I1  together  with 

e2 = cseo8 
1 

may  be used to  obtain  the  harmonic  distortion  terms  in 
each  case. If one  takes eo = A  cos wt and expresses  all 
powers of cos wt as  harmonic  terms,  one finally  obtains 
the finite  series of harmonics  pertinent  to  each  case. 
For  example, for cz = 0 and  predistortion,  the  resuIt is 

e2 = eo - 2bz2eo3 + b23k049 (5) 

or 

e2 = [.4 - (3be2.43/2)] cos w t  + ( b z 3 A 4 / 2 )  cos 2wt 

- (b2'-d3/4) COS 30t + ( b z 3 A 4 / 8 )  cos 4 ~ t ,  ( 5 )  

where  dc  terms  have  again  been  omitted. 
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In  general,  we  may  write 

s=l r= 1 r= 1 

where  the hr's are  the  harmonic  amplitudes  and gr 
=h, /A.  Next,  let x=Aaz=Aaz/al and x==Abz=Abz/bl 
for  post-  or  predistortion,  respectively.  Here x is a nor- 
malized  distortion  amplitude  variable,  as  shown  by  the 
result 

In  the  present  case, x clearly  measures  the  relative  im- 
portance of the  original  square-law  or  second-harmonic 
distortion  term. For small x ,  in  fact, x equals  twice  the 
original,  uncorrected THD.   The  normalized  harmonics, 
g,, can now be  expressed  entirely  in  terms of x and  the 
results  are  summarized  in  Table 111. 

Rather  than  compare  the  predictions of these  different 
cases  by  comparing  individual  harmonic  behavior 
graphically,  the THD's of the  various  cases will be  com- 
pared as functions of x. We  may  write 

Note  that gl may  reach  zero  in  most of the  cases of 
Table 111. In  such  cases,  the T H D  will be  unity  and 
there will be no fundamental  component  present.  The 
T H D  is sometimes  written as 

L r=2 -I 

and  would  be  infinite at the  points  where hl or gl mere 
zero. The  distinction  between  the  two  forms  is  only 
important  for  high  values of THD  anyway,  and  this is 
generally  not  the region of most  physical  interest. 

TABLE 111 

XORMALIZED HARMOXIC AMPLITUDES AS FUNCTIONS OF X FOR VARIOUS CASES 

No Corrections I I c2 = 0 c2 = c3 = 0 I c2 = 6.9 = cq = 0 

I I--- l- 

16 

0 
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The  dependence  on x of per cent  THD  calculated 
from (8) with  the  help of 'Table I11 is  shown  in  Fig. 2 .  
The  cases  shown  pertain  to  predistortion  only.  There is 
no  difference between  the  pre-  and  postdistortion 
THD's  in  cases B and C. The  limiting slopes  for  small x 
are,  reading  upwards, 4, 3, 2,  and 1. Kote  that F yields 
minimum T H D  for  x<O.31,  while D is better  than BC 
for x <0.21, and A (no  correction) is better  than BC for 
x>O.53. In  general,  the  more  correction  terms  present, 
the  smaller  the  value of x below  which the  corrected 
T H D  is less than  the  uncorrected  value.  Nevertheless, 
when x is  small,  several  correction  terms  can  greatly 
reduce  the  over-all  distortion.  For  an  uncorrected T H D  
of 2 per cent,  three-term  predistortion  correction  (case 
F )  reduces  the THD  to   about  0.0011  per  cent. 

Finally,  Fig. 3 shows a comparison  between  the  pre- 
and  postdistortion  cases for cz = c3 = 0 and for c2 =c3 

= ci = 0. The  quantity li is the  ratio of the  postdistor- 
tion THD  to   tha t  for predistortion.  These  curves  show 
that  postdistortion  results i n  somewhat lower THD  than  
predistortion  when  two  correction  terms  are  used, but  
that   the reverse is the  case  when  three  correction  terms 
are used. I n  the region of considerable  distortion  im- 
provement  however, say for x j 0 . 2 ,  there is no  signifi- 
cant difference between  the  pre-  and  postdistortion  cor- 
rections.  Thus, which of the  two  methods  to use in  prac- 
tical  cases  can  be  determined solely on  the basis of ap- 
plicability  or  simplicity. 

