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f:cl,- Eight isothermal equations of state are analyzed to yield quantitative measures of the degrees to
which equation pairs can be discriminated for real data, data of limited span and precision. Calculated
curves allow one to assess the span and precision necessary in P-V data to allow unamhiguous dis
crimination of various pairs. Some discussion is presented of bias and systematic error which may
arise in least squares fitting. Using exact synthetic data, we also illustrate for seven equation pairs the
very large relative systematic errors in parameter and standard deviation estimates which arise fmm
such fitting of data of limited span with an incorrect but "close" equation model. General conclusions
following from these results are discussed. Although the present work is principally concerned will.
discrimination between equations of state, its results are pertinent to the more general problem of
choosing a "best" analytical model (linear or nonlinear) to represent experimental results.
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1. Introduction

Virtually all physical science is concerned at some
stage with comparing experimental data with theo
retical predictions. Although no theories are ever fully
verifiable, one nearly always wants to find that theo
retical model, from the limited set of possible models
under consideration, which best represents the data,
which allows the underlying phenomena to be better
understood, and, if possible, which allows prediction
outside the range of the original measurements. In the
relatively early stages of investigation of a given
domain, one usually does not know which of several
theoretical or empirical models is likely to be most
appropriate. This state of affairs is particularly likely
to occur when the physical situation being studied is
too complex to allow a tractable theoretical idealization,
which is still sufficiently close to the experimental
situation, to be accurate. Many-body interaction prob
lems, such as that of determining the exact equation of
state of a solid or liquid, fall in this category.

The problem of model discrimination is made dif
ficult by the presence of random and systematic errors
in the data. In the present paper, it is assumed that
systematic error in the data is absent or at least neg
ligible compared with other error. Systematic error can
still be generated, of course, by the choice of an in
appropriate model [1],1 and a question of considerable
importance is: Under what conditions is it possible to
discriminate adequately between several more-or-less
appropriate models, or equations? In the present paper,
We shall he concerned with typical synthetic equation·
of-state data generated without significant error of any
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kind, reserving a detailed discussion of the effect of
random errors to a later paper. It will he shown that
by using such exact "data" we can investigate what
sort of discrimination is possible between various
equations of state in practical cases where measure
ments are of limited precision.

In real life, experimental data have only limited
accuracy and precision and always extend only over a
limited range of the variables involved. This state of
affairs suggests intuitively that one will be unable to
discriminate adequately between two or more analyti
cal models which are sufficiently close together in their
predictions for the range considered. We are here con
cerned with ways of making this intuition quantitative
at least for the specific equations considered here.
Since better discrimination may sometimes appear
possible than is actually the case, just because of the
presence of more or less random errors which haP."f·n
to fall in a particular way, it is important to consider
exact data before data with random errors.

Although all that is often required of an equation IIf
state, or more generally, a mathematical mlldd of
experimental results, is that it serve adequately as an
interpolation and smoothing device for the data. till'
problem of model discrimination is usually still pre!'ocnt
even in this case. Unless the first model filtf·d I'a~!'ol'!'o

all tests of adequacy, more than one model mu-t IJI'
examined and a choice of available models madl'. TIll'
present paper discusses some general met hod~ of
model discrimination with specific illustration- t akr-n
from the equation of state field. II ere we are concerned
additionally with the task of estimating physically
significant parameters of the material which led to the
data in question.

Two somewhat different situations fWf/IH:ntly arise
in the equation of state area. Often one starts with n«.
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or only crude, knowledge of the underlying parameters
of the material under investigation. These parameters
are then determined by fitting various equations of
state to P-V data, usually by least squares techniques
[1J. The most appropriate, or "best fit" equation will
usually be that which leads to minimum estimated
standard deviations of the fitted data points and of the
parameters. The values of the parameters obtained
from this fit are taken to be the best available estimates
of the unknown material parameters. In general, how
ever, such values will not usually be good estimates
unless the choice of model is appropriate for the data
and leads to randomly distributed, essentially sto
chastically independent residuals, and the fitting
procedure itself leads to negligibly biased parameter
estimates.

Sometimes one is able to obtain estimates of the
parameters by other means than from fitting of direct
P-V measurements. Now becoming popular for this
purpose is the method of ultrasonic velocity measure
ments under pressure [2, 31, pioneered by Lazarus
[41. Once having parameter estimates available for a
certain material, one can, given the appropriate equa
tion of state, calculate volume values (or a range of
pressure. Of course, with a limited number of param
eters available, as is always the case, calculated
volumes can generally only be expected to remain
reasonably accurate over a limited range of pressure.
The nub of the problem here is usually in knowing
what equation of state to use (and how far to trust it).
Sometimes the determination of the best equation
may be made by comparing ultrasonically derived
parameters with those obtained from a least squares fit
of direct P-Vdata for the same material.

In either approach, one eventually obtains a set of
parameters believed to be appropriate for the material
under investigation. Although in actual practice these
parameters will always be uncertain to some degree,
it is nevertheless useful to ask, as a limiting case, how
well one can distinguish between various equations of
state when the parameters are actually exact (or are so
considered) but when available P-V data are of limited
precision. Some answers to this question are discussed
later for eight different equations of state of some
current interest.

One of the important purposes of the present work is
to point out that uniqueness is a limit seldom achieved
in practice. Frequently an experimenter chooses a
model to represent data of given range with the impli
cation or statement that the chosen model is "best" or
"most applicable" without realizing or investigating
sufficiently to find that other different models are
equally applicable for the given data.

Although the present analysis is concerned with
discrimination between eight specific equations of
state and thus involves quantitative results only for
these equations, we expect that the results will also
apply at least qualitatively to other not-too-different
equations. More importantly, perhaps, the present
(lIscnmmation methods and general approach can and
~Il(~ul(~ be applied to any experimental situation where
It IS Important to establish one or more adequate

mathematical representations of the data or, better,
of the underlying process which led to the predictable
part of the data.

