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Various consequences of element discreteness upon the electrical characteristics of adsorbed
systems of monopoles and dipoles are discussed and methods for determining exact local
potentials and fields in such systems are outlined in terms suitably general for wide ap-

plication.

In the present paper we shall summarize some of the
discreteness-of-charge effects accompanying adsorption
and also describe some recent techniques for making
exact discreteness-of-charge calculations possible. Be-
fore discussing any particular system, it is well to recog-
nize that discreteness may produce a number of dif-
ferent effects: In particular, a given discrete array of
monopoles or dipoles produces a potential which at al-
most any point differs from that produced by the con-
tinuous distribution of charges obtained by smearing
the discrete entities over their plane. On the other
hand, the potential averaged over a plane parallel to
that of the array is equivalent to that obtained by
smearing the discrete distribution in its plane. We sce,
therefore, that any property which depends on a more
detailed behavior of the potential than merely the
average will directly manifest discreteness effects. Ex-
amples of such properties relate to basic gas or liquid
adsorption theory,! !4 thermionic!4 and high field emis-
sion!® charactcristics, and electrode electrochemical
kinetic properties.'s—!® Less obvious is the fact that
discreteness will also indircetly influence the average
potential. The manner in which this comes about is as
follows. If the discrete array of elements is polarizable,
either through orientation of permanent dipoles or

creation of induced dipoles, the polarization depends
on the local field acting to polarize the entity; this local
field is the sum of the applied field and that arising from
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the elements themselves. Since the latter contribution
differs from the smeared (average) field, the net polari-
zation and hence the effective dielectric constant of the
array is a further property which could have been listed
above as evineing discreteness-of-charge effects. The
departure of the dielectric constant from the bulk
value, which can be properly calculated only by taking
full account of discreteness effects, has consequen-
ces'®2¢ on the dependence of contact potentials or
work functions upon adsorption and influences the dif-
ferential capacitance of the electrical double layer in an
electrolytic solution.!10,25—28

In the present paper it is assumed that the adsorbed
particles form a hexagonal array of spacing = lying at
the inner Helmholtz plane (IHP) and that one or the
other of the following idealized situations prevails.
Either there exist two equipotential planes, one on
either side of the IHP which, like a hall of mirrors, pro-
duces an infinite set of images, or else one such plane
exists (taken here to be the plane adsorbing electrode)
and acts to produce single images of the adsorbed en-
tities. In the former situation, appropriate to some de-
gree to adsorption from electrolytes, one imaging plane
is the electrode and the other is the outer Helmholtz
plane (OHP), the plane of closest approach and maxi-
mum concentration for unadsorbed ions in the diffuse
or Gouy layerl::2629-% of the electrolyte. The inner
or Stern layer!:?25 between the electrode and the
OHP will be the primary region of interest in our dis-
cussion of the electrical double-layer problem, and for
““unadsorbed electrolytes’’ will contain a monolayer of
adsorbed solvent molecules taken here to be water, 1.2

In earlier papers,»2:2 an effort was made to explain
the differential capacitance data of Grahame?® for aque-
ous NaF solutions at various temperatures, concentra-
tions, and electrode charges. It was found that many
of the features of the experimentally determined inner-
layer differential capacitance could be explained with-
out recourse to discreteness effects. In particular, the
displacement of the point of maximum inner layer
capacitance from the electrocapillary maximum po-
tential (e.c.m.) could be ascribed to a natural orienting
field at the electrode, of order 108 to 107 v./em., which
acts to align the water dipoles somewhat with the
hydrogen toward the electrode. The fall-off of capaci-
tance on either side of this maximum was accounted for
by including dielectric saturation of the inner layer,
and the eventual rise in capacitance at potentials fur-
ther from the e.c.m. was explained by the compression
of the inner layer under the large fields present therein.
The actual values of capacitance were generally in ex-
cellent agreement with experiment over the varying po-
tentials, temperatures, and concentrations, and, pro-
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vided lack of association between water molecules
was assumed, all best-fit parameters such as compres-
sibility, thickness, dielectric saturation constant, ete.,
were in agreement with those to be expected based on
bulk water values. In spite of the general success of
this work, one feature of the data could not be ex-
plained: the rapidity of the final rise in capacitance at
substantial anodic voltages.®3® This rise has been as-
cribed by various authors to adsorption, perhaps of
OH~,* perhaps of F—,2 perhaps of electrode ‘‘ad-
atoms.’’ 101! Parsons'® suggests that an increased com-
pressibility may be responsible. Although these ex-
planations are possibly correct, the situation is far from
clear. The point is that a reasonable fit to Grahame’s
data may be obtained without assuming adsorption
other than the initial water monolayer simply by
properly taking discreteness-of-charge into account
and its effect upon the inner-layer dielectric constant.4!

