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ABSTRACT

Several of the ways in which diffusion of an electroactive species may affect the small-
signal response of an electrochemical system are examined, with particular attention to cases
m which the electrode reaction produces or consumes a neutral species whose concentration
at the electrode surface is determined by diffusion through the electrode. The conventional
(time domain) rate and diffusion equations may be expressed in the frequency domain
through the use of complex, frequency-dependent rate constants, whose form reflects the
sequence of events in the overall reaction, including possible adsorption steps, and leads
directly to equivalent-circuit representations of the pertinent parts of the system response.
The complex rate constant formalism also allows the immediate generalization of existing
exact treatments of unsupported systems to include such diffusion effects.

(I) INTRODUCTION

The diffusion of reactant or product species to or from the electrode/electro-
lyte interface is often the rate controlling step of an electrochemical reaction.
The effects of diffusion-controlled reaction on the small-signal impedance of
electrochemical systems have been studied by Warburg [1], Randles [2], Ershler
[3], and others. For the most part, the classic papers of these authors examined
the diffusion of an electroactive species in a supported electrolyte. The diffu-
sion of species through a metallic electrode may, however, also play an impor-
tant role in determining the rate of an electrode reaction, as is often the case in
polarography [4]. Recently, attention has been given to the diffusion of gaseous
species through solid electrodes, and along the electrode/electrolyte interface
[5—17], processes of technological importance in connection with fuel cells and
gas sensing devices [5]. A novel possibility also involving the diffusion of atoms
along the interface or through a solid electrode arises from the work of Lanyi
[8—11] who suggests that the ions of alkali halide crystals may, in some cases,
discharge at an interface with a non-parent metal electrode under small-signal
conditions. Further, from a mathematical standpoint, the behavior of ions in a
supported, or (within limits) an unsupported [12], electrolyte solution which
bathes a planar membrane can be treated as involving the diffusion of an effec-
tively uncharged species through an ‘“‘electrode’.

In many situations the effect of diffusion on the small-signal response of an
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electrochemical system is representable by the inclusion in an equivalent circuit
for the system of a Warburg impedance, often given in Warburg’s original form,
appropriate for diffusion in a semi-infinite space. A Warburg-like impedance,
appropriate for finite length, arises in exact treatments of the small-signal res-
ponse of unsupported binary electrolytes unless one of the charge species is
strictly immobile or both species have the same mobility and the identical reac-
tion rate at the electrodes [13,14]. The appearance of the Warburg-like impe-
dance in the general unsupported case can be attributed to the action of the
more mobile or more-reactive species in screening the applied electric field,
allowing diffusion to dominate the motion of the remaining species. The diffu-
sion of neutral species has thus far not been considered in treatments of unsup-
ported systems under small-signal conditions.

In the present work we focus on the diffusion of gas or metal species through
a metallic electrode or along the electrode/electrolyte interface. Our treatment
of diffusion through an electrode is also applicable in the case of a membrane
bathed in electrolyte solution as described above and, with an appropriate
choice of parameters, to the diffusion of charged and uncharged electroactive
species in a supported electrolyte (or of neutral species in an unsupported elec-
trolyte) in contact with a metal electrode. A unified treatment of these differ-
ent cases is afforded by the formalism of complex, frequency-dependent rate
constants [15—18], which amounts to a frequency-domain representation of
the reaction, adsorption, and diffusion processes characterized in the time do-
main by the usual real rate and diffusion constants. Although the results to be
presented for the unsupported case are original, our discussion of supported sys-
tems recapitulates the results of other workers. The latter discussion is, however,
included to demonstrate the applicability of the complex rate constant formal-
ism in the supported case and to provide a more unified treatment of diffusive
processes in general.

(II) DIFFUSION OF REACTANT THROUGH ELECTRODE

Consider a uniform planar electrode, one surface of which lies in the yz plane
at x = 0; the second surface lies at x = [,. The electrolyte (solid or liquid) extends
to the left of the electrode (x < 0), and it will be assumed that the outer Helm-
holtz plane lies at x = —d. We assume that positive ions of charge z,e and con-
centration p(x) react at the electrode to form a neutral adsorbed species whose
surface concentration is I', and that the adsorbed species may diffuse into the
electrode where its concentration is denoted as b(x). We let n denote the poten-
tial drop between the electrode and the outer Helmholtz plane. Let the net rate
of formation of the adsorbed species per unit area be given by

