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The steady-state and transient electrical properties of a material containing one or two
species of mobile charge carrier in contact with blocking electrodes are examined. The
systems treated are 2, 20, and 40 Debye lengths in extent and exemplify the transition
from thin-film or membranelike behavior to the more usual case in which well-defined
space-charge layers form at each electrode. The static capacitance of the
electrode/material/electrode system is examined and the response of the system to a
step-function applied potential difference is obtained by numerical simulation. The
simulation results show clearly the role of the system length and charge carrier
mobilities in determining the system response. The decay of total current following the
potential step is numerically fitted to a sum of exponential decays. The nonlinear
character of system response becomes apparent when the transient current associated
with the formation of space-charge layers in response to a potential step is compared
with that which accompanies the decay of the space-charge layers following the sudden
restoration of zero potential difference between the electrodes. The redistribution of
charge carriers and the electrostatic potential both in the steady state and at
representative times during the transient response are presented and discussed.

PACS numbers: 66.30.Dn, 66.10.Ed, 82.45.+z

I. INTRODUCTION

The characterization of material systems by electrical
response measurements requires the development of ab-
stract models for which the response can be determined
theoretically and which can serve as a basis for the reduction
of experimental data. For the case of electrode/material sys-
tems in which the electrode is metallic and the material is a
semiconductor or ionic conductor, the conventional model
is embodied in a set of coupled nonlinear differential equa-
tions and boundary conditions which must be solved to de-
termine the response to a given electrical perturbation. Ap-
proaches to the solution of these equations can be divided
into three broad categories: small-signal treatments, phys-
ically motivated approximation schemes, and numerical so-
lutions. A few brief comments conerning earlier work in
each of these areas will provide background and motivation
for the present work in which we apply numerical methods
to an important but little-studied class of simple systems.

Under small-signal conditions, the system is perturbed
only slightly from its equilibrium state, and the equations
governing response to the perturbation can be linearized.
Exact expressions have been obtained' for the response of
electrode/material/electrode systems to small-signal ac per-
turbations, provided that the system is flatband (i.e., lacks
intrinsic space-charge layers), contains no more than two
species of mobile charge, and has bulk generation/recom-
bination and electrode adsorption/reaction processes which
meet well-defined but fairly general criteria.>* To go beyond

“Work supported by U.S. National Science Foundation (Grant NO. 76-
84187).

291 J. Appl. Phys. 50(1), January 1979

0021-8979/79/010291-12801.10

the level of present theory and to include the effects of intrin-
sic space-charge, or Frenkel,* layers and a possible dc bias on
small-signal ac response will require the application of nu-
merical methods. The present study is part of a general plan
which will include treatment of these more general small-
signal ac situation.

Semiconductor and electrochemical systems are fre-
quently amenable to treatment by approximation schemes in
which the material is partitioned into regions, each dominat-
ed by a single physical process. Further approximations are
permissible in the case of “supported” electrolyte solutions
which contain, in addition to the ions which react or are
adsorbed at the electrode, an excess of indifferent electrolyte
which acts to screen the bulk of the material from the applied
field. There are, however, important situations in which
most or all of these approximations are unjustified. For solid
ionic conductors, materials with Schottky or Frenkel de-
fects, or disordered-sublattice materials, for semiconduc-
tors, fused salts, and unsupported electrolyte solutions, the
approximations made in the supported case are unjustified.
For systems whose characteristic dimensions are on the or-
der of the Debye screening length (or other length character-
istic of the material), partitioning of the system is unsatisfac-
tory. In such cases, the only reliable approach is to attempt
accurate numerical solution of the full set of equations cho-
sen to model the system. The development of accurate solu-
tions would also appear desirable where feasible, even in
cases in which the use of an approximation scheme is war-
ranted, since new insights and possibly better approximation
techniques may be suggested by the accurate and more de-
tailed results.
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A considerable literature now exists concerning the ap-
plication of numerical methods to the steady-state and tran-
sient electrical response of semiconductor devices.” An-
other group of papers deal with the application of such
techniques to electrochemical systems.'""* In the semicon-
ductor literature, however, far greater attention has been
given to the behavior of internal heterojunctions than to pro-
cesses at the electrodes. The electrochemical literature has,
for the most part, dealt with “supported”electrolyte solu-
tions. In both the electrochemical and semiconductor cases,
more attention has been given to situations in which the cur-
rent through the system is controlled than those in which the
applied potential drop across the system is a known function
of time. Only a few papers have dealt with the transient be-
havior of unsupported materials in contact with blocking or
partially polarizable electrodes.'

Both the controlled-current and the controlled-voltage
cases are realized in modern experimental electrochemical
methods.' In chronopotentiometry, the potential drop
across the system resulting from an applied steady current is
monitored. In chronoamperometry, the current through the
system resulting from an applied potential difference is re-
corded, while in chronocoulometry, the charge transported
through the system is determined as a function of time. In
addition, a linear voltage sweep is often useful in the study of
complex electrode reactions.”” Although these methods have
been primarily applied to systems with supported electro-
lytes, it is reasonable to assume that they would also prove
useful in unsupported cases once a suitable theoretical basis
is provided for their interpretation. We believe that numeri-
cal simulation of system response can play a substantial role
in the establishment of that basis.

In the present work, we simulate, by numerical tech-
niques, the response of an effectively one-dimensional elec-
trode/material/electrode system to a near-step-function ap-
plied potential difference. It is assumed that the material
contains one or two species of mobile charge carrier which
are completely blocked at the electrode/material interfaces.
The methods employed work well for systems of up to 50
Debye lengths in extent and can doubtless be applied to
somewhat larger systems with additional effort. The range
considered here is sufficient to display the transition in be-
havior from the limit of very thin systems, in which the ap-
plied field is only weakly screened by the mobile charge, to
the more familar case in which the formation of space-
charge layers near the electrode reduces the field intensity in
the material interior several orders of magnitude from that
originally applied. The applied potentials considered range
from the small-signal limit into the nonlinear regime.

