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Abstract. The small-signal transient and sinusoidal steady-state responses of a material with 
generation and recombination (G/R) of charge are considered. Immobile positive charge and 
mobile negative charge arise from the dissociation of intrinsic or donor centres and re- 
combine bimolecularly. The mobile charge may react at electrodes. An exact solution for the 
steady-state admittance of the system is presented, along with exact and approximate equi- 
valent circuits. The simple approximate circuits, made up entirely of frequency-independent 
elements, whose relations to basic material properties are given in cases of interest, are 
found to approximate the exact admittance to better than 1% for all frequencies and for 
realistic G/R conditions in the completely blocking situation. Similar accuracy is obtained 
for partly blocking conditions provided G/R and electrode reaction time constants are well 
separated. The approximate equivalent circuits, which represent a more accurate and 
simpler solution of the system than available heretofore and are thus appropriate for data 
analysis, lead to a transient response made up of the sum of two exponential decays. Finally, 
conditions are considered for the appearance of appreciable G/R effects in either admittance 
or in transient current decay after a small step function of voltage is applied to the system. 
It is concluded that for ionic conductors and for many electronic semiconducting materials 
recombination times will be sufficiently short that only minor G/R effects will be apparent. 

1. Introduction 

Considerable discussion of the electrical response of solids with recombining space 
charge has appeared recently. Meaudre and Mesnard (1974) (to be referred to as MM) 
have given approximate results for the small-signal transient and AC steady-state 
response of a solid containing fixed positive ionized centres and mobile negative charge 
carriers which may recombine bimolecularly with the positive centres. It is assumed 
that the negative charges may also react at the plane-parallel electrodes present. As 
usual (Macdonald 1973, 1975b), only one-dimensional current flow is considered. 
Macdonald (1974a, 1975a) showed how some of the MM work could be simplified and 
related to earlier results. Some differences between some of the MM AC results and 
more accurate expressions have also been discussed in detail (Macdonald 1974a, 1975a, 
Meaudre 1976). 

Here, it seems worthwhile to present the complete solution of the small-signal AC 
response problem (available since 1974 but heretofore unpublished) and exhibit some 
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useful approximations for AC and transient response. These approximations are far 
simpler and more accurate, under most conditions of interest, than the MM and Meaudre 
(1976) results and are also generally far easier to use in analysing experimental results 
than the exact solution. 

2. Material and derived parameters 

Meaudre and Mesnard (1974) consider only uni-univalent material with mobile negative 
charge and immobile positive charge carriers. This restriction will be accepted here, but 
one of us (JRM) hopes to present at a later time simplified results like those of the present 
work for arbitrary mobilities and intrinsic/extrinsic material. Some brief discussion of 
these matters has already been given (Macdonald 1976a, b). 

The above MM situation corresponds to either an intrinsically conducting material 
or to a donor-type extrinsic material with such high doping that mobile positive 
charges arising from intrinsic-centre dissociation can be entirely neglected. To avoid 
such approximation or the greater complexity of the full extrinsic solution (to be pub- 
lished elsewhere), we shall primarily consider the intrinsic situation hereafter. Let the 
concentration of neutral intrinsic centres before any dissociation be N i  and that of the 
negative carriers be n = n, ci ,  with a valence number of unity assumed for the carriers. 
Then the intrinsic dissociation ratio is gi = c i / N i  and the useful related quantity Ai is 
given by 9J(l  - ai), In terms of the generation or dissociation constant k, and bi- 
molecular recombination constant k, (termed k and p, respectively, by MM), one has 
Ai = k,/k,ci. Another related parameter is Ri (BiAi)-’ 5 k,Ni /k ,  (Macdonald 1958, 
1962). Then, A;’ = [Ri + i]’” - f and Bi = [R;’ + (2Ri)-2]”2 - (2Ri)-’. 

