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I NTR ODU CTION 

WHE N E VER t he motion of elect ric charge in a solid or liquid under the 
influence of an elect ric field is part ly or completely impeded at an electrode, 
a space-charge region forms near t he electrode. Such charges may occur 
because of thermal or phot oexcitation of the intrinsic material or of impuriti es 
in it , because of high-field emission or breakdown a t one elect rode, during 
the molding of insulating high polymers , etc . Measurem ent of the spat ia l 
dependence of potential within the materia l and of the space-charge capaci­
tan ce as functions of applied external po tent ia l can yield valuable infor ma­
tion concerning t he nature and conce ntrations of charge carriers within t he 
mat eri al , and of recombination and breakdown properties. 

Although the nonlinear transient processes occurring after t he application 
or removal of potential from a charge-containing materi al with one or t wo 
blocking electrodes have not been sa tisfactorily treated; ' some exact solu­
tions for st a t ic space-charge distributions have bee n given .v 3, 4, 5 The exact 
solut ions apply t o the cases where charges of bot h signs are mobil e for a 
finite-length, one -dimens ional sample between two blocking elect rodes 2, 3 

and for a semi-infinite sa mple wit h blocking electrode at the or igin. 4 In the 
present work t hese solut ions will be compared wit h the case wh ere mobile 
charge of only one sign is present but where recom bination may occur with 
fixed charges of opposite sign. 

There are many experimental sit uations in sol ids wher e it is more lik ely 
that charge of only a single sign is mobile t ha n t hat charges of bot h signs 
move. Even in t he latter case when the t wo mobilities are widely different, 
a quasistatic distribution will be initially set up which will be lik e that 
occurring when charge of only one sign is mobil e.P Examples of materials 
for which t he presen t t reatment is lik ely t o apply when one or more blocking 
electrodes are used are r s elect roluminescent materials, photoconduct ing 
alkali and silve r halides, 6, 7, 8, 9 impure ice ,lO plastic insulators.P elect rets ,12 
and glass.P: 14 F inally, the t reatment should apply, at least approximately , 
to extrinsic semiconducto rs. It should be emphasized that the univalent 
charges considered need not be elect rons or holes but can be proton s, ot her 
ions, charged impurities, etc . 

The mobile charge with whi ch we shall be concerned is assumed t o arise 
from ioniz ation of neutral impurity centers in the material and from injec­
tion at any non-blocking elect rode . When inj ecti on or extract ion occurs , 
the material as a who le will not be neutral. W e shall ass ume for simplicity 
th at there are no neut ral traps in the material which can capt ure mobile 
charge and becom e charge d but that a ll recombination is bimolecular, 
betw een mo bile charge and ioniz ed impurity centers . 
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SOLUTION OF THE SPACE-CHARGE EQUATIONS 

Let us consider unit cross-section of charge-containing material extending 
from a plane, blocking electrode at x = 0 to x = l . It will be assumed that 
the electrode at x = l is essentially ohmic if l = co so that mobile charge 
can enter or leave the material there without space-charge formation . If l is 
finite, both electrodes are t aken blocking. For simplicity, we shall specify 
that any blocking-electrode contact or surface potential shall be included in 
the applied potential .po ; thus , when .p is zero throughout the material, it 
will be electrically neutral throughout. Discussions of inner and electro­
chemical potential pertinent to the present case have been given by Skinner 5 

and Grahame.P . 
The pertinent differential equations for charge motion under the influence 

of an electric field in a solid or liquid may be written for a one-dimensional 
system with bimolecular recombination as 2, 16 

an 02n o(nE )
 
at = kIne - k2np + o, ox2 + fJ-n --a;;- (1)
 

op 02p o(pE )
 
at = kIne - k2np + D p ox2 - fJ-p ~ (2)
 

one
 
at = - kIne + k2np (3)
 

oE 47Te 
- = - (p -n) (4)
ax € 

d.p
E=- ­ (5)

dx 
In these equations, n is the concentration of neutral impurity centers, e 
ki and k2 are dissociation and recombination rate constants, and the other 
symbols have their conventional meanings. The condition that both 
positive and negative charge be blocked at an electrode is that of zero positive 
and negative currents, 

fJ-ppE - D p ax OP= 0) J . 
at electrode (6) 

an
 
fJ-nnE + D; ax = 0
 

Let us now specialize the foregoing equations for the static case and for 
negative charges only mobile. Note that in the static case, the dielectric 
constant € in (4) is the low-frequeney limiting value of the differential 
dielectrie eonstant of the material in the absence of free charges.l" As long 
as the dielectrie constant is independent of field strength, the static and 
differential dielectric constants are equal ; this will be assumed to be the 
case in the present treatment. After an integration of (1), whieh can be 
readily earried out because the currents in the blocking st at ic case are zero.! 
we obtain, on using the Einstein relation, 

dn ( e ) (7)dx = - kT En 

Equation (3) becomes 16 

k2np = kI(N -- p) (8) 
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where N is the homogeneous concent ra t ion of neutral centers before any 
dissociation is assumed t o have occurred . The conce nt rat ion of neu tral 
cente rs in a region where the concent ration of fixed positive cente rs is p(x) 
must be simply (N - p) as in (8), since thc positive cha rge concentrat ion p 
is assumed to arise ent irely by dissociation from neutral cente rs . 