Although the final steady state of the system can be
achieved by allowing the simulation to continue for a suffi-
ciently long time, alternative treatments of the steady state
are also instructive, particularly if the relationships between
the position, charge density, electrostatic potential, and elec-
tric field can be expressed in closed form. One such treat-
ment was devised by Jaffe™ for the case of two mobile species
of equal charge in the absence of immobile background
charge. A second was given by Macdonald"*° for the case of
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a single mobile charge species with compensating back-
ground charge. Both treatments involve parameters which
must be determined to satisfy self-consistency criteria. Effi-
cient computer programs for this determination have also
been developed in the present work.

For clarity, this paper is divided into sections. In Sec. I,
the basic equations of the assumed model are presented and a
system of normalized units chosen. The steady-state prob-
lem is discussed in Sec. I1I. Computational aspects of the
time-dependent problem are discussed in Sec. 1V, and the
results of our numerical simulations are presented in Sec. V.
Section VI is a brief summary.

Il. GENERAL EQUATIONS

We consider a homogeneous slab of material, a single
crystal or homogeneous solution, of length /, extending be-
tween two identical plane-parallel electrodes. The material 1s
assumed to contain a single species of positive mobile charge
carrier and a single species of negative mobile charge carrier.
The concentrations of these species will be denoted p(x) and
n(x), respectively, and their charges taken to be z,¢ and

— z,e, where e is the proton charge. The flux densities of the
two charge species are assumed to be given by the Nernst-
Planck equations:

Ip
and
Jn = —,u,,nE—D,, on (2)
Jz

where i1, and 1, are the mobilities of the charges, D, and D,
are their diffusion coefficients, and E is the electric field. Eis
related to the electrostatic potential gradient in the usual
way, E=—(d¥/dx), and E and V obey the macroscopic
Poisson equation

OE _ &V _ 4me

ax ¢ €
where € is the dielectric constant of the material and p, is the
density of immobile background charge, if any is present.
The boundary conditions appropriate to blocking electrodes
are

(zp—z,n+po), 3

J(x=0)=J,(x=0)=0 Cy
and

J(x=1)y=J (x=1)=0. (5

The time evolution of the system is determined by the
equations of continuity

p__ Y ®)
at ax
and
on_ %, ™
At ax

In the present work, we do not allow for the generation and
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recombination of the charged species; such processes will be
considered in future work. The total current 7 is the sum of
Faradaic components and the displacement current,

€ &V
I=z el —z o], -5 97 8
2 I Bt ax ®

In a one-dimensional system, [/ is spatially constant.”

It is assumed throughout this work that the charge mo-
bilities and diffusion coefficients are field and concentration
independent and that the diffusion coefficients are related to
the mobilities through the familiar Einstein relations

D,=p kgb/z,e, D,=pkgb/z,e, ®)

where k5 is Boltzmann's constant and 6 is the absolute tem-
perature. These assumptions, together with the use of the
macroscopic electrostatic potential and field in Egs. (1)-(3),
are idealizations of the physical system which are frequently
made in modelling the electrical response of materials. The
reliability of the resulting model may vary from one material
and set of conditions to another.

For maximum generality and conciseness, a set of nor-
malized dimensionless quantities will be employed.? We will
require the charge and mobility ratios

T, =2,/2 W=t/ P (10
and the related ratios

ﬁeETrm(ne/pe)’ ”fi‘ﬂz(ne/pe)’ (l 1)
where p, and n, are the equilibrium concentrations of the
mobile charges. These permit the definition of the further
useful quantities

=(1+m)"", e=(1+m, ), (12)

s, =(1+m)~", 8,=(+m7""", (13)
and

A,=6,/6, A, =8,/c, (14)

The variables of the problem are normalized with re-
spect to the Debye length

L,=[ek 30/41re2(zf,ne+zfpe)] v (15)
the conductivity
o=e(zpp.+z,nu,), (16)
and the dielectric relaxation time
T=¢/4n0 17
as follows:
X=x/L,, (18)
T=t/7p, (19
J =2, L) (1 +7,m )/ okgh, 20
=z, L) (1+ 7 w7 Y okgh, 2))
I*=eL I/ok 0, (22)
V*¥=eV/k 6, 23)
E*=eEL ,/k0. (24)
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Further, the concentrations of the charged species have the
normalized forms

P=p/z,p., (25)

N=n/z,n,, (26)
and

v=po/ (Zan.+25p.)- @7

In terms of the normalized variables, the basic equa-
tions (1)—(3) and (6)—(8) take the forms

Jy=—2z,PV* —P, (28)

Jo=z NV* —N', (29)

y*'=5N—8,P—v, (30)

APp=—T, (1)

AN=—J,, (32)
and

I*=eJ,—€J,— V¥, (33)

where a dot over a quantity indicates partial differentiation
with respect to Tand a prime indicates partial differentiation
with respect to X.

It is convenient also to introduct the normalized half-
length of the system,

M=I/2L,, (34)

It will be assumed below that in normalized units the system
extends from X=—M to X=M.

For systems in which only one species in mobile, the
more natural unit of length is

Lp, =(ekgb/4me’zlc,)"", (35)

where z,, and c,, are the charge and concentration, respec-
tively, of the single mobile species. The corresponding nor-
malized half-length is

M,=1/2L,,. (36)

In the present work, however, the normalized half-length of
the material will be expressed in terms of M. , rather than M,
to facilitate comparisons with the two-mobile case.

The results presented here are obtained for z,=z,=1
and v=0. It is a simple matter to scale the solutions so that
they apply in the casez, =z,=z,>1. Let {P,N,V'*J ,,J I *}
denote the solutions for z,=1, given values of M, 7, and v,
and a given applied normalized potential difference ¥ (T').
It can then readily be shown that { P/z,, N/z,, V*/z,,J ,/z,,
J./z,,1*/2,} is the solution for the same values of M and Ty
and z,> 1 when the normalized background charge is v/z,
and the normalized applied potential difference is V./z,.