We denote the mobility of the negative carriers by p, and the dielectric constant of 
the material by E .  If 1 is the electrode separation length and e the protonic charge, then 
for unit electrode area the geometric capacitance of the system is C, ~ /47~1 and the 
high-frequency limiting resistance is Rm = I/e,u,ci. The dielectric relaxation time zD is 
then given by RmCg = ~/47re,u~c~. It will often be convenient to normalize resistances 
and impedances with Rm and capacitances with C,, denoting normalized quantities with 
a subscript ‘N’ (Macdonald 1973). Further, we define the normalized frequency Q I u)zw 

The one-mobile Debye length is given by L,, = [ ~ k T / 4 7 ~ e * c ~ ] ~ / ~  and that for both 
positive and negative uni-univalent charges mobile by L,, = L,,/J~. Here k is Boltz- 
mann’s constant and T is the absolute temperature. We define the dimensionless 
quantities M ,  I 1/2LD, and M ,  = 1/2LD,. Usually M ,  and M ,  are much greater than 
unity in cases of practical interest. We denote the internal recombination time by 
zr z,/z, Since 
pp = 0 in the present situation, it leads to xm = m, where the mobility ratio 7c, = ,un/pp 
is a natural variable used in earlier work (Macdonald 1973, 1974b, 1976a, b). If k,  is the 
heterogeneous reaction rate constant of negative charges at the electrodes, a related 
dimensionless boundary parameter variable is r, (I/D,)k,, where D,  = ( k T / e ) p ,  is the 
diffusion coefficient for negative charges. When r, = 0 the electrode is completely 
blocking and when r, = 00 it is completely non-blocking. Finally let g, ZE 1 + (rn/2). 

(krci)-’ = ( A i / k J  and the normalized recombination time by 5, 

3. Exact AC solution 

The exact solution of the present problem, following from a slight generalization of 



Response of materials with recombining space charge 1461 

earlier work (Macdonald 1973) leads to the equivalent circuit of figure 1. In terms of 
normalized quantities, its elements are given by 

where 

and 

Note that G,, + G,, 
Y TN = - Y T /G, = 2;: = G,, + iRC,, may then be written as 

1. The total normalized input admittance of the circuit. 

(1 + iQ)[G,, + iSZ{g;'t, + l)] 
1 + iR{g;'t, + 1) 'TN = 

Some simplified and SZ -, 0 results following from these expressions have already been 
discussed (Macdonald 1974a, 197%). Because of the complexity of equation (8), exact 
inverse Laplace transformation to yield the current response to a small-signal voltage 
step V, applied at t = 0 is impractical. Here and in the work of MM the small signal 
restriction 1 V,l 6 (kT/e)  is required to maintain linear response behaviour. 

-- -- -- - - - - -1  qi- 1 
L _ _ _ _ _ _ _ _ _ _  i 

Z, 

Figure 1. Equivalent circuit appropriate for exact solution. 

The complicated nature of the relations yielding YTN, and the non-linear dependence 
of Ym on material parameters such as Ai, M,, and t, makes it somewhat difficult to 
compare theory and experiment and, for example, to obtain parameter estimates by 
least-squares fitting of data. Therefore, it is convenient to approximate equation (8) by 
a simpler result. The method of approximation to be used is quite different from that of 
MM, who derived an approximate transient response function and then obtained the 
approximate AC response by Laplace transformation. 
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4. Approximate equivalent circuits 

It is well known that the Voigt circuit model of figure 2(a) and the Maxwell model of 
2(b) may be made to have the same Z ,  at all frequencies by proper selection of circuit 
elements. Although neither representation corresponds exactly to the circuit of figure 1, 
except when Ci(w) and Ri(o) are frequency independent, it has been found (Macdonald 
1974b, 1976a, b) that a Voigt circuit made up of frequency-independent elements, such 
as that in figure 2(a), can very well approximate exact results under many conditions of 
interest. 