Before solution of t he above equations, it will be helpful t o normalize 
the quantities of interest . Define the Debye length for a concent ra t ion N 
of charges of one sign mobil e as L Dl = [€kT /41Te2N]'! This is the minimum 
Debye length and arises when all neu tral centers are ionized. When there is 
incomplete ionization and non-zero recombination , the effect ive Debye 
length (abbreviated EDL) , L , will be greater, since the conce ntrat ion ofe 
mobile charge is then decreased . In such a case let L == (JLDl> where the e 
correc t ion factor (J , not a function of position , will be determined later. Let 
~ == r/J/(kT/e); '11 = «[N>; p == p /N ; E == E j(kT /eL e) ; R - k2N/k1 ; 

Z == X/L D1 ; L = l/LDl ; X = x/Le ; L = l/Le• 

The quant ity z -is a measure of dist ance in terms of t he number of fixed 
minimum Debye lengths, whil e x measures t he number of effect ive Debye 
lengths, the qua nti ty of greater interest. Note that the recom bination ratio 
R depends only on mate rial proper ti es. When R is zero, t here is no recom­
bination. 

Written in t erms of normaliz ed variables, the pert inent equat ions 
become 

dn = _ En (7')dx 
dE
di = (J2( p - '11 ) (4') 

E = _ d~ (5')dx 
p = [1 + Rn]-l (8') 

Eq . (6) is automatica lly sat isfied since there is no current anywhere in t he 
syste m . 

The above set of equa t ions can be partly solve d by substi tut ing (8' ) in 
(4'), differen ti ating (7' ) with respect t o x, and eliminating E and dE/dx from 
the resu lting equa t ion using (4') and (7' ). The resulting second -order 
nonlinear differential equa t ion in '11 can be transformed t o a linear Bernoulli 
equat ion, then integrated directl y. The result is 

(~ ~:y = A+ 2(J2 Inr+'11 R~} (9) 

On using (7' ), this equation may be writ t en 

. (E)2 = A+ 2(J2{'11 + In C+'11 Rn)} (9') 

where A is an integrati on constant.
 
By combining Eqs. (7' ) and (5' ), one can obtain
 

1 d·fi d~ 
(10) lldi = - E = dx 

Let '11 = '1100 at some pote nt ia l $a which occurs a distance xa from the 
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electrode at x = 0, where tfr = tfro. Then (10) yie lds 
n = n oo e~- 4Ja = n oo e¢ (II ) 

where ~ is a new potential variable. n oo is t he common equilibrium value of 
nand p in t he absence of space -charge . From (8' ) it is 

1 [( 1)2 1] tnoo = - 2R + 2R + R (12) 

a reasonably well-known equation . We shall show late r that 
8 = [noo(2 - noo)]-t . 

In the semi-infinite case n = " noo only at x= 00 where tfr = O. Thus, tfrd= 0 
also and ~ == tfr. On the other hand, in the finite length case it turns out 
that xd ,,;; L/2 and tfro < tfrd ,,;; tfro/2. Sin ce we shall always take tfr = 0 at 
x = L, the values of ~ at the two electrodes will be ~o = tfro - tfrd and 
~ l = - tfrd· Only in the case of carriers of both sign effect ively mobile is 
tfrd = tfro/2 and xd = L/2 . Then the potential distribution will be anti­
symmet rical about the x = xd line. 

Introducing (II) and the relation noo = (1 + Rnoo )- l, the elect r ic field 
can be written as a funct ion of ~ as 

.E (~ ) = ± V28[co + noo(e¢ - 1) + In { 1 + noo(e-¢ - 1)}]t (13) 

where Co is a new inte gration constant related to A by 
A = 282(co - noo + In n 2)00 

and the sign is selected such t hat the field is direct ed fro m positive to negative 
charges. The reason for casti ng the integrati on constant in this form is that 
it allows us to subsume both the infinit e and finite length cases together in a 
single formula . In the former , .E is zero at x = 00 where tfr = O. E q. (13) 
therefore requ ires that Co be zero in this case. Alternat ive ly, when Co > 0, 
l will be less than infin ite . 

Next, ~d must be de termined for t he finite-length case . On integrating (4) 
from 0 t o L , the condit ion of ove rall space-charge neutrali t y ensured by the 
blocking characte r of bot h elect rodes leads t o 

t 
"d.E 
dxdx =O (14)J 

o 
so that 

.E(~o) == R(tfro - tfra) = .E(~l) == E (- tfra) (I5) 
This necessary equalit y between the fields at the two e lec t rode~ is the main 
reason for the essent ial differences between the finite and infinite length 
cases. No matter how great l is, the electrode fields are equa l in the finite 
case, but because of the ohmic elect rode assumed in the in finit e length case, 
t he field at this electrode is always zero. 