D.R. Franceschetti and J.R. Macdonald 293

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



Ill. STEADY STATE

The steady-state conditions are given by Eqgs. (28)—(30),
with J,=J, =0. Since no current flows, the steady state is
one of thermal equilibrium. An exact treatment of the steady
state was given by Jaffé'® for two mobile charge species
which undergo generation and recombination so that the
product PN remains equal to unity. Jaffé also indicated how
the case of zero generation/recombination (G/R) might be
treated but did not present the solution in detail. On extend-
ing the approach indicated by Jaffé, we obtain the following
results for two mobile charge species, blocking electrodes,
and zero G/R.

Let the potentials of the left-hand and right-hand elec-
trodes be 47, and — 1V, respectively. Further, let E, denote
the value of E*, and C, the common value of Pand N at the
center of the system in the steady state. The solution has two
forms, one for E;<2CY/? and one for Ep>2Cy/>.

In the low-field case, E,<2Cp’?, the potential and field
are given by

! (dn(XCé/Z’K)_(I_KZ)W Sn(XCé/z,x)) 37)
=In
dn(XCY? k) +(1 — k)" sn(XCy' k)

and
B [4C0(1 _KZ)] 172
cn(XCY)

E*

(38)

where sn, cn, and dn are Jacobian elliptic functions.”® The
charge concentrations are then given by the Boltzmann
relations

P=C, exp(—V*) (39)
and

N=Coexp(V*). (40)
The solutions contain two quantities, the concentration C,
and the modulus &, which must be chosen in the present case
of zero G/R so that the total number of particles of each
species is conserved and the electrostatic potential has the

correct value at the electrodes. The former condition may be
stated as

M M
f PdX= f NdxX=2M, (41)
—-M -M

and the latter condition can be simplified to

1/2
MGy sinh(—?—). (42)

sn(MC}/? k)
In the high-field case Ey>2C(/?, the potential and field
are given by

= 1n(L‘_’_'_§P_(§£Y2’K_)) (43)
1 —sn(3XQ.x)

(1—k)V2=

and
1
Er=g IMGXOO, (44)
cn(3XQ.x)
where
O=[4C/(1 — k)]~ (45)
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The concentrations are given as in Egs. (39) and (40), and as
in the previous case, C, and « are determined by the require-
ments that particles be conserved and that the potential at
the electrodes have the specified values.

An efficient numerical algorithm was written to evalu-
ate C, and «. First, estimates of these quantities are made.
Then, for the chosen value of C,, a value of « satisfying Eq.
(42), or the equivalent high-field condition, to specified ac-
curacy, is formed by Newton-Raphson iteration. Using C,
and the new value of «, the quantity

M
S=Cy ‘f Pdx (46)
—M
is evaluated and an average of C, and 2M/S is used as a new
estimate of C,. The procedure is then repeated until satisfac-
tory convergence of both C;, and « is attained. The Jacobian
elliptic functions are computed using the algorithms of Hof-
sommer and van de Riet,* and the numerical integration is
accomplished using a double-precision version of QUAD, a
robust procedure for numerical quadrature, written by

Blue? and contained in the PORT subroutine library.*

In an earlier paper, one of us (J.R.M.) examined the
Jaffé solution in some detail.”” The treatment presented in
that paper was stated, incorrectly, to apply when G/R did
not occur. The expressions obtained in that work are, how-
ever, applicable in Jaffé’s original case'® in which G/R pro-
cesses ensure that the product NP retains its equilibrium val-
ue of unity and do apply in the limit ¥, <M of the present
case for which NP= 1.

An exact treatment of the steady state for a single mo-
bile species, possibly subject to bimolecular G/R with the
fixed charge species, was given by Macdonald.”*° It is sum-
marized here for the case of zero G/R and the negative spe-
cies mobile. For a given value of V., one first determines

V.=V.~In{V./[1—exp(— Vall 47)
and sets the potential of the left-hand electrode as V,— V

and the potential of the right-hand electrode as — V. The
concentration of mobile carriers is then given by

N=exp(V*), (48)
and the electric field is given by
E*=[c,+exp(P*)—1—V*]'?, (49)
where ¢, is a constant chosen so that
=AY (50)
—v;, E*V™)

Once ¢, is determined, it is a simple matter to evaluate n, E*,
and

V,—Va dV*
= - M 51
X fV‘ E*(V*) G

for any value of V* between— ¥V and ¥, — V. A program
was written to evaluate c, by a Newton-Raphson method
applied to the difference between M and the corresponding
integral [Eq. (50)] evaluated using QUAD, as in the previous
case.
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FIG. 1. Static capacitance as a function of

—# applied potential drop for systems with two-
mobile charge carrier species.

M=5
M=10
L
—
25 @

The distributions of charge carrier concentration and
the electrostatic potential in the steady state will be consid-
ered in Sec. V, where they will be compared with dynamic
response results. Further steady-state quantities of interest
are the total static capacitance of the system, C,=¢/¥,, and
the differential capacitance C,=dgq/dV,, where q is the
charge on the positive electrode and ¥, is the (unnormalized)
applied potential difference. The static capacitance may be
written as

C,=2MEC,/V., (52)

where Ej is the value of the normalized field at the electrode
and C,==€/4ml is the geometric capacitance of the system.
The differential capacitance is given by
dE; dcC
=C+V,—.
av, dv,

Qa

C,=2MC, (53)

The static capacitance for the two-mobile case is shown
in Fig. 1 for M=1, 5, and 10. The capacitance at ¥, =0 is
given by?