2. Equations of State Considered

The material parameters with which we shall be
concerned, all for isothermal conditions, are the
specific volume, Vo, at a given reference pressure Po;
the bulk modulus at P=Po, Ko==-Vo(aPjaV)!p=po
and various pressure derivatives of the bulk modulus,
K, also evaluated at P=Po• For simplicity, let p =.P-Po;
then V= Vo at p=O. Now K,; == YJ =. (aKjap) !lJ=o,
and Kg=. (aZKjapZ)!IJ=o. The symbol YJ has been
introduced to simplify subsequent equations; it is
dimensionless. It is also useful to introduce the further
dimensionless quantity \fJ =. KoKg. Finally, define the
dimensionless pressure variable z =. pjKo and the
dimensionless density variable x == pjpo =. VojV.

Barsch and Chang [3J have recently given values for
the parameters of CsI at 25°C, plus temperature
derivatives of these parameters. The quantity Vo may
be calculated from x-ray measurements of the lattice
constant. Other parameters such as K«, K~, and K~

were obtained from ultrasonic measurements. Using
the Barsch and Chang results, we have calculated the
values of Vo, K«, YJ and l/J which then apply to CsI
at 150°C, an arbitrary choice of temperature. These
values, as used in our computer studies, have 14 figure
accuracy and may be considered the accurate values of
some hypothetical material close to CsI at 150 ec.
Of course as applied to Cs1 itself, only a few places
in each parameter value are significant. To five
figures, the parameter values are: Vo === 1.0184,
K" === 1.0503 X 102 kbar, YJ === 6.0382, and l/J === -6.9897.
Here we have taken Po = 0 and Vo at 25°C as unity.
Thus, all volumes used here are reduced specific
volumes and are dimensionless. The original Barsch
and Chang 25 °C values are V,,= 1, K,,= 118.9±O.6
kbar, 1]=5.86±0.1l and Kg=-0.052±0.002 kbar'".
These results lead to 'I' === - 6.2 at 25°C.

We shall be interested here in comparisons of, or
discrimination between, eight different equations fre
quently employed in equation of state studies [I, 3].
We have adopted the approach of Barsch and Chang
of designating the ordinary Murnaghan equation as the
first-order Murnaghan equation (MEl), and the equa
tion previously [IJ termed the second-order equation
(SO£) as the second-order Murnaghan equation (1\1£2)'
There are several forms of this latter equation, depend
ing upon the values of YJz and '1'; here only one of these
forms is pertinent. All eight of the equations are given
in the form z=f(x) in table 1, which also lists acronyms
for each equation. Some, but not all of them, may be
expressed in inverse form, with x as an explicit function
of Z. Note that three of the equations are "first-order"
in the sense of Barsch and Chang [3]. They involve
n=3 parameters: Vo, Ko,and YJ. The other five "second
order" equations involve 'I' in addition. Finally,
table 1 includes values of K~ == (aKjap)p .... ec-
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TABLE 1 Equations of state of interest written in the dimensionless form 'l;::: IIx )
. _.-

«

Form
IIEquation Acronym

Z '" p/K" = f(x) f(x} x'" plp« as /'011'

UTE (7j+ I)-I[ exp {(7j+ 1)(1-.\ I)} _I] :\Usual Tait

First-order MEl 'I)-I[x"-I] :1
Murnaghan

Second-order ME 2 \
Murnaghan (7j2~2t/J) 2(X("2_Z,,)'i2_ 1) I[ ( 'I)'~ -2 tlJ) 12(X("2_2"1'2+ I)

_7j(X("2_2>1»'/2 -1)]

Keane KE
\'1)2(_'1)2< t/J< 0) ['I):IJ( '1)2 + l}J r][x 1""")1"-1] -[ l}J1t'l)2 + l}J)jln .r '\

First-order BE, (3/2)[x7{:\- x·I"][1 + (3/4) ('I)- 4)(x 2 ,,- I ) J :\
Birch

Second<order BE., (.3/2) [X7/
1_ x;/'] 11 -i- (3/4) ('I)- 4) ~~2~':-_1) '\Birch + 0/24){ 14:H,>'I)( '1)-7) +l)l}J} (X2 1_ 1)2J

Third-degree 3SE (l-r') + O/2)('Tj+ I) (\ -x ')2 i (\/61(rj' l
Slater

+ :\'1) + 2+ tb)( 1- X ')'

Third-degree 3DGE (x -I) + (1/2)( 'I) -I}ix - 1)2 \
Davis-Gordon + (1/6) ('1)2-3'1)+ 2+ '/1) (X-I)l

r,1

I
I

(J

3SE
BE,
~IE,

UTE
3DGE
BE,
KE
:\IE,

TABLE 2. Sral('~1 rol/l~/l(, d(fra"//I"'s, /(J'j,\'.Ior ('qllll.

11IJII/JllIn at z::o., 0.1017

Equations I 3st:TI~~:~-1 ;t~:;r7~f:r~I;(:~:TI!i:, !};E \IF
,I J . !',. ~ 1

i I I ! i r-----<--------
I 0 \ !! I
I 2.1 \ 0 ii' I
. 2.9: 0.77

1
0 \ . I

.1.7 i 1./l o.st : II I I
3,9 I J.ll J.l j 0.27 ! II :
4.2 I 2.1 1.3 i 0. I" ! 0.22 i0
·U i 2.2 IA i lI.1t.! ! 0,\; in<ll n
S.'} I b.ll 1/l·1I 1:;·2 ! l"!U H.

listed in table 2, all multiplied by lO' for runvr-nienr-«,
The ~V's shown arc formed hy t aking tl\(~ I' of fllH' of
the equations listed in the left COIUIllIl ant! suhtracrina
from it the V calculated usinj; one of llll' eqllations in
the top row. Since the \IE, - 3SE ~v value is lar~('st

of all, the l\1E, yields the largest and the :3SE the
smallest V value for this value of z, Similarly. w« sc'c'
that the BE~ and KE volume predictions are dosest
together here.

In addition, in figures I to S we have I,lolt/·tt ~J'
versus z for a variety of equat ion pairs, The hllxc.t!
equation name is the equation from whose V value«
those of the equations named on the curve!" an- !"ul,.
tracted. These five figures contain ~I' ('urvc:s for 11111"'1.
but not quite all, of the possible pain; of !'fillatioll!",
Curves have not lieI'll duplieated. Thus (rut., - J 'HI, I
appears in figure:3 for BE 2 hut not its negativc' in fi;.:urc'
5 for BEl. Negative values are indicated hv w.illJ,:
dashed lines. .

