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ABSTRACT 

Several of the ways in which diffusion of an electroactlve species may affect the small- 
signal response of an electrochemical system are examined,  with particular a t tent ion to cases 
m which the electrode reaction produces or consumes a neutral species whose concentrat ion 
at the electrode surface is determined by diffusion through the electrode. The conventional 
(time domain) rate and diffusion equations may be expressed in the frequency domain 
through the use of complex,  f requency-dependent  rate constants,  whose form reflects the 
sequence of events in the overall reaction, including posmble adsorption steps, and leads 
directly to equivalent-circuit representat ions of the pert inent  parts of the system response. 
The complex rate constant  formalism also allows the immediate generalization of existing 
exact t reatments  of unsupported systems to include such diffusion effects. 

(I) INTRODUCTION 

The diffusion of reactant  or product  species to or from the electrode/electro- 
lyte interface is often the rate controlling step of an electrochemical reaction. 
The effects of diffusion-controlled reaction on the small-signal impedance of 
electrochemical systems have been studied by Warburg [ 1], Randles [2], Ershler 
[3 ], and others. For the most part, the classic papers of these authors examined 
the diffusion of an electroactive species in a supported electrolyte. The diffu- 
sion of species through a metallic electrode may, however, also play an impor- 
tant role in determining the rate of an electrode reaction, as is often the case in 
polarography [4]. Recently, at tention has been given to the diffusion of gaseous 
species through solid electrodes, and along the electrode/electrolyte interface 
[ 5--7], processes of technological importance in connection with fuel cells and 
gas sensing devices [ 5]. A novel possibility also involving the diffusion of atoms 
along the interface or through a solid electrode arises from the work of L~z~yi 
[ 8--11] who suggests that  the ions of alkali halide crystals may, in some cases, 
discharge at an interface with a non-parent metal electrode under  small-signal 
conditions. Further,  from a mathematical  standpoint,  the behavior of ions in a 
supported, or (within limits) an unsupported [ 12], electrolyte solution which 
bathes a planar membrane can be treated as involving the diffusion of an effec- 
tively uncharged species through an "electrode".  

In many situations the effect of diffusion on the small-signal response of an 
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electrochemical system is representable by the inclusion in an equivalent circuit 
for the system of a Warburg impedance,  often given in Warburg's original form, 
appropriate for diffusion in a semi-infinite space. A Warburg-like impedance,  
appropriate for finite length, arises in exact  t reatments  of the small-signal res- 
ponse of unsuppor ted  binary electrolytes unless one of the charge species is 
strictly immobile or both species have the same mobil i ty  and the identical reac- 
t ion rate at the electrodes [13,14] .  The appearance of the Warburg-like impe- 
dance in the general unsuppor ted  case can be a t t r ibuted to the action of the 
more mobile or more-reactive species in screening the applied electric field, 
allowing diffusion to dominate  the mot ion  of the remaining species. The diffu- 
sion of neutral  species has thus far no t  been considered in t rea tments  of unsup- 
por ted  systems under  small-signal conditions.  

In the present work  we focus on the diffusion of gas or metal  species through 
a metallic electrode or along the electrode/electrolyte  interface. Our t rea tment  
of diffusion through an electrode is also applicable in the case of a membrane  
bathed in electrolyte solution as described above and, with an appropriate  
choice of parameters,  to the diffusion of charged and uncharged electroactive 
species in a suppor ted electrolyte (or of neutral  species in an unsuppor ted  elec- 
t rolyte)  in contact  with a metal  electrode. A unified t rea tment  of these differ- 
ent cases is afforded by the formalism of complex,  f requency-dependent  rate 
constants  [15--18] ,  which amounts  to a f requency-domain representat ion of 
the reaction, adsorption,  and diffusion processes characterized in the t ime do- 
mmn by the usual real rate and diffusion constants.  Al though the results to be 
presented for the unsuppor ted  case are original, our discussion of suppor ted  sys- 
tems recapitulates the results of other  workers. The latter discussion is, however, 
included to demonst ra te  the applicability of the complex rate constant  formal- 
ism in the suppor ted case and to provide a more unified t rea tment  of diffusive 
processes in general. 

