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Exact Solution of a ime-Varying
Capacitance Problem*

J. R. MACDONALDt, FELLOW, IRE, AND D. E. EDMONDSONt

Summary-By means of a new method, a closed-form solution
is obtained for the harmonics generated by a sinusoidally varying
capacitance in series with a fixed resistor and battery. The solution
describes the behavior of the condenser microphone, the vibrating-
reed electrometer, a vibrating plate contact potential measuring ap-
paratus, and a special loudspeaker improvement. With only minor
modifications the solution can also apply to the case of a sinusoidally
varying resistance in series with a fixed inductance and battery;
thus, it may, in addition, be usedl to caculate the response of a carbon
microphone. The present large-signal solution, which applies for
any finite values of the modulation index and frequency, is compared
with previous small-signal approximate results, and the dependence
on modulation index and frequency is investigated for such quanti-
ties as output waveform, total harmonic distortion, hannonic am-
plitude and phase, and average input and output power. A very dis-
torted waveshape is obtained for low relative frequencies and values
of the modulation index near and including unity.

INTRODUCTION
F:EA time-varying circuit problems have beeni

solved to yield exact expressionis for the harmonic
componeiits and thus, to allow their large-signal

behavior to be investigated. W7\ith the current general
interest ill paramietric amiiplifiers, such problems are be-
coming of iiiore importanice. Parametric amlplifiers geni-
erally involve timne-varyinig components, such as ca-
pacitors, in circuits which involve both iniductive anid
capacitive energy storage. Exact large-signal anialysis of
such system-ls is very difficult and is niot attempted
hereini. Instead, we shall be concerned onlv with the
simpler problem of capacitive energy storage anid shall
show that here, at least, it is possible to give anl exact
solutioni in closed form.

Fig. 1 shows a circuit in which the center plate of a
double capacitaince canl be nmoved by an outside force.
\Ve shall be conicernied onlyt with the case in which the
equilibrium positionl of the ceniter plate is such that
(C,)o= (C2)0= Co, where the zero subscripts deniote
equilibriumii. In addition, wxe shall take R1=.R2-R anid
C3= C4. In the resultinig antisymmetrical push-pull
circuit there is no initeraction betweeni the top and bot-
tomIl circuit halves, and initial attentioni can- therefore
be restricted to the top, or single-ended, half alone.
Finiallv, it will be assumed that the restoring force act-
i;g onI the ceniter electrode when it is displaced from

_ _ _ _ _ _ _ _ _ _ _a _ -X I

it

\V V.

Cl w I

C?-
-

i2

4

.4

.4
4
R2

V
Li

Fig. 1-Circntit diagramii for time-varvinig donble capacitor.

equilibrium is proportional to the displacemenit, so that
the system is mechanically linear. For the presenit anial-
ysis we shall focus attentioni oIn the electrical part of
the problem, as showin in Fig. 1, anid shall Inot be conl-
certned with mechanical impedances and the details of
electromechaniical couplinig betweeni the movable plate
and the outside world.
When the movable capacitor plate is driveni sinlus-

oidallv, the resulting time-varyinig currenit whicli
flows in the circuit of Fig. 1 will Inot generally be sinus-
oidal but will containi harmonics of thle drivinig signal.
Such harmonic generation, while simnilar to that which
arises in a nonlinear circuit, occurs here ini a linear time-
varviing system wlich obeys a liniear differential equa-
tion and satisfies the principle of superposition. Har-
monics are produced here because of the timiie-varying
capacitance and not prinicipally because of the inverse
dependence of capacitance oni electrode spacinig.
The circuit of Fig. 1 cani represenit a variety of de-

vices of physical interest. First, it cani be used as a
representationi of a siiigle-ended or push-pull cotndeniser
microphone.t It catn also be used to anialyze the behavior
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of a capacitance type of displacement probe.2 In addi-
tion, it applies to the vibrating plate method of contact
potential measurement3 4 and to the vibrating reed
electrometer.5 As shown in Appendix VI, the present
analysis, with relatively few changes, can also be used
for a treatment of the carbon microphone where a time-
varying resistance is in series with a time-independent
inductance. Finally, the treatment applies as well to the
special loudspeaker discussed below.
The magnetic loudspeaker is one of the weakest links

in the high-quality reproduction of sound. Its perform-
ance has sometimes been somewhat improved by nega-
tive feedback derived from an auxiliary voice-coil
winding and applied around the driving amplifier. This
approach is only partially successful, especially for
heavy-coned, low-frequency loudspeakers, because the
voice-coil current has only partial control over cone
motion and is not, therefore, a true measure of the out-
put sound. More ideal control of cone motion can be ob-
tained by metallizing the cone and making it the center
electrode moving between two fixed metal-screen elec-
trodes in front of and behind the cone. If bias is applied
as shown in Fig. 1, the motion of the cone will generate
a push-pull output signal between electrodes 1 and 2
which can be used for negative feedback. This signal
will be a better measure of average cone motion and
sound output than any that could be derived from the
voice coil. Using it for negative feedback will result in
flatter frequency response, lower nonlinear distortion,
and possibly even some improvement, because of aver-
aging, in the deleterious effects of cone breakup when it
occurs. Note that the above arrangement is, in some
sense, the inverse of the usual push-pull electrostatic
loudspeaker where electric forces are used to move the
center membrane instead of the magnetic forces of the
present system. Although the same electrostatic forces
exist in the present situation, they are negligible com-
pared to the magnetic driving forces. After the above
speaker improvement system was thought of by one of
the present authors, a patent describing a sinigle-ended
version of the device was discovered.6 It will be shown
later that the push-pull system without feedback can
exhibit much less nonlinear distortion generation than
the single-ended system.

In the present analysis of the circuit of Fig. 1, we
shall be concernied with the simplest case, that of sinus-
oidal driving force, such as that occurring when a con-

2 R. D. Shattuck, "Capacitance-typedisplacement probe, "J.A coust.
Soc. Am., vol. 31, pp. 1297-1299; October, 1959.

3W. A. Zisman, "A new method of measuring contact potential
differences in metals," Rev. Sci. Instr., vol. 3, pp. 367-370; July, 1932.