In the present 71, = CO situation, one expects no Warburg effects, and no adsorption 
of an intermediate species at electrodes (Macdonald 1976b) has been included in the 
present model. One might then hope that a circuit such as that of figure 2(a), which 
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Figure 2. Approximate equivalent circuits: (a) Voigt form; (b)  Maxwell form. 

incorporates elements representing bulk, reaction, and generation-recombination (G/R) 
effects might indeed be appropriate and useful. It has already been mentioned, however, 
(Macdonald 1976b) that partition of separate effects into subcircuits which represent 
each effect essentially separately is a good approximation only when the time constants 
of the subcircuits are well separated (i.e., differ from each other by a factor of 100 or 
more). It has been found, nevertheless, that for a considerable range of conditions where 
this requirement is not satisfied a circuit such as that of figure 2(a) may approximate 
Z,(o) adequately even though individual circuit elements may not then be identified 
with individual effects (Macdonald 1976b). 

When rn = 0 and the electrodes are completely blocking, it turns out that the 
reaction resistance R ,  is infinite, since there is no electrode reaction present, and the 
R, of figure 1 must also be infinite. There is then no problem associated with Rd, the 
effective G/R resistance. But it is clear that recombination, while it can effectively mobilize 
immobile (positive) charge at non-zero frequencies, cannot actually lead to any resistive 
contribution at zero frequency (thus in the exact solution R,, is independent of Ai and 
5,). Therefore, when r,, > 0, in principle the figure 2(a) circuit partition into separate 
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subcircuits for separate effects cannot be entirely applicable even when time constants 
are well separated. For r, > 0, only the well-separated case will be considered here (the 
exact solution may be used for other cases). Then, it is found that the circuit is indeed 
useful and an effective R, exists, but it cannot be entirely identified with G/R and, as 
always, it is necessary that R,, + R,, + R,, = R I ,  E R,,, where RI  occurs in the 
circuit of figure 2(b). 

For most solids, the usual case of interest is that of small dissociation (Ai << 1). But 
for strong liquid or solid electrolytes, dissociation may be nearly complete and Ai large. 
Therefore, there is some interest in not restricting the situation to Ai << 1. The basic 
procedure for developing the figure 2(a) circuit approximation to the exact results has 
been to fit over a wide R range by non-linear least-squares the formal expression for the 
2, of the 2(a) circuit to ZTN(Q) results obtained from the exact solution and thus obtain 
estimates of the normalized circuit elements. By means of a sequence of such fitting, the 
dependences of these elements on input parameters such as r,, M ,  and & is then obtained 
either directly or by further least-square fitting of appropriate functional dependences. 

If the circuit of figure 2(a) represented the exact solution without error and were thus 
completely equivalent to the figure 1 circuit, it would be pertinent to carry out least- 
squares fitting using either exact Re(Z,,) or Im(Z,,) results. Since these quantities are 
related by Kronig-Kramers transforms, either fit should then yield the same set of 
parameters. In the present case, however, the figure 2(a) circuit generally provides only 
a good approximation to the exact results, and separate fitting of real or imaginary 
parts of exact 2, values yield slightly different sets of estimates of parameter values. 
Since the aim of the fitting is to obtain those values of the figure 2(a) circuit parameters 
which best allow the circuit to approximate the exact Z,, as a whole, it is clear that the 
determination of the parameters should be carried out by a method which ensures a 
best fit to Re@,,) and Im(Z,,) values simultaneously. 

It has been found that a simple modification of the generalized non-linear least- 
squares programs of Britt and Luecke (1973) or Powell and Macdonald (1972) (see also 
Macdonald 1975d) allows such fitting of complex data to be readily carried out in both 
an easier and possibly more accurate fashion than the least-squares approach of 
Sheppard (1973), the only other fitting method for complex data thus far reported in the 
literature. All the numerical results discussed subsequently in this paper were obtained 
by such generalized non-linear least-squares fitting using equal weighting of real and 
imaginary squared residuals. 