3. Model Differences and 4V Discrimination

The Keane equation only applies when - 'Y/2 < 'l' < 0,
conditions satisfied for the present parameter values,
Although all of the equations must become poor
models for sufficiently high z, failure is particularly
evident for the UTE and ME:!. The volume predicted
by the UTE goes through zero at the finite z value of
(1)+ 1)-I[exp (1)+ 1) -1]. For the present form of the
ME:!. K' == (ilK/ap) =0 at z=-1)/'l' and V=O at
z= 2/[ (1)2 - 2'V) 1/2 -1)]. The 3SE also suffers from the
disadvantage that it predicts zero volume at finite
pressure. All the other equations require infinite z to
produce zero volume.

The equations of table 1 are discussed in greater
detail elsewhere [1, 31. Although most of them have
some macroscopic or phenomenological theoretical
justification, here they may simply be regarded as
empirical equations likely to be of some value in the
P-Varea.

In order to examine differences in the predictions of
the various models, we have, for a given set of p or z
values, calculated corresponding dimensionless V
values, using in each equation the same 14.figure
parameter values already mentioned. The V values
were calculated using 14 figures, by iteration when
n~cessary.'with a resulting 13-figure or better accuracy.
FInally, dIfferences between V values of each possible
pair of equations were calculated for each z value. The
differences obtained for fJ = 11 kbar, or z == G.} 047, are
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F1C\HE I. roluTlle differences, ~V, rersrrs normalized pressure, z,
for the ME I and other eotuttions,

z
FICURE 3. Volume differences, AV, versus normalized pressure, z;

for the BE2 and other equations.

444

z

FICURE 4. Volume differences, .lV, versus normalized pressure. t:
for the JD(;E lind other equations.
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FIGURE 5. Volume differences, ~V, versus normalized pressure, t;
for the BE I and other equations.

Although few actual experiments resulting in P·V
values of appreciable accuracy extend past z - 0.5, the
present exact, synthetic data curves are calculated up
to p = 210 kbar, where z == 2.000. At this z value,nv: == X-I is of the order of 0.5 for these equations,
being - 0.64 for the 3DGE, for example. For
Zmax == 2.000, N = 58 p or z values, distributed roughly
logarithmically, were used. For present purposes,
larger Z values were unnecessary.

Clearly, ~V curves for all pairs not involving the
UTE, 3SE, or ME.! will eventually reach a maximum.
with ~Vmax < I, as z increases, then decrease toward
zero since both V'« become arbitrarily small as z- x.
As the figures show, the situation is different for the
~IE~ even within the present range. Since the param
eter values used here lead to V < 0 for:: > 1.85. .lV
values which involve l\IE~ volumes become-arbitrarily
large in magnitude as z increases beyond this point.
Clearly, the ME~ cannot be a useful model all the way
to the point where it predicts zero or negative volumes.
Nevertheless, it may be useful for a range ending
sufficiently far below this point.

Of what value are the results shown in figures 1 to S?
They are of considerable value because they show
how well the various equations of state considered
here may be discriminated under the best possible
conditions. Suppose, for example, that we wish to
discriminate between the KE and other equations and
are able to measure volume only up to z = O. 1. Furt her,
suppose that errors in p are negligible comparN] to

those in V. Figure 2 then shows that to distinguish the
3SE from the KE in the range 0:S z :s 0.1, expr-ri
mentally determined V values must be known to about
one part in 10\ or to four decimal places, near z - 0.1.
Even less uncertainty would he required for a smaller
range. The BE~ and KE cannot he reliably distin
guished without a precision of about three parts in lOti
near z = 0.1 and higher precision for smaller z. Clearly.
if the above precision has not been achieved, then'
would be no point in attempting to discriminate he
tween the equation pairs discussed for the data in
question. Barsch and Chang PI have discriminated
between the BE~ and KE for a situation when'
~V/Vn = 3 X 10-:1 or mure and have concludr-d that till'
BE~ was milch better for their purposes than the KE.
The present figure 2 results indicate thaI such dis
crimination is actually not significant with such pre
cision in .lV, for the present set of parameter value»,
over a pressure range from zero III' 10 at leasl ZOO kbar.

There are two reasons why we consider that 111l'

present curves represent t hI' hest possibl(' discrimina
tion. First, there are always some random errors in the
determination of pressure values, To first order, W('

may take the expeeted or "cunrrolh-d" pressurr- vahws
as exact and consider that t Ilf' aet ual pn'sslIn' r-rrurs
are incorporated as additional random r-rrors in IIII'
volume values, It is Ihen this lolal volume error which
1II11st he used in determining whether Ihe curvr-» allow
equation discrimination within .; cerlain range of z.
When parametr-r val III'S are availahle, as from ultra,
sonic measurements, they may he IIsl·d in sl'v('ral
equations of state 10 calc lila II' exact volurnr-s over a
given z range. These volumes may tlu~n Ill' din-rrlv
compared with a sel ohtairll'd bv din'ci IIlI'aSllr('"l1'nl.
Clearly. if IIIl' tolal I'rrors in '1111' latter S('1 an' nol
appreriahly smaller (ovr-r must or all of till':: rilllgl'llhan
the ~Vs ohtainr-d with various elillalioll pairs, no valid
discrimination is possihll'. EVI'n so. 0111' of IIll' sl'VI'ral
eqllation~ amonz which di-r.rirninatiun i!" ill1possibll'
for the I!JH'n z ran/!,' may Ill' far slllll'rior 10 11lf' olher"
for extrapolation hcyond Ihis ranur-. Altholll!h all "il!hl
eq~Jations of fi;!un's I III .) art' illr/islin;!ui"llahf,· for
.l1' dala of no III'IIl'r than )f)~ pn'ei!"iofl in tIll' rang"
o~ z -c; 0.1. clearly tlu-n- are important diff"f/'IH"'" Ill"
tween the pn'dil'tions of Ihe various I'qllalions for Ihi"
same precision 11'\'('1 at say z C"= I},.