When Eqs. (15) and (13) are comb ined, the following transcendental 
equa t ion for tfrd is obtained 

1 + -­n«; 

{I 
e.pa

" In • 
l} 

(16) .p, ~ .po- In . 1 + c~~.: 

n (1 - e-<P,) oo 
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In the R = ° case, (16) becomes 

$a = $0 - In [$0 / (1 - e ';'o)] (17) 

For R > 0, 0dis less than the va lue given in (17) for t he same applied 
potential. In t he two limiting cases eJ,d > > Ruoo and e¢d < < Ruoo' (16) can 
be considerably simplified bu t it st ill remain s tran scendental. Finally , it can 
be shown from (16) that as R -+ 00 or $0 -+ 0, $d -+ $0/2. Note t ha t $dis a 
function of $0 and R but not of L. 

Eq. (5') can be written as 
$0 AJ d</> 

x 
A 

= L
X 
~ = IE(~) I (18) 

<$ 

where E(~ ) is given by (13). This is t he formal solut ion of the pro blem and 
is complete in the infinite case . For l < 00 , however, Co rema ins to be deter­
mined. If we let ~ = ~I in (18) we obtain 

(,0 A 

L = L= JI~~TI . (19) 
$1 

an implicit, t ranscendental equa tion for co' For the present case of immobile 
charge of one sign, (18) and (19) cannot be integrated in closed form. 

When charges of both signs are mobile and there is no recombin ation , the 
sta t ic space-charge distribution equa tions can be solved exact ly . For the 
one-blocking-e lect rode semi-infinite case, the result is 4 

$ = 4 t anhr'{ eX t anh ($0/4)} (20) 

where L. is here (L D I /y'2) = In the t wo-blocking-electrode, finite­L D2 • 

length case, the result must be expressed in te rms of J acobian ellipt ic 
functions 1, 2, 18 which are poorly t abulated in the regions of most present 
interest. 

In the present case, an IBM 650 digital computer has been used to make 
all the pert inent calculat ions to a high degree of accuracy. E qs. (16) and (19) 
have been solved by ite ration and t he results used in (18) t o yield the dep end. 
ence of potentia l on distan ce in va rious cases of interest. In the semi­
infinite case, only (18) by itself need be used. When a comp ute r is not 
available, various approximate solutions may be obtained which are useful 
over i}t least part of the range of x. In particular, it is found that when 
n",(e-'" - 1) ~ 1, (18) simplifies t o yield the two t wo-mobile solutions 
already mentioned. These solut ions involve Uoo rather than N in L D 2, 

however. For Uoo ~ 1, it is necessary that R be large ; such large recom­
bination ean effect ively mobilize t he fixed charges, making charges of both 
signs essent ially mobile. 

Two ot her cases are of interest . When e$ ~ 1 or Co whichever is the 
larger, the .int egrat ion in (18) can be carried out to yield 

x=- 2 [e- J/2 _ e-$0/2] (21) 
- IJV 2uoo 

In thi s case , mobile cha rge builds up at the x = °electrode and a charge 
accumulat ion region form s near the electrode . For large R , (uooIJ2/2) t 
approaches 1/2. When ~ is large and negative and I¢ I~ ICo - Uoo + In Uoo I 

o· 
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or 1 whi chever is the larger , (18) leads to 

x~ V;{[~ o - '11 00 + In iioo + co]l - [ I~ 1-; iioo + In iioo + co]l } (22) 

This result is useful in delineating most of the exhaust ion and depl eti on 
region t hat forms in the neighborhood of a blocking elect rode when th e 
potential causes mobile charge to be withdrawn fr om this region. 

In t he finite length case, the potential distribution bet ween elect rodes 
must finally become linear for very high recombination ratios . (little mobile 
charge) or for lengths less than L Dl . In such a case Co is the dominant quan­
tity in .IE(~) and approaches its largest value, which, from (19), mu st be 

comax= t(tiY= t ( ~oY (23) 

The smallest value of Co is zero. F or fixed R and appreciable L, it is found 
that Co o: e-!' . Also, for fixed L and apprecia ble R it turns out that 
Co cc 8- 2 ~ R- I as in (23). 

D I SCUSSION OF STATIC DIST RIB UTION C URVES 

(1) SINGLE BLOCKING ELECTRODE 

Figs. 1 through 4 illustrate space charge behavior for various condit ions. 
The curves of these figures have been calculated from Eq. (18) using an 

• .01 ' , J , J ....... , ! ...... 

~ 

o - ­

FIG. 1. Accumula t ion region poten ti al curves for various values of applied potential 
versu s nor mali zed distance . The six lower cur ves a re for R = O. 