Co=C,M ctnh(M), 54

and the static capacitance must approach C, as |} co.
Also shown in Fig. 1 is the limiting capac1tance for My V,
given by?

sinh(3V2)
v

a

C/Co= , (55)
which is the prediction of the Jaffé theory for the case in
which NP=1 is preserved by G/R. It was found that
beyound the maximum in C,, as C, approaches C,, the quan-
tity C;— C, appeared to vanish as (V)" The qualitative be-
havior of the differential capacitance can be inferred from
Fig. 1 and Eq. (53). C, also approaches C,as V., becomes
large, and the quantity C,— C, was found to vanish more
rapidly than (V)™
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The static capacitance for the one-mobile case is shown
in Fig. 2 for M=1, 5, and 10. The capacitance at ¥, =0 is
given by*

Co=C,M, ctnh(My)=C(M/V 2) ctnh(M/V 2). (56)

In the one-mobile case, also, it was found that as C, and C,
approached the limiting value C, the difference C,— C, van-
ished as 1/V and the difference C,— C, vanished more rap-
idly. Before this limiting behavior is attained, however, the
one-mobile and two-mobile cases are qualitatively different.
In the two-mobile case, C, increases to a maximum, while in
the one-mobile case, C, decreases monotonically. It is rea-
sonable that such a difference in behavior be observed since a
single mobile species is less able to screen the electric field
than are two-mobile species of opposite signs.

IV. NUMERICAL SIMULATION TECHNIQUES
The time evolution of the electrode/material/electrode
system is governed by Egs. (28)-(32) together with the ap-

propriate boundary conditions on J;,J:, and V* at the elec-
trodes. On defining U, =P, U,=N, and U,;=V"*, and com-

Cs/Co

FIG. 2. Static capacitance as a function of applied potential drop for sys-
tems with one mobile charge carrier species.
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bining equations to eliminate J, and J,, we obtain three
partial differential equations of the general form

A.g=f.()( Ug]—’a—ZU—’) (57)
tor T\ ox axe
and six boundary conditions of the form
[b-(T, U.,H—U’)] =0. (58)
‘ / 1524 X=4M

It is assumed that at 77=0 the system is in equilibrium with
P=N=1 and V*=0 throughout.

The approach most commonly chosen in previous work
on related problems is the finite-difference method®? in
which the continuous variables X and T are replaced by a
lattice of points (X,,7,) at which the values of the approxi-
mate solution U7, are calculated. In most such work, the
general equation (57) is approximated by

urti_uyr
A"( Tror1—To )
=fX,BUM+(1-BYUT,
BT +(1-B)4. D)y,
B@:U)T 1 + (1 — BYA,U)D), (59)

where (4,U));" and (4,U));7 are finite-difference approxima-
tions to the first and second spatial derivatives of U; at the
lattice point (X,,T",) and B is a number satisfying 0<f<1.
An analogous approximation is made for the boundary con-
ditions (58). If the spatial coordinates are chosen to occur at
uniform intervals (uniform spatial mesh) with

X, . —X,=AX, one may set

@.U)r=WU5, —U;_)24X)! (60)
and
@:UYr=(U, — 205+ Up_ NAX )™ (61)

The differential equations (57) and boundary conditions (58)
are thereby reduced to a set of simultaneous algebraic equa-
tions which are readily solved for each successive time inter-
val of the lattice.

The discretization error inherent in the finite-difference
method may be estimated in a number of ways. A very gener-
al analysis? based on a Taylor-series expansion of the U,
about the lattice points shows that for a uniform spatial mesh
the error in the step from T'=T,,to T=T,, ., is the sum of a
term proportional to A7 and a term proportional to (4X ).
Since the quantities P, N, and ¥ * will in general vary quite
rapidly near the electrodes, application of the procedure de-
scribed above, with a uniform spatial mesh, would require an
enormous number of spatial intervals (> 100 in many of the
cases considered). The basic procedure can, however, be
modified to permit the use of a far smaller number of spatial
mesh points while retaining an acceptible level of overall
accuracy. A logical modification would be to use more accu-
rate finite-difference analogues of the spatial derivatives.
This procedure, unfortunately, leads to more complex alge-
braic equations. An alternative modification which can be
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most effective is the use of a nonuniform spatial mesh with
appropriate finite-difference analogues for the spatial de-
rivatives. In the case of a nonuniform spatial mesh, the Tay-
lor-series error estimate depends on the lengths of the mesh
intervals through a term of the form?®-

> enXu i1 —Xo)- (62)

n

The constants ¢, depend on the spatial derivatives of the
solutions being approximated and will be smallest when the
solution varies only slightly for X, < X <X, _ ,. A systematic
procedure for optimizing a nonuniform spatial mesh has
been given by McAfee.”*! Although implementation of
McAfee’s procedure in the case of several coupled equations
initself would require considerable computation, the reason-
ing underlying his analysis, which has been indicated above,
allows one to select an acceptable nonuniform mesh if the
qualitative characteristics of the solution are known. Pre-
vious work on related problems using nonuniform spatial
meshes includes that of DeMari’ and Brumleve and Buck.”

The parameter S in Eq. (59) isimportant in determining
the stability and accuracy of finite-differences schemes.*
With =0, the procedure is termed explicit, since Ul ™' de-
pends only on the solution at =T, and not (implicitly) on
other components of the solutionat T=1,, . Although the
finite-difference equations are easiest to solve in the explicit
case, stability considerations serverely limit the maximum
size of time interval usable in the procedure. In contrast, the
fully implicit method, with 8=1, is unconditionally stable,
allowing greater freedom in the selection of time and spatial
intervals. The Crank-Nicolson method,? with £=0.5, of-
fers, in principle, smaller discretization errors than the fully
explicit or implicit methods.

Finite-element methods?-* offer an alternative to finite-
difference methods. In the finite-element approach, the solu-
tion is found as a linear combination of localized functions
with coefficients determined by minimization of one or more
integrals which arise either from a variational® formulation
of the probiem or an error estimation procedure. The finite-
element solution is defined with respect to a lattice of space-
time points, as in the finite-difference case, and in simpler
cases is taken to be linear between the mesh points.