4 J. R. Anderson and A. E. Alexander, "Theory of the vibrating
condenser converter and application to contact potential measure-
ment," Australian J. A ppl. Sci., vol. 3, pp. 201-209; September, 1952.

6 H. Palevsky, R. K. Swank, and R. Grenchik, "Design of dy-
namic condenser electrometer," Rev. Sci. Instr., vol. 18, pp. 298-
314; May, 1947.

6 G. H. Brodie, U. S. Patent No. 2,857,461; October 21, 1958.

denser microphone is exposed to a single-frequency
sound source. There have not been many treatments of
the present problem, and none has been carried to such
a stage that it is practical to calculate the high-order
harmonics which are of importance at low relative fre-
quencies and high values of the modulation index, m.
Wente7 analyzed the condenser microphone in 1917 and
gave results valid for the fundamental response at low
m and high relative frequencies only. Since then, the
most ambitious treatment of the problem seems to have
been that of Anderson and Alexander.4 They have dealt
with the cases where there is no parallel fixed capaci-
tance C3 across R and where C3 is nonzero, but their
analysis of the latter situation is incorrect. As we shall
show later, such capacitance can usually be made neg-
ligible in practice, and it will be neglected in much of
the present work because it considerably complicates
the analysis.

ANALYSIS
Consider the top half of Fig. 1 only, with i _i, C1-C,

and R1-R. The basic equation to be solved is then

dq Vi dVi
- - + C3-?

dt R dt (1)

where q is the instantaneous charge on C and V1= Vo
- (q/C). Eq. (1) can be manipulated to yield

dq q C3R(dC)1 IC Vo
+ Il- W I . (1')

dt R(C+C L C \d/Jt C±C3/ R

The quantitv we wish to calculate is the steady-state
value of i/io, where io Vo/R. This quantity can be
written from (1') as

(i/io) = J

RC3 (dC_ ~ ~~1- _~ ,
VOWc + CO) _ C dt_

(1")

which can be calculated when C(t) and q(t) are known.
Eq. (1') may be formally integrated by means of an

integrating factor when C(t) is specified. The result in-
volves rather unwieldy integrals however, and further
analysis will be carried out here only for the simpler
case, for which C3=0. Then, a steady-state solutioni for
i/io is of the form

I 1 ep[_1 dt]

[ R dt
-

lexpi I-Idi.
R CJ

(2)

I E. C. Wente, "A condenser transmitter as a uniformly sensitive
instrument for the absolute measurement of sound intensity," Phys.
Rev., vol. 10, pp. 39-63; July, 1917.
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16iacdonald and Edmondson: Exact Soluttion of a Time- Varying Capacitance Problem

Further progress requires knowledge of the time varia-
tion of C. We shall assume that the spacing between the
plane-parallel plates of C is given by d=do(l+m sin
wt) for an input driving frequency of (l/2ir). Here m is
a modulation factor usually satisfying 0<m <1. Then,
neglecting fringing effects, taking rigid capacitor plates,
and assuming that the driving frequency is sufficiently
low that Maxwell's equations need not be invoked, one
may write

C = Co/(1 + m sin wt). (3)

For simplicity, let us niow introduce the new variables
4o-t, j=13/RCo, z=-/f3, y-1/z, and x-my=m/z.
Also let M= (1+m sinl 4))-Co/C. Note that z is a nor-
malized frequency variable. Eq. (2) may now be simpli-
fied with the help of (3) to yield

(±)Z = 1 - yMjtfYe4+x Cos qf eyO-x c (4)

The integral in (4) cannot be carried out explicitly to
yield i/io in closed form. It will be shown, however, that
closed expressions for the fundamental and harmonic
components of i/io can be obtained.
When x<<K, one can expand the exponentials involv-

ing x cos 4 in (4) in a simple power series. The integra-
tion can thein be carried out and the result simplified to
yield the fundamental and harmonic current com-
ponents. When this procedure is applied in general, it is
found that the harmonics, far from appearing in closed
form, must be calculated from the product of two double
series. In Appendix I, the results of this approach are
given to the second order in m and up to second har-
monic terms only.
Another method of handling (4) is to use the expan-

sion8

e±x004 = jE (±1)"I8(X) cos (sO), (5)
s-o

where eo=1, e-=2(s>0), and 1s(x) is a modified Bessel
function of the first kind. When (5) is used, i/io may be
expressed as the product of two series or as a double
series.9 Finally, each harmonic current component can
be expressed as a single infinite series of modified Bes-
sel functions. Such reduction is very laborious, and the
resulting series are only rapidly convergent for small x.
The zero-order harmoniic component of i/io turnis out
to be

1) -1- (-1)sE8I2(x) (O < x < oo). (6)

8 W. J. Cunningham, "Introduction to Nonlinear Analysis,"
McGraw-Hill Book Co., Inc., New York, N. Y., p. 248; 1958.

9 Since the present analysis was completed, the treatment of
Anderson and Alexander4 has beeni discovered. It makes use of (5),
but a double series is formally avoided since the authors Fourier
analyze their single-series results separately to obtain harmonic com-
ponents.

Since the sum of the series may be shown to be unity,
there is no static component of current, which is in
agreement with the fact that a direct current cannot
flow through a capacitance, even when it is varying
with time as in the present case.

Another approach, and the one we shall follow in de-
tail here, is to Fourier analyze the steady-state part of
(4) directly in order to obtain closed expressions for the
harmonic current components. Before Fourier analysis
can be applied, the steady-state current must be ex-
pressed in terms of a definite rather than an indefinite
integral. Such transformation is carried out in Appendix
II with the result

I i\ yMexcosf 12w
= 1 - I e_-_o_(O+_ )d

Kio/ (e21ry-I)
I

Next, we wish to express i/io in the complex Fourier
series

(±.-)= Ecnein= + Z ascosso + b0sinso} (8)
fon=-00 2 s

wThere c,=(an -ib0)/2.
The complicated calculation of the complex co-

efficients c0 is carried out in Appendix III. The final
closed-form results are

co = 0,

sinhry

(9)

(n > 0). (10)

