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INTRODUCTION

WHENEVER the motion of electric charge in a solid or liquid under the
influence of an electric field is partly or completely impeded at an electrode,
a space-charge region forms near the electrode. Such charges may occur
because of thermal or photoexcitation of the intrinsic material or of impurities
in it, because of high-field emission or breakdown at one electrode, during
the molding of insulating high polymers, etc. Measurement of the spatial
dependence of potential within the material and of the space-charge capaci-
tance as functions of applied external potential can yield valuable informa-
tion concerning the nature and concentrations of charge carriers within the
material, and of recombination and breakdown properties.

Although the nonlinear transient processes occurring after the application
or removal of potential from a charge-containing material with one or two
blocking electrodes have not been satisfactorily treated,! some exact solu-
tions for static space-charge distributions have been given. 3 % 5 The exact
solutions apply to the cases where charges of both signs are mobile for a
finite-length, one-dimensional sample between two blocking electrodes 2 3
and for a semi-infinite sample with blocking electrode at the origin.# In the
present work these solutions will be compared with the case where mobile
charge of only one sign is present but where recombination may occur with
fixed charges of opposite sign.

There are many experimental situations in solids where it is more likely
that charge of only a single sign is mobile than that charges of both signs
move. Even in the latter case when the two mobilities are widely different,
a quasistatic distribution will be initially set up which will be like that
occurring when charge of only one sign is mobile.? Examples of materials
for which the present treatment is likely to apply when one or more blocking
electrodes are used are : * electroluminescent materials, photoconducting
alkali and silver halides,® 7 8 ® impure ice,1? plastic insulators,!* electrets,?
and glass.1® 14 TFinally, the treatment should apply, at least approximately,
to extrinsic semiconductors. It should be emphasized that the univalent
charges considered need not be electrons or holes but can be protons, other
ions, charged impurities, etc.

The mobile charge with which we shall be concerned is assumed to arise
from ionization of neutral impurity centers in the material and from injec-
tion at any non-blocking electrode. When injection or extraction occurs,
the material as a whole will not be neutral. We shall assume for simplicity
that there are no neutral traps in the material which can capture mobile
charge and become charged but that all recombination is bimolecular,
between mobile charge and ionized impurity centers.
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SOLUTION OF THE SPACE-CHARGE EQUATIONS
Let us consider unit cross-section of charge-containing material extending

from a plane, blocking electrode at x = 0 to x = I. It will be assumed that

the electrode at * = I is essentially ohmic if / = <0 so that mobile charge
can enter or leave the material there without space-charge formation. If [ is
finite, both electrodes are taken blocking. For simplicity, we shall specify
that any blocking-electrode contact or surface potential shall be included in
the applied potential i, ; thus, when ¢ is zero throughout the material, it
will be electrically neutral throughout. Discussions of inner and electro-
chemical potential pertinent to the present case have been given by Skinner °
and Grahame.'® ]

The pertinent differential equations for charge motion under the influence
of an electric field in a solid or liquid may be written for a one-dimensional
system with bimolecular recombination as 2, 16
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In these equations, n, is the concentration of neutral impurity centers,

k, and k, are dissociation and recombination rate constants, and the other

symbols have their conventional meanings. The condition that both
positive and negative charge be blocked at an electrode is that of zero positive
and negative currents,

at electrode (6)
n
w4+ D, B 0

Let us now specialize the foregoing equations for the static case and for

negative charges only mobile. Note that in the static case, the dielectric
constant e in (4) is the low-frequency limiting value of the differential

dielectric constant of the material in the absence of free charges.!” As long

as the dielectric constant is independent of field strength, the static and

differential dielectric constants are equal ; this will be assumed to be the
case in the present treatment. After an integration of (1), which can be
readily carried out because the currents in the blocking static case are zero,*

we obtain, on using the Einstein relation, ‘
dn }
el <k T) En (7)

kynp = ky(N -- p) (8}

Equation (3) becomes 16
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where IV is the homogeneous concentration of neutral centers before any
dissociation is assumed to have occurred. The concentration of neutral
centers in a region where the concentration of fixed positive centers is p(z)
must be simply (N — p) as in (8), since the positive charge concentration p
is assumed to arise entirely by dissociation from neutral centers.