IBM 650 computer .P Although we only show the dependence of ~ on 
normalized distance, that of ii , P, and .IE can be obtained using the ~ results 
and Eqs. (11), (12), (8/), and (13). Fig. 1 illustrates the development of a 
charge accumulation region as the applied potential is increased from very 



STATIC SP ACE -CIIA RG E DISTRIBUTIONS 395 

small values. In this figure, all but the top tw o curves are for R = O. Note 
that the curve for ~ = 0·1 is a good exponent ial, but that the ot he r curves 
progressively deviate from exponent ial behavior in the sma ll z region as ~o 
increases. • 

The two t op curves show how the space -charge region is spread out for 
non-z ero recombination. Since the ab scissa is here z, the normalization of 
distance is constant independent of R . Were the t op two curves replotted 
versus x so that comparison could be made on the basis of an equal number 
of effect ive Debye lengths (depending on R through (J), both top curves 
would fall between the curves marked A and B in the figure. For R = 108 , 

th e resulting curve is indistinguishable fr om B , that for the case where bot h 
positive and negative charges are mobil e. Since curves for all R values fall 
in the narrow reg ion between A and B , we see that on comparing in t erms of 
effect ive Debye lengt hs , R has only a small effect on the space-cha rge distri­
bution in t he accum ulat ion case. 

When ~o is greater than about 10 (equivalent t o approximate ly 0·25 vo lts 
at room t emperature), the acc umulat ion region builds up only in the region 
of very small z « 0,1) and the res t of the curve remains the same as that for 
~ = 10. We have not illustrated accumulation region curves for large 
valu es of ~o for t wo reasons. F irs t, for small R, they lead to except ionally 
high fields and charge conce ntrat ions at x= 0.3 E xp erimentally, high -field 
emission, dielectric sa tura t ion, et c., will occur befor e such fields and conce n­
trations are reached . F or R = 0, ~o = 20 leads t o a normalized field 
Eo = 3·12 X 104 at x= O. At room temperature, this corresponds t o an 
actual field of 8.106 volts/em. for an effect ive Debye length of 10- 4 em. It 
may also be pointed out that high fields may have an effect on recombination 
and emission 20 and that the concept of electron moti on in a conduction band 
is its elf not useful if the field is very high. 21 Finally , it should be mentioned 
that for high ~o the mathematics may call for not only exceptionally high 
charge concent rat ions at the electrode but ext remely rapid decr ease in t he 
concentrat ion as z increases fr om zero. It is clea r that the physical sit ua t ion 
will not conform to the mathematical solut ion if the mean fr ee path of 
the mobil e charges is greater than the distance in whi ch ~ and nare required 
to change appreciably . In this case, the t erms whi ch describe diffusion in 
th e equa t ions will certainly be inapplicable . 

When R is very great, the sit uation is somewhat different. The large 
value of R produces a small value of n and the field and charge concen­oo, 

tr ation at the blocking elect rode will not necessarily be ex cessive . In t erms 
of x, the decay of ~ away from the elect rode will st ill be very rapid but L , 
may be so large that the decay will ac t ua lly t ake place over appreciable 
distances. As an example, consider t he case R = 1040 , ~o = 50. Then 

101 8 n = 10- 20 • If N = em- 3 , for ex ample , the material is essentiallyoo 

insulating. The qu antity (J is 1010/V2 and eve n for an LDI of 10- 7 em ., L. 
is 7.102 em. F or this same L D1, the field at the elect rode is 2·6 X 10 6 volts/em . 
The normaliz ed potential drops from 50 to 20 in 6·4 X 10- 2 em . and t o 10 in 
32 em. At t he latter point, nis 2·2 X 10-1 6• Because of the very few free 
carriers present in material with such a high recombination ratio, it may be 
difficult t o measure the dependence of potential on distance from the blocking 
electrode even t hough the distance sca le is favorable. 

F ig. 2 illustrates the progressive for mation of a depletion and exhaust ion 
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region at the blocking electrode when fields are present which draw the 
mobile charge aw ay from the elect rode . The dotted line on the ~o = - 10 
curve is calculated from Eq. (22) ; for I ~ I > 2, this equat ion fits the curves 
of the figure ext remely well . "The mathematical solut ion calls for ext remely 
small but non-zero 'Ii values when ~ ~ - 1. For example, at .p = - 100 

.0·l:"C-----~===--------___, 

~O·- IO ·' ·0 

,o'rl-- _ 

$0 "- 10• 
(-tl 

10' 

+0'- 10 

10' 

10· 
IO~ 1 .0' 

F IG. 2. E xhaustion- de pletion region poten ti al-distance cur ves for various values of 
applied p otenti al. The dotted line represents an approximate expression . 

and R = 0, 'Ii ~ 4.10- 44 • This value is completely negligible and can be 
replaced by zero with no effect on the potential distribution. Because n is 
so small in the exhaust ion region, recombination has lit tl e effect on the 
curves in this region using the z scale. Thus, for ~o = - 1000 , z = 37.10 at 
.p = - 30 for R = 0 and is 39.52 at ~ = - 30 for R = 101 6 • 

The present treatment is based on the assumption of a continuous space 
charge. For it to apply, it is necessary that the exhaust ion reg ion thickness 
be large compared to t he average distance between ioni zed centers , N - l/3 cm. 
From (22) t he approximate exhaust ion layer thickness ( I ~o I~ [ In n",-n", Il 
is LVIV2! ~o I = [EI .po I /27TeN]~ . Thus, the exhaust ion layer solution is 
only a good approximation when this quantity is at least five or ten t imes 
greater than N - l/3. Taking the factor as 10, we obtain t he condit ion for 
validity, I .po I ~ 200 7TeNI/3/ E. 