Our computer simulations of system response were ex-
ecuted with the aid of POST, a package of FORTRAN sub-
routines written by Schryer* for the solution of partial and
ordinary differential equations in space and time. In the
POST procedure, the time derivatives appearing in the equa-
tions are replaced by finite-difference expressions as in Eq.
(57), but the spatial derivatives are retained. The resulting
set of ordinary differential equations in space relate the solu-
tion at T=T,,, , to that found at T=T,,. These equations
are solved by an iterative procedure in which the equations
are linearized and the resulting linear equations are solved
by Galerkin’s method applied to a basis of B splines, a so-
phisticated procedure related to the finite-element method.

In order to use Galerkin’s method and the POST pro-
gram, the PDE’s must first be placed in divergence form.
Equations (28)—(32) thus become
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f?_P:_a_(a_P Péﬁ) (63)
Par ax\ax X
"aN a(aN NaV*) (64)
ar 3x\ox %), ¢
and
aV*)
P _9 65
w-op- 2% 2

all of which are of the form

( f’ar) axf ( f’ax) (66)

After discretization in time, Eq. (66) becomes

gri_gm
afpuprra-pupt——")

m-+1 m

=£—,ﬁ(BU}-"“+(1—ﬁ)U}”,

a
B (67)

Um+1 (1 B)aUm)
ax B

where U" is the approximate solution at 7=T,,. We have
found a fully implicit procedure, with 3= 1, to be quite satis-
factory. The equations of the form of Eq. (67) are then solved
subject to the appropriate boundary conditions using an iter-
ative procedure* in which linearized equations are formed
and solved by Galerkin’s method.*** The basis set of B
splines in which U, . , is ultimately expressed is specified by
a spatial mesh of N, points, X, <X, <... <Xy, and an inte-
ger k, the order of the B spline. (In the formal theory of B
splines,***¢ the endpoints of the mesh are considered to be k-
fold degenerate.) There are (¥, + 2k —2) basis functions
which are polynomials of degree < & on each mesh interval
(X,.X, 1) and are continuous up to the (k —2) derivative at
the interior mesh points.”** We found k=4 to be adequate
for our work.

The flexibility of the set of B-spline basis functions of
order 4 permits the use of a far smaller number of spatial
mesh points than would be required in a finite-difference
calculation. We found it convenient and economical to use a
symmetrical mesh in which the first spatial interval,
AX,=X,—X,, was quite small and each subsequent interval
was exp(A) times the length of the preceding interval, up to
the center of the system. The optimum values of A and N,,
depend on M and V. Consideration of the conditioning of
the Galerkin method limits the magnitude of A which can be
used’’; however, A’s up to In2 are generally acceptible in
double-precision (~ 14 significant figure) calculations and
allow considerable flexibility in the choice of the spatial
mesh. The length of the nth and (¥, —n)th spatial intervals
is given by

_ M exp(nA—A Yexp(A)—1]
2{exp[N,—DA |1}

Representative values of N, and A are given in Table 1.

(68)
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TABLE I. Representative values of spatial mesh parameters ¥, and A [Eq.
(58)] and total CPU excution time for simulations of transient response

(m,,=1).

CPU time
M v, N, A (sec)
1 0.01 10 0. 75
1 5 19 0.35 283
10 0.01 19 0.30 164
10 5 27 0.45 455

The equations actually employed in our calculations
include, in addition to Egs. (53)-(55) and the blocking
boundary conditions

JP ar*
- 4+pPp— =0 69
[ ox 0X Ix=ym )
and
(éW BV*) o, 0)
). ¢ X Jx=4m

boundary conditions on V * and several ordinary differential
equations (ODE’s). The boundary conditions on V' * were
V*(M)=0and V*(—M)=V,(T), where

Vo,=2X10V.T, 0<T<5x10*

=V, 5x10°<T. (71

The computed response should differ very little after 7~ 10
from that for a pure step function. It was decided not to use a
pure step function (for which the total current is singular at
T=0) so that the total current could be determined simulta-
neously with the solution of the PDE’s.

The POST program provides a capability for solving,
simultaneously with the PDE’s, a set of ODE’s or algebraic
equations in time which are coupled to the PDE’s at fixed
points in space. Using this feature, we were able to determine
the total current

av* P oV *
1*:—6 J— —_—— R
P N ax
N v+
oA 72
X  axoT (72)

for all times at arbitrary points in the system. The degree of
constancy of the total current throughout the system provides
animportant check on the accuracy of the calculation. A sec-
ond equation

«_ 49
== (73)

was included at one of the points to permit direct determina-
tion of the net (normalized) charge Q on the electrodes as the
system evolves.
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The coupling of ODE’s to the PDE’s of the system also
makes it possible, in principle, to consider driving potentials
applied to a circuit in which the electrode/material/elec-
trode system is placed in series or parallel with other ele-
ments whose /-V characteristics are known. This feature
may prove useful in treating systems with M> ¥V, in which
the central or bulk region behaves approximately as a paral-
lel RC section in series with the electrode regions. In such a
case, we consider a smaller system with M of the order of 2 V;
in series with the RC section. We suppose the section to be
connected at the left-hand electrode and let V- denote the
potential drop across the RC elements. Then the former con-
dition on *(— M) is replaced by

V(—M)=V (T)—Vrc (74)
and the ODE
1Vl D) Ve VeI Vi 7%)
R dT

is added to the set of equations.

The POST program provides for automatic selection of
time step size, consistent with error limits set by the user.
The limits apply to the error in the B-spline representation of
the solution with respect to the optimum B-spline represen-
tation for the assumed spatial mesh. Thus, the adequacy of
the spatial mesh and B-spline order chosen must be verified
by the user. Fortunately, numerous criteria exist to deter-
mine whether the error limits and B-spline basis chosen for a
particular simulation are in fact adequate. Aside from the
obvious procedure of repeating the simulation with smaller
error limits and a finer spatial mesh, one may verify that the
total current remains spatially constant throughout the sim-
ulation and that the resulting steady state agrees with the
results of the exact treatment discussed in Sec. III. Further,
for the special case in which the mobility ratio ,, is unity,
the symmetry of the system guarantees that P (X )=N(—X)
and V*(X )=V, — V*(— X ).Finally, one may, and should,
verify that the total quantity of each species of charge re-
mains constant throughout the simulation.

