
stituted an implementation of the recursive algorithm, is 
kea leap of insight. It's not at all obvious ; which it would 

ne supposes, if the recursive algorithm had meant such a 
ss all the time. 

eel that an overemphasis on the 'problem reduction' 
oach to program design-encouraged in recent yea rs by 
ructured programming crusade-may have a deleterious 
on our students' abilities to think in process structure 

s, rather than in problem reduction terms. The most 
icious effect of such an overemphasis is a belief that an 
nt and economical program structure is to be equated with 
legant and economical process structure. The contrast 
een MOVESTEEPLE and HANOI would be a good 

nterexample to such a belief. ] am not arguing here against 
tured programming, but against certain aspects of 

ctured Programming. 
DVETOWER is doubly recursive and cannot be made 

ces 
STRA, (1971). A short Introduction to the Art of Programming. 

iterative by a trivial syntactic transformation . The nonrecursive 
HANOI is possible because the data structure being manip­
ulated contains enough information to decide what to doat each 
stage, making the control structure-the stack-superfluous. 
One might draw a (rather weak) analogy with the use of 
threaded trees to eliminate recursion in tree traversing pro­
grams, where the data structure is modified to include just the 
information needed by the recursive algorithm. We might say 
that HANOI is an optimisation of MOVETOWER, in the 
same sense that an iterative factorial program is an optimisation 
of the recursive algorithm, or the iterative 'backstitching' list 
reversing algorithm is an optimisation of the obvious recursive 
list reverser. But, I suggest, it would be a very nontrivial exercise 
to convert MOVETOWER to HANOI, let alone convert it 
mechanically. In fact, to close, ] hereby offer it as a challenge 
to optimistic optimisers, and to those who make it their business 
to prove that equivalent programs are equivalent. 

ALL, COLLINS, and POPPLESTONE. (1971). Programming in POP-2, Edinburgh .
 
MAN and McDERMOTT. (1974) . CONNIVER reference manual. M emo 259A, A. I. Laboratory, MIT.
 

ments on 'Fitting data to nonlinear functions with uncertainties 
I measurement variables' 
ntly in this Journal, W . H . Southwell (1976) presented an 
nsion of an earlier paper (Southwell, 1969) dealing with the 
rtant topic of curve fitting and parameter estimation when the 

ction is nonlinear and when errors are assumed to be present in 
th the dependent and independent variables. His expansion is, 

o	 unately, largely a clarification of many of the misleading state­
nts and a correction of several errors in his 1969 article (See 
well and Macdonald, 1972). Since much of the 1976 paper appears 
bean attack on the least squares method published earlier by the 

nt authors (Powell and Macdonald , 1972), it is desirable that a 
ly be made so that further confusion may be avoided. 

·Westill claim that, contrary to Southwell's assertion (p. 69), his 
1969 method will not in general converge, for nonlinear model s, to 
the least squares solution. We invite det a ils of the ' highly 
successful' (p. 70) use of the 1969 algorithm for such models. 
None has yet been given by Southwell. It is important here to 
appreciate the distinction, glossed over by Southwell , between 
the method he described in 1969 and that described in his 1976 
paper. 

2.The proof that the expressions for 'exact' parameter variances 
given in the 1969 article were themselves approximations for all 
but linear functions was supplied to Southwell by one of us 
(Macdonald, private communication , 1973). Southwell's funda­
mental error in statistical analysis is fortunately cleared up in the 
recent (1976) paper. 

· Our error of y 2 in parameter standard deviations was corrected 
in print in 1974and in 1975, apparently too late for Southwell to 
acknowledge in his 1976 paper. 

· Southwell is incorrect (p . 71) in asserting that our method depends 
on convergence of only the a's . In fact, our method depends on 
convergenceof both the x's and a's, as shown by our Eqs. 2 and 3. 

5.Southwell's word ing is occasionally misleading. For example, 
on p. 71, it would have been more appropriate to have said : 
'The method here described is, with one difference, equivalent 
to the earlier Powell and Macdonald method.'. 