Before solution of the above equations, it will be helpful to normalize
the quantities of interest. Define the Debye length for a concentration NV
of charges of one sign mobile as Ly, = [ekT[4me2N].} This is the minimum
Debye length and arises when all neutral centers are ionized. When there is
incomplete ionization and non-zero recombination, the effective Debye
length (abbreviated EDL), L,, will be greater, since the concentration of
mobile charge is then decreased. In such a case let L, = 6Lj,, where the
correction factor 6, not a function of position, will be determined later. Let
b= /(kTle); A=n/N; p=p/N; E=E|kTleL,); R =kNk;
2=a/Lp,; L=1/Lp; $=ux|/L,; L=I/L,

The quantity z'is a measure of distance in terms of the number of fixed
minimum Debye lengths, while £ measures the number of effective Debye
lengths, the quantity of greater interest. Note that the recombination ratio
R depends only on material properties. When R is zero, there is no recom-
bination.

Written in terms of normalized variables, the pertinent equations
become

di

= Ed (7)

dBb

5z = (P — 4) (4)
_ di

. (%)
p=I[1+ RA]™ (8

Eq. (6) is automatically satisfied since there is no current anywhere in the
system.

The above set of equations can be partly solved by substituting (8') in
. (), differentiating (7’) with respect to £, and eliminating £ and d&/d# from
the resulting equation using (4’) and (7’). The resulting second-order
nonlinear differential equation in # can be transformed to a linear Bernoulli
- equation, then integrated directly. The result is

1 da)\2? 1 + R#
Lol ) 2 id
| (1,“%) = A + 26 ln{ 7 } 9)
~ On using (7'), this equation may be written
1 + Ri
C(Byp=dA+ 202{ﬁ 4 ln< +n ")} @)

where A is an integration constant.
By combining Eqs. (7') and (5"), one can obtain
1di P d_:[:

Adg T dg

(10)

' Let 7 = 7,, at some potential i, which occurs a distance £, from the
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electrode at # — 0, where § = ;. Then (10) yields

fi=fet—ba =h_ et (11)
where ¢ is a new potential variable. 7., is the common equilibrium value of
# and P in the absence of space-charge. From (8’) it is

. 1 1\ 17¢
o et~ %3 [(213) + R] (12)
a reasonably well-known equation. We shall show later that
6= [ﬁ'w(z P nao)] -,
In the semi-infinite case # = 7, only at £ = 00 where § = 0. Thus, $a=0
also and ¢ = . On the other hand, in the finite length case it turns out
that £; < L/2 and §, < J; < /2. Since we shall always take J =0 at
& = L, the values of ¢ at the two electrodes will be ¢, = , — i, and
‘/’z — ;. Only in the case of carriers of both sign effectlvely mobile is
$y = $o/2 and £, = L/2. Then the potential distribution will be anti- ‘
symmetrical about the £ = &, line.
Introducing (11) and the relation #, = (1 + R#,)", the electric field
can be written as a function of ¢ as
B(@) = £V20[c + finle? — 1) + {1 + fig(e* — 1)} (13)
where ¢, is a new integration constant related to 4 by
A = 20%(cy — fi, + In 7i,2)
and the sign is selected such that the field is directed from positive to negative
charges. The reason for casting the integration constant in this form is that
it allows us to subsume both the infinite and finite length cases togetherina
single formula. In the former, £ is zero at £ = o where § = 0. Eq. (13)
therefore requires that ¢, be zero in this case. Alternatively, when ¢, > 0,
1 will be less than infinite.
Next, i, must be determined for the finite-length case. On integrating (4)
from 0 to L, the condition of overall space-charge neutrality ensured by the
blocking character of both electrodes leads to

i

2

J% dé =0 (14)
0

¢o) o ‘/‘0 ‘/‘a e ¢ =8 et ‘/’a (15;}
This necessary equality between the fields at the two electrodes is the mair
reason for the essential differences between the finite and infinite length
cases. No matter how great [ is, the electrode fields are equal in the finite
case, but because of the ohmic electrode assumed in the infinite length e
the field at this electrode is always zero.
When Egs. (15) and (13) are combined, the following transcenden
equation for i, is obtained

so that

e'ﬁd

3 4 In ¥4 R,

2= Yo — In 2 e—($o—Va) (1
Ry,
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In the R =0 case, (16) becomes