\Vhel1 an inrl"lwlHlt'nt Iy nW,I"IJII,d ",'1 of paraulf'II'r
values is unavailahlr-, par"IIIl'II'r valur- ,·..,illlalf'" 11111 .. 1

be ohrained hy lillin/! a modr-l r« thr- a\ailah'" ,1.11,1 It\
some such pnwellufl' a" I,·a ..t "qllan's. 1-:;ll'h din"fI'nl
mmld filled will IlwII vi"ld " diff""'nl ..,'I "f f'slilllall'd
parameter values. If il vahn-« an' oblailll'd for a pair
of models. u"inl! in 1';I"h mod,·llllf' "''''I'ifw p;n;lltll'lI'r
values derr-rminr-d from a 1",1'" "'flJilTI'" hI of ,Ill' d;lIa
for the civen nlOd,,1 and r.1nl!l' lea"" AI, Ih,,"llll' adjll ..l.
ment of IIH' pnrarnr-tr-r value- a""lI'i.1I,·" wilh 1111' I"a"t
squares procedure will ;!I'flN"II\ I,.arllo an ap!'wciahh
different set of .lr values than ,muld 11.1\1' l"'I'1l "b·
rained hall Ilw sutn» patamr-ter \alllf' ~,.I I"','n 1l~,.;J in
each r-quatiun (("a~e HI. If 1111' fit ... of IIIl' 1\\" ,.1/H.:lIinlJ"
for case A are ~ufficir'nlly ~ ..o,J, 1Ilf' ,.orrf.",w'lldinlt ~,

\'alll{'~ may nearly all Ill' mudl ~m.111N tklll I!I ... ,.
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obtained in case B with any single reasonable param
eter value set. But only one, at most. of the two sets of
parameter values can be correct. Thus, one must
proceed with extreme caution, and the small degree of
discrimination possible from the case A fits and /}.V's
is usually misleading. Further, any use of case A results
outside of their fitting ranges is extremely dangerous.

TIJ(' most meaningful discrimination will be obtained
from calculating /}'V's by the case B procedure, using
the same most reasonable choice of parameter values
in both equations. If the two equations under considera
tion seem to fit about equally well and no other param
eter value information is available, reasonable values
to use in the case B discrimination are the averages of
the two sets of values found from the least squares
fittings. Because of the wide use of least squares
procedures, these matters will be further discussed
in the next section.

The present case B results are closely related to
some obtained lry Barsch and Chang [31. These authors
compared, however, JI-value predictions obtained from
a certain lattice equation of state tailored for CsI
with JI values obtained from several other phenorn
enological equations of state. They found, for example,
that using the same parameter values the BE 2 ap
proximated the lattice equation an order of magnitude
better (in tip) than did the KE. Although Barsch and
Chang present VI r n versus p curves for several of the
equations of state considered herein, they do not give
til" curves and are not primarily concerned with
establishing what accuracy in V is needed, for a given
JI or z range to allow equation discrimination.

Even though Barsch and Chang assert the superiority
of the BE2 over the other phenomenological equations
they considered, as already mentioned the BE 2 curve
of the present figure 2 suggests that exceptionally ac
curate data or a very wide range will usually be re
quired to allow meaningful discrimination to be made
between the BE 2 and the KE. Although Barsch and
Chang's calculated Itip I values for the BE 2 and lattice
equation were an order of magnitude smaller than those
for the KE and lattice equation, the latter values them
selves were still considerably smaller for the range
o~ p ~ 200 kbar than either the errors in Ib.p I calcu
lated from the BE 2 with experimental uncertainties in
the parameters or those expected experimentally
[31. Thus, the actual discrimination between the BE 2

and KE appears nugatory for this range. It seems
doubtful that sufficiently accurate wide-range data yet
exist to make adequate BE 2-KE discrimination possible
unless the situation is very different for appreciably
different parameter values than those used here and
those used by Barsch and Chang, an unlikely possibility.

The curves of figures 1 to 5 are somewhat more
general than they appear at first sight. First, since the
normalized pressure variable z is used, the results are
independent of the value of Ko• Second, since the Vo
value used is quite close to unity, little specialization is
introduced by the specific Vo value used. When Vo
di!fers appreciably from unity, the present curves may
still be Used with the tiV values reinterpreted as
AVIV.. values. For the UTE, ME), and BEl, only the

additional parameter TJ enters. This quantity is usually
found to be within the range 3:S TJ :S 8; thus, the
present value, near 6, is fairly typical. Further, changes
in TJ may be expected to change b.V itself less than the
V's entering b.v. On the other hand, the qr value used,
near - 7, is quite special since little is known thus far
about the likely range of qr for a variety of materials,
and it probably can be positive as well as negative
[I, SJ. Nevertheless, we suggest that the present curves
may be used, at a zero to first order level, for an initial
estimate of discrimination possibilities between various
equations for other materials besides Cs1 at 150°C. Of
course, the next order of assessment would employ an
estimated parameter set Wo, K«; K~, and K;; values)
for the material in question. This set could then be
used, as herein, to generate av curves for comparison
with the estimated total errors of the experiment, all
incorporated into the V values.

As examples of such zero-order assessment, we may
consider the data of Monfort and Swenson [6], Kell and
Whalley [7J, and Vedam and Holton [8]. Monfort and
Swenson studied potassium metal up to z ~ 0.4. Their
volume data were given to four places, and they found
a scatter of about 5 units in the last place. Although
they primarily considered the BE., the MEt was also
introduced. The MEl curve of figure 5 shows a maxi
mum Ib.V I for these equations of about 7 X 1O-:l . When
the Monfort-Swenson data is normalized to a Vo near
unity, allowing comparison of V errors with present
tiV's, one may estimate that the data are accurate to
perhaps 3 X 10-3 in normalized volume. Comparison
suggests that one might then just be able to distinguish
between the BEl and MEl for this range and accuracy.
One of the present authors [1J has considered dis
crimination between the 3DGE and 3SE for the 0 °C
water data of Kell and Whalley (zmax - 0.05) and be
tween the 3DGE and ME2 for the 50°C water data of
Vedam and Holton (zmax ~ 0.44). Similar zero-order
comparison of probable errors in V with the present
av curves suggests that the 3DGE-3SE discrimination
was near the borderline of possibility and was probably
not very meaningful, while the 3DGE-ME2 discrimina
tion was somewhat more possible and certain.

Finally, to the degree that the present av curves are
reasonably general, it is worth mentioning that the
sign changes for the VBE,-Vl.'TE, VBE,-V~rE2' and
VBE,- V3SE curves shown in figure 5 indicate that the
BEt remains a closer approximation to the other three
equations over a wider range than if such changes of
sign were absent. This result is perhaps one reason why
the BEl has been found to be of relatively general
applicability in the past.