U1 (pR ’ P’ 7?) (1)
and the net rate at which the adsorbed species enters the electrode be
v2(T, by) (2)

where pg is the concentration of positive ions at the outer Helmholtz plane and
by, is the concentration of neutral species just inside the left edge of the elec-
trode.
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The equations governing the behavior of the reactant species at the electrode/
electrolyte interface may be written

Iy = z,evi(pr, ', M) (3)
dl/dt = v1(pg, I, 1) — va(T, by) (4)
and

Jor, = va(T, by) (5)

where I,y is the faradaic current of the positive carriers per unit area evaluated
at the outer Helmholtz plane and Jy,;, is the flux of neutral species into the elec-
trode.

Under small-signal a.c. conditions we may separate each quantity into a
steady-state part and a sinusoidal perturbation: pg = por + p1r €, =T +
I'; e'“!, etc. On making an appropriate Taylor series expansion of the reaction
rates about the steady-state values, we obtain

Ipig = zpe[k1tp1r — k11"t + (2,en1/ET)Y11P0R ] (6)
1wl'y = Ipir/zpe — kyl'y + kgpbyy, (7)
and

Joip = kgl — Rapbyy (8)

Each of the “rate constants’ appearing in eqns. (6)—(8) represents a partial
derivative. Thus

k1t= (dv1/0pr)o (9)
k3f§ (avz/ar)o (10)
and so on, where the subscript zero indicates that the derivative is evaluated for

steady-state conditions and the subscript f indicates the ‘“forward” direction of
the reaction. The overpotential-dependent term involves the quantity

Y1t = (RT/zpepor)(d 01 /00)0 (11)

which has the same dimensions as k.
We shall assume that within the electrode diffusion is governed by the Fick
equations, with the small-signal forms

Jp1 = —Dqe dby /dx (12)
and
iwby =Dy, d%b, /dx? (13)

Equation (8) provides one boundary condition for the diffusion equation. As a
second condition we take

Jo = Rieby (14)

atx = l,. For k¢ = 0, the exchange of neutral species with the ambient atmos-
phere or adjoining material is effectively blocked, while for k,.; = °° the
exchange is infinitely rapid.
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The diffusion equation (13) has the general solution

b1 = by exp(Q1x) + by exp(—Q1 x) (15)
where
Q1 = (1 +1)(w/2Dy.)"? =/iw/D1, (16)

Thus b, is the superposition of two damped oscillations. On imposing the boun-
dary conditions (8) and (14), one readily evaluates the constants b; and by; and
obtains an expression for b, in terms of I";. This expression can be inserted in
eqn. (7) to provide a relation between I'; and I,z . On substituting this expres-
sion for I'; in eqn. (6) and rearranging, we finally obtain

Inr = zpe[Ripir + (2pen1/RT) YiDor] (17)
where k] = fiky; and ¥] = f; 715, With

f1= {1 +ky/[iw+ ks /(1 + Fi ()]} (18)
and

Rz,  [(Riet/N/D1e) + Viw ctnh(ley/iw/Dye)] (19)
Vv ilee [(klef/\/ Dle) Ctnh(le V iw/Dle) + \/;6]

The rate constants have a continued fraction form which reflects their sequential
nature.

Equation (17) may be used as a boundary condition with the equations of
continuity and charge transport to determine an expression for the system
impedance. The form of eqn. (17) indicates that k] and ] will lead to admit-
tance contributions in the equivalent circuit [19]. Equation (18) then implies
that F, (w) has the character of an impedance. Indeed, if R is a constant
normalizing resistance, it may readily be shown that R F,(w) is the impedance
of a length [, of distributed transmission line [20] of characteristic impedance
Rcksy,/N/1wD4, with series resistance per unit length R, = Rk, /Dy and
shunt admittance per unit length iwCy, = iw/kg, R¢, terminated by an impe-
dance Rgksy /R1es- Note that Dy, = (RgexCen ) L. The [, » oo limit of F,(w) has
been discussed by Barker [21]. The quantity f, is determined by five indepen-
dent parameters: kqy, R3¢, Rap /N Dies Riet/N D1e and lo /n/ D1,