: Ja = o — I [/ (1 — )] (17)
For R >0, i, is less than the value given in (17) for the same applied
potential. In the two limiting cases e’ >> Ri,, and e < < Ri,, (16) can
be considerably simplified but it still remains transcendental. Finally, it can
be shown from (16) that as R — o0 or §, — 0, §, — ,/2. Note that i, is a
function of , and R but not of L.

g Eq. (5") can be written as

I $o d$
L a:
! = I E V] (18)

where £($) is given by (13). This is the formal solution of the problem and
is complete in the infinite case. For ! < 00, however, ¢, remains to be deter-
‘|m mined. If we let § = &, in (18) we obtain
) do

sndpaich rdg o

| £ |

é1

an implicit, transcendental equation for ¢,. For the present case of immobile
- charge of one sign, (18) and (19) cannot be integrated in closed form.
\
I

(19)

When charges of both signs are mobile and there is no recombination, the
static space-charge distribution equations can be solved exactly. For the
one-blocking-electrode semi-infinite case, the result is 4

\ J = 4 tanh—1{e~% tanh (J/4)} (20)

- where L, is here (Lp,/4/2) = Lp,. In the two-blocking-electrode, finite-
length case, the result must be expressed in terms of Jacobian elliptic
functions 1 2 18 which are poorly tabulated in the regions of most present

 interest.

In the present case, an IBM 650 digital computer has been used to make

| all the pertinent calculations to a high degree of accuracy. Egs. (16) and (19)
~ have been solved by iteration and the results used in (18) to yield the depend-

¢ ence of potential on distance in various cases of interest. In the semi-

' infinite case, only (18) by itself need be used. When a computer is not
available, various approximate solutions may be obtained which are useful
over at least part of the range of £. In particular, it is found that when

: fig(e™® — 1) <1, (18) simplifies to yield the two two-mobile solutions

_already mentioned. These solutions involve #, rather than N in Lp.,,

- however. For #,, << 1, it is necessary that R be large ; such large recom-

 bination can effectively mobilize the fixed charges, making charges of both

signs essentially mobile.
Two other cases are of interest. When ¢ > 1 or ¢, whichever is the
larger, the integration in (18) can be carried out to yield

2

< PV

! .
In this case, mobile charge bullds up at the £ = 0 electrode and a charge

' accumulation region forms near the electrode. For large R, (#,,02/2)

approaches 1/2. When ¢ is large and negative and | ¢ | > | ¢g — fieo -+ In i |

2 — 2] (21)

o*




394 J. ROSS MACDONALD

or 1 whichever is the larger, (18) leads to

V2., 4
g [P0 — fi + In iy +co]! —[| 3| = fio + In i + ¢oJ'}  (22)

This result is useful in delineating most of the exhaustion and depletion
region that forms in the neighborhood of a blocking electrode when the
potential causes mobile charge to be withdrawn from this region.

In the finite length case, the potential distribution between electrodes
must finally become linear for very high recombination ratios (little mobile
charge) or for lengths less than Lj,. Insuch a case ¢, is the dominant quan-
tity in £(¢) and approaches its largest value, which, from (19), must be

Comax = %(gf)z = %<%>2 (23)

The smallest value of ¢, is zero. For fixed R and appreciable L, it is found
that ¢, oc e-L, Also, for fixed L and appreciable R it turns out that
co C 0-2 >~ R-% ag in (23).

A
x
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DiscussioNn or Static DisTrRIBUTION CURVES

(1) SINGLE BLOCKING ELECTRODE

Figs. 1 through 4 illustrate space charge behavior for various conditions.
The curves of these figures have been calculated from Eq. (18) using an

10

0.01

F1c. 1. Accumulation region potential curves for various values of applied poten
versus normalized distance. The six lower curves are for R = 0.

