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In a recent paper,! Barker and Diana discuss the
method of effective variances for fitting data when both
dependent and independent variables have uncertainties.
They point out the importance of the problem and the fact
that real and significant errors in estimation can result
from neglect of uncertainties in the independent variables.

The method of effective variances has received broad
usage in estimation of thermodynamic parameters after
being described by Hust and McCarty? in 1967. Another
widely used method, for vector models, was presented
by Deming? in 1943. Barker and Diana! show results,
using a method that is a special case of Hust and
McCarty’s, that agree closely with those given by
Deming?® for quadratic data. If Deming had carried the
iterative process to completion, his results would have
been identical to those obtained by Barker and Diana,
since Luecke, Britt, and Hall* have shown that the
method of effective variances yields results identical to
those obtained with the Deming method.

As pointed out by Barker and Diana, these methods are
approximate. However, three publications in the last two
years have described algorithms leading to the exact max-
imum likelihood solution to this problem.®” The method
of Britt and Luecke,® which is the most general and is an
extension of Deming’s method, applies to problems where
observed variables are related to unknown parameters
through implicit functions of the form:

F(z,p)=0 (1)

where z is a ¢ vector of observables and p is an n vector
of parameters. For zero mean, normally distributed error,
the maximum likelihood estimate for p is obtained by
minimizing

Q(2)=(z,,-2)"R!(z,,~2) (2)

subject to the constraint of Eq. (1), where z,, are the
measured values and R is the variance—covariance matrix
of the measurement error. An iterative solution was pre-
sented for estimates for both the parameters and the
measurements:

pi=p;—[F,"(FRF,*y'F,J' F,”(F,RF,")F, (3)
zi*1 = Zm - RFZT(FZRFZT)-1
X[F+Fy(psa1=g) + F oz - 2,)] 4)

where F, is the Jacobian matrix of F with respect to the
parameters and where F, is the Jacobian matrix of F
with respect to the observables. F,F,, and F, are
evaluated using the most recent estimates for z and p.
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Barker and Diana! (BD) have recently illustrated the
approximate effective variance method of Clutton-Brock?
and Hust and McCarty® for handling least-squares data fit-
ting when all the variables involve measurement uncer-
tainties. This general ‘‘errors-in-variables’’ situation is the
common experimental one, yet it is usually anaylzed
using ordinary least squares (OLS) procedures where un-
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certainties in independent-variable measurements are im-
plicitly or explicitly taken to be negligible. Since such
OLS analysis of a situation where significant random er-
rors occur in measured values of all variables is known to
lead to unnecessary errors of estimation, more publicity
on improved alternatives, such as the effective variance
method, is indeed welcome.! The aim of the present note
is, therefore, to add additional information related to BD’s
results and discussion and to mention two other errors-
in-variables analysis methods which converge to yield
exact solutions of the least squares minimization equa-
tions (unlike the effective variance method) and are likely
to be just as easy to use as that method.

Although BD cite the slowly convergent exact solution
of the errors-in-variables problem for polynomial fitting
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given by O’Neill, Sinclair, and Smith,* two subsequent
papers®® were not cited which provide rapidly convergent
exact least-squares solutions for arbitrary functions,
linear or nonlinear in variables and parameters. As is
usual in nonlinear least-squares problems, exactness as-
sumes iterative convergence to the absolute minimum sum
of squares. The method of Britt and Luecke® requires the
user to provide both the function to be fitted and partial
first derivatives, sometimes a messy task for complicated
functions. By contrast, the Powell-Macdonald method®
numerically approximates needed derivatives automati-
cally and requires the user to provide only the function to
be fitted and a derivative step size parameter or ap-
proximation interval. It is thus often easier to use, but, in
its present form applies only to functions which can be
written y = f{x) or x = g(y). Both methods converge
very rapidly, much faster than that of O’Neill ez al., usu-
ally reaching converged values after only four or five cy-
cles for most functions.

As BD mention, the effective variance method does not
yield an exact least-squares solution. Its estimated
parameter values thus do not lead to the least sum of
squares. BD find in specific cases studied that the effec-
tive variance results are very nearly the same as those fol-
lowing from an earlier solution of Deming.” The small
differences in parameter estimates obtained with the two
methods for the example presented in Table I arise en-
tirely from differences in round-off (L. M. Diana, private
communication). It has, in fact, been shown by
Luecke, Britt, and Hall® that the two different methods
must yield identical resuits on convergence. But it has
also been shown®>%#® that the Deming method does not
lead to satisfaction of the least-squares minimization con-
ditions. The Deming solution is, in fact, used to provide
starting parameter estimates in the Powell-Macdonald
method, which only ceases iteration when the least-
squares conditions are very well satisfied.

Some of the results of various methods are illustrated
in Table I, where data of Pearson® using the x and y
weights of York!® are fitted to the straight line function
y = a; + ayx. The estimated values of a; and a, are given
by a; and a, in the table. The first two rows of the table
show the results of ordinary weighted least squares
(OWLS) regressions. The values given in the first four
rows come from Ref. 1 and those in the last two from

Table 1. Comparison of various parameter estimates for Pearson—York
data.