(II) DIFFUSION OF REACTANT THROUGH ELECTRODE 

Consider a uni form planar electrode, one surface of which lies in the yz plane 
at x = 0; the second surface lies at x = le. The electrolyte (solid or liquid) extends 
to the left of the electrode (x ~ 0), and it will be assumed that  the outer  Helm- 
holtz plane lies at x = --d. We assume that  positive ions of charge Zp e and con- 
centrat ion p(x) react at the electrode to form a neutral  adsorbed species whose 
surface concentra t ion is F, and that  the adsorbed species may diffuse into the 
electrode where its concentra t ion is denoted  as b(x). We let ~? denote  the poten- 
tial drop between the electrode and the outer  Helmholtz  plane. Let the net  rate 
of format ion  of the adsorbed species per unit  area be given by 

Vl(PR , F,  ?7) (1) 

and the net  rate at which the adsorbed species enters the electrode be 

v2(F, bL) (2) 

where PR iS the concentra t ion  of positive ions at the outer  Helmholtz  plane and 
b L is the concentra t ion of neutral  species just  inside the left edge of the elec- 
trode. 
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The equations governing the behavior of the reactant  species at the electrode/ 
electrolyte interface may be written 

IpR = Z p e V l ( P R ,  F, rl) (3) 

d P / d t  = Vl(PR, 1 ~, 7?) -- o2(F, bL) (4) 

and 

JuL = v2(P, b,~) (5) 

where 1pR is the faradaic current of the positive carriers per unit area evaluated 
at the outer Helmholtz plane and JbL is the flux of neutral species into the elec- 
trode. 

Under small-signal a.c. condihons we may separate each quantity into a 
steady-state part and a sinusoidal perturbation: PR = POR + P lR  e lWt ,  [' = ['o + 
F, e l~t, etc. On making an appropriate Taylor series expansion of the reaction 
rates about  the steady-state values, we obtain 

/plR = Z p e [ k l f P l R -  klbFa  + ( Z p e ~ 7 1 / k T ) 7 1 f P o R ]  (6) 

icoF1 = I p l R / Z p e  ~ k3fF 1 + kabblL (7) 

and 

JblL = k3fF1 - -  k3bblL 

Each of the "rate constants" appearing in eqns. (6)--(8) represents a partial 
derivative. Thus 

(8) 

klf------ (~U1/~RR) 0 (9) 

k3f = (Ov2/a F)0 (10) 

and so on, where the subscript zero indicates that  the derivative is evaluated for 
steady-state conditions and the subscript f indicates the " forward"  direction of 
the reaction. The overpotential-dependent term involves the quanti ty 

71~ -- ( k T / z p e p o R ) ( ~  vl  /~7)o (11) 

which has the same dimensions as k if. 
We shall assume that  within the electrode diffusion is governed by the Fick 

equations, with the small-signal forms 

Jbl  = - - D i e  d b l / d X  

and  

i¢Obl = Die d2bl /dx 2 

(12) 

(13) 

Equation (8) provides one boundary condition for the diffusion equation. As a 
second condition we take 

Jb = k lefb l  (14) 

at x = le. For kle~ = 0, the exchange of neutral species with the ambient  atmos- 
phere or adjoining material is effectively blocked, while for k l~ -+ ¢¢ the 
exchange is infinitely rapid. 
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The diffusion equat ion (13) has the general solution 

bl = bI exp (Qlx )  + bn e x p ( - Q l X )  (15) 

where 

Q1 -= (1 + l)(co/2Dle) 1/2= \ / ico/Dle (16) 

Thus b I is the superposit ion of two damped oscillations. On imposing the boun- 
dary condit ions (8) and (14), one readily evaluates the constants  b~ and b~ and 
obtains an expression for b l in terms of F~. This expression can be inserted in 
eqn. (7) to provide a relation between F~ and IplR. On substi tut ing this expres- 
sion for F~ in eqn. (6) and rearranging, we finally obtain 