IBM 650 computer.!® Although we only show the dependence of ¢
normalized distance, that of 7, $, and £ can be obtained using the
and Egs. (11), (12), (8'), and (13). Fig. 1 illustrates the development of
charge accumulation region as the applied potential is increased from vi
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small values. In this figure, all but the top two curves are for B = 0. Note
that the curve for = 0-1 is a good exponential, but that the other curves
progressively deviate from exponential behavior in the small z region as i,
increases. ’

The two top curves show how the space-charge region is spread out for
non-zero recombination. Since the abscissa is here z, the normalization of
distance is constant independent of B. Were the top two curves replotted
versus & so that comparison could be made on the basis of an equal number
of effective Debye lengths (depending on R through 6), both top curves
would fall between the curves marked A and B in the figure. For R = 108,
the resulting curve is indistinguishable from B, that for the case where both
positive and negative charges are mobile. Since curves for all R values fall
in the narrow region between A and B, we see that on comparing in terms of
effective Debye lengths, R has only a small effect on the space-charge distri-
bution in the accumulation case.

When i, is greater than about 10 (equivalent to approximately 0-25 volts
at room temperature), the accumulation region builds up only in the region
of very small z (<< 0-1) and the rest of the curve remains the same as that for
¢ = 10. We have not illustrated accumulation region curves for large
values of i, for two reasons. First, for small R, they lead to exceptionally
high fields and charge concentrations at £ = 0.2 Experimentally, high-field
emission, dielectric saturation, ete., will occur before such fields and concen-
trations are reached. For R =0, i, = 20 leads to a normalized field
B, =312 X 10*at £ = 0. At room temperature, this corresponds to an
actual field of 8:10% volts/cm. for an effective Debye length of 10— em. It
may also be pointed out that high fields may have an effect on recombination
and emission 20 and that the concept of electron motion in a conduction band
is itself not useful if the field is very high.2! Finally, it should be mentioned
that for high i, the mathematics may call for not only exceptionally high
charge concentrations at the electrode but extremely rapid decrease in the
concentration as z increases from zero. It is clear that the physical situation
will not conform to the mathematical solution if the mean free path of
the mobile charges is greater than the distance in which i and # are required
to change appreciably. In this case, the terms which describe diffusion in
the equations will certainly be inapplicable.

When R is very great, the situation is somewhat different. The large
value of R produces a small value of 7., and the field and charge concen-
tration at the blocking electrode will not necessarily be excessive. In terms
of £, the decay of ij away from the electrode will still be very rapid but L,
may be so large that the decay will actually take place over appreciable
distances. As an example, consider the case R = 10%, JJ, = 50. Then
flp = 10720, If N = 10'® cm~3, for example, the material is essentially
insulating. The quantity 6 is 101/4/2 and even for an Lp, of 10-7 em., L,
i87-10%2 cm. For this same Ly, the field at the electrode is 2:6 X 108 volts/cm.
The normalized potential drops from 50 to 20 in 6:4 X 10~2 cm. and to 10 in
32 cm. At the latter point, # is 2-2 X 10-18. Because of the very few free
carriers present in material with such a high recombination ratio, it may be
difficult to measure the dependence of potential on distance from the blocking
electrode even though the distance scale is favorable.

Fig. 2 illustrates the progressive formation of a depletion and exhaustion

——
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region at the blocking electrode when fields are present which draw the
mobile charge away from the electrode. The dotted line on the §, = — 10
curve is calculated from Eq. (22) ; for | § | > 2, this equation fits the curves
of the figure extremely well. The mathematical solution calls for extremely
small but non-zero 7 values when < — 1. For example, at ¢y = — 100

Ga"'o.

1 llllAJlJ AN v L3l

[ 10° g 10' 10?

Fic. 2. Exhaustion-depletion region potential-distance curves for various values of
applied potential. The dotted line represents an approximate expression.

and R =0, 7 ~4:10-*%. This value is completely negligible and can he
replaced by zero with no effect on the potential distribution. Because # is
so small in the exhaustion region, recombination has little effect on the
curves in this region using the z scale. Thus, for §, = — 1000, z = 37.10 at
¢ = — 30 for R = 0 and is 39.52 at = — 30 for R = 1016, .