Eq. (10) is difficult to use directly for numerical cal-
culations because of the imagitnary and complex orders
of the modified Bessel functionis appearing in it. As
shown in Appendix IV, however, recursion relations
nmav be established between the complex and real har-
Imioniic coefficients of different orders. These relations
allow the coefficients for any harmonic order to be cal-
culated provided those for the two adjacent orders are
known. One simple way of obtaining such initial start-
ing coefficients is to calculate them directly from the
power series expansion of (10). The necessary results
are developed in Appendix V. Once a,, a2, b1, and b2 are
calculated, the recursion relations of Appendix IV allow
coefficients of higher orders to be obtained quite simply.
Although the calculation of the initial a's and b's re-
quires series evaluation, the series are far simpler than
those obtained bv the other methods of solutioni dis-
cussed briefly above, and the convergence of the present
series is such that they are useful for much higher x
values than could be treated practically by other meth.
ods.
The quantity z=y'1=RCow is a normalized frequency

variable proportional to the ratio of the time constant
of the undisturbed systemn to the period of the driving
force. In addition, the following symbols will be used in
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the next section. Each harmonic component of i/io ap-
pears in the form

hn(o) = a. cos no + bn sin no (11)
= a, sin (n4 t Xn),

where

an- (an2 + bn2)"2, (12)

anid

Xn = sin-' (a /an). (13)

In addition to the harmonic amplitude an, we shall
also be interested in the normalized amplitude -y
=(a,,/a,). The total harmonic distortion (THD) given
by

- 0 1/2 _ oo 1/2

THD _ ar2}/[tEar2] (14)

is likewise a quantity of interest. When the entire cir-
cuit of Fig. 1 is operated in the push-pull mode with
Cl=C2 and R1=R2, the symmetry of the arrangement
is such that Ino even-order harmonics appear between
the 1-2 terminals. In this case, it is pertinent to define
the modified total harmonic distortion factor (MTHD)
by

2 1 / [ 2 11/2
MTHD= [La2r-1 [~ a2rl IJ (15)

an expression which involves odd harmonics only.
Using an IBM 650 digital computer, (49)-(52), and

(59) in Appendixes V and VI have been summed for
values of z and m that are of interest. In such summa-
tion, additional terms of the series are calculated until
a term is reached which is sufficiently small to cause
no change, within the eight-figure precision of the com-
puter, in the partial sum to that point. This procedure,
which yields sums of maximum computer accuracy, is
necessary because the recursion relations (42) and (43)
require starting values as correct as possible to allow
accurate higher order harmonic components to be calcu-
lated.

DISCUSSION OF RESULTS

Since the series for the harmonic components are con-
vergent for any finite value of x, they can be used for
very large x values, which can correspond to high val-
ues of m and low values of z, the normalized frequency.
Although m =1 is not usually a useful value for the
physical devices discussed in the Introduction, it is
found that there is a smooth transition from m=0.99
to m = 1, and it is therefore convenient to consider this
limiting case. The pertinent series converge, in fact, for
m > 1; so the limitation m < 1, when pertinent, is physi-
cal, not mathematical. It would be possible to use an
analog computer to represent the circuit of Fig. 1 in
such a way that negative capacitances were realized. In

this case, m could exceed unity, anid the presenit mathe-
matical results would still apply. However, since the
physical devices which the mathematical results de-
scribe are limited to m < 1 or m < 1, the numerical cal-
culationis leading to the results of the present section
have been also limited to the range 0<m <1.

Fig. 2 shows how the distortion factors depend on fre-
quency for various values of m. It will be noted that for
z<<1 both THD and MTHD approach limiting values
which, in the case of THD, are very nearly equal to m.
Thus, for example, no matter how low the frequency,
the maximum total harmonic distortion for m=0.01 is
one per cent. For z>>1, both THD and MTHD decrease
as the frequency increases with limiting slopes of -1
anid -2, respectively. As expected, MTHD is always
less than THD eveni at very low frequenicies.

Fig. 3 presents the distortion factors as a function of
m with z the parameter. These graphs show clearly that
only for high values of m niear un-ity cani decreasinig z
below 0.1 n-make any very appreciable difference in THD
and MTHD. Such decrease, however, can change the
harmonic conistitution considerably. The limiting slopes
in Fig. 3(a) are uniity, while those in 3(b) are equal to
two. The dotted lines show the liniear extrapolationis of
the curves.

(a) (b)
Fig. 2-Harmonic distortion factors, THD and MTHD, as functionls

of normalized frequency z for various values of the modulation
inidex m.

m m

(a) (b)
Fig. 3-THD and MTHD vs m for various values of z.
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For most of the practical devices to which the present
analysis applies, it is desirable to operate under condi-
tions which minimize harmonic distortion. Fig. 4 is
drawn for THD and MTHD values of one per cent and
shows how m and z must be interrelated to maintain
these values. To the right of each curve the distortion
will be less than one per cenit. Clearly, for a given z, m
may be much higher for a total push-pull harmoniic dis-
tortion of one per cenit than for a single-enided total
harmonic distortion of the same value. The limiting
slopes in this figure are both two.

Another quantity like THD or MTHD which is de-
termined by the entire spectrum of harmonics is the
rms relative wave amplitude. We shall actually plot the
amplitude

/ ° 1/2

A = (E an2)
n=1

which is \/2 times the rms amplitude. The quantity A
reduces to the zero-to-peak amplitude of the wave only
when a single sinusoidal component is present. Thus,
for large z, it approaches a, which, in turn, approaches
m. For push-pull operation we shall take A as

a(2r-1
\r=1

MTHD=O0.01

A

Fig. 4-Interrelation between m and z necessary for MTHD
and THD to remain constant and equal to 0.01.

for conveniient comparisoin with that for sinigle-ended
operationi. Fig. 5 shows how A depends on z for m = 0.5
and 1. The limiting slopes for the m=0.5 curves are
unity, the usual 6 db/octave slope to be expected for a
capacitative reactance. Note that wheni the single-
ended and push-pull curves are very close together, only
the fundamental is of importanice.
The equations for all the above quantities which de-

pend on sums of harmonics have been written with an
infinite upper limit. In practice, as the harmonic index
n increases, one eventually reaches a region where higher
harmonic amplitudes are decreasing so rapidly that
further harmonics add nothing appreciable to the series.
In the machine calculations, summation of the series are
always carried to this point even when n values as high
as 25 are required.