/plR = Zpe[k lPlR  + (Zpe~l/kT)~[lPoR] (17) 

* * with where k l  =- f l k l f  and 71 - f171f, 

fl ~- {1 + ]~lb/[ico + k3~/(1 + Fl(co))]  } -1  (18) 

and 

k3b [(klef/X/Dle) + X / ~  ctnh(lek/iog/Dle)] (19) 
Fl(co) - ~/~coDle [(klef /X/Dle ) ctnh(l,x/ico/D~¢ ) + x/q~w] 

The rate constants have a cont inued fraction form which reflects their sequential 
nature. 

Equat ion (17) may be used as a boundary  condi t ion with the equat ions of 
cont inui ty  and charge t ranspor t  to determine an expression for the system 
impedance. The form of eqn. (17) indicates tha t  k l and 71 will lead to admit- 
tance contr ibut ions  in the equivalent circuit [ 19 ]. Equat ion (18) then implies 
that  F1 (co) has the character of an impedance.  Indeed, if Rc is a constant  
normalizing resistance, it may readily be shown that  RcFl (co)  is the impedance 
of a length le of distr ibuted transmission line [ 20] of characteristic impedance 
R c k 3 b / x / ~ D l , ,  with series resistance per unit  length Rser = R c k 3 b / D l ,  and 
shunt  admit tance per uni t  length iwC~h - i¢o/k 3bRc, terminated by an impe- 
dance R c k 3 b / k l , f .  Note that  Die = (Rs~rC.~h) -1 • The le-+ ~ limit of F1 (co) has 
been discussed by Barker [ 21]. The quant i ty  fl is determined by five indepen- 
dent  parameters:  klb , k3f , k3b/X/Dle , klef/~/Dle and le/~/Dle. 

A number  of limiting forms of El(co ) should be examined.  When kle f ~ 0 
and l~/x/Dl~ -> O, as for a very thin electrode or very rapid diffusion of the  pro- 
duct  species, one has Fl(co ) -> k3b/klef and 

k l  -> (klO + icoTlakl~)/(1 + i(-OTla) (20) 

where klo - kafkxf/[k3f  + k lb /k le f ) ] ,  k1~ =- k l f ,  and T1a -- (1 + k3b/klef) /[k3f  + 
klb(1 + k3b/klef)].  Equat ion (20) has the precise form of the complex rate con- 
stant derived earlier [ 16,18] for an adsorpt ion/react ion sequence in which the 
concentra t ion of the final p roduc t  is held constant .  The complex rate constant ,  
k* i, will be non-zero at co = 0 (and thus a direct current  can flow) unless k1~ -+ 0, 
or k3f -+ 0, for which klo will vanish. When le/x/D1e -+ oo, as for a very thick , 
electrode and/or  very slow diffusion, FI  (co) takes on the standard Warburg 

* 

[1] form k3b/X/icoD1e. In this case kl  vanishes as co -+ 0 and no steady direct cur- 
rent  is possible. For  k1~f/x/Dle -> O, F,(CO) takes on the form (kab/X~coD1e) X 
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ctnh(/ex/icvDle) and again a steady direct current  is no t  allowed. If, further,  
l e /x /Dle  -~ 0 one has Fl(zo) -~ kab/icvl~ and k~ takes on the form appropriate  to 
a two-stage adsorpt ion-desorpt ion sequence. For  kle~/x/Dle  -* ~ (equivalent, 
when DI~ :> 0, to te rminatmg the transmission line with a short),  however,  
Fl(~O) assumes the finite-length Warburg form ( k a b / X f f ~ D l e )  × tanh(/eVq-tZ/Dle) 
and a steady direct current  is possible [22].  