The present treatment is based on the assumption of a continuous space
charge. For it to apply, it is necessary that the exhaustion region thickness
be large compared to the average distance between ionized centers, N-1/3 ¢m.
From (22) the approximate exhaustion layer thickness (| i | > | In fig—1i, |)

is LoyV2 [ iy | =[] o | [2meN]t. Thus, the exhaustion layer solution is
only a good approximation when this quantity is at least five or ten times
greater than N-13. Taking the factor as 10, we obtain the condition for
validity, | ¢, | > 200 7eN/3/e.

The strong exhaustion regions illustrated in Fig. 2 are very similar to
those found with reversed-biased p-n junctions. Mathematically, the
mobile charge concentration in the exhaustion region follows the Maxwell-
Boltzmann distribution of Eq. (11) and reaches extremely small val
Physically, it will actually be zero over most of the region. In the region
of very low concentration, the diffusion terms in the equations will not be
applicable and the field will withdraw all mobile charge from most of the
exhaustion region.

Fig. 3 illustrates the initial setting up a depletion region starting froz
very small §,. These curves should be compared with the correspondin ‘_'
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30

Fic. 3. Potential-distance curves showing the initial formation of a depletion-
exhaustion region for low applied potentials.

1 1 1
! 2 3 A 4 5 6 7

ol
o

Fic. 4. Exhaustion region potential-distance curves for §, = — 10 and various values
of R. Distance scale measures number of effective Debye lengths and normaliza-
tion is therefore a function of R.
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ones of Fig. 1 for the build up of accumulation regions. The effect of B > 0
is negligible in an exhaustion region where there are no mobile charges to
recombine. When the potential is not high enough to produce complete
charge exhaustion, however, as in Fig. 4, R can have an appreciable effect
when comparison is made on the basis of number of effective Debye lengths.
It will be noted that as R increases, the potential distribution gradually
changes from that of an exhaustion region to that of an accumulation region
in the neighborhood of the blocking electrode. The final R > 108 curve is
exactly the same as that for the two-mobile case in Fig. 1'and is described
by Eq. (20). As recombination increases, the fixed positive charges become
essentially mobile through recombination and an excess of them (but < N)
build up near the blocking electrode while a deficit of negative charge is
formed there. For R > 108, the concentrations of positive and negative
charge are almost exactly reversed in the neighborhood of the electrode for
o = == 10. Such reversal can only occur exactly when the maximum
value of 7% does not exceed unity since P can never exceed this value. For
very negative applied potentials such as i, = — 50, it requlres values of B
such as 105° to cause this condition to be met. In general, for A,y = #,, . eb

to be less than or equal to unity it is necessary that ebs 2 /R, for large R.
For a depletion layer to turn to an accumulation layer, the same condition
with the absolute value of i, taken applies. Since §, = — 1000 corresponds
to only about — 25 volts at room temperature, the maximum value of B
found experimentally will usually not be great enough for the above condi-
tion to hold for most applied potentials. )
Various conditions under which the mathematical solution does not
correspond to a physically realizable situation have already been noted. It
should additionally be pointed out that since the present solution is one-
dimensional, edge and surface effects are neglected. There will be situations
where surface recombination and surface states will exert appreciable !
influence on static space-charge distributions, but they are outside the scope
of the present treatment. 4
The present treatment is also implicitly limited to Maxwell-Boltzmann
statistics. In samples where electrons or holes are the mobile carriers, the
present solution will not be accurately applicable when mobile charge con-
centrations reach degeneracy, and Fermi-Dirac statistics must be used.
Two cases may be mentioned. When 7, is in the degenerate region,
the Einstein relation between p and D will not hold but must be
replaced, e.g. in Eq. (7), and in the expression for L, by a relation involving
integrals over the Fermi-Dirac distribution function. This greatly compli-'J
cates solution of the equations. Secondly, in an accumulation region, n may
be large enough for degeneracy even though n, is not. In this case, the
electric field will generally be large enough in this region (provided break-
down or saturation has not occurred) that band-theory will not be applic-
able ** and the values of n(x) will depart from the predictions of the present
solution. 1
In some experimental situations, the blocking electrode may not be
completely blocking but may allow a small leakage current to flow on the
application of a potential difference to the material. Additionally, in semi-
conductors intrinsic generation of mobile holes and electrons will contribute
charges not considered in the present theory. These sources of additional
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charge will usually not alter the charge distribution appreciably in the
regions where the normal space-charge concentration is high. They may
determine the minimum charge concentrations in exhaustion regions, but
are not likely to alter the potential distributions appreciably. As long as
the additional charge is small, the fields of the present treatment may be
considered as acting on the additional charge without themselves being
much changed by it.