A number of limiting forms of F;(w) should be examined. When k¢ > 0
and l./v/ D, > 0, as for a very thin electrode or very rapid diffusion of the pro-
duct species, one has Fy(w) = kg, /R and

ki = (k1o + iwT1ak1e)/(1 +i0Ty,) (20)

where k1o = RaiR1p/[Ras + R1y/R1es)], Riew = Ryg, and 71, = (1 + kg, /Rer)/[Ras +
kip(1 + k3gy/R1es)]. Equation (20) has the precise form of the complex rate con-
stant derived earlier [16,18] for an adsorption/reaction sequence in which the
concentration of the final product is held constant. The complex rate constant,
k1, will be non-zero at w = 0 (and thus a direct current can flow) unless kq; ~> 0,
or kg - 0, for which k4, will vanish. When I,/o/D,, = <, as for a very thick
electrode and/or very slow diffusion, F,(w) takes on the standard Warburg

[1] form kg,/v/iwD,. In this case k] vanishes as w - 0 and no steady direct cur-
rent is possible. For kq.¢/v/D;. = 0, F,(w) takes on the form (kg,/v/1wD1e) X

Fi(w)=
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ctnh(l.viwD7,) and again a steady direct current 1s not allowed. If, further,
lo/x/D1e ~ 0 one has F(w) »> kg, /iwl, and k] takes on the form appropriate to
a two-stage adsorption-desorption sequence. For kj.¢/»/D;. =  (equivalent,
when D, > 0, to terminating the transmission line with a short), however,
F,(w) assumes the finite-length Warburg form (ks /+/iwD1,) X tanh(lev/iw/Dye)
and a steady direct current is possible [22].

(a) Fully supported electrolyte

In the presence of an excess of supporting electrolyte the motion of the elec-
troactive species 1s governed entirely by diffusion. It is then possible to treat
the quantity p, in a similar manner to that in which b, was treated so that a
relation between I;; and n, is found directly. Our consideration of supported
systems will be restricted here to a special case, that in which the positive
species of interest diffuses extremely rapidly, so that we may take p,g to be
zero. One then has for the admittance of the interface (assuming no other elec-
troactive species present) from eqn. (17)

Y = Iar/n = (25€*por [RT) 71 (21)

which is a generalization of the familiar charge-transfer conductance of sup-
ported electrolyte theory. This admittance is represented by the equivalent
circuit of Fig. 1, in which Ry has the form of a charge transfer resistance, C, is
an adsorption capacitance, R , the associated adsorption resistance, and Zp, a
diffusion impedance.

It is appropriate to comment on the relationship of the admittance given by
eqn. (21) to the results obtained in earlier work by other authors. Although it
has been assumed here that the product species diffuses through the electrode,
the same mathematical formulation applies to a product species which diffuses
into the electrolyte provided that an appropriate value is assigned to [.. In the
limit as [, //D1e = °, our result becomes a special case of the admittance
derived by Armstrong and Henderson [23] for a system in which both reactant
and product species diffuse through an essentially infinite electrolyte. By taking
the limit kqy, > o0, kg —> o, with (kqy,/kg) finite, in essence assigning a vanishingly
small lifetime to the adsorbed intermediate, one obtains the results appropriate
to a one-step electrode reaction without intermediate species. Then eqn. (18)
becomes

fi > {1+ (Rap/kge)(1 + Fr(w)]™ (22)

An important subcase is that in which no intermediate is formed and the elec-

| |
I[CA

Rr

; ZD L

Ra

Fig. 1. Equivalent circuit representing the interfacial impedance in the fully supported case
of Section II(a). RR = kT/(z§e2pOR'71f), CA = 1/(RRk1b ), RA = RRklb/k3f7 and ZD =
Ry kyp F1(w)/k 3.
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trode reaction occurs with infinite speed. This situation may be realized by
taking kg, > oo, Y1¢ = o with kg /¢ finite. The resulting impedance is

Z = (kT/z3€e®por (k1 F1(wW)/k3sv1¢) (23)
On further specializing to the case in which kq.;/D1¢ = =, one finds
Z = (kT/z}e® por) (k1o kan ke 716V iwD1, ) tanh(lev/iwDse) (24)

which has the finite-length Warburg form obtained by Drossbach and Schultz
[24] and Sluyters [25] for systems in which diffusion occurs over a small dis-
tance.