6. Since Southwell has still	 not provided any illustrations showing 
convergence to a least squares solution of his 1969 method for 
functions non-linear in their parameters, it seems odd for him to 
imply (pp, 70'-71) 'tha t our 1972 method , which does yield such 

convergence, is essentia lly equivalent to the 1969 method. It is 
not. Even his present (1976) method is not equivalent to ours 
since his requires evaluation of third-order mixed partial 
derivatives while ours required only second-order partials, which 
we actually evaluate numerically. 

7. It is true, as Southwell asserts (p. 71), that	 we did not use the 
chain rule when applying our analytical method. We were, in fact , 
simply ind icating that such methods as described (O' Neill, 
Sinclair, and Smith, 1969, and Powell , Macdonald , 1972), 
would not alway s converge without impl icit mixed part ials . 

8. We note that the one additional iteration required for our method 
(Southwell's Table 2, 1976) is a small price to pay for not having 
to supply analytical derivatives. 

9. We did	 not say (p. 72) that the problem f(x) = al + a2X with 
uncertainties in both x and y 'remains linear in the parameters'. 

aS 
We did say that the least squares condition - = 0 can be solved 

aX! 

exactly, thus explicitly eliminating the x' s, when one has a model 
which is linear in the independent vari able. Southwell correctly 

aS 
points out that there are other models for which - = 0 can be 

ax! 

solved analytically. 
10. We re-did Southwell's example 3 using the Powell -Macdonald 

method on an IBM 370 computer using partial double precision. 
Our results are : 

al = 5·914859 
az = - 0,6035114 
a3 = - 0 ,07996518 
a4 = 0,02619385 
as = - 8·086482 x 10- 4 

a6 = - I ·685054 x 10- 4 

with 2S = 0'4503256. We used the increment L1 = 10-4 to 
calcul ate our numerical derivat ives, and convergence was 
achieved in seven iterations. It is not necessary, as Southwell 
implies (p . 72), to employ full extended preci sion on a CDC 
6600-type machine to use our estimated partial derivatives 
program . The solution set obtained from our program is indeed 
somewhat different from Southwell's results, probably owing to 
the relatively large parameter standard deviations found in the 
quintic model. We believe that ours is as good a least squares 
solution as Southwell's. 

Finally, we would like to point out that a technique's value depends 
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in large measure upon its 'track record', its availability, and its ease 
of use. The Powell-Macdonald method in FORTRAN code has 
been (and is) available (0 anyone who wishes to use it since 1972. 
In some respects, there are advantages to the Britt-Luecke method 
(1973), but we have been pleased with the wide variety of successful 
employment of our algorithm by a large number of users. Despite 
Southwell's claims of superiority in method to both Powell­
Macdonald and Britt -Luecke, a potential user would be well 
advised to compare all available methods carefully before deciding 
which would be 'best' (in some sense) for his own problems. 

Yours faithfully, 
D. R. POWELL* and J . Ross MACDONALDi 

*Texas Instruments 
PO Bo x 6015 
Dallas 
Texas 75222 
USA 
;Department of Physics and Astronomy 
University of North Carolina 
Chapel Hill 
North Carolina 
USA 
19 October 1976 
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Dr. Southwell replies:
 
No attack was intended; however, I felt, for example, the number of
 
iterations comparison (Table 4, Powell and Macdonald, 1972),
 
which lists, 'Southwell ... did not converge,' was rather harsh in
 
view of the fact (Southwell, 1969) that the method converged as fast
 
or faster than any other method listed .
 

My reply will be to each of the numbered comments above. 
I. The basic methods of the 1969 paper and of the more recent 

paper (Southwell , 1976) are the same. The fundamental approach 
is to minimize the sum-of-the-squares function with respect to 
the a parameters, with Xi being regarded as a function xi(a) 
through the relationship OS/OXi = O. The 1969 paper suggests 
a Newton-Raphson approach (a well-known and 'highly 
successful' technique when starting points are near the solution) 
for the multi-parameter vector a. For any fixed a, a subproblem 
is solved for x, which involves finding a solution to a single 
variable transcendental equation. The 1969 paper suggests 
solving for the Xi using the iterative scheme xjnew = F(Xi) (Eq. 
3, 1969) . This is also a well-known technique and is easy to 
implement, since it requires no additional derivatives. The 
problem is that it doesn't always converge, depending on the 
nature of the function F(x;). Thus, in solving the transcendental 
equation for Xi, the 1976 paper states that : 
(a) Newton's method (also well-known) is preferred. 
(b) Convergence should be achieved rather than relying on a 

single step adjustment. 
The 1976 paper also points out that the basic method may be 
implemented using other nonlinear least squares techniques 
instead of the Newton-Raphson. 