In the present treatment, the impurity concentration N has been
assumed homogeneous. Were there any experimental reason to expect it
to vary appreciably with position, such variation could be readily incor-
porated into the space-charge equations and a digital computer solution
produced with little more difficulty than in the present case.

Finally, the present solution has been applied to a sample of semi-
infinite length. As the foregoing curves show, the actual length necessary
for the internal potential to have decayed in magnitude by a factor of 10
or more from its value at the blocking electrode is no more than three
effective Debye lengths for an accumulation region and approximately

(from Eq. (22)) V2| i, | Lp, lengths for an exhaustion region. If an
ohmic contact is placed along the specimen a distance equal or greater to
those above instead of at £ = 00, the actual space-charge distribution in the
portion of the sample between the blocking and ohmic contacts will be little
altered. The potential distribution need not be altered at all for even
shorter lengths provided the added electrode is not exactly ohmic. All that
is necessary is to add an electrode at whatever the desired distance that will
ensure duplication of the infinite-length-solution field, potential, and charge
concentrations at the point of addition. Such an electrode will not be
ohmic, since it will have a potential drop across it equal to the potential
difference from the point of addition to £ = o0 in the infinite-length solution.

(2) TWO BLOCKING ELECTRODES

The finite-length case with two blocking electrodes is both similar and
dissimilar to the semi-infinite, one-blocking-electrode case. It is similar in
that charge will be drawn away from one electrode forming a depletion
or exhaustion region there and will build up at the other electrode producing
an accumulation region in its neighborhood. The dissimilarity arises from
the condition of total charge neutrality in the two-electrode case and the
relaxation of this condition in the one-blocking-electrode case. In the
latter, an applied potential may bring in or withdraw mobile charge
through the ohmic electrode, making the system as a whole charged. The
mobile charge concentration at the blocking electrode for accumulation
(g > 0) is fig = #iehs, which may reach very high values. This charge
concentration is A ef—%a, however, in the two-electrode case. From Egs. (17)
and (16) it can be shown that 7, = /(1 — e=¥) and Agmax = P, — In Riiy,
in the R =0 and R > O cases, respectively. Thus, in the two-electrode
case, 7, cannot appreciably exceed i, and 7, is therefore limited to much
smaller values than in the one-electrode case for the same applied potential.
Since the maximum field £, is also a function of (i, — i,), it will also be
much smaller than that in the one-electrode case.

In the succeeding figures, computer-calculated curves are presented
showing how the potential varies with distance between the two electrodes.!®
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Since these curves depend on the three independent parameters i, R, and
L, only a limited picture of the interaction of these parameters on curve
shape can be presented here. A more detailed discussion will be published
elsewhere.??

Fig. 5 shows how the potential depends on normalized position between
the electrodes for several applied potentials, zero recombination, and a
length of 10 EDL’s. The left electrode will always be taken positive in the
following graphs, the mobile charge negative in sign, and J, > 0. The
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Fic. 5. Dependence of relative potential on relative position between two blocking
electrodes for B = 0 and various values of i,. ‘

vertical lines on the curves are placed at the dividing points (fd/ﬂ, balbo)-
Note that z/l = z/L = #/L. For very low applied potentials, the potential L
curve is essentially antisymmetric about x/l = £,/L, made up of an accumu-
lation portion at the left and an exhaustion portion at the right. Near each
electrode the potential depends exponentially on distance from that
electrode.

As the applied potential is increased, the potential curves finally approach
the linear dependence on distance shown by the diagonal dotted line. In
the limit of high potentials, all the mobile charge is concentrated in a region
of negligible thickness at the left electrode and the rest of the material is
thus exhausted of mobile charge. Under this condition, the electric field is
a constant independent of distance and entirely determined by ¢ymax. When
the applied potential is less than infinite, the absolute value of the electric
field varies monotonically from a common maximum value | £, | at either
electrode to a minimum value | £, | = | £ (0) | = 6V/2c, at & — £,. The
ratio | £,/B,) | shown in the box in Fig. 5 is a convenient measure of the
closeness of approach to constant field and linear potential dependence.