Fig. 6 shows how the normalized harmonic ampli-
tudes depend on the order of the harmonic for various
m and z values. We have conniected the calculated

A

Fig. 5-Dependence on normalized frequency of the single-ended
and push-pull amplitudes, A, for m =0.5 and 1.

(a) (b)

Fig. 6-Dependence of normalized harmonic amplitudes, y=n a/,
on harmonic index, n, for m=0.5 and 1 and various z values.
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points with light lines for convenience, but only the dots
themselves are significanit. Also shown in the tables are
the fundameintal amplitude values, a,, for the various
z values conisidered. For z>>1, a, approaches m. As ex-
pected, the harmonic amplitudes decrease very rapidly
wheni z is unlity or greater. When z = 1, cRCo = 1; so z = 1
is a natural dividing poinit. When z>>1, the period of the
driving force is much smaller than the natural tiIme con-
stant RCo. Under these coinditionls, the charge oni the
variable capacitanice cannilot change appreciably within
a period, and the instantanieous voltage across the ca-
pacitor will be proportional to 1/C and will thus involve
the fundamental componen-t only. In the limit of high
frequencies, the variable capacitor charge q will renmain
virtually constanit anid there will be no harmoniic gen-
eration.

For n>3, the harmonics in Fig. 6 have been calcu-
lated using the recursion relations of Appenidix IV.
These relations eventually involve small differenices be-
tween large numbers and, as n inicreases, harmonic co-
efficieiit accuracy will eventually become impaired.
With the eight significant figures available on the 650
machine, this point is reached when y,, has decreased
somewhat below 0.01. The value of 'y, which is still ac-
curate is still more than sufficiently small so that the
sums involving a,2 converge excellently.

Anderson and Alexander4 have been able to apply
their technique for solving the present problem to m
values as high as 0.667 and to z values as small as 0.222
(x = 3). In this case, they obtained yn values of 63, 26, 9,
and 1 per cent for n =2, 3, 4, 5, respectively.10 For the
same input, the present analysis yields 63.3, 26.7, 8.8,
2.4, and 0.58 per cent for n from 2 to 6. This is relativelv
good agreement and affords a check of both methods of
solution.
An interesting feature of Fig. 6(b) is the rise of some

of the higher harmonic amplitudes above the amplitude
of the fundamental. This behavior occurs to a smaller
degree as well for m values of 0.9 but has disappeared by
m =0.7. Curves for m = 1 and z, considerably less than
0.01, could not be obtained with the present 650 calcu-
lation program because it was limited to a maximum of
100 terms in each of the series of Appendixes V and VI.
Some idea of how many terms in these series were re-
quired is given by the following data: for m = 1, the fol-
lowiing z values: 10, 1, 0.3162, 0.1, 0.03162, anid 0.01 re-
quired a maximum of 3, 7, 11, 21, 40, anid 82 terms, re-
spectively; smaller values of m of course needed fewer
terms.
The harmonic coefficients a,, and bn can be recom-

bined when known to yield the Fourier series of (8)
which allows i/io to be plotted as a function of 0. The

10 It should be noted that Anderson and Alexander have denoted
by fundamental, first harmonic, second harmonic, etc. quantities
which are usually (and in the present treatment) termed fundamental
or first harmonic (n =1), second harmonic (n = 2), etc.

resultinig waveshapes for various values of z are shown
in Fig. 7 (next page) for m = 0.5 and in Fig. 8 for m-= 1.
\Ve have actually plotted (1/mr(i/io) rather than (i/io)
in order to facilitate comparisoni betweeni the two fig-
ures. The (1/m) factor causes the fuindamenital signal
components to have the same amplitude at high fre-
quencies (eg., z> 10) inidependently of the value of m.
Also showni in these figures are dotted curves of (C/Co)
or (C/lOCo) which indicate how the normalized ca-
pacitance varies through a cycle.

Fig. 7 shows that at high relative frequeiicies the cur-
rent is inl phase with the capacitance, anid, eveni at z = 10,
there is little distortion of the waveshape and(l very small
phase shift. The situationi is considerably changed as z
decreases, lhowever, anid the harmnonic componienits
showit in Fig. 6 begini to play an important role. Note
that the (lecrease in amplitude shown in Fig. 5 has been
partly compensated in the curves for z=-0.1 and 0.01 by
multiplyinig the amplitudes by the factors shown. As z
decreases, the most striking alterationi is that the cur-
rent chaniges from having a maximum at 0=3ir/2, the
poinit where the capacitance is maximum, to goinlg
through zero at this point. In the low-frequency limit,
the current curve thus teinds to be proportionial to the
derivative of the capacitanice.
Somewhat similar results are shown in Fig. 8. For

m= 1, however, Fig. 5 shows that there is not a very ap-
preciable decrease in the rms current amplitude as z de-
creases; thus, none of the curve amplitudes has been
changed here. For mr= 1, the capacitance reaches in-
finity at q=37r/2. The equations show, however, that
at this poinit there is no voltage across the capacitor
anid no charge on it. Hence, it is merely a short circuit
and, at this value of k, the current is limited only by
the series resistance and must therefore be equal to io.
This requiremenit is independent of the value of z. As
mentioned in Appendix VII, the force between the
capacitor plates never becomes infinite even for m = 1.
Except at very low relative frequencies, the force with
m= 1 will not, in fact, vary much over a cycle. The stiff-
ness of the suspension of the moveable plate ineed only
be great enough to balance the static electrical attrac-
tive force and give the desired spacing, do, when V1=0
and Vo is equal to the applied value. Note that near
5= 37r/2 the capacitance somewhat approximates a
delta function and the current approximates a doublet
impulse function, the derivative of the delta function.
Because of the requirement that i=io at =-37r/2, the
doublet cainnot be equal to zero at 0=37r/2, as in the
m = 0.5 case, except in the low-frequency limit. The
short-circuit condition and the resulting waveshape
near =- 37r/2 are responsible for the slow decrease of
the rms amplitude of i/io for m= 1 as compared to that
for m-0.5. Note that Fourier analysis shows that the
average value of (C/Co) is (1 -Mr)-1/2. For mr=1, this
quantity reaches infiinity, unlike the average value of a
delta function which is finite. Little need be said about
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4, 4)
(a) (b)

Fig. 7-Depeudence of (1/lm)(i/1i) oni O=cot for in=0.5 and variotus z valtues. The dotted currve shows (C/CO) vs 0.