The error limits chosen were 3 X 107 for the relative
error and 107 for the absolute error. The POST program is

FIG. 3. Current-time curves for transient response of systems with a mobil-
ity ratio 7, of unity.
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designed so that the maximum error in P, ¥, and F* at each
step would then be 3 X 10° times the maximum absolute val-
ue of the quantity, plus the absolute error, and the maximum
error in I* and @ at each step would be 3 X 107 times the
absolute value of the quantity, plus the absolute error. We
have found, however, that with an adequate spatial mesh the
solution is far more accurate, when tested as described
above, than these limits would indicate. We estimate that the
results given in Sec. V, which required 50 or more time steps
in some cases, are accurate to within about 1% throughout.

No discussion of numerical simulation is complete
without some discussion of the computer time required.
Some representative times for an IBM 370/155 computer
are included in Table 1. Despite the high efficiency of the
POST program, computational expense limited the total
number of simulations which we could perform at the de-
sired level of accuracy.

V. TRANSIENT RESPONSE

Simulations were executed for systems of lengths M =1
and 10, for applied potentials ranging from ¥ =0.01 to 10,
and for three values of the mobility ratio 7,,=1, 5, and oo.
Two additional simulations with M =20 are discussed be-
low. The time dependence of the total current is shown in
Figs. 3-5. In these plots, 7 * is expressed in units of
1 ,=V"/2M, the current which flows immediately after the
potential is applied. The time after application of the poten-
tial step is expressed in units of M, which permits plotting the
response for different M’s in the same figure.

Figure 3 displays the current-vs-time behavior for sys-
tems in which 7, =1. For M =1, it is seen that the decrease
of the current occurs most rapidly for ¥, = 10 and least rap-
idly for ¥, =0.01. In contrast, for M = 10, the most rapid
current decrease occurs for the smallest applied potential.
This behavior is consistent with, and required by, the results
obtained in the steady-state treatment of Sec. I1I. As Fig. 1
shows, for M =1, the capacitance of the system decreases as
V" increases (except for ¥, <1). Thus, a proportionately
smaller charge must build up on the electrodes for ¥, =5
than for ¥, =0.01 and smaller for ¥, =10 than for V,=5. In

Tk
A

05 to 15 20

/M

FIG. 4. Current-time curves for transient responses of systems with a mobil-
ity ratio 7, of infinity (only negative carriers mobile).
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FIG. 5. Current-time curves for transient response of systems with a mobil-
ity ratio 7, =5.

the M = 10 case, the capacitance increases as V, increases
until ¥, ~ 11 is reached. Thus, in this case, a proportionately
larger charge must flow onto the electrodes for ¥, =5 than
for ¥, =0.01 and larger for ¥, =10 than for V,=S5.

In Fig. 4, the current-vs-time behavior is given for sys-

tems in which 7, = «0 so that only negative charge carriers
are mobile. In this case, for both M =1 and 10, the decrease

in current occurs increasingly rapidly with increasing V.

This behavior is also consistent with the results obtained for
the steady-state one-mobile case since, as Fig. 2 shows, the
capacitance of the system decreases monotonically with in-
creasing V.

The 7,,=5 case shown in Fig. 5 is intermediate between
the 7,,=1 and 7,,= « cases and can be understood qualita-
tively in terms of the other two cases. Since the more mobile
charge species will respond to a suddenly applied electric
field more rapidly than the less mobile species, the system
response occurs in two stages. In the first stage, its behavior
resembles that of a one-mobile system. In the second, the less
mobile charges complete their response to the now screened
electric field, while the more mobile charges readjust from
their one-mobile quasi-steady-state distribution to the two-
mobile steady-state distribution. A clear break in slope is
visible in the M=1 curves, while the ;=5 and =0.01
curves actually cross in the M = 10 case, showing a transition
from one-mobile to two-mobile behavior.

The current-vs-time curves were fitted to a sum of expo-
nential decays

N,
I*/I,= S ciexp(—a,T/M), (76)

i=1

using the program of Provencher*** which employs a Four-

TABLE II. Coefficients, exponents, and standard deviation of exponential fits [Eq. (66)] to current-time curves (Figs. 3-5).