The procedure for obtaining the effective dielectric
constant is roughly the following:
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1. Replace all permanent dipoles by their time
averages, (u).

2. Pind the local clectric field & at the dipole sites
arising from all other dipoles and induced polarization,
the charges on the electrode, and the natural field.

3. Using an expression such as a Langevin func-
tion, obtain an implicit equation for (u(&)).

4,  Write the electronic polarization ®; in terms of the
local field.

5. Combine all previous steps to find the self-consist-
ent values of @y, &, and (u).

6. Express the final result in terms of an effective
dielectric constant eess.

If this program is carried out one obtains'®

8 = et {drg — (3/0)'oN""u(8))}

where eir=1 4+ (/s)"* ¢ «dN'"*, ¢ = electrode charge;
a == electronic polarizability, ¢ = 11.034 for a hexag-
onal array, d = inner-layer thickness, and N == surface
density of adsorbed particles. This equation has been
solved numerically and, without attempting detailed
fitting, leads to the qualitative agreement with
Grahame's data mentioned before.

The same procedure may beused to determine the work
function change arising from adsorption of ions in the
single-imaging situation, provided one approximates the
ion—-image combination as an ideal dipole. Again, if
one carries through the calculation, qualitative agree-
ment with experiment is obtained for coverages ¢ suffi-
ciently small (<1) that such quantum effects as energy
banding may be ignored. The detailed calculation
which appears elsewhere!® leads, under appropriate
conditions, to the approximate result

AV ()
AV (1)

where AV = work function change, # = fractional
coverage of surface by adions (# = 1 corresponds to a
monolaycer), A = 4raN,/d,, Ns = maximum surface
density of adions (§ = 1), and d; == distance between
electrode and adion centroid. I'or certain values of A
the resulting behavior of AV(6) exhibits a maximum in
therange 0 < 6 < 1.

In order to calculate exact potentials and fields for
discrete arrays, it is necessary to obtain somehow the
sum of an infinite series of discrete Coulomb terms.
This would present no problem were it not for the extra-
ordinarily slow convergence encountered in either single
or infinite image situations. The practical difficulties
of obtaining exact results have led several authors?10.11.28
to seck approximate cxpressions, the accuracy of which
is unfortunately not always particularly good; the
present authors have proceeded in the other direction,

=9(1 — A)~I(1 — 84)

to obtain more complicated but more rapidly convergent
forms for the exact quantities. Comparison of the
exact with various approximate results is published
elsewhere.*%? The emphasis here will be in outlining
the methods, which have been used before in different
contexts and are applicable to a wide class of problems.