77

(a) (b)
Fig. 8-Dependenice of (1/nm) (i/io) on 0 for m = 1 and various z values. The dotted curve shows (C/lOCo) in (a) and (C/Co) in (b).

the push-pull curves; their symmetry arises from the
abseiice of all even-order harmonics.
The question of how well the simplest approximate

expressionis for the harmoniic coefficients given in Ap-
pendix I represent the actual behavior of the system is
of some interest. For z=0.01 and 1, Figs. 9 and 10 show
how the ratio of exact to approximate coefficients,
(a°0./a,50), depenids on z for n=1, 2, 3. For the z=0.01
case, the siimiple solutioni is oinly a good approximation
for m<0.3. Also, for z=0.01 the higher the harmonic
order the worse the approximation, while for z=1 the
reverse is true.
The results of Appendix I may also be used to com-

pare approximate and exact phase predictions. In Fig.
11, the quantity -5X-X= -Xn is plotted vs m for
n= 1 aind 2 and three z values. In Fig. 12, the phase re-
sults are plotted vs z in different forms. In these graphs,
solid lines denote positive and dotted lines negative
quantities and, for convenience in plotting, all Xn5 values
have been diminished by 1800. First, the accurate
'values of XI and X2 in degrees are plotted. In addition,
the percentage deviation of the accurate values from

the approximate values are shown. Note that very high
deviations occur for X2 when m = 1. The open breaks
in the (IOOAX2/X20) curves near z = 0.6 appear because
in this region the signs of the approximate and accurate
second harmonic phases are different.

Finally, Fig. 13 (page 461) shows how the zero fre-
quency or dc harmonic amplitude in the carbon micro-
phone case (Appendix VI) depends on modulation for
various frequency values. Oine sees that in this case,
where a dc component is allowed, the dc part of i can
greatly exceed io= Vo/R0 when m is near unity and z is
small. This is an interesting case of rectification without
nonlinearity.
For low harmonic distortion yet appreciable m, z

must be unity or greater. It is of interest to inquire
what value of R is necessary to ensure that z =1 at
f=20 cps in the modified loudspeaker discussed ini the
Introduction. Since the capacitance modification will be
of most value for large, low-frequency speakers, we may
consider a typical cone area of 1300 cm2. If the fixed
screens are 0.25 inch in front of and behind the cone,
the single-ended equilibrium capacitance is about 181
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m

Fig. 9-Comparison of exact and approximate harmonic
amplitudes as functions of m for z = 0.01.

I.26 ,I, ,I

1.20 _n v
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m

Fig. 10-Comparison of exact and approximate harmonic
amplitudes as functions of m for z= 1.

m

Fig. 11-Dependence of phase difference -Ax0 =XO0-Xn on m
for n= 1 and 2 and various z values.

0.01 0.1 10

(a)
(

(b)
Fig. 12-Dependence of Xi and X2 in degrees on z for m =0.5 and 1,

and dependence on z of percentage differences between accurate
and approximate phases.
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10
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Fig. 13-Dependence of dc componient of (i/io) iti the carbon
microphone case on m for several valtes.

p.f. This leads to atn R value of 44 megohiiis, an easilyr
realized magnitude. Note that the presenit anialysis ap-

plies only when R is much less than the leakage re-

sistance of C. It was meintioned earlier that the capaci-
tance C3 in parallel with R would be neglected. Exact
conditionis which must be met by C: to justify such
neglect have not beetn derived. It is clear, however, that
one necessary condition is that C3<<Co for any m. Fur-
ther, if the load is to remain primarily resistive, it is
essential for all frequencies of interest that the react-
ance of C3 appreciably exceed the magnitude of R. If we
require a capacitive reactance of 100 megohms at
f= 1000 cps, the parallel capacitance must be less than
0.016 p.f. This is a reasoniably stringent requirement, but
it can be met by fairly well-kniown feedback tech-
niquesl1'2 which make it possible to achieve an amplifier
input impedanice made up of a resistive component ex-

ceeding 109 ohms and virtuallv zero input capacitance
over the audio frequency range.

In Appendix VII, expressions are derived for the
instantaneous values of the vibrating capacitor charge,
voltage, stored eniergy, power dissipated in the vibrat-
ing capacitor, attraction between plates, input power,

11 J. R. Macdonald "An ac cathode follower circuit of very high
input impedance," Rev. Sci Instr., vol. 25, pp. 144-147; February,
1954.

12 J. R. Macdonald, "Some augmented cathode follower circuits,'
IRE TRANS. ON AUDIO, vol. AU-5, pp. 63-70; May-June, 1947.

and the power developed ini the load resistor, K In ad-
dition, a general relation, (69), betweeni the instaintane-
ous powers in the system is established. IThe behavior of
the capacitor voltage, V7, can be obtainied dlirectly from
the results already presented for (i/io). 'The other
quantities involve functions of the integral F, (Ap-
penidix II) which has not been evaluated in closed form.
It is of interest, therefore, to calculate the timiie aver-
ages of these quantities where possible.
The average power output, equal to the average

power input, is obtained in Appenidix VII in a series
form valid for arbitrary frequency. Averages of the
other quantities may also be obtained as infinite series,
but only the first few terms, applicable for z>>1, are
calculated in the Appendix. It will be nioted from (71)
that the average output power, (Pout) equals AI'V02/2R
where A is the ordiniate of Fig. 5 and has beeni definied
earlier. For z>>1, (Po,t,) approaches m2 Vo2/2 K. For
z = 0.01 and m = 1, the results of Fig. 5 show that (P.11t~
- V02/8R, indicatinig that the output power has niot
dropped off tremendously even at this low z value. The
iniput power calculated in Appenidix VII is the ideal
mniimum and involves only the power required to move
the charged plates of the capacitor against the electri-
cal forces inivolved. In practice, there will be unavoida-
ble electromechanical coinversion losses, but such power
dissipation can often be made small.
The rich harmoniic genieration shown in Fig. 6(b) sug-

gests that a vibrating capacitor device could be used for
efficienit high harmonlic productiotn. However, the coII-
versioni efficiency is lowered by the efficienicy of what-
ever electroimiechanical, piezoelectric, electrostrictive, or
iiagnietostrictive device is used to vibrate one of the
capacitor plates, and the resulting over-all efficiency
mav not be comparable to that obtained with all-elec-
tric harmonic coniverters. When a voltage-dependent
capacitance" 14 is used in place of the mechanically
driven capacitor, the nonlinearity of this device may
possibly contribute eveni greater high harmoinic geniera-
tioIn if CG,i,,/Cmax can be made sufficiently small.