The st rong exhaust ion reg ions illustrated in Fig. 2 are very similar to 
those found with reversed-biased p -n junctions. Mathematically, the 
mobile charge conc entration in the exhaust ion region follows the Maxwell­
Boltzmann distribution of Eq. (11) and reaches ext remely small values. 
Physically , it will actually be zero over most of the region. In the region 
of very low concentrat ion, the diffusion t erms in the equations will not be 
applicable and the field will withdraw all mobil e charge from most of the 
exhaustion region. 

Fig. 3 illustrates the initial set t ing up a depletion region start ing from 
very small ~o . These curves sho uld be compared with the corresponding 



FIG. 3. P otential-di stance curves sho wing the initial formation of a depletion ­
exhaust ion reg ion for low applied po tentials. 
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FIG. 4. Exhausti on reg ion potenti al-distance curves for .po = 10 a nd var ious values 
of R. Di stance sca le m easures number of effect ive Deb ye len gths and normaliza­
tion is therefore a function of R. 
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ones of Fi g. 1 for the build up of accumulat ion regions. The effect of R > 0 
is negligible in an exhaust ion region where there are no mobile charges t o 
recombine. When the potential is not high enough t o produce complete 
charge exhaust ion, however , as in Fi g. 4, R can have an appreciable effect 
when comparison is made on the basis of number of effect ive Debye length s. 
It will be noted that as R in creases, the potential distribution gra dually 
cha nges fr om that of an exhaust ion region t o that of an accumulatio n region 
in t he neighborhood of the blocking electrode . The final R ~ 108 curve is 
exact ly the same as that for the two-mobil e case in F ig . I :and is describ ed 
by Eq. (20). As recombination increases, the fixed positive charges become 
essent ially mobile through rec ombinat ion and an excess of them (but ~ N) 
build up near the blocking electrode while a deficit of negative charge is 
formed there. F or R ~ 108, the concentrat ions of positive and negative 
charge are almost exactly reversed in the neighborhood of the elect rode for 
~o = ± 10. Such reversal can only occur exact ly when the maximum 
value of n does not exceed unity since p can never excee d this value . For 
very negative applied potentials such as ~o = - 50, it re quires values of R 
such as 1050 to cause this condit ion to be met. In general, for nma x = n", .e~' 

t o be less than or equa l to unity it is necessary t hat e$, ~ YR, for large R. 
For a depletion layer t o turn to an acc umulat ion la yer , t he same condit ion 
with the absolute value of ~o t aken applies. Since ~o = - 1000 corresponds 
t o only about - 25 volts at room t emperature, the maximum valu e of R 
found experimentally will usually not be great enough for the above condi­
ti on t o hold for most applied pot entials. 

Various conditions under whi ch the mathematical solu tion does not 
correspond to a physically realizabl e sit uat ion have already been noted . It 
should addit ionally be pointed out that since the present solu t ion is one­
dimensional , edge and surface effects are neglect ed . There will be situa t ions 
where surface recom bination and surface states will exert appreciable 
influen ce on static space-charge distributions, but they are outside the scope 
of the present treatment. 

The present treatment is also implicitly limited t o Maxwell-Boltzmann 
stat ist ics . In samples where elect rons or holes are the mobile carriers, the 
present solut ion will not be acc urate ly applicable when mobile charge eon­
cent rat ions reach degeneracy , and F ermi-Dirac stat istics mu st be used. 
Two cases may be mentioned . When nao is in the degener ate region, 
the Einst ein relation bet ween !L and D will not hold -but must be 
replaced , e.g. in Eq. (7), and in the exp ression for L D 1 by a relation involving 
integrals over the F ermi-Dirac distribution fun ction. This great ly compli­
cates solut ion of the equa t ions . Secondly, in an accumulat ion region , n may 
be large enough for degeneracy even though nao is not . In this case, the 
elect ric field will generally be large enough in this region (pr ovided break­
down or sat urat ion has not occurred ) that band-theory will not be applic­
able 21 and the values of n( x) will depart from t he predi ct ions of the present 
solut ion . 

In some experimental situa t ions, the blocking elect rode may not be 
complete ly blocking but may allow a small leakage current t o flow on the 
applica t ion of a potential difference t o the material. Additionally, in semi­
conducto rs int rinsic generation of mobile holes and elect rons will contribute 
charges not considered in the present theory . These sources of additional 
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charge will usually not a lter the charge dist ribution apprec ia bly m t he 
regions where t he normal space-cha rge conce nt ra t ion is high . They may 
determine t he minimum charge conce ntrations in exhaustion regions, but 
are not lik ely t o alte r the potential distributions apprec iably . As long as 
the addit ional charge is small, the fields of t he present treat ment may be 
considered as ac t ing on the addit ional charge withou t themselves being 
much changed by it . 