The results obtained for r ,  = 0 will be discussed first. Only the usual M ,  2 100 
situation will be considered. Then one finds to good approximation that C,, = C = 1 
and R,, II RmN = 1. In addition, one obtains R,, = CO, 

gN 

C,, 2: M,[(2 + Ai)/(2 + 2Ai)]''2 = M , [ ( 2  + Ai)/(l + 
C,, N C2.4547 + 1-4162Ai]M,, 

(9) 

(10) 

and 

(5,lMJ 
RGN 4.014 + 4.9534 + 1.4147A;' 

The C,, result is exactly the low-frequency limiting normalized double-layer capacitance 
found long ago (Macdonald 1958) for two double layers in series, appropriate for mobile 
negative charge and fixed positive charge possibly mobilized by recombination. Note 
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that when Ai 4 1, such mobilization is complete and C,, = M,, but for Ai & 1 
C,, N MI since no such mobilization occurs with very strong dissociation. For example, 
when Ai = 20, gi N 0.952 and C,, 1: 1.024 M,. The above results show that when 
either Ai + CO or t, -, 0, R,, + 0 and the parallel section made up of the R,  and C, of 
figure 2(a) then contributes nothing to the impedance. 

The above expressions for the circuit elements of the figure 2(a) equivalent circuit 
are most accurate and applicable when 5, < M,, a condition we shall see later is often 
encountered. For example, the overall standard deviations of typical ZTN(i2) fits run 
from 10 to 
10’ for Ai 4 1. The availability of the above circuit element relations means that data 
analyses need involve only least-squares fitting of Z,(w) data to the circuit of figure 2(a) 
to obtain element estimates and then their use to obtain estimates of the basic para- 
meters <,, Ai, and M,. Values of Rm, C,, <,, Ai, and M,, together with 1 may finally be 
employed to obtain estimates of the basic material parameters E,  ci, p,, and k,. If Ai is 
large enough to be adequately estimated, one may also estimate Ni and k, values as well. 

to lo-’ for Ai -, 00 and/or (CJM,) -, 0 to to lo-’ as (<,/M,) 

5. Specific complete blocking results 

Meaudre (1976) has presented numerical AC and transient response results in the r,, = 0 
case for the following conditions: Ai < 1, zDM, = 1 s, and z, = 4 s. His choice of L,, or 
zD was not reported. To obtain specific results, we shall pick Ai = and zD = s, 
yielding MI = lo6 and C, = 4 x lo6. 

It is first of interest to plot the real and (negative) imaginary parts of the exact ZT,(R) 
which follows from these input numbers as parametric functions of i2 in the complex 
plane. Such plots are shown in figure 3 for the above input values, which emphasize G/R 
effects, and for Ai = CO, full dissociation. Note that the presence of frequency-dependent 
G/R effects (Ai e CO) causes the normally vertical low-frequency rise associated with the 
reactance of C, to be curved away from vertical to the right over a considerable region, 
which is larger the larger (CJM,). The limiting asymptote at which the curve again 
becomes vertical occurs at R,, + R,, N 1 + ReN. It is common to find such deviation 
from verticality experimentally, although it can arise from several other causes besides 
that shown here (Macdonald 1974b, 1975~). 

Non-linear least-squares fitting of exact Z,,(R) results for the range lo-’ < R < 10 
(81 points) derived for the Ai = {, = 4 x lo6 input values led to R,, = CO and to 
the estimates 

R,, N 1-0003848(1 f 1.7 x 

C,, N 1*0000013(1 9.1 x 

C,, N 1.4141777 x 106(1 1.1 x 

R,, N 0*705529(1 4.4 x (15) 

and 

C,, N 3.472664 x 106(1 f 1.4 x (16) 

The & quantities in parentheses are estimates of the parameter relative standard devia- 
tions. They are only indicative here since the residuals were not normally distributed. 
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These results agree within about 0-1 % or better with those following from the expressions 
of equations (9H11). For comparison purposes, more significant figures are retained 
above than are justified by the apparent fitting uncertainty. Examination of the residuals 
derived from the fit showed strong systematic behaviour, since the approximation was 
not perfect, but the maximum absolute value of Re(Z,,) and Im(Z,,) relative residuals 
(residual divided by true values of variable) was less than 0.5% and most values were 

A,= 

2=\ 
Figure 3. - Im[Z,,(R)] versus Re[Z,,(R)] in completely blocking case for no recombination 
(Ai = CO) and for appreciable generation-recombination (Ai = & = 4 x lo6). 
rn = rp = 0, zm = m, MI = lo6. 

much smaller. Thus, the degree of misfit here, and in all other M ,  % 1 fittings made, was 
appreciably less than one would expect from experimentally likely random measurement 
uncertainties in all but the most accurate experimental data. By contrast, Meaudre's 
(1976) approximate analytical CA response results, developed to second order in MI/&, 
are slightly less accurate, yielding about a 3.4 % smaller C, in the R + 0 limit than the 
exact solution or than the present result for this quantity, CRN, which is exactly equal to 
the R + 0 value of CpN. 