Parameter estimates

) Sum of
Method of calculation a —a, squares, S
OWLS: y onx 6.100 0.611
(x data taken exact)
OWLS: x ony 5.945 0.630
(y data taken exact)
York!® “‘exact” 5.463 ° 0.477 11.8702
Effective variance 5.396 0.463
Deming’ 5.3961 0.46345 11.9564
Powell-Macdonald® exact 5.4799 0.48053 11.86635

aYork gives no figure here; that listed above follows from his results.
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Ref. 5. More significant figures are given in the a,, a,
values of Table I than are justified by the uncertainties of
the estimates in order to allow these results to be used in
the well-defined, purely mathematical problem of show-
ing that these values yield the minimum sum of squares
of residuals for the present data and weighting. The table
also shows the weighted sum of squares,® §, for runs with
weighting of both x and y residuals. Since the value of §
is not given by either Yprk or BD for York’s method and
specific example, it has been calculated here directly from
York’s results. No § value is given for the effective vari-
ance method, both because none was given by BD and
because, as we have seen, the value must be the same, on
convergence, as that obtained from Deming’s method. The
Deming results shown here are fully converged.

Although the BD analysis is, as stated,’ an approxi-
mate one, BD compare their results with those of two
treatments*!® which they term ‘‘exact.”’ Since the pub-
lished results®#+10 of these two methods differ when ap-
plied to the present data and weighting, the term ‘‘exact’’
evidently needs some clarification. Although the discre-
pancy was recognized by BD, they left it largely unre-
solved and termed only York’s results exact in their tabular
comparison of results. The explanation is that while
York’s'® method is indeed exact for linear fits, his
calculations were not carried to full convergence, leading
to errors in his parameter estimates. The O’Neill ez al.*
algorithm is also exact for polynomials in that it leads to
satisfaction of the least-squares conditions upon con-
vergence. After full convergence, the O’Neill solution
yields? values identical to those of Powell and Mac-
donald. These parameter estimates have been shown® to
lead to the smallest sum of squares yet found for the pre-
sent data and to excellent satisfaction of the least-squares
minimization conditions. They are thus almost certainly
least-squares estimates.

Had York, O’Neill et al., and BD presented values of
S, it would have been immediately-clear that S(York) >
S(O’Neill), and thus that York’s numerical results were
not associated with a least-squares solution. It thus ap-
pears that it is always safest to examine the value of S
and to require an explicit numerical test of satisfaction of
the least-squares minimum conditions® before concluding
that a given set of numerical results represents the exact
least squares solution. Although the Deming, effective-
variance approaches are relatively simple, they are some-
what inaccurate. York’s accurate method is only applica-
ble for straight-line situations. The accurate
Powell-Macdonald method is so simple to apply that it
should usually be preferable whenever weighting of both
variables is appropriate and the fitting function can be
solved for one of the two variables. When such a solution
is impossible, or there are more than two variables, the
Britt-Luecke® method should be used.

A listing of the Powell-Macdonald program is available
on request.

In conclusion, it is amusing and perhaps useful to
speculate on the features a new, generalized least-squares
program might usefully incorporate. The following is
what the author would like to have available and see
widely used. The program would be based on the solution
of Britt and Luecke,® which allows functions nonlinear in
both parameters and variables and of the form f{x;) = 0 to
be handled directly. Here the number of variables, i
= 1,2, ... ,n,which can be involved should be at least 10.
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Simultaneous weighting of all variables would be possi-
ble. The partial derivatives needed in the program would
be calculated exactly internally, using symbolic formula
manipulation, as recently described by Wolberg and
Isenberg.!! To facilitate rapid convergence to the correct
estimates, the program might incorporate a variable pro-
jection algorithm,'? appropriate when some of the
parameters in the model enter linearly, some nonlinearly.
Finally, it might incorporate as an option the iterative
procedure of Schlossmacher!® which converts a
least-squares solution into one with least sum of absolute
deviations, more appropriate for certain error distribu-
tions. Any takers?
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Although 1 agree with practically everything in Frank
Oppenheimer’s interesting article,! 1 am not sure that I
agree that a lazy teacher is necessarily a bad teacher.

[ was taught physics by a master who came into the
class every Monday morning, when he set work for that
week, collected the work from the previous week and re-
turned the work from the week prior to that. The work he
handed back had rarely been corrected in any way, but by
collecting it he ensured we had carried out the past
week’s assignment. The only time we saw him again for
the remainder of that week was if the class made any
noise, in which case he would come from his adjoining
room, frighten the wits out of us, and then return to con-

tinue reading his newspaper and drinking his tea, secure
in the knowledge that we would work for the remainder
of that week at least. His justification for ‘‘teaching’’ us
in this manner was that he was training us to work on our
own when we left school. For him the method succeeded
in that we applied ourselves diligently to our studies and
very few of his students failed their examinations.

Teaching is an art and each artist has his own indi-
vidual way of presenting his material. A style which suits
one artist will not necessarily suit another, so the qualities
which might be present in one teacher to make him a
good teacher might also be present in another to make
him a bad one. I would be tempted to say that the only
characteristic which definitely goes to make a bad teacher
is lack of control of the class, although having said that,
no doubt someone will be able to give an example which
invalidates it.

IF. Oppenheimer, Am. J. Phys. 41, 1310 (1973).

The world should love lovers, but not theoreticians, Never theoreticians!
Show them the door. Ladies, throw out these gloomy bastards!
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—Saul Bellow
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