4. Least-Squares Comparisons

Least squares procedures are frequently applied to
noisy data for which the true underlying model is un·
known and possibly nonlinear in some of the param
eters. Here we shall investigate the results of least
squares fitting of exact data, especially with incorrect
models. Such analyses, when the correct model and
parameter values which generated the data are known.



TABLE 3. Possible errors in least squares estimates

where An = 0 when the Vu entering x =Vu/V is taken
fixed and has its correct value (the procedure we
shall use when All is a free parameter); A I = K«:
.12 = (TJ-I)KII/2: and A:l = (l/6)(TJ2-31/+2+'I')Ko.
Clearly. direct linear least squares determination of the
A, parameter estimates will allow corresponding VII.

can yield valuable information about the systematic
errors arising from the use of the wrong model. Further,
the use of exact data allows the usually mixed effects
of random and systematic errors of this type to be
entirely separated. Since figures I to 3 and 5 show that
the 3DGE is, in some sense, close in its predictions to
several of the other equations, it has been chosen here
as the "correct" model for illustrative purposes. The
exact data employed was thus generated by using in
the 3DGE the 150°C CsI parameter values already
discussed.

Table 3 shows the results of applying the least
squares method in a few different situations of interest.
Here and hereafter "linear" and "nonlinear" generally
refer to linearity, or its absence, of the parameters
entering the model. Thus, by a "linear" equation we
will mean one linear in its parameters. The "linear"
situation cited is actually rendered nonlinear in the
parameters by the weighting used Pl. Even though the
model is originally linear in the parameters, weighting
of the independent variable wiII lead to nonlinear
parameter dependence except in the special simple
case (not considered here) of a linear relation between
independent and dependent variables. In a succeeding
paper, we hope to investigate in some detail the im
portance of and degree of bias frequently arising in the
A case of table 3 when random error is present. Here
we continue to restrict attention to the exact data
situation.

The 3DGE is written in table I in a form involving
the parameters nonlinearly. This form was required by
the constraint of using K«, TJ, and 'l' as the basic param
eters in each equation listed in the table. On the other
hand, the 3DGE may also be written in the linear form

:3

p=~Ai(X-I)i
;=0

TABLE .1. Least squares result« ;11 II,,· ,,{,\I'IH(' of
svstematic error: exact .1/)(;/:' dato lJf/,·tf ,,\ th«
:iIJ(;E model

Ku, 1/, and 'I' estimates 10 II(' ('all'ulall-d for ('olllparison
with their true values. Further. ('olllparisoll of 1'01'

responding nonlinear and linear I('asl squun- parault'It'r
estimates will allow bias arising from nunlim-nr II'asl
squares to be indenrified aud quantified.

The following definitions an' useful ill ('olliparillg
least-squares parameter val III'S with I'xal'l valur-s. 1.•'1
fJ be a specific parameter of III<' 1I111,It,I; Ih,';, dl'lIoll' lilt'
Irue value o( 0 (hen- kIlOWII) by il« alld lilt' II·a"l·squan·"
estimute as 0. The relutive error of lilt' .'"Iimall' is IIIt'll
0= (0 - Ou) /011• Whell 110 r.unlum r-rrurs an' p/{'''.'III.
OJ will measure thr- sysll'lllalie enol' ill lilt' jlh paralll'
eter value. I~ is also of int crt-st 10 ('Ollll'an' lilt' p.rram
eter error ({) - (Jld with Ilu: sl andard d.,\,ialioll (s,d"
ohtuined for a givI'1l I<:asl squan-s ('slilllall' of fl. 'I'll do
so, WI' define.l 1«(J-flu)/(sd)f/l=lfI,,()f(.~d)f/l.Thi"
measure will indicate possihl« sysn-muti« r-rrur ill
(SI/) 'I,

We have been disl'ussing I('asl squan's n'"ult .. ill till'
above as though they werr- exact «ilutiuns Ill' till' l..a ..1
squares ('qualiolls. It is 1101 wid"ly apprecialt'd Ih,.1
all the usual least squares ('1111I1"11,,1' rtlulin.'s IIlay ~ i.·ld
very inaccurate parumeter values Iwcalls(' of rollnd·off
errors 191. For cxamul«. if Caussian 1,Iilllinalillll wilh
pivoting is used 10 sol VI' th« II'a,,1 squan's .·ql)ation ...
the number of accmalt' dl'cilnal digil" in a fl .. 1. j ..
A ~ (C-n+ I ~ I). wlu-r« C is IIII' numln-r of ("'lui,.!·
lent) decimal digits carried in tln: «omputr-r cale-Ilialion
and II is Ihe number of fw.' parunu-tr-r-, (:I"aI lv , if
11 > C. results of little value an' likr-lv 10 I... ohiailll'd.
ExPression for A of this Iype were (;riginally d.·ri\l·d
for linear least squan-s fillin;! of polYllolllial ... hUI Ihn
seem to apply at It'asl approximal,·ly Illnolllilll'ar r-qua
lions as well. Beeellily. \\' amplr-r 1101 has iliad .. a 1II111l'

detailed study of thr- matu-r for polynolllial .. and di ..·
ellssed more eomplt,x routiru-s which call ,i,·ltI 'I'ry
substantially higher solution a('('lIr.\(').

The effects of roundoff an' illuslrall-.II" till' rr-vult..
of tahle 4. Eliminatiun witl: piv-olin;! was .is.,d 10 1'00rn
out least squares filling: of lilt' l-l-fiuur« :H>(;E dala \Isinl!
the ,3DGE equat inn in hoth its linear anti lIf1,t1iIWM
forms. Since c= 14 and n=4, A -. 11 ~ J. In T;lbl,· -I.
the OJ arc calculated IIsin;! (/0= VII. O ,;:--~ 1\... (J: n,
and 0:\ = 'I'. TIll' quantitys., is IIII' slandard d(',iollifln
for the fit itself. TIll' re-sults show valur-« flf A 1",1\\I'('1l

about 14 and slil!hlly I,·ss than JI. in roll ..!!I oIgTl'('IIIl'nl

(1)

Parameter
variance
estimates
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estimatesSituation

•I
I

I
I
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1.0 2.0

FIGURE 6. Parameter relative errors, OJ, and standard deviation of
fit, Sd, versus fitting range (0,," z"'" Zr) for least squares fitting of
exact 3DGE data with the BEt.

