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Various consequences of element discreteness upon the electrical characteristics of adsorbed 
systcrris of monopoles and dipoles are discussed and nicthods for deterriiining exact local 
potentials and fields in such systems are outliricd in terms suitably general for wide ap- 
plication. 

In the present paper we shall summarize some of thc 
discreteness-of-charge cffccts accoriipanying adsorption 
and also describe some recent techniques for making 
exact discreteness-of-charge calculations possible. Be- 
fore discussing any particular systcm, it is well to recog- 
nize that discrotrness may produce a number of dif- 
ferent effects: In particular, a given discrete array of 
monopoles or dipolos produces a potential which a t  al- 
most any point differs from that produced by the con- 
tinuous distribution of charges obtained by smearing 
the discrote erititics over their plane. On the other 
hand, the potential averaged over a plane parallel to 
that of the array is equivalent to that  obtained by 
snicaririg the discrete distribution in its plane. We sce, 
therefore, that any property which depends on a more 
detailed behavior of the potential than merely the 
average will directly inariifcst discreteness eff ects. Ex- 
amples of such properties relatc to basic gas or liquid 
adsorption t h ~ o r y , ~ - l ~  therniionic14 and high ficld eniis- 
si0n15 characteristics, and clectrode electrochemical 
kinetic properties.16-1X Less obvious is the fact that  
discreteness will also indirectly influence the avcragc 
potential. The nianricr in which this conies about is as 
follows. If the discrete array of e h i e n t s  is polarizable, 
either through orientation of permanent dipoles or 

crcation of induced dipoles, the polarization depends 
on the local ficld acting to polarize the entity; this local 
field is the sum of the applied field arid that arising froin 
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the elements themselves. Since the latter contribution 
differs from the smeared (average) field, the net polari- 
zation and hence the effective dielectric constant of the 
array is a further property which could have been listed 
above as evincing discreteness-of-charge effects. The 
departure of the dielectric constant from the bulk 
value, which can be properly calculated only by taking 
full account of discreteness effects, has consequen- 
c e ~ ~ ~ - ~ ~  on the dependence of contact potentials or 
work functions upon adsorption and influences the dif- 
ferential capacitance of the electrical double layer in an 
electrolytic solution. l, lo’ 25 -28 

I n  the present paper i t  is assumed that the adsorbed 
particles form a hexagonal array of spacing rl lying at 
the inner Helmholtz plane (IHP) and that one or the 
other of the following idealized situations prevails. 
Either there exist two equipotential planes, one on 
either side of the I H P  which, like a hall of mirrors, pro- 
duces an infinite set of images, or else one such plane 
exists (taken here to  be the plane adsorbing electrode) 
and acts to produce single images of the adsorbed en- 
tities. I n  the former situation, appropriate to some de- 
gree to adsorption from electrolytes, one imaging plane 
is the electrode and the other is the outer Helmholtz 
plane (OHP), the plane of closest approach and maxi- 
mum concentration for unadsorbed ions in the diffuse 
or Gouy layer1~25~26~29-36 of the electrolyte. The inner 
or Stern 1ayer1~25~26~a7 between the electrode and the 
OHP will be the primary region of interest in our dis- 
cussion of the electrical double-layer problem, and for 
“unadsorbed electrolytes” will contain a monolayer of 
adsorbed solvent molecules taken here to be water. 1 ,26 ,26  

In  earlier papers,1,26>26 an effort was made to explain 
the differential capacitance data of Grahame38 for aque- 
ous YaF solutions at various temperatures, concentra- 
tions, and electrode charges, It was found that many 
of the features of the experimentally determined inner- 
layer differential capacitance could be explained with- 
out recourse to discreteness effects. In  particular, the 
displacement of the point of maximum inner layer 
capacitance from the electrocapillary maximum po- 
tential (e.c.m.) could be ascribed to a natural orienting 
field a t  the electrode, of order 106 to lo7 v./cm., which 
acts to align the water dipoles somewhat with the 
hydrogen toward the electrode. The fdl-off of capaci- 
tance on either side of this maximum was accounted for 
by including dielectric saturation of the inner layer, 
and the eventual rise in capacitance at potentials fur- 
ther from the e.c.m. was explained by the compression 
of the inner layer under the large fields present therein. 
The actual values of capacitance were generally in ex- 
cellent agreement with experiment over the varying po- 
tentials, temperatures, and concentrations, and, pro- 