(b) Unsupported binary electrolyte

A systematic procedure has been given by the authors [18] for the deter-
mination of the small-signal impedance of an unsupported binary electrolyte
with compact layers of finite extent subject to electrode kinetics which can be
expressed in terms of complex, frequency-dependent boundary parameters. We
consider first the case in which the thickness of the compact layers can be
neglected so that one may take n, and <, as zero. In this case, eqn. (17) takes
on the form of a complex Chang-Jaffé boundary condition. An exact expres-
sion has been given [26] for the impedance of a binary electrolyte with genera-
tion/recombination and possible immobile background charge subject to com-
plex Chang-Jaffé boundary conditions. The impedance (and corresponding
admittance) depend on the electrode reaction kinetics only through the nor-
malized boundary value parameters p; = (k;1/2D,) and p, = (k31/2D,) (for
negative charges), where [ is length of material between the electrode and D, is
the diffusion coefficient of the charged species. By employing rate constants k&
and k5 of the form obtained in the present work, one immediately generalizes
the earlier results to include possible diffusion of the product species of the
assumed reaction/adsorption sequence.

An important feature of the unsupported cases treated in earlier work [13,
14,18] is that the response of the system can often be represented by an equiv-
alent circuit of frequency-independent elements and sometimes a Warburg
impedance. Prior to a survey of representative instances it is difficult to
prescribe a form of equivalent circuit which is appropriate for the general situa-
tion in which diffusive behavior of the electrode reaction product occurs
together with Warburg-like response due to unequal charge carrier mobilities or
electrode reaction rates. For simpler cases, e.g. the case of a single mobile charge
carrier species, the equivalent circuit of Fig. 2, in which the geometric capacit-
ance Cy and bulk resistance R_ have been added to the circuit of Fig. 1, should
suffice. For the rate laws assumed here, the resistances and capacitances appear-
ing in the circuit will always have positive values. Since an exact treatment of
the unsupported case is only possible in the case of a flat-band system one must
set por = Po here, where p, is the bulk equilibrium positive charge carrier den-
sity. A related result was found for the case in which no electrode diffusion
effects are present but finite-length Warburg effects arise from processes in the
electrolyte [18,22].

For the case in which the compact layer cannot be neglected, we have given
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Fig. 2. Equivalent circuit for simple unsupported case of Section II(b). Cg = geometric
capa01tance R = bulk resistance, Cr = (diffuse double layer capac1tance —Cy),Rp =
2kT/(zpe®pok1s); Ca= 1/(Rrk1p), Ra = Rykyy /kac, and Zp = Ry ki Fy(w)/kss.

an exact expression for the impedance of a system with a single species of mo-
bile charge [18,26] which may be extended to the case of a neutral product
diffusing through the electrode by setting p, > p, as above and by an appropri-
ate choice of the parameter v, = v, /k} = v,¢/k\s-

(IIT) DIFFUSION OF REACTANT ALONG ELECTRODE/ELECTROLYTE INTERFACE

One of the most important theoretical problems in electrochemistry at pres-
ent is the description of the interface between a solid electrode and a liquid or
solid electrolyte. Although treatment of electrodes with ruled surfaces and of
porous electrodes in contact with a supported electrolyte have been given [27,
28], little has been done in the corresponding case of unsupported electrolytes
in which the Debye length may be greater than the average distance between
imperfections on the electrode surface. The treatment of the previous Section
must be applied with caution in the case of a gas diffusing through metal elec-
trodes since, with the exception of hydrogen, such diffusion through the bulk
of a metal is notoriously slow, and even a small density of surface imperfections
would be sufficient to dominate motion of atoms within the electrode. If the
electrode is characterized by a reasonably uniform distribution of pores or
cracks roughly perpendicular to the interface, the treatment of the previous
Section may be applicable provided that D, and [, are interpreted as an effec-
tive diffusion constant and length for atomic motion along the internal surfaces
of the electrode. In other cases, however, one must begin to consider the diffu-
sion of atoms along the interface as well as through the electrode. The diffusion
of metal adatoms on a solid electrode surface has been considered by Lorenz
[29] and others in connection with electrocrystallization processes. A related
model for the diffusion of adsorbed oxygen atoms at the interface of platinum
electrodes and ceria of zirconia has recently been proposed by Wang [ 5], who
did not, however, explore the consequences of his model for small-signal res-
ponse, which we shall do in this Section.