It is often desired to obtain high harmoniics from a
frequency-stabilized quartz crystal silnce the resulting
harmonics will themselves be well frequeincy stabilized.
The vibrating capacitor may possibly be useful here.
Consider a quartz crystal vibratinig in a loingituditnal
mode. One end of it is metallized anid may be conisidered
the vibratiing plate of a capacitor. The quartz crystal is
attached to a rigid rectangular C-shaped structure in
such a way that the top of it vibrates verv close to the
top of the C, which can be the fixed plate of the ca-
pacitor. By forming this fixed capacitance of aluminum
with a thin anodized insulating surface, values of m at

13 D. B. Leeson and S. Weinreb, "Frequency multltiplication with
nonlinear capacitors-a circuit analysis," PROC. IRE, vol. 47, pp.
2076-2084; December, 1959.

14 L. J. Giacoletto and J. O'Connell, "A variable-capacitance
germanium junction diode for UHF," RCA Rev., vol. 17, pp. 68-85;
March, 1956.
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least as large as 0.95 should be achievable and opera-
tion with m= 1 should also be possible on elimination of
this layer. Operation with z=0.01 or below will then
lead to the generation of harmonics of high order aild
accurately controlled frequency.

APPENDIX I
POWER SERIES EXPANSION

To second order in m (x= my), we may write

e+x C08 0 = 1 + x Cos p + (X2 COS2 c)/2. (14)

The quantity i/io may be expressed in general as the
Fourier series given in (8) of the body of this work. Sub-
stituting (14) in (4), simplifying, and comparing with
(8) yields

aO= 0

a, = -mz/(1 + z2)
-3m2z2

a2 =

(1 + Z2)[1 + (2Z)2] . (15)
bi = - mz2/(l + z2)

m2z(2z2 - 1)

(1 + Z2)[1 + (2z)2]

The harmonic amplitudes a.n-,a 2+b 2 are, for n- 1,
2, 3,

10 = mzV//l + z2

a2°= mal°/\/l + (2z)2 K
a30 = 3ma20/4V\/1 + (3Z)2

(16)

where the zero superscript indicates that the quantities
in question are of lowest order in m. Note that as z->oo,,
i/io--m sin 4, the correct result in this limit.

APPENDIX I I

TRANSFORMATION OF (4)
Let

i/io 1 - yMF,, (17)

where

F1(, e Yk+x 008 CeyO-x 00g Od4

F()e-Y++x cos 0 +Je eyos odxdx (
= e-8+ CO008k + eY4,008X- XdX] (18)

In the last equation, c is an integration constant. Next,
we wish to find the steady-state or periodic part of
F1(o). We have

F1(4, + 27rk) = e-2iyk {e-C4)+x COS C + f eyXX COS dX1

I+2rk }

+ e-CY+.X eo80e0x-0 Cos00

- k- I r+2w(8+1) -

= e-2ryk Fi(O) +e y+. Cos 3 x coeX 800 xdXj
_ ~~~~~s==O 0+2rs

= e-27ryk [FI(o) + F2(0)], (19)

where k is a positive integer.
On-. makinig the transformation x A-4-2rs, the

last initegral becomes

27r~~~~(~q+2r)4

k-1 2w

F2 ex cosC 008 2r8,Z6sy 00d
s=0

e2++ k-I e#;N #+
eky-1 27r

F2+)= e0 Cos 4)3 e)xc08 eY(-x+ os (#+)d )d,

(y$0).6 (20)

Substituting (20) into (19) with a= (e2- 1'yields

Fi(q5 + 27rk)

e-2 Fo[ aex 00 1 x2w COB* E e2Xdv

r a0+ alex Cos 0 eyg-x Cos (O++SdA. (19')

If the last term is denoted F3(0), we have

F1(O + 27rk) = e-2wyk[Fi(O) - F3())] + F3(4,). (19")

Since F3(4,+2rk) = F3(0), we may write

F1i( -t 27rk) - F3(4 + 27rk) = 2ryk[Fj(4) - F3(0)]. (21)

Now since [F1(O) - F3(0) ] is bounded for 0<) < 27r and
y>0, (21) shows that F1 approaches F3 uniformly in 4
for large 4,. Thus, for large t(O,-* oo)

2r
F -(>) F3(0) = aex cos e Qxco0 (0+A)dA. (22)

Applying (22) in (17) yields (7) of the text.

APPENDIX I I I

FOURIER ANALYSIS

Using the notation and results of Appendix II, the
complex Fourier coefficients are given by

1 A 2-r
C;n=

2
[1- yMF3je-iR0dO

(23)
I12w 1- 2F=_ e-inodg - yMFse-infido.
27r {.27r
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Sitnce the second initegral is periodlic, we miiay write

mna p2w p9260aOn = 1 (n 0) and 0 (n > 0), c --J eys+inP2dM Jedi[±2ix sin ii/2 s
ina r27r ,= - I eup+ney 2J,(-2ixsin-)d,.
2ir J 2

1On makiiig the substitution ,Iu/2 -r/2+6,
x sin b)e in+x Cos f eY-x cos' (0+,P)djAd4A r/2

° = 2inaeulrJ e2y6+iO ebar/2J t-2ixcos O)dO.
-12

a r27r=-J (y + x sin O)e-in4-y+x cos O

27r lt

jB ey}(O+A)-x eos (0+yX)dpud. (2

NoNN, let,

463

(31)

(32)

Since

In(x) = e-inr/2,7 (xeil 12)
24)

G(+) - J e?l(++p) l GOS (++yedH (25)

anid

g(o) e-(g+i+)P+x COs '. (26)

Inttegrating (24) by parts yields

(3m) - CI) = [-Q-g(O)G(,)]o +f g() -dG

2 r do
r2Ir

-in g(0)G( )do, (27)

where

dG d 2r+@

eiIx co; XdX = [el (0+2r)-x cos - eyO-x co
s

do do
ey-x eos 4)[e 7! -2 i]. (28)