(a) F u l l y  s u p p o r t e d  e l e c t r o l y t e  

In the presence of an excess of support ing electrolyte the mot ion  of the elec- 
troactive species is governed entirely by diffusion. It is then possible to treat  
the quant i ty  p ,  in a similar manner  to that  m which b, was treated so that  a 
relation between I,1~ and ~71 is found directly. Our considerat ion of suppor ted 
systems will be restricted here to a special case, that  in which the positive 
species of interest diffuses extremely rapidly, so that  we may take PlR to be 
zero. One then has for the admit tance of the interface (assuming no other  elec- 
troactive species present) from eqn. (17) 

Y = Ip la /71  = ( z2 e e p o a / k T )  71 (21) 

which is a generalizatmn of the familiar charge-transfer conductance of sup- 
por ted electrolyte theory.  This admit tance is represented by the equivalent 
circuit of Fig. 1, in which R a  has the form of a charge transfer resistance, CA is 
an adsorpt ion capacitance, Rn  the associated adsorpt ion resistance, and ZD a 
diffusion impedance. 

It is appropriate to commen t  on the relationship of the admit tance given by 
eqn. (21) to the results obtained in earlier work by other  authors. Although it 
has been assumed here tha t  the produc t  species diffuses through the electrode, 
the same mathematical  formulat ion applies to a p roduc t  species which diffuses 
into the electrolyte provided that  an appropriate value is assigned to l~. In the 
hmit  as l~/~/Dle ~ ~, our result becomes a special case of the admit tance 
derived by Armstrong and Henderson [ 23] for a system in which bo th  reactant  
and produc t  species diffuse through an essentially infinite electrolyte.  By taking 
the limit klb -> ~ ,  ka~ -~ ~ ,  with (klb/ka~)  finite, in essence assigning a vanishingly 
small lifetime to the adsorbed intermediate,  one obtains the results appropriate 
to a one-step electrode reaction wi thou t  intermediate  specms. Then eqn. (18) 
becomes 

f, -+ [1 + (klb/k3f)(1 + F I (w) ) ]  -1 (22) 

An impor tan t  subcase is tha t  in which no intermediate is formed and the elec- 

RA 

l teA 

Zo 

Fig. 1. Eqmvalent circuit representing the interfacial impedance in the fully supported case 
of Section II(a). R R ---- k T / ( z 2 e 2 p o i : t ~ [ l f )  , C A ~ 1 / ( R R k l D ) ,  R A ~ R R k l b / k 3 f ,  and Z D 
RR k lbFl(  r-o)/k 3f . 
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trode reaction occurs with infinite speed. This situation may be realized by 
taking k~b -~ ~,  ~/1~ -~ ~ with k3b/71f finite. The resulting impedance is 

Z = ( k T / z  2 e2poa ) (k lbFl(OJ) /k3 fq / l f )  

On further specializing to the case in which k 1¢~/Dlo -~ ~, one finds 

Z = (kT / z2e2poR) (k lbk3b /kn~[ l f x / iCODle)  tanh(/~x/~wDle) 

which has the finite-length Warburg form obtained by Drossbach and Schultz 
[ 24] and Sluyters [ 25] for systems in which diffusion occurs over a small dis- 
tance. 

(23) 

(24) 

(b)  U n s u p p o r t e d  b~nary e l ec t ro l y t e  

A systematic procedure has been given by the authors [18] for the deter- 
mination of the small-signal impedance of an unsupported binary electrolyte 
with compact layers of finite extent subject to electrode kinetics which can be 
expressed in terms of complex, frequency-dependent boundary parameters. We 
consider first the case in which the thickness of the compact layers can be 
neglected so that one may take ~71 and -yl as zero. in this case, eqn. (17) takes 
on the form of a complex Chang-Jaff~ boundary condition. An exact expres- 
sion has been given [ 26] for the impedance of a binary electrolyte with genera- 
t ion/recombination and possible immobile background charge subject to com- 
plex Chang-Jaff~ boundary conditions. The impedance (and corresponding 
admittance) depend on the electrode reaction kinetics only through the nor- 

$ * * * 

malized boundary value parameters Pl = (k l  l /2D1)  and Pe - (k21/2D2) (for 
negative charges), where l is length of material between the electrode and D, is 
the diffusion coefficient of the charged species. By employing rate constants kl 
and ]~2 Of the form obtained in the present work, one immediately generalizes 
the earlier results to include possible diffusion of the product species of the 
assumed reaction/adsorption sequence. 