Although transient results can be calculated directly for the figure 2(a) circuit, it is 
considerably simpler to derive them from that of figure 2(b). Either of two methods may 
be used to obtain values of the circuit elements of figure 2(b). Exact relations exist 
connecting the values of elements of one of these circuits to those of the other when they 
represent the same impedance, but in the present three-subcircuit situation transforma- 
tions from (a) to (b) are very complicated and require a quadratic equation solution, and 
those from (b) to (a) require a cubic solution. A convenient alternative way to find the 
elements of (b) is to fit the circuit of 2(b) by least-squares to exact YTN(R) [ZTN(R)]-' 
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values. The results obtained on fitting the complex YTN(Q data associated with the 
present numerical input values are C,, 

R,, = 1-224133(1 2.7 x (17) 

(18) 

(19) 

1, R,, R,, = CO, 

C,, = 7.00965 x 105(1 f 5-1 x 

R,, = 5*46214(1 f 1.2 x lo-,), 

and 

C,, = 7.09412 x 10s(l 5 4.9 x (20) 
Note that (G,, + G,,) should equal unity here but the sum is actually 0,999983, and 
C,, + C,, + C,, should equal 1.4142 x lo6 but is actually about 1.4104 x lo6, both 
indicative of the good but not perfect fit of the equivalent circuit. Notice further that 
here the C,, + C,, + C,, value differs from the exact zero-frequency value by nearly 
three apparent standard deviations, confirming the presence of systematic errors 
inherent in the use of the approximate equivalent circuit. 

The transient response to V,u,(t) follows from i(t) = V,9-'[p-'YT(p)], where u,(t) 
is the unit step function, 9 denotes Laplace transformation, and p is the complex 
Laplace variable associated with iw. Thus, the transient response for circuit 2(b) is 

(21) i(t) = V,[C,d(t) + G, exp( -t/z,) + G, exp(-tlz,)], 

where d(t )  u - , ( t )  is the Dirac delta function, Gi = R;', zi = RiCi (i = 2, 3). On 
omitting further consideration of the immediate delta function response and noting that 
G, + G, must equal G ,  = R;' in the present rn = 0 case, one may write, in normalized 
terms 

[i(t)/i(O)] = G,, exp( - t/z,) + G,, exp( - t/z,). (22) 

For the present numerical input, one finds z 2  N 0.8581, t3 N 3.8749 and thus, using 
G,, + G,, N 0.999983 

[i(t)/i(O)] N 0.8169e- 1 '1654t  + 0.1831e-0'2581', (23) 
where t is in seconds. Meaudre's (1976) more complicated and somewhat less accurate 
result for the same situation is 

[i(t)/i(O)] z 0+8125e-1"640' + 0.1250e-0'2344' + (0.093754 - 0.03095)e-0'25', (24) 

considerably different. For example at t = 0; 2; 4; 8; and 12 s, equations (23) and (24) 
yield, respectively, 1, 1.0003; 0.1887, 0,1892; 0.0729, 0.0729; 0.0233,0.0236; and 0.00827, 
0.00870. At t = 12 s, the difference is about 5 %. Here 4 4( -05,2, - t /z$ is a degener- 
ate hypergeometric function (Meaudre 1976). Although equation (24) shows three 
different time constants, plus a small amount of non-exponential behaviour associated 
with 4, the above numerical results show, nevertheless, that the actual difference from 
two-time-constant response is essentially negligible for the main part of the transient 
response. Even though the exact transient response involves an infinite number of time 
constants, to the degree to which the circuits of figure 2 approximate the exact result, 
generally considerably better than 1 % for all frequencies in the present example and in 
most cases of interest, one can conclude that the transient response will also be well 
approximated for all times by just two exponential decays as in equation (23). General 
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expressions for the G,, G,, z,, and z3 parameters of equation (21) may be obtained by 
writing expressions for the elements of the circuit of figure 2(b) in terms of those of 2(a) 
and then using the approximate general expressions already given for these quantities. 