The first termi in (27) is zero and suibstitutinlg (28) in
(2 7) leadIs to

p ima r 2n
(60a - c)= e - gg()G(4)do. (29)

27r 27r

Thus, c(,=0 anid for n>O, onie obtainis

iwa 2w

C'4 =-J g(O)G(4O)do
2 02x7r97

ina
e 1 in +2x sin ul2 sirL (0+ Pu/2)dMdc

27r

inla 2r 2r2
j eyA+ in H/2dUI e-in?(d+p12)+2x sin A/2 sin (+y/2)dO

27rJOO

ina 2w p/2+2w
= J eyu+inAI2d1di J e-ine+2x sin p/2 sin td. (30)

(33)
and

Jn(xe-iWr) = e-iWIJ (x)
we may write

e n"2Jn(-2ix cos 0) = eiw/2e- f,(2ix cos 0)

= e inr/2J,,(2iX cos 0) = In,(2x COS 0).

(34)

(35)
Thus,

c= 2inaevll e(2u+±i)0J[,(2v cos 0)dO. (36)
/2

This result cani finallv be further simiiplifiedl as follows:

2

C,,= 2i1,aew" J [e21+i)O + e-(2!/±in)O]J(2x cos 6)dO

2in r/2

= I Cos [F(n - 2iy)0]I1,(2x cos O)dO
sinih rv

J2
r/2

cos { [(n iy) iyo$I

sinhry 'b- (2x cos N)dO. (3 7

Now, we iniav make uise of the identity'5

I1(X)htw(x)=2 I+(2 xcos 0) cos {( - v)01 d0 (38)7rn
to obtain the final result

n7= 1i0(x)I)i0(X) (n > 0). (39)
sinh 7ry

APPENDIX IV

RECURSION RELATIONS

Using a recursion relation satisfied by I(x), (10) may
be writtein as (n>1), hence

Cn =
i IxIiY(X)* [1n,-l-i (X) I7+),iv(x) (40)

2(n-iy) sinh7ry

15 G. N. Watson, "A Treatise On the Theory of Bessel Functions"
Cambridge University Press, Cambridge, Eng.; 1944. See p. 150 for
the equiation expressed in tertns of ordiiiarv Bessel functions.

1961

Thus, with

2 r2
2xr ,f

we may write

(50, - CO)
a 2r
=I(y+.

2 r.* (
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This result may be expressed in the form

nx F Cn-1 Cn+± 1(40)
2(n-iy) n-1 n + 1

a recursion relation between the complex harmonic
coefficients. Next we require similar relations between
the real coefficients an and bn. From (40') we have

(a+- ibn+l) = 1) (an, - ibn-.)

2(n + 1)
-- (n-isY) [an- i1nJ

nx

which leads to the final results

In+1\ 2(n+1)
a=+ - 1a,- - (na. -yb.)

(n + b) - 2(n + 1)(nb0 + yan)
b n-1= xb- nb a)

APPENDIX V
SERIES EXPANSIONS

Eq. (10) may be written in the form

infr
Cn = H(x)?

sinh urv (n > 0).

(41)

(42)

(43)

The last resuilt must be simplified. We have

r(n - iy + s + 1) = H (s + r - iy)-r(s+ 1- iy), (46)
r=l

r(s + i - iy)r(s + I + iy)

=r(iy)r(-iy) II [(r + iy)(r - iy)j
r-O

-- csch7ry II (r2 + y2).
Y r=O

Thus,
00

c71 = iny E
s=O

"7+2s nt

k-) (n + 2s)! f (s+ r + iy)2 r=l

s n

s!(n + s) ! I (r2 + y2) . T [(s + r)2 + y2]
r=O r=l

(47)

. (48)

When cn is set equal to (an-ibn)/2, series for the real
coefficienits can be obtained. Because of the complex
product in the numerator of (48), such separation be-
comes progressively more complicated as n increases.
Hence, it is convenient that series results need only be

(44) obtained for n=1 and 2, with the recursion relations
used for higher n. Separation yields the series

co

a, = - 2y2E
s-o

00

b6 = - 2y E
8-0

00

2b - 4y2 E
s=O

6, = - 4y

(x/2)1+2s(l + 2s)!

(x/2)1+28(1 + 2s) !

[S!]2[(1 + S)2 + y2] TI (r2 + y2)
r=O

(x/2)2+28(2 + 2s)I(3 + 2s)

s!(2 + s)![(l+ s)2 + y2][(2+ S)2 + y2] T (r2 + y2)
r=O

(x/2)2+2s(2 + 2s)![(1 + s)(2 + s) - y21

s!(2 + s)![(1 + S)2 + y2] [(2 + s)2 + y2] II (r2 + y2)
r=O

where

H(x)-In_iy(x)Iiy(x)
= e-in7T2JJn-iy,(ix)J*v(ix)
= (i)- nJ 0(ix)J 0(ix)

00 (x/2)n+28(n+2s+1)=St-- (45)
s O s!r(n+s+1)r(n-iy+s+1)r(iy+s+1)

and the last result follows from a Bessel function ex-
pansion given by Watson.'6

(49)

(50)

(51)

(52)

These series are absolutely convergent for 0 <x < o.
It is worth pointing out that their initial terms (s = 0)
agree with the results of Appendix I wheni z=y-l is
used.
For numerical summation of the above series, it is

worth pointing out that they all involve simpie func-
tions of s times the quantity

(2s)! I 1 2s1
228s!s! 22J s J

(53)

and A. satisfies the recursion relation A,+-[(S+2D/
(s+l)1A8(s>O) and Ao=1.'I Ibid., p. 147.
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APPENDIX VI

CARBON MICROPHONE

Consider a single-ended carbon microphone in series
with a battery, Vo, and an inductance L, the primary of
an input transformer. If a sinusoidal sound wave of fre-
quency (w/2ir) impinges on the microphone, its re-
sistance R will be given by R=Ro(l+m sin cot), where
the modulation factor m(0<m<1) depends on the
amplitude of the incident wave. The pertinent differen-
tial equation for the current i is

di IR\ V0
-+(- (1+ m sin cwt)=-. (54)
d t i L

A steady-state solution is of the form,

= ye-"? 0o0 4JC eY4xcoxs d4), (55)

complex Fourier coefficients. It immediately follows
that

anR = (y/n)aC,c
XnlR = XnC - 900.