The simplest method for calculating lattice-sums of
Coulomb terms is to multiply each Coulomb term in the
series by an exponential convergence factor. Thus,
1/r — 1/r exp(— or). The series is then evaluated for
several values of 6 and an extrapolation performed to
ascertain the value for 6 = 0. Remark that a powerful
method, the e-algorithm,**—* exists for performing this
extrapolation which is quite accurate and is discussed
elsewhere.®® The disadvantages of the above §-method
are that several calculations are necessary using dif-
ferent values for 8, some of which (near § = 0) are not
very rapidly convergent; the closer one approaches
in the computations to § = 0, the greater is the final
accuracy but the longer is the required computer time.
Furthermore, the requirement of a final extrapolation
must be regarded as an additional disadvantage. Ac-
cordingly, this method has been used by the present
authors primarily as a check on other methods or as the
technique employed when others are unavailable,

A generally more satisfactory technique444 is
schematically described below for the three-dimensional
(infinite-imaging) summation.

1. [Pirst write the sum to be evaluated, > f(R,) =

: %

S, a8 S = fd*Rf(R) 3 8(R — R,), where R, are the
p

lattice points and 4(x) is the Dirac s-function.
2. Next write the identity

8= fdR ; f(R)®(«R)5(R — R,) +
S &R ; fR){1 — ®(aR) ]8R — Ry) =

Si(e) + Sa(a)

where & is an arbitrary function which will be chosen
conveniently and « is a parameter which also will be
chosen conveniently. Note that dS/da = 0.
3. Writing the Fourier transform of {f(R)‘b(aR)}
as (7,(3) and the Fourier transform of >_ 8(R — R,)
)

as Iayaz X agl—‘ 2. 8(% — %) where a,, a,, a; are the
%
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basic lattice vectors and A, are the lattice points of the
reciprocal lattice!® (3, = |ara, X a|'{ka; X a; +
k.a; X a, + ksa; X 32}>, make use of Parseval’s
theorem® to obtain

Sy = fdalGa(l)'al'% X aa‘_l kz 8 — ) =

!al'az X aa{—l 2[, Ga()

where G (3)=f d*Rf(R)®(R)eZ™™EB,

4. Choose 1 — & to be a function which falls off as its
argument increases and hence which speeds the con-
vergence of S,.

5. Choose a to minimize the total number of terms
required for convergence of 8. Large « results in rapid
convergence of S, but slow convergence of S;; small o
interchanges these behaviors. An intermediate value
may generally be chosen so as to optimize convergence.

6. Test to see that S remains invariant under
changes in a. The above method has proven quite
satisfactory, and generally the optimum value of a is of
theorder [|a,-a; X a3[ ]~ "*with the required independence
of the final result upon o« providing a stringent test of
the correctness of all computations. The function &
actually used was the error function*® in the work
cited.*

The final technique® to be described here has proven
generally to be the best one for summations oceurring
in practice. It results in an almost closed form expres-
sion for the potentials and fields, with the summations
remaining frequently contributing negligible amounts to
the final result. The vital steps of the method are
sketched below.

1. Make use of the relation

- 1 f‘” R
2= e | Tl d
T'(n) Jo

The Journal of Physical Chemistry

to rewrite the terms of the lattice summation.
2. Introduce the substitution

®

Y exp{—(+ o)} = (x/)/ X

= -

<« 2.2
> exp{— Z"_E‘i} cos (2mas)

g = —o

3. Perform the integration using

@ 2q2
f " exp{—k% - Ei} dt =
0 t

n—1/q
2(’%‘) Koo (2nk]s])

where K is the modified Bessel function.*?

4. Execute remaining summations taking limits
where special values require it.

The foregoing description is in terms sufficiently gen-
eral to apply to a rather wide class of problems; how-
ever, the reader wishing an example of a specific ap-
plication of the method may find such elsewhere.*?

In summary, we have attempted to sketch some of the
consequences of discreteness upon the basic electrical
properties of adsorbed lattices. Whereas there has
been little attempt here to explore all the secondary
consequences of such electrical properties upon macro-
scopic measurables, clearly element discreteness has its
impact upon a large number of surface phenomena. It
is gratifying that all the methods outlined herein for
exactly performing the pertinent calculations have al-
ways produced mutually consistent results.
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