In the present treatment, the impurity conce ntrat ion N has been 
assumed homogeneous. W ere there any experimental reason t o ex pec t it 
t o vary apprec iably wit h position , such variation could be readily incor­
porat ed into t he space-charge equat ions and a digit al comp uter solut ion 
produced with little more difficulty t han in t he prese nt case. 

F inally, t he p resent solution has been ap plied t o a sample of semi­
infinite length. As t he foregoing curves show, t he act ual length necessary 
for t he internal pot ential to have decayed in magni tude by a factor of 10 
or more from it s value at t he blocking electrode is no more than three 
effect ive Debye lengths for an acc umula t ion reg ion and ap proxima t ely 

(fro m Eq. (22) ) V2 I ~o I L D1 lengths for an exhaustion region. If an 
ohmic contact is placed along the specimen a distance equal or grea ter t o 
those above instead of at x = 00, the actual space-charge distribution in t he 
portion of the sa mple between the blocking and ohmic contacts will be littl e 
altered . The potential distribution need not be altered at all for even 
shorter lengths provided t he added electrode is not exact ly ohmic. All that 
is necessary is t o add an electrode at what ever t he desired di stance that will 
ensure duplica tion of the infinit e-length-solution field , potent ia l, and charge 
concentrations at t he po int of addi t ion . Such an electrode will no t be 
ohmic, since it will have a potentia l drop across it equal t o the potential 
differen ce fr om the point of addit ion t o x = 00 in the infinite-length solution . 

(2)	 T WO B LOCKING E LECTRODES 

The finite-length case with two blocking electrodes is both similar and 
dissimilar t o t he semi-infinite , one -blocking -elect rode case. It is similar in 
that charge will be drawn away fro m one elect rode forming a depletion 
or exhaustion reg ion there and will build up at the ot her electrode producing 
an accumula t ion reg ion in it s neighborhood. The dissimilarity arises from 
the condit ion of total charge neutrality in the t wo-electrode case and the 
relaxation of this condi t ion in t he one -blocking -electrode case. In t he 
lat ter , an ap plied potential ma y bring in or withdraw mobil e charge 
through t he ohmic electrode, making t he sys tem as a whole charged. The 
mobile charge conce ntrat ion at t he blocking elect rode for acc umula t ion 
( ~ o > 0) is no = n",e~ o , whi ch may reach very high values. This charge 
concentrat ion is n",e.p,- $a, however, in the two-elect rode case. F ro m Eqs. (17) 
and (16) it can be shown t hat n o = ~o/ (1 - e- ';;o ) and n omax ~ ~a - In Rn", 
in the R = 0 and R > 0 eases, respectively. Thus, in the t wo-e lectrode 
case, n o ca nnot apprecia bly exceed ~o and no is therefore limited t o mu ch 
smaller values than in the one -elect rode case for the sa me applied po te ntia l. 
Since the maximum field Eo is also a functi on of (~o - ~a ) ' it will also be 
much smaller than that in the one-elect rode case. 

In the succeeding figu res, computer-calcula ted curves are prese nted 
showing how t he po tentia l varies wit h distance between t he two elect rodes.l " 



F IG. 5. D ependence of rela ti ve potentia l on re la t ive p osit ion between t wo blocking 
elect rode s for R = 0 and various valu es of .p o. 
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vert ica l lines on the curves are placed at the dividing points (xdIL, ~dNo)' 
N ote t hat xll = zl L = xiL. F or very low applied potentials, the pot ential 
curve is essent ially ant isy mmetric about xll = xdlL, made up of an accumu­
lati on porti on at the left and an exhaust ion portion at the right. Near each 
electrode the pote nt ial depends exponent ially on distance from th at 
electrode . 

As the applied poten ti al is in creased , the potential curves finally approach 
the linear dependence on distance shown by the di agonal dotted line. In 
the limit of high poten ti als, all the mobile charge is conce nt rated in a region 
of negligibl e thickness at the left elect rode and the rest of the material is 
thus exhauste d of mobil e cha rge . Under t his condit ion, the electric field is 
a constant independent of distance and ent irely determined by comax ' When 
the applied poten ti al is less than infinite, t he absolute value of t he elect ric 
field varies monot onically from a common maximum va lue IEoI at either 

electrode t o a minimum valu e IEd I = IE (0) I= eV2C;; at x = xet• The 
ratio IEdlEo) I show n in the box in Fig. 5 is a convenien t measure of the 
closeness of app roac h t o cons tant field and lin ear pot ential dependence. 

In the next graphs, we shall show potential dependen ce curves for both 
a fixed act ual length (L and l const ant ) and for lengths containing a fixed 
number of EDL's (L constant ). In this way t he tw o separa te effects of 
increasing reco mbinat ion ratio can be shown and curves for a wide range of 
lengths presented. 