vided lack of association between water molecules 
was assumed, all best-fit parameters such as compres- 
sibility, thickness, dielectric saturation constant, etc., 
were in agreement with those to be expected based on 
bulk water values. I n  spite of the general success of 
this work, one feature of the data could not be ex- 
plained: the rapidity of the final rise in capacitance a t  
substantial anodic  voltage^.^^,^^ This rise has been as- 
cribed by various authors to adsorption, perhaps of 
OH-,40 perhaps of F-,26 perhaps of electrode “ad- 

ParsonslS suggests that  an increased com- 
pressibility may be responsible. Although these ex- 
planations are possibly correct, the situation is far from 
clear. The point is that  a reasonable fit to  Grahame’s 
data may be obtained without assuming adsorption 
other than the initial water monolayer simply by 
properly taking discreteness-of-charge into account 
and its effect upon the inner-layer dielectric constant. 1’41 

The procedure for obtaining the effective dielectric 
constant is roughly the following: 
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1. Iteplacc all permanent dipoles by their time 
averages, (p). 

2. I'ind thr local clectric field & a t  the dipole sites 
arising froni all other dipoles and induced polarization, 
the charges on the clcctrode, and the natural field. 

3 .  Using an expression such as a Langevin func- 
tion, obtain an implicit equation for ( p ( E ) ) .  

4. Writ(. the elrctronic polarization 61 in  ternis of the 
local field. 

5 .  Combine all previous steps to  find the self-consist- 
erit values of P1, E ,  and ( p ) .  

6. Exprcss the final result in ternis of an effective 
dielectric constant e,ff. 

If this program is carried out one obtainslg 

E = Beif-*{4?rq - (3/4)a'41JNa/yp(E)) f 
where ecif 1 + (3/4)a/4 u CY dN"', q = electrode charge; 
CY electronic polarizability, l~ = 11.031 for a hexag- 
onal array, d = inner-layer thickness, and N surface 
density ofsadsorbed particles. This equation has been 
solved numerically and, without attempting detailed 
fitting, leads to the qualitative agreement with 
Grahanie's data itientioned before. 

The same procedure niay be used to determine the work 
function change arising from adsorption of ions in the 
single-imaging situation, provided one approxiniates the 
ion--image combination as an ideal dipole. Again, if 
one carries through the calculation, qualitative agree- 
ment with experinient is obtained for coverages e suffi- 
ciently small ( 5  1)  that such quantum effects as energy 
banding may be ignored. The detailed calculation 
which appears e l~ewhere '~  leads, under appropriate 
conditions, to the approxiinate result 

N - S ( l  - A)- ' ( l  - SA) AT'(@ 
AV(1) - 

where AT.' work function change, 0 fractional 
coverage of surface by adions ( e  = 1 corresponds to a 
monolayer), A = 4naN, /d l ,  N ,  = maximum surface 
density of adions (e = l ) ,  and dl = distance between 
elcctrode aiid adion centroid. l o r  certain values of A 
the resulting behavior of Av(0)  exhibits a niaximuin in 
thc range 0 < e < 1. 

In  order to calculate cxact potentials and fields for 
discrete arrays, it is necessary to obtain somehow the 
suni of nn infinite series of discrete Coulomb terms. 
This would present no probleni were it not for the extra- 
ordinarily slow convergence encountered in either single 
or infinite iinage situations. The practical difficulties 
of obtaining exact results have led several a~thors7~10~1~,~8 
to seek approximate expressions, the accuracy of which 
is unfortunately not always particularly good; the 
present authors have procctded in the other direction, 

to obtain more complicated but more rapidly convergerit 
forms for the exact quantities. Comparison of the 
exact with various approxiniate results is published 
e l ~ e w h e r e . ~ ~ ~ ~  The emphasis here will be in outlining 
the methods, which have been used before in different 
contexts and are applicable to a wide class of problems. 