.APPENDIS 

Given  simple  square-law  distortion of the form el 
=aleO+azeo2, we can  revert  this  finite series directly  to 
obtain 

If 1 4azel,h12i < I ,  expansion J.ields 

eo ( l / n J e l  - ( a 2 / n I 3 ) e l 2  + (2n2*/al5)el3 . . * . (11) 

Comparison  with (4) yields cl=albl and  the  values of 
bz and ba given i n  the  postdistortion  column of Table I 
(with ~ 3 ~ 0 ) .  

The  series  expansion  in  (11)  on  which  the  reversion 
solution is based  is  only  convergent for j 4a2ellal2/ < 1. 
This  condition  may  be  written 

4 [ nz(eo/al) + a2*(ee/nJ2 [ < 1, (12) 

or 

1 ( a 2 ~ 4 / a l )  cos w t  + (n2-l/n1)2 cos2 at 1 < a. (12a) 

Now the  only  maxima of the  left-hand  side,  considered 
as a  function of (ut), which will satisfy  the  inequality  is 
that  obtained for  cos ut = 0. Thus,  the  most  restrictive 
condition following  from  (12a) is 

j x+ . 2 " 2 /  < 2. (12b)  

Fig. 2-Log-log plots of per cent  total  harmonic  distortion in various 
cases (defined in Table 111) vs the  normalized  distortion  vari- 
able x for original  square-law  distortion  only. 

0 6- 

0.5- 

Fig. 3--Total harmonic  distortion  with  postdistortion  divided 
by that  with  predistortion vs x .  

Replacing  the  inequality  by an equality  and  solving for 
x yields x = (43 - 4) = 0.207. This  result shows  1-hat  in 
the  present  case  the  reversion  solution  with an infinite 
number of power-law  correction  terms is convergent for 
x<O.207.  For  slnaller x, an infinite  number of comple- 
mentary  distortion  terms  may  be used to  correct  com- 
pletely (in  principle)  for the original  distortion. \T%CII 
x>0.207, complementary  distortion  correction  with 
an infinite  number of correction  terms is impossible, 
but Fig. 2 shows that  some  improvement  with a finite 
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number of terms is  still  possible  for x somewhat  greater 
than 0.207. 

In  the  present  simple  case,  there is an  alternative  to 
the  reversion  solution  which will allow  complete  distor- 
tion  correction  for a different  range  of X.  We  wish to  
obtain e2 = Cleo, with all higher-order  terms  zero.  From 
(lo),  this  equation  may  be  written 

If 61, al,  and a2 are  known,  the  output el from  the 11011- 

linear  circuit whose nonlinearity is to be  corrected  may 
be  passed  through  an  analog  computer  which  operates 
on el in  accordance  with (13) to  produce  the  undistorted 
output e2 = Cleo. Eq. (13) can  only  be  applied  when  the 
radicand  is  not less than zero. This  condition  leads  to 

(4% cos wt) [l + x cos wt] 2 - 1. (14) 

The  most  restrictive  condition is cos ut = - 1, leading  to 
4%-4x2 = 1. The  solution of this  equation is x=+, the 
maximum  value  permitted. 

I t  should  be  emphasized  that  a  closed-form  reversion 
of the  type  illustrated  by (IO) is only  possible in the 
simplest  cases. In  general,  the  series-reversion  method 
must  be used with a finite  number of correction  terms, 
leaving  finite  residual  distortion.  Further,  as  the  com- 
plexity of the  distortion  to  be  corrected  increases,  it  is 
likely that  the  range  over which  effective  distortion  re- 
duction  can  be  produced will diminish. 
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