Fig. 6 sho ws the sit uat ion for ~o = 10. The figures on the cur ves are 

e,• .. 
';1.01 

Since these curves depend on the three independen t parameters ~ o, R, and 
L , only a limited picture of the intera cti on of these parameters on curve 
shape can be presented here. A more detailed di scussion will be published 
elsewhere.22 

Fi g. 5 sho ws how the potent ial depends on normaliz ed position betw een 
the electrodes for several applied potentials, zero recombination , and a 
length of 10 EDL's. The left electrode will always be t aken p ositi ve in th e 
following graphs, the mobile charge negative in sign, and ~o > O. Th e 
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FIG. 6. Potentia l-di stance curves for [,0 = 10 a nd va r iou s R values. T he curves in (a ) 
are for a fixe d electrod e -length inde pe ndent of R , while t hose sho wn in (b ) apply 
for a variab le electro de sep aration of 10 effect ive Deb ye lengt hs. 

values of R. Note that L = OL. The curves on the left show what might 
happen experime nt ally if R were progressiv ely in creas ed , for exa mple, by 
decreasing the light intensity on a photoconduct or and thereby decreasing 
its dissociation constant k1 • F or fixed length, in creasin g R causes the 
pot ential distribution t o become more and more linear because, as sho wn 
by the valu es in the box at t he left , the number of EDL's in the length 
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becomes less and less. The curves on the right show, however , that if the 
length measu red in EDL 's ' is kept constant as R is increase d , the effect of 
increasing R is t o decrease f dt owards ~o / 2 , t o in crease xdtowards L/2 ,and t o 
th ereby cause acc um ulation and ex ha us t ion regions t o beco me more and 
more ant isy m met rica l in shape . When full ant isy mmetry is reached 
(eWd ~ Rnoo), as is pra ct ica lly the case for t he curve R ;;, 108 on t he r ight, 
th e immobil e charges have been comp lete ly mobiliz ed by a sufficient ly large 
recombination rat io value. Note that the resulting normaliz ed poten ti al 
distribution is not necessarily identical wit h that obtained for R = 0 and a 
limitingly small applied pot ential, (e.g. compare the curve fo~r 0 = 0·1 in 
Fig. 5). 

F ig. 7 shows curves for L and L of 10 but for a larger ~o than Fi g. 6. 
Again for L constant all an in crease in R does is cause t he curves t o approach 
closer and closer t o lin earit y. It is interesting t o note here that even for 
such large R values that L ~ 1, the potential curve is not lin ear until the 
condit ion Rnoo » eobd is satisfied and ~d ~ ~o / 2. As long as this relation is 
far from bein g met, the appro ximate width of the ex haust ion region near 

the cat hode is, fro m Eq. (22), Ox = z = V2 I ~d I when I ~d I» 1. This 
value of z appreciably exceeds L for F ig. 7 (a) , so that the exhaus t ion region 
exte nds over most of the region between elect rodes . In this range of R, 
increases in it can have little effect on the pot ential distribution because 
th ere are no mobil e charge s t o recom bine with the fixed charges in the 
exhaust ion region. For constant L, however, it is seen that the curves 
become less and less lin ear as R in creases. Sin ce ~o is large, mu ch lar ger 
valu es of R are required t o achieve antisymmetry than in Fi g. 6. 
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FIG. 8. P oten ti al -d istance curves for ri-o = 10, Land i. equal to 100, an d various 
R values . 
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FIG . 7. P o tent ial -d ist a nce curves for Jo = 100, Land i: equal to 10, a nd vari ous 
R values. 

Figs. 8 and 9 are for .po's of 10 and 100 again but for values of L and L 
of 100 instead of 10. In Fig. 8 the increased value of L requires larger 
values of R before L becomes unity or less. For those curves without the 
vertical line denoting the dividing point between acc umulat ion and exhaus ­

an appreciable center region where there is virtually no space-c harge . Thus, 
whenever t he potential curves show a substant ially flat cente r region , the 
one -blocking -elect rode, infinite-length solut ions may be applied for potential 
differences of .po - ,pdon the left and - .pdon the right. 

tion (or , for sufficient ly large R, of accumulat ion of negative charges on one 
side, positive charges on the ot her ), the value of Co is mu ch less than 10-10 

and the r ight and left parts of the curves sho wing apprecia ble variat ion of 
.phave been calculate d separat ely using Co = O. This is an excellent approxi­
mation in such cases . Physically, L is sufficient ly large that exha ustion 
and ac cumulation regions are localized near the electrodes and there exists 
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FIG. 9. Potent.ial-distanoe curves for .po = 100 , L and t. equal to 100, a nd va rious 
R values. 

it is worth pointing out that when R is very large the materi al is essent ia lly 
an insul ator. F or a value of N of 1020 cm- 3 and R = 1050, t he equilibrium 
charge concent rat ion n", is only 10- 5 crrr". Thus, in most cases of interest R 
will be considerably less than 10 50. 