In the next graphs, we shall show potential dependence curves for both
a fixed actual length (L and I constant) and for lengths containing a fixed
number of EDL’s (L constant). In this way the two separate effects of
increasing recombination ratio can be shown and curves for a wide range of
lengths presented. '

Fig. 6 shows the situation for §, = 10. The figures on the curves are
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values of R. Note that L = §L. The curves on the left show what might
happen experimentally if R were progressively increased, for example, by
decreasing the light intensity on a photoconductor and thereby decreasing
its dissociation constant k,. For fixed length, increasing R causes the
potential distribution to become more and more linear because, as shown
by the values in the box at the left, the number of EDL’s in the length
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Fic. 6. Potential-distance curves for ¢, = 10 and various R values. The curves in (a)
are for a fixed electrode-length independent of R, while those shown in (b) apply
for a variable electrode separation of 10 effective Debye lengths.

becomes less and less. The curves on the right show, however, that if the
length measured in EDL’s is kept constant as R is increased, the effect of
increasing R is to decrease i, towards /2, to increase &, towards L/2, and to
thereby cause accumulation and exhaustion regions to become more and
more antisymmetrical in shape. When full antisymmetry is reached
(e¥a £ RA,,), as is practically the case for the curve R > 10% on the right,
the immobile charges have been completely mobilized by a sufficiently large
recombination ratio value. Note that the resulting normalized potential
distribution is not necessarily identical with that obtained for R = 0 and a
limitingly small applied potential, (e.g. compare the curve for , = 0-1 in
Fig. 5).

gFig. 7 shows curves for L and L of 10 but for a larger o than Fig. 6.
Again for L constant all an increase in R does is cause the curves to approach
closer and closer to linearity. It is interesting to note here that even for
such large R values that L < 1, the potential curve is not linear until the
condition Rii,, > e’ is satisfied and i, >~ /2. As long as this relation is
far from being met, the approximate width of the exhaustion region near
the cathode is, from Eq. (22), 02 =z = V2|, | when | , | > 1. This
value of z appreciably exceeds L for Fig. 7 (a), so that the exhaustion region
extends over most of the region between electrodes. In this range of R,
increases in it can have little effect on the potential distribution because
there are no mobile charges to recombine with the fixed charges in the
exhaustion region. For constant L, however, it is seen that the curves
become less and less linear as R increases. Since i, is large, much larger
values of R are required to achieve antisymmetry than in Fig. 6.
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Figs. 8 and 9 are for ,’s of 10 and 100 again but for values of L and L
of 100 instead of 10. In Fig. 8 the increased value of L requires larger
values of R before L becomes unity or less. For those curves without the
vertical line denoting the dividing point between accumulation and exhaus-
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Fic. 7. Potential-distance curves for :/:o = 100, L and L equal to 10, and various
R values. f

tion (or, for sufficiently large R, of accumulation of negative charges on one
| side, positive charges on the other), the value of ¢, is much less than 10-10
! and the right and left parts of the curves showing appreciable variation of
‘ J have been calculated separately using ¢, = 0. This is an excellent approxi-
mation in such cases. Physically, L is sufficiently large that exhaustion
and accumulation regions are localized near the electrodes and there exists
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Fic. 8. Potential-distance curves for ¢, = 10, L and L equal to 100, and various

R values. i
]

an appreciable center region where there is virtually no space-charge. Thus
| whenever the potential curves show a substantially flat center region,
one-blocking-electrode, infinite-length solutions may be applied for potent

! differences of i, — i, on the left and — i, on the right. '
|
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It will be noted from Fig. 9 that if R is not too great almost all of the
applied potential drop takes place very near the cathode. In the anti-
symmetrical case, the immobile charges are mobilized through recombination
and the resulting curves are exactly the same as those obtained from the
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Potential-distance curves for i, = 100,

R values.
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(b)