All nonlinear least squares fitting in the present
paper has been carried out using the Deming itera
tive method of solution [1, 11]. Although this is an
approximate method [12], the resulting errors in the
estimated parameter values are generally negligible.
O'Neill et al. [12] have presented a more accurate
iterative solution of the least squares problem with
weighting of both dependent and independent variable,
applicable only for polynomial equations. We have
recently generalized and improved this solution so
that it applies to equations of any form and converges
much more rapidly [13]. This method, applied to the
situations of table 5, yields essentially the same OJ
values as those in the table but ~/s some 25 to 40
percent larger than the tabular values. These increases
thus mainly arise from smaller (Sd)O'S produced by the
new least squares solution. Although the new method
leads to an essentially exact (in the sense of iterative
convergence) least squares solution when round-off
errors are negligible, the results cited above and those
in the table show the presence of large systematic
errors in 0; and ~; arising from wrong model choice.
The rest of the present paper is primarily concerned
with o;'s and p-weighting, where the differences
between the Deming and improved estimates are
negligible.

Although table 5 gives one some idea of syste
matic error effects, much more is provided by the least
squares results of figures 6 to 12. The same exact
3DGE data were fitted with the various other equations
for four different ranges, all including z= O. The
four values of Zr used were ~ 0.048, 0.143, 0.476,
and 2.00, and the corresponding number of z values
were, respectively, 19, 29, 37, and 58. All points used
in a given fitting were included in the ones with larger
z,..

TABLE 5. Least squares results showing systematic
errors: exact 3DGE data fitted by the BE2 model

with the formula. There appears to be no significant
tendency for the linear results to be better than the
nonlinear ones, and one can scarcely conclude that
much of the bias of table 3 is showing up here. In fact,
bias is only important when random errors are present;
in the A cases of table 3, bias approaches zero as the
random error goes to zero. Incidentally, since 011 is
zero in the linear case when VII is taken fixed at its
exact value, /1 11 is given in its place; since the true
value of All is zero, this is an absolute, not relative error.

The results of table 4 were calculated with N = 37
points, covering the range 0 ~ Z ~ 0.476. Let the maxi
mum value of z be denoted Zr. In earlier work [1],
weighting of both the dependent and independent
variable data values was discussed. The related stand
ard deviations were denoted CTt' for the V variable and
CT p for the p variable. The p-weighting of table 4 takes
"» = 1 and CTr =0 (weighting of dependent variable
only), while the V-weighting uses (J'" l' = 0, (J'"r = 1. In the
linear equation case, the V-weighting chosen leads to
somewhat different weighting of the actual independent
variable x used [II. Table 4 indicates slightly improved
results for the V-weighting over the p-weighting, and
no bias arising from V-weighting in the nonlinear situa
tion is apparent. The differences between the s,/s for
p and V weighting arise because the p-weighting Sri is
a measure of the least-square fit residuals when they
are all in pressure and is here in kiIobars, while for
V-weighting the residuals are all forced to be in re
duced volume and Sri is then dimensionless. The ratio
between the s,/s is roughly K«.

Although we shall use the usual inaccurate Gaussian
elimination-with-pivoting solution of the least squares
equations in the following, all inaccuracies introduced
thereby are four or more orders of magnitude smaller
than the systematic errors we consider. Such syste
matic errors in parameters and standard deviations are
illustrated in table 5, where the 3DGE data are fitted
with p-weighting using the incorrect BE 2 model. Re
sults for 0; and u; are first given for two different ranges
of z, from zero to ~ 0.048 and ~ 0.48. Note the strong
increases in these error measures both with range and
with the index i, Also included in the table are fitting
results obtained for the complement range, all points
contained in the second range but not in the first. As
might be expected, the parameter estimates are
somewhat worse for this coverage than for the largest
span shown, even though Sri itself is somewhat better.

\J 0,," z ""O.l»76 0,," z "'"0.476 0.0572"," z "" 0.476
N= 19 N=37 N=18

0; j.; 0; j.; I); j.;

0 1.7X 10-8 2.4 1.1 x 10- 5 3.8 1.2x 10- 4 9.7
1 -1.1 x lO-; 5.8 -1.7 x 10- 3 11.0 -4.8X 10-3 14.0
2 4.5 x 10-4 12.0 1.2 x 10-2 21.0 1.9 x 10-2 24.0
3 4.9 x 10-2 29.0 2.7 X 10-1 43.0 3.4 X 10-1 45.0

Sd \.31 x 10-. 1.02 X 10- 3 4.62 X 10-4
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FIGURE 7. Parameter relative errors, 8\ and standard deviation of
fit, Sd, versus fitting range (0';; z';; z,) for least squares fitting of
exact 3DGE data with the ME,.
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FIGURE 8. Parameter relative errors, 8\> and standard deviation of
fit, Sd, rersus fittinu range (0.;; z';; z,) for least squares fiuinu of
exact :WGE data icith. the UTE.

FIr-t'RE 10. Paramrtrr relntir» ('fum. ",. nnd ""'Ilford dr"rltIM. of
fit, Sd. l~rsrU fiuitu: rane» (0 -.; z':; 1.1/M {nut ''lurJfn ,huIIl;: ';f
exact .1DCE data "lth the ,\fE,.



FH;I'RE II. Parameter relatire errors. OJ. and standard deviation of
fit. g,l. l'erSIlS fiuinr: range (0 ~ z ~ Zr) for least squares fining of
'exar! 3[)(;£ data icith tire K£.

identify either the BE~ or KE as an incorrect model,
even though they both would be.

The results of figures 6 to 12 show that when the
range is extended, relative errors in all the parameters
increase when wrong models are used. Further, the
higher-order parameters are more inaccurate than the
lower-order ones for all the ranges shown. Not much
added accuracy in the higher-order parameters can
be obtained by reducing the range and, in practical
cases where random error is present, generally no
added accuracy will he achieved by such reduction.