An important feature of the unsupported cases treated in earlier work [ 13, 
14,18] is that the response of the system can often be represented by an equiv- 
alent circuit of frequency-independent elements and sometimes a Warburg 
impedance. Prior to a survey of representative instances it is difficult to 
prescribe a form of equivalent circuit which is appropriate for the general situa- 
tion in which diffusive behavior of the electrode reaction product occurs 
together with Warburg-like response due to unequal charge carrier mobilities or 
electrode reaction rates. For simpler cases, e.g. the case of a single mobile charge 
carrier species, the equivalent circuit of Fig. 2, in which the geometric capacit- 
ance Cg and bulk resistance R have been added to the circuit of Fig. 1, should 
suffice. For the rate laws assumed here, the resistances and capacitances appear- 
ing in the circuit will always have positive values. Since an exact treatment of 
the unsupported case is only possible in the case of a flat-band system one must 
set PoR = P0 here, where p0 is the bulk equilibrium positive charge carrier den- 
slty. A related result was found for the case in which no electrode diffusion 
effects are present but finite-length Warburg effects arise from processes in the 
electrolyte [ 18,22]. 

For the case in which the compact layer cannot be neglected, we have given 
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Fig. 2. Equ iva len t  c i rcui t  for s imple  u n s u p p o r t e d  case o f  Sec t ion  II (b) .  Cg-= geome t r i c  
capac i t ance ,  R ~  --= bu lk  res is tance CR ---- (dif fuse  doub le  layer  capac i t ance  - -  Cg), R R -- 
2kT / ( z2e2pok l f ) ;  C A ~  1 / ( R R k l b i ,  R A -= R R k l b / k 3 f  , and Z D ~- R R k l b F l ( O j ) / k 3 f .  
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an exact expression for the impedance of a system with a single species of mo- 
bile charge [ 18,26] which may be extended to the case of a neutral  p roduc t  
diffusing through the electrode by setting p, -+ p~ as above and by an appropri- 
ate choice of the parameter  vl = 7~/k~ - 7 , ~ / k ~ .  

( I I I )  D I F F U S I O N  OF R E A C T A N T  A L O N G  E L E C T R O D E / E L E C T R O L Y T E  I N T E R F A C E  

One of the most  impor tan t  theoretical  problems in electrochemistry at pres- 
ent is the description of the interface between a solid electrode and a liquid or 
solid electrolyte.  Al though t rea tment  of electrodes with ruled surfaces and of 
porous electrodes in contact  with a suppor ted electrolyte have been given [ 27, 
28],  little has been done in the corresponding case of unsuppor ted  electrolytes 
in which the Debye length may be greater than the average distance between 
imperfections on the electrode surface. The t rea tment  of the previous Section 
must  be applied with caution in the case of a gas diffusing through metal  elec- 
trodes since, with the except ion of hydrogen,  such diffusion through the bulk 
of a metal  is notor iously  slow, and even a small density of surface imperfections 
would be sufficient to dominate  mot ion  of atoms within the electrode. If the 
electrode is characterized by a reasonably uni form distr ibut ion of pores or 
cracks roughly perpendicular to the interface, the t rea tment  of the previous 
Section may be applicable provided that  Die and l e are interpreted as an effec- 
tive diffusion constant  and length for atomic mot ion  along the internal surfaces 
of the electrode. In other  cases, however, one must  begin to consider the diffu- 
sion of atoms along the interface as well as through the electrode. The diffusion 
of metal  adatoms on a solid electrode surface has been considered by Lorenz 
[ 29] and others in connect ion with electrocrystall ization processes. A related 
model  for the diffusion of adsorbed oxygen atoms at the interface of p la t inum 
electrodes and ceria of zirconia has recently been proposed by Wang [ 5], who 
did not,  however, explore the consequences of his model  for small-signal res- 
ponse, which we shall do in this Section. 