L and L equal to 100, and various

It will usually be

Jaffé solution % 18 for charges of both signs mobile.
preferable to use either the computer or approximate solutions to calculate
potential distributions in this case because of the inadequate tabulation

of the Jacobian elliptic functions required by the Jaffé results. Finally,
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Fie. 10. Experimental potential-distance curves obtained by Joffé?® for (a) quartz,
(b) calcite.

it is worth pointing out that when R is very large the material is essentially
an insulator. For a value of N of 1020 ecm—2 and R = 105, the equilibrium
charge concentration 7, is only 10-% em~3. Thus, in most cases of interest R
will be considerably less than 1050,

Fig. 10 shows some experimental curves of Joffé 22 for heated quartz
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(10 (a) ) and calcite (10 (b) ). Immediately on applying an external potential
the linear curves were obtained while the others were observed at subse-
quent times as polarization built up. Although these curves were drawn
from only a few measured points and pertain to an incompletely blocking
case since some conduction current was flowing, they show general features
quite similar to the present theoretical curves. Somewhat comparable
results have been obtained by Cohen 24 on fused quartz. Finally polarization
of the present type in photoconductors ” # has recently been inferred by
Kallman and Freeman for photoconducting phosphors.2?

SpACE CHARGE CAPACITANCE

Because of high impedance levels, surface states and surface potentials,
and possible small dimensions of space-charge regions, it is often difficult
to measure potential distributions accurately. Considerable useful informa-
tion can be obtained in such cases by measuring instead the static and
differential capacitances of the system as functions of a D.c. potential bias.?
These capacitances are given by | o/, | and | dg,/di, | for the one-blocking
electrode situation. The quantity g, is the charge on the metallic electrode,
equal to the total distributed space charge ; it may be related to the field
at the electrode through Gauss’s law. One obtains the following expressions
for the two capacitances (per unit area) in the case of charge of only one
sign mobile in the one-electrode case,

e \|E(
e (m—) W e
c ‘"o Do (25)
. 41TL | B(y)

where the second equation has been simplified through the use of (4).

Since one would expect both capacitances to reduce to €y, = (¢/4nL,) by
definition of L, in the limit of very small applied D.c. potentials, one can
determine 6 by carrying out such a limit in either (24) or (25). The result
obtained is

8 = [fin(l + RAZ) = [fi(2 — )] (26)
as mentioned earlier. The effective Debye length is, therefore, :

L, = 0Lp, = [ekT|4me*n (2 — for) (27)
Since #, approaches zero as R increases, L, approaches the two-mobile
Debye length Lj, with N replaced by n,, the actual equilibrium charge
concentration for given R. ‘

Fig. 11 shows the dependence of normalized differential capacitance on
D.c. bias potential for various R values. The capacitance finally increases
exponentially on the positive (accumulation-region) side and finally decreases
as | ¢ [ for large negative potentials (depletion-exhaustion region). The
odd behavior for negative i, and appreciable R arises from the mobilization
of fixed charge by recombination. The height of the peaks are given quite “

closely by RV 4/\/ 10, and thus their measurement should afford a convenient
and accurate method of determining E. The static capacitance curves a
similar to the differential ones but the peaks occur at somewhat more nega-
tive potentials.
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In many cases, it may not be possible to form a blocking electrode on a
charge-containing material without providing a charge-free insulating region
between the material and the electrode. Such a region may be especially
necessary for one or both applied polarities when the mobile carriers are
electrons or holes. This region will have a potential-independent capacitance
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Fic. 11. Normalized differential capacitance of material with a single blocking electrode
versus positive and negative applied potential for various R values.

essentially in series with the potential-dependent space-charge capacitance
of the material. The behavior of the combined system is of added interest
in connection with capacitance measurements on barrier-layer rectifiers
and is discussed in detail elsewhere.??

The capacitance situation is considerably more complicated in the two-
blocking-electrode situation. In addition to possible charge-free regions
between the charge-containing material and the electrodes, the capacitances
of both the simultaneously present accumulation and exhaustion regions
must be considered as well as the geometrical capacitance between the
electrodes. These matters are outside the scope of the present work and are
discussed in a further paper.22
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