Figure 10 stops with a Zr of 0.476 because the volume
predicted by the ME2 is negative for z ~ 1.85, preclud
ing a meaningful fit with Zr = 2.00. Note that 0:; for the
KE and 3SE is so large that its values must he divided
by 10 and 100, respectively, to allow plotting on the
present scale. For the 3SE, even 02 must be divided by
10 as well. These results illustrate an important gen
eral point. The figures show that the BE 2 and KE are
the best least-squares simulators of the 3DGE model
as far as Sri is concerned. Yet even for the relatively
low Z value of 0.143 (p = 15~khar), 1\1'1 is about 10 per
cent high for the BE~ and 'J! is of even the wrong sign
for the KE. The average residuals arising from syste
matic error would, when all in volume, be mostly less
than 10-6 in magnitude here. Even for the best data
currently available such small residuals would be ob
scured by random error. Thus we see that it is possible
that two different equations, both wrong (as here) or

1.0 2.0

3SE ~-~:.-- /"

-- V

/ ~
/ /

/ . /Y ///
o /

1 //
/

80/

/
•/

/

10'

FIGURE 12. Parameter relative errors, OJ, and standard deviation of
fit. Sd, versus fitting range (0 ~ Z ~ Zr) for least squares fittin{! of
exact 3DG£ data with the 35£.
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Figures 6 to 12 show how the systematic errors,
represented by the OJ'S and by Sfl, change as the fitting
range is extended. As usual, dashed lines indicate
negative values. All 0; results shown were obtained
with p-weighting: (71 = 0, (TIl = 1. Results obtained
with V-weighting were closely similar. Unlike the OJ'S,

which are relative, the s/s are absolute and, with
p-weighting. measure the overall goodness of fit in
pressure units, as already mentioned. Thus, for
example, figure 6 indicates that Stl for the BEl fitting
over the range a~ Z ~ 2 is nearly 0.1 kbar. All Sri

curves were obtained with p-weighting except the one
marked (Still' on figure 9. Here we compare the s,t's
obtained from p and V weighting. The (s,1l1' values are
somewhat more than K o times smaller than (Sri)"

values here. Note that. as expected, (SrI)1' and Oil.
the relative error in V«, are quite close together over
much of the range.

For V weil_dlting. 5,1 is an overall measure of the
residuals in V. Its absolute value in figure 9 at z= 0.143
of about 3 X 10- 7 (the maximum magnitude of a volume
residual was ~ 6.5 X 10- 7 ) is about two orders of magni
tude smaller than the !iV == VilE 2 - V[)(iE of ~ 5 X 10-5

shown in figure ~1 for the same z. But this last figure is
that applying when the correct parameter values are
used in both equations. As expected, the least squares
parameter adjustment in the BE2 fitting of the exact
3DGE data makes it difficult to conclude (without in
dependent knowledge of parameter values) that the
BE! is the wrong model, as it is here. With some ran
dOl~l efr(~rs in the 3DGE model data, least squares
fitting USlI1g the BE~ and KE, for example, would again
generally lead to results which wouldn't allow one to



one wrong and one correct, may not be distinguishable
by goodness of fit criteria, yet one may predict far
better parameter values than the other. In the absence
of other information, such as firm knowledge of the
correct model or independent determinations of some
of the parameter values, one will evidently always
stand an appreciable chance of picking; a "best" model
which yields some quite poor parameter estimates.
The better the accuracy of the data and the wider its
range, the better the higher-order parameter estimates
will be since the final model chosen will be forced to
be closer to the correct model to achieve an adequate
fit.

The monotonic increase of Oi and Sri with fitting range
illustrated in figures 6 to 12 is, of course, indicative of
the use of an incorrect and inadequate model and is
by no means limited to the equation of state area. In
1110st if not all cases of practical interest, we may expect
to find this sort of behavior: the wider the range used
in least-squares fitting of a possible, "close," but still
incorrect model, the greater will be Sri and the param
eter error magnitudes. It should, however, be remarked
that this conclusion only applies in the usual case
where the model is not asymptotically correct as the
range is extended indefinitely. The wider the range
used, generally the more difficult it will be for an
incorrect model to simulate the correct one.

This increase of errors with range may frequently be
used in practical cases as a powerful means of dis
criminating against incorrect models. When random
errors in the data are sufficiently small that the sys
tematic errors arising from an incorrect model choice
dominate Sri, it will generally increase with the fitting
range, as illustrated here. Such an increase thus clearly
signals an incorrect model choice for the range of data
fitted. Since most models only apply adequately in any
case over a limited range of a variable such as pressure
or temperature, extension of the fitting range beyond
the region of applicability of the best available model
will always eventually result in an increase in sa. Thus,
in any least squares fitting where the range of applica
bility of the model used in unknown, extrapolation
outside the fitted range of data should be approached
with the utmost caution and avoided if possible.

The present paper deals with exact data and actual
relative errors of parameters, but true parameter errors
will not be available in a usual experimental situation.
Nevertheless, when Sd increases because of the wrong
model choice, the estimated parameter standard de
viations will generally increase for the same reason.
Thus, these quantities, ordinary results of a least
squares fitting, may also be used along with Sd to help
discriminate against an inadequate model.

There are some interesting general aspects to the
present results obtained with least-squares fitting of
the wrong model. The residuals (here given by observed
values minus calculated values) show the following
behavior: The number of runs (number of sign changes
plus one), u, for the MEl, BEl, and UTE, for which
11 = 3, is 4, while II = 5 for the remaining equations for
which n = 4. The general result, II = (n + I ), is not very
surprising but bears emphasizing. Further, the sisrn of
the first residual run (which, together with knowledge

of II determines the signs and order of all the runs) is
specific to the equation considered. For the present
fitting of 3DGE data, this sign is +, -, -, +, -, -, + for
the ME], BE., UTE, 1\1E2 , KE, BE2 , and 3SE, respec
tively. The number of runs and their sign distributions
were invariant in the present situation to the following:
(a) [J or V weighting, (b) the range of the data and its
placement (all low fI, all high /1, all in the middle, ct c.},
and (c) the sign of'!'. Even though not all extremes were
investigated, this high degree of pattern invariance is
likely to be quite general and may itself be of COli'

siderable usefulness in helping to distinuuish models,
Although we have not done it. one could readily

establish a matrix of first signs obtained using data
calculated from one of the present eight slweifie r-quu
tions and fitted with another one of the eight. Then,
in practical situations where it was believed I hat the
correct model was one of the eight, many possihilitir:«
could be quickly eliminated by comparison with tlw
sign of the first residual run obtained on litting till'
actual data. This would only work, of course, provid(~d

random errors were considerahly smulk-r than sys
tematic ones and hence didn't appreciably pert urh tl)(~

residual pattern. With many data points, ('onsid('fabl(~

perturbation of this kind could IH' 10IPral(·d. howr-vr-r.
since decisions could Iw made on t lu- basis of a
smoothed residual pattern rather than till' actual uui- y
pattern.