Fig. 10 shows some experimental curves of J offe 23 for heated quartz 

Jaffe solution 2,18 for charges of both signs mobil e. It will usu ally be 
preferable t o use eit her the computer or approximate solutions to calculate 
potential distributions in this case because of the inadequate t abulation 
of the J acobian ellipt ic functi ons required by the Jaffe results. Finally, 

It will be noted fr om Fig. 9 that if R is not too great alm ost all of the 
applied potential drop takes place very nea r the cathode. In the anti­
symmetrical case, the immobile charges are mobilized through recombination 
and the resulting curves ar e exact ly the same as those obtained from the 

(0 I {b I 

F IG. 10. E xper im en tal potential-dist a nco cu rves obtaine d by J offe23 for (a) quartz, 
(b ) calcite. 



404 J. ROSS MACD ONALD 

(10 (a) ) and calcite (10 (b)). Immediately on applying an ex te rnal potential 
the linear curves were obtained while the others were observed at subse­
quent t imes as polarization built up. Although these curves were d rawn 
from only a few measured points and pertain t o an in completely blocking 
case since some conduct ion current was flowing, they show genera l features 
quite similar t o the presen t theoreti cal curve s. Somewh at comparable 
results have been obtained by Cohen 24 on fused qua rtz. Finally polarizat ion 
of the prese nt type in photoconductors 7, 8 has recently been inferred by 
K allman and F ree man for photoconducting phosphors. w 

S P ACE CHARGE C APACITANCE 

Because of high impedance levels, surface sta t es and surface potentials, 
and possible sma ll dimensions of space-cha rge regions, it is often difficult 
t o measure potential di stributi ons acc urate ly . Considerable useful inform a­
tion can be obtained in such cases by measuring instead the stat ic and 
differen ti al capacitances of the system as functions of a D .C. potential bias." 
These capacitances are given by 1qoNo1and 1dqo/d% Ifor the one- blocking 
elect rode situa t ion . The qua nt ity qois the charge on the metallic electrode, 
equa l t o the total distributed space charge; it may be related t o the field 
at the elect rode through Gauss' s law. One obtains the following expressions 
for the t wo capacitances (per unit area) in the case of charge of only one 
sign mobil e in the one-e lectrode case, 

0. = (_€-)IE(,~ o ) I (24)
47TL , 0/0 

€82 ) Ino- PoI 
( 

(25)o, = 47TL e I E( ~o) 
where thc second equa t ion has been simplified through t he use of (4). 

Since one would expec t bot h capacitances to reduce to 0 0 = (€/47T L ) by e 
definition of L ; in the limit of very small applied D.C. pote nt ials, one can 
determine 8 by carrying out such a limit in eit her (24) or (25). The result 
obtained is 

8 = ['11,,,,(1 + Rn2", )] - i == ['11,,,,(2 - '11,,,,)]- 1 (26) 

as mentioned earlier . The effect ive Debye length is, t herefore, 

L e - 8L DI = [€kT/47Te2n",(2 - '11,,,,)]1 (27) 

Since '11, ,,, approaches zero as R increases, L; approaches the -t wo-mobile 
Debye length L D 2 with N repl aced by n"" t he actual equilibrium charge 
concentrat ion for given R. 

F ig . 11 shows the dependen ce of normalized differen tial capacitance on 
D.C. bias p ot ential for various R values. The capacitance finally increases 
exponent ially on the positi ve (accumulation -region) side and finall y decreases 
as I % 1-1 for large negative potentials (deplet ion-exhaustion region) . The 
odd be havior for negative ~o and appreciable R arises from the mobilization 
of fixed charge by recombination . The height of the peaks are given quite 
closely by Rl /4/V1O, and thus their measurement should afford a conve nient 
and acc urate method of determining R. The st at ic capacitance cur ves are 
similar to the differential ones but the peaks occur a t somewhat more nega­
tive potentials. 
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In many cases, it may not be possible to form a blocking elect rode on a 
charge-containing material without providing a charge -free insulating region 
between the materi al and the elect rode. Su ch a region may be espec ially 
necessary for one or both applied pol arities when the mobile carriers a re 
electrons or holes. This region will have a potential-indep endent capacitance 
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- I 
10 

II II 

- 10 -I • 

+ 
FIG. 11. Normalized d ifferen t ial capacitance of m a te rial with a sing le bl ock ing elec t rode 

versu s pos itive and negative applied potential for various R values. 

essent ially in series wit h the potential -dependent space-charge capacitance 
of the materi al. The behavior of the combined system is of added interest 
in connec t ion with capacitance measurem ent s on barrier-l ayer rectifi ers 
and is discussed in detail elsewhere. P 

The capacitance situation is conside rably more complica ted in the two­
blocking-electrode sit uat ion . In addition to possibl e charge-free regions 
between the charge-containing material and the elect rodes, the capacit ances 
of both the simultaneou sly present accumulation and exhaust ion reg ions 
must be cons idered as well as the geomet rica l capacitance between the 
elect rodes. These matters are outside the scope of the present work and are 
discussed in a further paper.P 
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