The simplest method for calculating lattice-sums of 
Coulonib ternis is to multiply each Coulonib term in the 
series by an exponential convergence factor. Thus, 
l /r  + l / r  exp( - 6r).  The series is then evaluated for 
several values of 6 and an extrapolation perfornied to  
ascertain the value for 6 = 0. Rcniark that a powerful 
method, the E-algorithni,*3-45 exists for performing this 
extrapolation which is quite accurate and is discussed 
e l se~herc .~5  Thc disadvantages of the above &method 
are that several calculations are necessary using dif- 
ferent values for 6, some of which (near 6 = 0) are not 
very rapidly convergent ; the closer one approaches 
in the computations to  6 = 0, the greater is the final 
accuracy but the longer is the required computer time. 
E'urtherniore, the requirement of a final extrapolation 
must be regarded as  an additional disadvantage. Ac- 
cordingly, this method has been used by the present 
authors primarily as a check on other methods or as the 
technique employed when others are unavailable. 

A generally more satisfactory t e c h n i q ~ e ~ ~ ~ 6 ~ ~ 7  is 
schematically described below for the three-diinensional 
(infinite-imaging) summation. 

E'irst write the sum to be evaluated, xf(R,)  = 
S, as  S = fd3Rf(R)  6(R - Rk), where R, are the 

lattice points and 6(x) is the Dirac 6-function. 

1 .  
k 

k 

2. Next write the identity 

S = f d 3 R  C f(R)@(aR)G(R - RJ + 
k 

f d 3 R  f(R) { 1 - @(aR))b(R - RJ c 
k 

SI(4 + Sda) 
where @ is an  arbitrary function which will be chosen 
conveniently arid a is a parameter which also will be 
chosen conveniently. 

Writing the Vourier transforni of {f(R)@(aR) 1 
as G,(A) and the Vourier transforni of 6(R - R,) 

as /alaz X a31 -l 6(3, - A,) where al, a2, a3 are the 

So tc  that bS/ba = 0. 
3. 

k 

k 
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basic lattice vectors and a9 are the lattice points of the 
reciprocal lattice46 (ak zz lal.a2 X aal - I (  klaz X aa + 
k2a3 X al + k3al X a2)) ,  make use of Parseval’s 
theorcni4s to obtain 

SI = .fd31G,(A)[al.a2 x aa/-l 6(a - a,) = 
k 

lal& X a8I-l c G,(L) 
k 

where Ga(a)=.f d3Rf(R)@(R)e2~”B. 
Choose 1 - @to  be a function which falls off as its 

argurnent increases and hence which speeds the con- 
vergence of S2. 

Choose a to minimize the total number of ternis 
required for convergence of S. Large a results in rapid 
convergence of S t  but slow convergence of SI; small CY 

interchanges thcsc behaviors. An intermediate value 
may gerierally be chosen so as to  optiriiize convergence. 

6. Test to see that S remains invariant under 
changes in CY. The above method has proven quite 
satisfactory, and generally the optimum value of a is of 
theorder [ jal.a, X a3/ ]-‘/‘with the required independence 
of the final result upon a providing a stringent test of 
the corrcctriess of all coniputations. The function Q, 

actually used was the error in the work 
cited.4 

The final techniques0 to be described here has proven 
generally to be the best one for sumriiatioris occurring 
in practice. I t  results in an almost closed form exprcs- 
sion for thc potentials and fields, with the summations 
rernainirig frequently contributing iiegligible amounts to 
the final result. The vital steps of the method are 
sketched below. 

4. 

5 .  

1. Make use of the relation 

to rewrite the terms of the lattice suinmation. 
2 .  Introduce the substitution 

3. Perform the integration using 

where K is the modified Bessel function.49 
4. Execute remaining summations taking limits 

where special values require it.. 
The foregoing description is in terms suficiently gen- 

eral to apply to a rather wide class of problems; how- 
ever, the reader wishing an example of a specific ap- 
plication of the method may find such elsewhere.42 

In summary, we have attempted to sketch sonic of the 
consequences of discreteness upon the basic electrical 
propert.ies of adsorbed lattices. Whereas there has 
been little attempt here to explore all the secondary 
consequences of such electrical properties upon macro- 
scopic measurables, clearly element discreteness has it.s 
impact upon a large number of surface phenomena. It 
is gratifying that all the methods outlined herein for 
exactly performing the pertinent calculations have al- 
ways produced mutually consistent results. 
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