A partial com parison of the above type has I)('('n
made earlier for the i\1E. and UTE [141. TIII'f(', Vo
was taken fixed, so II =0 2. As exp(,(,t('d, 11 was fouJld to
be three for both UTE litting of ('xal'l ;\IE. data and for
ME. fitting of UTE data. TJ)(~ initial run si/lns wr-rr
+,-, respectively. for the above two fiuinus.

5. Summary

This paper has lu-cn primarily ('oJl(,f'nJf'd with dis
cussing methods of disr-rimin.u inz Iwl \\C('II slw('ili('
equations of state and has dt'n.ollslralt'd ('onsidl'ral,II'
limitations Oil tlu- possibility of adl'qllatl' disrr imiua
tion between "close" equal ions. \V(· havI' lilllJld IIII'
somewhat surprising result thut 1'(luations whirh I'all'
not be adequately discriminated 011 1111' basis of It·a... 1
squares goodrll'ss of IiI over PH'II a widl' pn'sslIn' rail;':"
may yet lead to estimates of hi/llwr,"rdn parn nu-tr-r
relative errors dilff'rill;l: ill si;!11 alld Ily all ordn III
magnitude in ah:"olllt(· value for ('V('II a narruw (lrr's"'IIIf'
runge, much less a wid(' onr-. TIll' pr« ... I·1I1 IIII'I b"d ....
results, and conc-lusious (";III 1)(" ;':I"IlI'raliZl·d 10 a 1'011'
sirlerable de{!f('e to apply 10 lllOdd di ... ,.,.illlill;.lilll1 nut
side the cquat iou of stalf' area and an' I'l"flil1f'111 fllr
linear models and for tllos(' Iloulilwar in tlu-ir p.ir.uu
etcrs, independent variahl«, or holh. Thu .... till" (..II..w
ing general conclu-inns. ba"'l"d Oil 1111' I'r"~1'1I1 ""If"('ilw
results. are lik,·ly til apply widr-lv 10 IIII' ;:1"1\1'1,11 .hlol
analysis field.

i\lore than one mathr-matir-al IlIl1dl,l ... hftllld 1I"'lIall\
be tested against IIIe dala in ordn tll~pJf·I·r. ilpll...... ih":.
that model "hiI'll fib- best hv "bjl"l·ti\/' ,.,.i1foli.I.\~ tile
range of data is pro;:rl'ssivcl;' il1("fl'a""'d flff whi("h 1/'a"'l
squares fittings are carried 0111. tile initial .. r 1'\/,l1tll<l1
appearance of increases in oS,1 and is,,1. il1di"all'" IIII'
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FIGURE 14. Flow diagram for discrimination and parameter estima:
tion tests.

The flow chart orders the tests as (1) case B, (2) runs,
and (3) case A. If no models appear appropriate after
the first series of tests, provision is made for decreas
ing the range of the data used in the tests in order to
determine the acceptable maximum range for param
eter estimation.

In the flow chart, we have abbreviated the test for
caseB by the notation I~Yij1< O"y. Here we mean that
all or nearly all of the deviations should be less than
the expected errors in the data. Note that "nearly all"
is appropriate because of the possible presence of
random outliers. For the same reason, the test u>n+2
should also be considered approximate and applied
judiciously. Note also that cry may vary with x (het
eroscedastic case); the test should be so applied when
appropriate. Other symbols introduced here are Es,

defined to be the acceptable level for standard devia
tion of the least squares fitting, and Ed, defined as the
level below which standard deviations of two separate
fits are indistinguishable.

Good data are usually expensive, yet too little
adequate data analysis is the general rule. It is better
to do too much such analysis than too little.

MAKE ERRORS OF
THE ANALYSIS
METHOD NEGLIGIBLE

•

EXAMINE FOR CONSISTENCY

MINIMIZE SYSTEMATIC ERRORS

REPLICATE WHEN POSSIBLE

.
:

TEST OATA AGAINST SEVERAL MODELS
BY APPROPRIATE ANALYSIS METHOD

OPTIMIZE
EXPERIMENTAL
OESIGN

ANALYSIS OF EXPERIMENTAL RESULTS
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FIGlJRE 13. General block (liaKram for data analysis.

presence of systematic fitting error ansing from an
inadequate model choice. Such error will also usually
show up in highly correlated residuals exhibiting, at
least approximately, a number of sign-changes equal
to the number of fitted parameters. The range of a
causal experimental variable such as pressure, voltage,
temperature, etc. should be increased to the maximum
degree possible in order to allow the testing of a model
for adequacy over the widest practical data range.

When two or more models have been found that
represent the data over a given range with approxi
mately the same goodness of fit and without signs of
systematic errors from wrong model choice, it is still
possible that one or more models may yield much
better or much worse least-squares parameter esti
mates than the others. Additional independent infor
mation about likely parameter value ranges will usually
then be necessary to allow a selection of the most
appropriate equation for parameter estimation. Extrap
olation of a given model-parameter value set beyond
the range of data on which it is based is always
dangerous.

When data smoothing or interpolation is the object,
the possibility of discrimination between two models
which yield equally good least squares fits to the data
should be examined by the case B procedure of section
3. If the differences in dependent variables calculated
with the same reasonable set of parameter values in
each model are comparable to or smaller than the
estimated random errors in the data, discrimination is
impractical for that data set.

Figure 13 shows, in very diagrammatic form, ap
propriate steps in data analysis aimed at establishing
a "best" model (including specific parameter value
estimates). Some of the actually interrelated steps
involved in this figure are presented differently in the
flow chart of figure 14. This diagram is included for the
benefit of those readers who may wish to apply the
procedures discussed in this paper to other discrimi
nat~on and parameter estimation problems.

For ftl!-ure 14 we have assumed that a data set over
a range, Rmax , has been taken, and that we wish to test
potentIal models over the maximum range if possible.
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