In Wang’s model the electrode/electrolyte interface is characterized by
regions of contact which are long thin rectangles. The appropriateness of this



314

assumption in a particular experimental case might be tested by electron
microscopy [5]. The concentration b of the product species at the interface

is assumed to be governed by diffusion of the species along the metal/electro-
lyte interface. Let the width of the rectangles be 26 and assume that the short
dimension lies along the y-axis. For simplicity we shall in this case assume that
an adsorbed intermediate species is not formed and that the rate of formation
of the product species is given by

v(pr, M> bL) (25)
Then the faradaic current per unit area at the electrode is given by

$
I, =22 [ vlpa(y), (), bu)]dy (26)
)

and the equation of continuity for diffusion of the product species is
db d%b

ar ~ Dre a° +v[pr(y), n(¥), br(¥)] (27)
The corresponding small-signal forms are
5

zpe zpen
Ipig = 2% J, [klfle + ( IZT 1) Y1tPor — klbbl] dy (28)
and
. d*b Zpen
iwby =Dy ay_zl — kbt Rypir * ( l;eTl) Y1tPor (29)

In general the concentrations, overpotential, and rate constants appearing in
these equations are functions of y. For unbiased small-signal measurements,
however, the rate constants should be independent of position. Further, for
w™! greater than the dielectric relaxation time one may assume that the distri-
bution of charged species in the y direction and the overpotential will be nearly
uniform. Under these conditions it is possible to solve eqn. (29), and one finds
as a general solution

_ kupir

b, -
Ryp T 1w

+ by cosh Q'y + by sinh Q'y (30)

where b; and by are constants of integration and

Q' =+/(ky, +iw)/Dy, (31)

If the edges of the regions of contact between electrode and electrolyte are
assumed to be in contact with the ambient atmosphere and concentration gra-
dients in the gas phase can be neglected, the appropriate boundary condition at
y=%+§is

_Dle dbl/dy = iklefbl (32)

where kq.¢ is related to the desorption rate constant for the gas. When these con-
ditions are employed to evaluate b, and the result is inserted in eqn. (28), the
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integration can be carried out and one finally obtains

Iir =zpelkipir + (2pen1/RT) YViPor] (33)

as in the case of the previous Section, but where now ki = fi ky; and 1 = f1Y1s
with

' _ ky (__ R et ):'
h= l:l Rip + 100 1 (Ryp +1w)6 + k10¢(Q16) ctnh(Q1 ) (34)

The kq; = oo limit of eqn. (34) has the same form as an expression obtained
earlier by Lorenz [29] for the admittance associated with the deposition of
metal atoms on a metal electrode with evenly spaced steps, a process with many
features in common with that considered in this Section. Therefore, electro-
crystallization can also be treated within the present complex rate constant for-
malism which, in allowing a finite value for ks affords a minor generalization
of the Lorenz result.

Clearly, the set of complex boundary parameters obtained in this Section
may be used precisely in the same manner as those of the previous Section. It is
noteworthy that in the present case f; does not have the continued fraction
form since the electrode reaction mechanism involves not a simple sequence of
steps but rather a competition between the electrode reaction and diffusion of
the product. Further, the frequency dependent factor does not depend simply
on w'? but on the more complicated form Q' (eqn. 31).

The quantity f; is determined by three independent parameters which may
be taken as ky,, ke, and 8/5/D1,. A number of special cases of f' are note-
worthy. When § - 0, f; becomes unity and one formally obtains the boundary
condition considered earlier [13,14,18,22] for a simple first-order electrode
reaction with the product concentration held constant. On the other hand,
when Dle - 0, We obtain fl’ = [klef + 1(.06] /[k1b5 + klef) + 1(06], formally
equivalent to earlier reaction/adsorption results [16—18,22]. When ky.¢ > 0, so
that exchange of the product with the surroundings is forbidden, f; ~ iw/(ky, +
iw), a form previously obtained for simple specific adsorption [16—18] and one
which vanishes as w - 0. In the opposite extreme when ky; = °°, one obtains
fi = [kp(Q18)™! tanh(Q}8) +iw] /(kyp + iw).

(IV) SUMMARY

The diffusion of an electroactive species through a planar electrode and
along a planar electrode/electrolyte interface has been considered. These condi-
tions may be incorporated directly into the present exact treatment of the
small-signal response of unsupported systems through the artifice of complex,
frequency-dependent rate constants. The authors have incorporated the gener-
alized form of the rate constants into existing computer programs for non-
linear least squares analysis of complex data [30] and hope in future work to
discuss the treatment of experimental data.
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