(61)
(62)

A push-pull, or double-button, carbon microphone can
be handled in the same general way as the push-pull
capacitance microphone.

APPENDIX VII

POWER RELATIONS
Let =(i/io). It is readily shown that

q = CVo(l - t)
= CoVo(l- t)/M- qo( -)

V0 = Vo(1 - J
(63)

which should be compared with (4). Here io Vo/Ro as
before, but y = (wL/Ro)-l since the time constant is now
Tro=L/Ro rather than RCo as in the capacitance prob-
lem.

Because of the similarity of (55) and (4), it is readily
shown that the steady-state current is given by

/i\ yexcos0 27r

)=(;(e2ryT e)J, 008 (4)+L)dl, (56)

and

ry
Cn = sn iry (x) * Ini (x)

sinh 7ry
(n > 0). (57)

a result only slightly different from (10). Note particu-
larly, however, that co is no longer zero, and there is
thus a zero-frequency component in the current. In
particular, we have (using an R superscript for the
present case)

2y rI/2
coR = . cosh (28y)Io(2x cos G)dO, (58)

sinh 7ryJo
X 2s( (x/2)28

=_( y2)s=0 II (r2 + y2) (59)

Note that coR-4 as m-*O and also as co->o. As X ap-
proaches zero, however, the sum of the series for coR
approaches a limit greater than unity for m>O. In this
case the series may be summed and yields coR = (1
-m2>)112. The excess over unity arises from rectifica-
tion of some of the incident energy by time-varying
resistance of the microphone. Clearly, infinite incident
energy is necessary to cause m= 1 in the limit of zero
frequency. For n>O we have

cnR = (y/in)cnc, (n > O). (60)

where the R and C superscripts denote the carbon
microphone and capacitance values, respectively, of the

where V0 is the instantaneous voltage across the time-
varying capacitance C. Denote the stored energy in the
capacitance by E and the work done in moving its plate
by W. The instantaneous power dissipated in the ca-
pacitor will be P,=dE/dt, and the instantaneous input
power will be Pi = dW/dt. The force between the
plates, F0, may be written in the form F,= Co Vo2(q/qo)2/
2do. Finally, define Pout as the power dissipated in the
output resistance, and Po as= V02/R.
We may immediately write

1 1
E -2 CV2 -2COV02(1-)2/M

2 2

Eo-(1-)21MJ
1 dC dV0

PC - T 2-+CV-
2 dt dt

1 dC
= i -C -VC2

2 dt

= Po{(1 - (I-)Rd
=PO(1 0 mz Cos

2M2
where

dC dVc
i= Vc-+C

dt dt

has been used. Since

dW = Fedd = Fdo mow cos 1dt,

Pin becomes

Pi. = F,domco cos 4)

= Po[mwRCo cos 4(q/qo)2/2],
and Po,,t is

(64)

(65)

(66)

Pout = PoV2. (67)
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Now, using =1 -yMiF1, where F1 is the integral de-
fiined in Appendix II, the desired quanitities muay be
writteni as

q/qo = yF, I
MyF1,
M(yFi)2,

mz cos (
Pe/Po = (MyFi) - (MyF1) 2 + 2 (yF,)2,

2

F,lFo = (yFl)2,

Pin/Po = -zCos4 (yFl)2,
2

PtPo= I - 2(MvF0) + (AYFO)2,

(68)

Parseval's theorem mlay be ap)plie(l to \ ie](1 the follow-
ing expressioni for (P>,,1 /P0), valid for ( < x. <K ;,

(Putl/Po) = (42) = - 1 + ((AIlvI, ;)'2)

= 2 E c,,
w==I

(71)

notinig that co= 0. WVe may niow wvrite,

(qlqo~ =- yF3d?
(V/V0) = (MyF3)=1,
(E 'Eo) =A(M(yF3)2),

,nz
(Pc/P0) 1-((MyF3)2) -- ((yF3)2 Cos4+

-20, (72)

wrhere Fo=-C Vo2/2do. Note that the expressioni for F,
shows that this force will nlot become infinite evetn wvheni
m = 1. The above equationis lead to the general rela-
tionlship,

(Pin/Po) + (i/io) = (Pc/P(0) + (P0ut/Po). (69)

Next, it is desirable to obtain the average values of
the above quaIntities in the steady state. For this purpose,
the quantity F1 must be replaced by F3. It has already
been shown in Appendix III that for the steady state
co=0; thus (t)=0 and (MyF3= 1, where the poinitedl
brackets deniote time averages. IThis absence of a dc
current meanis that the battery canniot supplxr power oni
the average to the loadl resistance. Some of the above
averages are difficult to carry out because of the pres-
ence of the integral F3 in thenm, but the next two results
avoid such difficulties. WXe have,

1 r2 dE(Pc/Po = -2 dO
27r 0 di

=- -[E(2r) - E(O) = 0, (70)
2w

where the last equation follows from the stationary,
periodic character of the stored capacitor energy. Then,

(F,l/Fo)= ((yF3))

(Pil/P0) 2 ((yF3)2 COS

Note that (69) leads to (Pi.,)= (Po,,t), a necessary coIn-
ditioni since the battery cani supply nio average power.

Although it has niot beein found practical to evaluate
the remnaininig averages in (72) in closed formii, it is possi-
ble to use (14) and expand Ft in a series useful for x<<l
anc(l z>>. UTsitng the resultinig series, the nlecessary
averaging may l:e carried out, and onle finids for high
relative frequencies the following termi-s to secondcl or(ler
lI X,

(qlqo) = 1 + (X2/2) +
(El'Eo)=1+ (X2 2) +

(F,IFo0) = 1 + (3 2/2) + * *, (73)

(Pin./Po) = (PotXI ,

_ (rn2/2) _ (1- 2)(r2,!2) + J
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Feblrua(ry466

VC/ vo =

E/Eo =

Authorized licensed use limited to: University of North Carolina at Chapel Hill. Downloaded on March 23, 2009 at 13:30 from IEEE Xplore.  Restrictions apply.