System
M,7,) v, o a, ¢ a, e a, s a, o
(1,1 0.01 0.8311 2.722 0.1119 34.60 0.0373 433.8 2.3x10°
1. 0.8323 2.726 0.1174 . 3811 0.0389 575.1 1.8x107
2. 0.8408 2.840 0.1058 39.03 0.0413 467.7 L.1x10°
3. 0.8572 3.048 0.0970 51.25 0.0350 636.7 1.2x10°
S. 0.8875 3.588 0.0811 94.26 0.0267 1405. 3.1x10?
10. 0.9402 5.396 0.0532 546.0 1.5 107
(10,1) 0.01 0.9552 1.067 0.0301 37.23 0.0121 762.4 L6x10*
1. 0.9466 1.049 0.0176 10.23 0.0245 68.86 0.0098 127 5.5x10*
3. 0.3679 0.6945 0.5889 1.347 0.0302 49.20 0.0116 1001 5.9x10*
5. 0.2874 0.4690 0.6726 1412 0.0029 63.64 0.0104 1298 6.0x 10
10. 0.2567 0.2463 0.7077 1.550 0.0026 90.60 0.0086 1883 6.5x10*
(20,1) 0.01 0.9617 0.9620 0.0318 10.93 - 2.7x10°
5 0.2698 0.4048 0.7097 1.317 0.0184 163.8 - 1.2x107
(1,5) 0.01 0.1340 0.8915 0.7080 4.430 0.1101 58.31 0.0387 940.3 1.8x10°
1. 0.1335 0.8977 0.7111 4.495 0.1071 59.17 0.0415 859.6 1.4Xx 107
3. 0.1327 0.9745 0.7347 5.036 0.0912 82.36 0.0353 1124, 5.2x10*
5. 0.1233 1.098 0.7704 5.845 0.0751 139.6 0.0264 1864. 1.9x 107
10. 0.0987 1.577 0.8376 8.241 0.0562 613.6 . 5.3x10?
(10,5) 0.01 0.0460 0.2446 0.8986 1.261 0.0490 56.06 - 29X 107
1. 0.5820 09112 0.3650 1.823 0.0364 42.52 0.0145 781.7 7.6X 10
5. 0.0738 0.05914 0.8785 1.421 0.0343 62.92 0.0121 1292 6.3x 10
(l,) 0.01 0.8250 5.178 0.1234 69.96 0.0437 1276. 3.6x10°
1. 0.8275 5.267 0.1180 69.67 0.0445 908.5 2.7x107
5. 0.8925 7.233 00782 213.3 0.0263 3096 7.4x 107
10. 0.9405 10.99 0.0524  985.7 2.3x10
(10,0) 0.01 0.9360 1.534 0.0413 35.54 0.0200 614.8 . 2.6x10°
1. 0.9350 1.552 0.0385 32.88 0.0184 288.1 0.0071 4552 7.5x10*
5. 0.9620 1.807 0.0348 25.87 . . 1.4107?
10. 0.9894 2313 . 1.8x107?
Discharging:
(1,0) S. —0.6138 5.301 —0.2523 74.83 —0.1061 915.9 33x10°
(10, ) 5. —0.8115 1.595 —0.0921 10.94 —0.0656 128.9 —0.0241 2769 2.8x10°
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ier-transform technique and determines, by statistical tests,
the most probable value of N,. The coefficients, exponents,
and standard deviation o of the fit are given in Table II.
Although the system response is not strictly a sum of expon-
entials, the exponential fit provides a convenient means of
summarizing the results. In most cased, a fit with o < 5 x 1073
was achieved with three or four exponentials, and compari-
sons of the fits for different V. reveals clearly perceptible
trends in the coefficients and exponents.

Two simulations were done for M =20 and are included
in Table II. As can be seen from Table 11, the coefficients and
exponents [Eq. (76)] determined for the current-time curves
are quite similar to those in the corresponding M = 10 simu-
lations. The current-time curves for M =20 would have
overlapped those for M =10 had they been included in Fig.
3. Since, in these M =20 simulations, the concentration of
the charge carriers in the central 20 Debye lengths of the
system (/=40L ;) was only slightly perturbed by the applied
potential difference, it seemed that the system could alterna-
tively be modeled as an M = 10 system in series with a paral-
lel RC section whose resistance and capacitance equalled
those of the central 20 Debye lengths of the M =20 system. A
simulation was completed for this circuit with ¥, =5, using
the approach described in Sec. IV [see Eq. (75)]. The result-
ing current-time curves agreed to well within 1% with those
obtained in the standard simulation, suggesting that such an
approach may be useful in treating even larger systems.

The response of a system with blocking electrodes to an
applied step-function potential difference has not been treat-
ed extensively in the past. The problem has been approached
by Jaffé'** using approximate analytic methods and by
Kahn and Maycock'® using numerical techniques. Jaffé
made the assumption that the electric field remains uniform
throughout the material and predicted that at early times the
decay of the total current would be exponential with a decay
constant (@/M ) proportional to (¥ )*M . The constant
field approximation is reasonable for thin systems, M <1, but
wholly inappropriate in the more usual M> 1 case. Our re-
sults for M = 1 show a marked increase in the principal de-
cay constant (the ¢, in Table II which corresponds to the
largest c,) over the range 0.01<V <10 but not a (¥ )
dependence.

Tm= 0

Vo5

™1y
Ol discharging

chorging

charging dischorging

L L
05 10 15 2.0
T/M

FIG. 6. Current-time curves for charging and discharging of systems with a
mobility ratio 77, = co.
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The work of Kahn and Maycock!® differs from ours in
that much larger systems are treated and an explicit finite-
difference method with a uniform spatial mesh (N, ~ 800) is
used. Kahn and Maycock were somewhat limited by their
choice of method and size of the system, and most of their
published results are reported for <M and V' <2. The
method employed in the present work is, in principle, more
powerful than that used by these authors but has not yet been
extensively applied to systems of comparable size. From an
approximate exponential analysis of their current-time
curves, Kahn and Maycock concluded that the dominant
exponential decay constant was independent of ¥, and pro-
portional to M . We find that the principal decay constant
varies somewhat with V:, for M=10and 20, but not as much
asin the M =1 case. The exponents a, [Eq. (76)] in our nota-
tion are M times larger than the decay constants of Kahn and
Maycock. Thus, the similarity in the entries in Table II for
M =20 and the corresponding M =10 cases is in accord with
the observation of those authors for larger systems.

It is instructive also to consider briefly the exact solu-
tion of the small-signal case. Although the exact small-signal
impedance is known for the model considered here,' it has a
rather complicated form. In the low-frequency limit, howev-
er, there is a simple equivalent circuit for the completely
blocking system'?**' which is characterized by a single RC
time constant. It follows that at long times, 7'> M, the sys-
tem response to a small step-function perturbation (¥, <1)
should be governed by this time constant. We find good
agreement between the small-signal result (e.g., the small
signal @ =2.68 for M=1, 7,,=1) and ¢, in Table II for
7,,=1and cowith ¥,=0.01, but poor agreement in the
7, =5 case, perhaps reflecting the somewhat arbitrary na-
ture of a multiexponential representation for a decay which
is not a true sum of exponentials.