2. The error in the 'exact' parameter variance derivation in the 1969 
paper was first revealed to the author by J. R. Macdonald, 
however, it was in an unsigned referee's report. 

3. The 1976 paper was submitted in March 1974. 

only a single step adjustment for the Xi. Also, no conve 
tests are given for the Xi. 

5. In view	 of the fact that there are several ways to impleme, 
method, what I said (p. 71) was, 'It should be pointed 0:1 
with one difference Powell and Macdonald's method isequ ~ 
to the Newton-Raphson, numerical derivative application ~ 
method.' I don't think that is misleading. The point raised 
to be, which was the earlier method? 

6. The 1976 paper gives examples of convergence of norif 
models using the improved implementation (see item 1 i 
reply) of the 1969 method. The belabored point appears 
whether or not the modifications (a) and (b) above constif 
change in method. Perhaps the answer depends on the 
One looking for a package with which to fit his data mig 
that it is a change. A numerical.analyst, however, would cerf 
not solve a transcendental equation using Xi ll CW = F(Xi) w~, 
checking its convergence. If it failed, he would use Newtol 
another method and still be able to achieve convergence 
the 1969 paper. 
The numerical derivative approach (described on p. 70 In 

1976 paper) does not require evaluation of third order 
partial derivatives. 

7. Table 4 (p , 152, Powell and Macdonald, 1972) states' 
convergence was poor using exact analytical derivatives. A 
ently, they only used partial derivatives as exact deriva 
would have given different results. 

8. The analytical derivatives on that example are trivial. 
generally, the choice depends on the application . For a dedi' 
program to fit a specific function, the extra effort may Ix! 
worth it in terms of accuracy and computer running time. 
easy-to-use general purpose program, the numerical deriva~ 

would probably be preferred . Fortunately, the theory i 
understood so that either approach may be used. 

9. They indeed did say that (p. 148 and p. 149). This would bern. 
except that the model f = ai + a2X is not a trivial case and 
long history in the literature. Because of this, it was u 
illustrate the basic approach in the 1969 paper. 

10. I took the above IBM 370 double precision results and used ~ 

as input parameters in CURFIT on a Hewlett-Packard 9 
calculator. (CURFIT is a commercially available (Cyben 
Service Co., 3508 Fifth Avenue, Pittsburgh, Pennsylvania 1511 
USA) interactive curvefitting program that also handles 
with uncertainties in both X and y.) The 2S value on inpu 
0 '4503256739. After one iteration, the results were: 

al = 5·91482 
a2 = -0,603146 
a3 = -0,0803391 
a4 = 0·0263287 
a 5 = - 8'28747 X 10- 4 

a6 = - 1'67448 X 10- 4 

with 2S = 0 '4503256674. These results are in close agree 
with my example 3 (1976) and indicate a better least squ 
solution. 

Finally, with regard to comparisons and superiority of metb 
I now feel that for a general program, the Newton-Raphson o 
misation is not the best approach. 1 am satisfied that the appro: 
used by CURFIT is better. (CURFIT is basically a highly effidi, 
least squares optimisation algorithm that requires only first 
vatives, which are computed numerically. For problems witfi 
weights, CURFIT uses the same least squares algorithm for t 
parameters, but eliminates the Xi using the approach described i 
work.) Thus, a potential user is well advised to consider all availi 
methods. Or, if innovative, he may wish to consider other poss' 
implementations (i.e., damped least squares or variable metric1 

the approach outlined in my papers. 

To the Editor 
The Computer Journal 

Sir
 
I should like to raise three points concerning the paper
 
Macnaghten and Hoare entitled 'Fast Fourier transform free f~
 

tears' on page 78 of your February 1977 edition.
 
I.	 The DaDer_disr.II"~P~-",,,n,,-;"'~--_.: ·- --.----~-.... 