Meaudre plotted his approximate C,(w) and G,(w) for the present situation and 
found results quite close to single-time-constant Debye behaviour, whereas his transient 
response clearly showed two major time constants, as was found more approximately 
long ago from AC analysis in the r, = 0 situation (Macdonald 1953). On this basis, he 
concluded that when space charge and G/R phenomena are not well separated, their 
study is easier with transient response results than with steady-state AC results. Con- 
sideration of figure 3, which shows appreciable difference between steady-state AC 
situations with and without recombination effects, suggests a different conclusion. Even 
in the presence of appreciable experimental errors, such as those currently encountered 
in very low frequency measurements, discrimination between the two cases, either on a 
graphical basis (impedance plane plotting) or by least-squares fitting to the circuit of 
figure 2(a), should be practical but possibly difficult. For the present linear situation, the 
same basic information is contained in figure 2(a) as in 2(b) and in either transient or AC 
response. The time constants of the system may be obtained in principle equally well 
from either transient or AC response. In practice, however, it may be possible to measure 
one or the other of these more accurately. For example, in cases where classical capacit- 
ance bridges may be used, one should be able to derive more accurate and resolved 
results from steady-state AC measurements than from transient measurements. 

6. Partly blocking results 

When r,  2 0, R,, = 1 + (2,") in the present n,,, = CO situation. In addition, when 
M, 2 100 and r ,  4 M,, z?, 1 and T~~ % 1, ensuring that the bulk and reaction 
regions are well separated ~tl time or frequency. Only this loosely coupled case will be 
considered here. Then R,, N C,, N 1, and the relation R,, R,, + R,, + R,, yields 

RR, N (2/rn) - R,,, (25) 
which holds down to r ,  = 0. Notice that when rn > 0, equation (25) exhibits the neces- 
sary mixing of reaction and recombination effects mentioned earlier. 

By fitting the impedance of the figure 2(a) circuit to that obtained from the exact 
solution in the present r,  > 0 situation, one can again derive useful approximations for 
the 2(a) circuit elements. Let us now denote the r, = 0 approximations of equations 
(9H11) by means of a superscript zero. Then one finds for any Ai and for r,  small com- 
pared with unity 

CR, N CiN + r,, 
C,, N C;, - 1.55,rn, 

(26) 

(27) 

and 

R,, N RL,[l + 2rnR:,] 

To first order, one then has, for Ai < 1, zRN N 2M,/rn and zGN N 0.615,. It is found that 
the above circuit element results apply very well when zRN % zGN but not when z,, N zRN 
or zGN % zRN. No adequate expressions for circuit elements have been discovered in the 
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strong coupling T,, - T~ case. Then the circuits of figure 2 are poor approximations 
and the exact solution should be used. On the other hand, when z ,~  < zRN recombination 
is so slow in the frequency region of interest that it is a good approximation to neglect 
it even when Ai 4 1. Then the following expressions for the normalized elements are 
appropriate: R,, N C,, N 1, R,, N 2/rn, C,, N = MI, R,, N (I-?&),,= rr: = 0, 
and C,, N (C:N)A,=m = 03. There is no contribution to the equivalent circuit from 
recombination in this case. 

Let us demonstrate the degree of accuracy of the above approximations by comparing 
them to a few results obtained by direct fitting of exact 'data'. For M ,  = lo6 and Ai = 

and on fixing R,, and C, at unity, one finds the results shown in table 1. Here the 
numbers arising from least-squares fitting of exact data appear just above the corres- 
ponding predictions of the above circuit element approximations. The quantity cf is the 

Table 1. Comparison of normalized circuit element values for M ,  = lo6 and 
Ai = Least-squares estimates appear above, formula results below. 