An important consequence of the nonlinearity of Eqs.
(63)-(65) is that the current-vs-time behavior which follows
the application of a step-function potential difference to the
originally flatband system is not duplicated when the poten-
tial difference between the electrodes is abruptly reduced to
zero (i.e., an external short is applied). In Fig. 6, we compare,
for the one-mobile 7,,= « case, the current-vs-time behav-
jor following the application of a near step function V,=5

ok
ok

FIG. 7. Stages in the transient response of an M=1, 7, =1 system to step
function ¥, =1. (a) T=0.061, (b) T=0.32, (¢) T=cc. 4}* defined in Eq.
an.
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FIG. 8. Stages in the transient response of an M=1, 7, =1 system to step
function V,=5. (a) T=0.068, (b) 7=0.33,(c) T=c0.

(charging) with that following the removal of the applied
potential difference in the same near-step-function manner
(discharging). It is reasonable that the discharging current is
greater in magnitude than the charging current for TR M,
since the concentration of the mobile species in the largest
part of the system is increasing with time in the discharging
case but decreasing in the charging situation. The charging
and discharging curves must cross if the total quantity of
charge transported in each case is to be the same. The dis-
charging curves were also fitted to a sum of exponential de-
cays [Eq. (76)], and the resulting coefficients and exponents
have been included in Table II.

Figures 7-13 show the development in time of the
space-charge layers and the potential distribution in the sys-
tem. For the M =1 systems, the potential is shown as

AVE=V*—V;, 7

where V;,,=— V. X/2M is the linear potential which falls
across the system before any movement of the charges oc-
curs. Figure 7 shows N, P, and A V* at three stages in the
evolution of an M=1, 7,, =1 system with V= 1. Figure 8
shows the same quantities at nearly the same times for M =1,
7,,=1,and V,=5. Perhaps the most striking difference be-
tween these two cases is the far greater depletion of charge
carriers in the center of the system for ¥, =5. This depletion
becomes even more pronounced as ¥, is increased. Figures
8-10 show the role of the mobility ratio in the response of an
M=1system to a ¥, =5 applied potiential step. In the

-0
100

o AVY

PN 10F~

[e}]

-0l

[ |

XOL
7l

FIG. 9.Stages in the transient response of an M=1, 7, =5 system to step
function V,=5. (a) T=0.092, (b) T=0.41, (c) T= .
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FIG. 10. Stages in the transient response of an M =1, 7, = o system to step
function V,,=S5. (a) T=0.057, (b) T=0.23, (c) T= .

m,, =1 case, there is symmetry about the center of the sys-
tem, with N(X)=P(—X)and V(X )= -V (—X). In the
w,,= 5 case (Fig. 9), one finds that the more mobile negative
carriers assume a near-steady-state distribution well in ad-
vance of the slower positive carriers. The charge and poten-
tial distributions are asymmetric in this case until the final
mobility-independent symmetric equilibrium state is estab-
lished. Figure 10 displays the response of a strictly one-mo-
bile system, 7,,= o0, for which the final state is asymmetric.
It should be noted that in all the M =1 cases (as in thin films
and membranes) the deviation of the final state potential
distribution from linearity is only a few percent of V.. Fur-
ther, in the one-mobile case, the greater part of the potential
drop falls across the part of the system which has been de-
pleted of mobile carriers (V < 1).

Figure 11-13 show stages in the response of three
M =10 systems with different mobility ratiosto a ¥, =5
step-function applied potential difference. For clarity, only
the two Debye lengths nearest each electrode are shown. As
in the M= 1 cases discussed above, the response of the 7, =1
system (Fig. 10) is characteristically symmetrical, while only
the equilibrium state is symmetrical for 7,,=5. Also, in the
7,,= o case, the major portion of the potential drop falls
across the depletion region, as was the case for M=1. The
response of M =10 systems for I*=1 and 10 (not shown)
shows considerable qualitative similarity to that for I*=5.

T T T W
o 425
10.0 & M:10
N P / P
C./ ° Ve 5
¢
7
e
b s } <
2 e 8]
PN 1O — s —E e S — o v*
Ls ™ _— 5
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A o ¢
£ > e
3] L/
° -25
L J L .
[[¢] 8 8 0 -0 8 8 10

FIG. 11. Stages in the transient response of an M= 10, 7, system to step
function ¥, =S5. Only the two Debye lengths nearest each electrode are
shown. (0) T=0, (a) T=1.2,(b) T=6.3,(c) T=co.
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FIG. 12. Stages in the transient response of an M= 10, 7, = 5 system to step
function ¥, =5.(0) T=0, (a) T=1.6, (b) T=6.9, (¢) T= 0.

For the final equilibrium state, the quantity V*/V is, to a
fair approximation, independent of ¥, for ¥,<10. (For

V. > 10, the equilibrium ¥*/V, does show a dependence on
V., reflecting depletion of charge carriers from the center of
the system.) The time dependence of the system response
does, however, vary considerably over the range 1<¥,<10
(recall Figs. 3-5). Although the P-, N-, and V*-vs-X curves
have the same qualitative time dependence throughout this
range, the time required for a given fraction of the space-
charge layer to accumulate at the electrodes increases sever-
al fold from ¥, =1 to 10.

VIi. SUMMARY

The steady-state and transient response of a material
containing one or two species of mobile charge carriers
which are completely blocked at the electrodes have been
investigated. The steady-state charge and potential distribu-
tions for illustrative cases have been included in Figs. 8-13,
and the static capacitance of a number of systems was shown
in Figs. 1 and 2 as a function of the applied potential drop.

The transient response of systems to a near-step-func-
tion applied potential difference was simulated with the aid
of POST, a sophisticated package of FORTRAN subrou-
tines for the solution of coupled partial and ordinary differ-
ential equations. The simulation results show clearly the role
of system length and the charge carrier mobility ratios in
determining system response. We intend, in future work, to
allow for extrinsic conduction, charge carrier reactions at
the electrode and in the bulk of the material, intrinsic space-
charge layers, and elementary discreteness of charge and
compact layer effects, as has already been done in the exact
treatment of the small-signal case. Although computational
expense remains a limiting factor in work of this sort, we
believe that existing numerical techniques can provide a use-
ful approach to the study of systems of a realistic degree of
complexity and will aid greatly in the interpretation of large-
signal electrical response.
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