'n 5,  Uf RRN 10-6cR, R,, 10-6c,, 

1.54 x 10-3 - 0.999975 0.9992 2.4529 

- - 0.999975 0.9964 24548 
0 4 x lo6 

1.48 x 198,983 1.01015 1.0167 2.3932 

- 198.986 1.00998 1,0140 2.3948 
0.01 4 x lo6 

1.40 x 48,926 1.04322 1.0740 2.2240 

- 48.929 1,03998 1,0709 2,2148 
0.04 4 x lo6 

6.4 x lo-* 99.787 0.70729 - - 

- 100 0.70711 - - 

7.8 x 0.99834 0,70730 - - 

0.02 10'O 

-~ 

2 108 - 1 0.70711 - - 

estimated standard deviation of the least-squares fitting. The first three r,, values result 
in zRN 9 T ~ ,  and the last two in T,, % rRN. Note, however, that by r,, = 0.04 zw is 
only -217,,, not, in fact, a very loosely coupled situation, as shown by the increased 
differences between fitted and predicted normalized parameter values. 

The impedance of the circuit of figure 2(a), when plotted parametrically in the 
complex plane, can in principle lead to three distinct semicircles of differing sizes 
(Macdonald 1976% b). In the present r,, > 0 situation, one might expect one of them to 
be associated with bulk effects, as in figure 3, one mostly with G/R effects, and one 
mostly with electrode reaction effects. But actually, three separate semicircles are never 
found for any value of TGN/TRN. Instead, one finds the bulk semicircle, and, at lower 
frequencies a second arc which may vary from a good semicircle to a somewhat distorted 
one. Because TGN/Tw and R,,/R, are both nearly proportional to Q J M , ,  the condi- 
tion T,, + rRN ensures that R,, 4 R, as well; thus the diameter of the G/R semicircle, 
RGN, will be much smaller than that of the reaction one, RRN, and they will always 
overlap sufficiently that their sum leads to at most a distorted semicircle. Even for 
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TGN/TRN 2 1, no visible separation occurs, and as rGN/TRN --* CO one finds, as discussed 
above, that only the reaction semicircle occurs with C,, = MI. 

7. Generation-recombination mechanisms and the {, ratio 

Meaudre and Mesnard (1974) considered that their treatment applied to extrinsic 
semiconductors and dielectric materials. For donor-type semiconductors, they neglected 
mobile holes. For insulators, they considered that the negative mobile charge could be 
electrons, ions, vacancies, or interstitials arising from neutral centres (intrinsic) or donor 
atoms. One must now ask to what degree the simple bimolecular recombination law 
used by MM applies to these situations and what range of 5, is physically plausible for 
them. 

These matters have been considered recently by one of us (Franceschetti 1977). He 
finds that for non-degenerate semiconductors, direct recombination of holes and 
electrons (photon or phonon assisted) may be represented by the ordinary intrinsic- 
conduction bimolecular generation-recombination expression, G - R = kgnc - k, n p  
(where n, p and n, are, respectively, the local instantaneous concentrations of negative 
charge carriers, positive charge carriers and undissociated neutral centres) when n and 
p 4 n, x Ni. i.e. 5Bi and Ai 4 1. The sameG/R result is found to be a good approximation, 
for small deviations from equilibrium, for Auger recombination and for Shockley-Read 
sequential trapping in the limit of low trap concentration. Of course, the above bimole- 
cular G/R terms are applicable as well (for any Ai) for electron-donor recombination in 
semiconductors and to Schottky or Frenkel defect recombination in such materials as 
single crystal NaCl or AgBr. Thus, the C/R expressions used by Macdonald (1953, 1958, 
1962, 1974a, 1975a,b, 1976a,b) and Meaudre (1976) and Meaudre and Mesnard (1974) 
have a wide range of applicability. 

Now it has already been mentioned (Macdonald 1976a) that when the Langevin 
diffusion theory of ion-pair formation is used for k,, one finds 

5, (k,cizD)-' = 1 (29) 
for the intrinsic-conduction situation (or the limiting case of large donor concentration). 
Franceschetti (1977) points out for ionic conduction that taking into account screening, 
pair formation at a finite distance, field effects, and ionic discreteness effects may be 
expected not to change the above value very greatly, probably less than an order of 
magnitude. In this case, &/M,  will generally be very much smaller than unity and R,, 
negligible. The only remaining effect of G/R will then occur in the Ai dependence of CRN. 

The situation is somewhat different for electronic semiconductors (Lax 1960, 
Franceschetti 1977) where one may find both 5,  4 1 (relaxation semiconductor) and 
5, % 1 (lifetime semiconductor). The 5, 4 1 situation, like that discussed above for 
5 ,  - 1, here leads to G/R effects only in the Ai dependence of C!,. We have already seen 
that the only interesting frequency-dependent effects in Z ,  associated with 5, appear when 
<,/M, 2 1 and Ai 4 1. For G/R between conduction band electrons and immobile 
traps, one has 5, = 47cep,/~vc, where v is the electron thermal velocity and c is the cross 
section for electron trapping. Lax (1960) has shown that t~ for positively charged traps 
may be a factor of lo4 or more smaller than that given by the Langevin theory. Repre- 
sentative parameters (Frederikse 1972, Lax 1960) for lifetime semiconductors are 
pn - io3 cm2 V-' s - '  , c - 1.6 x cm', z1 - lO'cm s - l ,  and E - 10, yielding 
5, - IO4. Taking a minimum value for M ,  of 10 to allow separation of the two electrode 
space-charge regions, we obtain [ J M ,  = lo3, so that for extrinsic materials with small 

19 



1470 J.  Ross Macdonald, Donald R Franceschetti and R Meaudre 

dissociation G/R effects might be observable. This is not true when extrinsic centres 
dissociate strongly, causing Ai to be large and R,, <( 1. 

Although the direct recombination of electrons and holes may occur extremely 
slowly in intrinsic materials, there is usually present a sufficient concentration of impuri- 
ties or defects that sequential trapping is the dominant recombination mechanism, even 
in highly purified materials. For such samples of Si and Ge at 300K and of InSb at 
250K, lifetimes z, of 2 x lo-', 2 x lo-' and s, respectively, have been reported 
(Bemski 1958). These lifetimes, together with known values of mobilities and intrinsic 
concentrations, lead to the values 7.6 x lo4, 4.5 x 10' and 1.4 x lo7 for 5,. Since the 
bimolecular G/R expression provides a good approximation to the G/R of electrons and 
holes in semiconductors by the Schockly-Read sequential trapping mechanism when 
the concentration of traps is small, and since Ai 4 1 in such materials (Franceschetti 
1977), G/R effects should be observable in sufficiently thin samples of such materials. 
(Note, however, that the Debye lengths LD2 of Ge and InSb under the conditions de- 
scribed are of the order of cm.) Incidentally, the value of tr = 4 s used by Meaudre 
(1976) was selected for illustrative purposes only. 

The above results suggest that except for very pure or carefully prepared materials 
R,, 4 1, and G/R will affect only C,, in the present n, = 00 situation. The maximum 
effect here is only a factor of J2, but it is worth noting that for 71, 6 1, very much larger 
changes in C, (and the 0 + 0 value of C,) may arise from recombination effects 
(Macdonald 1976a). 

When R,, 4 1, only one time constant will appear in the transient response since 
the R,, C, branch of the circuit of figure 2(b) will be missing. Since this is the expected 
situation for ionic conductors and some semiconductor samples, one must ask why, in 
fact, measured transient response of materials to which the present analysis should 
apply usually exhibits two or more time constants. One possibility, when indeed 
R,, 4 1, is that adsorption of an intermediate species at the electrode is also present as 
well as an electrode reaction. Such adsorption may or may not lead to complete blocking 
(even in the presence of an electrode reaction), but in either case, one finds that the 
figure 2 circuits are good approximations (Macdonald 1976a, b), again leading to 
transient response showing two time constants. When significant two-time-constant 
response actually appears, it thus seems, for ionic materials and in some cases involving 
semiconductors, that causes other than G/R are most likely involved. 
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