In Wang's model  the electrode/electrolyte  interface is characterized by 
regions of contact  which are long thin rectangles. The appropriateness of this 
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assumption in a particular experimental case might be tested by electron 
microscopy [ 5]. The concentration b of the product species at the interface 
is assumed to be governed by diffusion of the specms along the metal/electro- 
lyte interface. Let the width of the rectangles be 26 and assume that the short 
dimension lies along the y-axis. For simphcity we shall in this case assume that 
an adsorbed intermediate species is not formed and that the rate of formation 
of the product species is given by 

V(PR, ~, bL) (25) 

Then the faradaic current per unit area at the electrode is given by 

Ip - zee  
f v [pa (y ) ,  ~?(y), bL(Y)] dy (26) 

25 
--5 

and the equation of continuity for diffusion of the product species is 

db d2b 
- ~ + V[PR(Y), ~(Y), bL(Y)] (27) dt Die dy2 

The corresponding small-signal forms are 

zpe {zpe~l~ --  k b dy (28) 
IplR = - ~  l fP lR + ~/lfP0R lb 

-8  \ k T  ] 

and 

d2b l  ) 
icvbl = Die  k l b b  1 + k l f P l R  + {zpe~l  dy 2 \ [eT ~/lfP0R (29) 

In general the concentrations, overpotential, and rate constants appearing in 
these equations are functions of y. For unbiased small-signal measurements, 
however, the rate constants should be independent of position. Further, for 
co -~ greater than the dielectric relaxation time one may assume that the distri- 
bution of charged species in the y direction and the overpotential will be nearly 
uniform. Under these conditions it is possible to solve eqn. (29), and one finds 
as a general solution 

k l f P l R  
b l = + b I cosh  Q'y + b ix s inh  Q'y (30) 

klb + i co  

where b~ and bii are constants of integration and 

Q ' -  ~(klb + icv)/Dle (31) 

If the edges of the regions of contact between electrode and electrolyte are 
assumed to be in contact with the ambient atmosphere and concentration gra- 
dients in the gas phase can be neglected, the appropriate boundary condition at 
y = + 6  is 

-D1 e db l /dy  = _+klefb 1 (32) 

where k lef is related to the desorption rate constant for the gas. When these con- 
ditions are employed to evaluate b l and the result is inserted in eqn. (28), the 
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integrat ion can be carried out  and one finally obtains 

IplR = Z p e [ k l P l a  + (zr, e~71/kT)  V~P0~] (33) 

as in the case of the previous Section, but  where now k i = f~ kl~ and V~ = f~ V~ 
with 

fl ~ -- - 1 -- , , (34) 
klb +1~o (klb + 1¢z)5 + ;1 : ; iQ15)  ctnh(V15) 

The k lef -~ ~ limit of eqn. (34) has the same form as an expression obtained 
earlier by Lorenz [ 29] for the admi t tance  associated with the deposi t ion of 
metal  atoms on a metal  electrode with evenly spaced steps, a process with many  
features in common  with that  considered in this Section. Therefore,  electro- 
crystall ization can also be t reated within the present complex rate cons tant  for- 
mahsm which, in allowing a finite value for k 1el affords a minor  generalization 
of the Lorenz result. 

Clearly, the set of complex boundary  parameters  obtained in th~s Section 
may be used precisely in the same manner  as those of the previous Section. It is 
no t ewor thy  that  in the present  case f~ does not  have the cont inued fraction 
form since the electrode reaction mechanism involves not  a simple sequence of 
steps but  ra ther  a compet i t ion  between the electrode reaction and diffusion of 
the product .  Fur ther ,  the f requency dependent  factor does not  depend  simply 
on co 1/2 but  on the more  complicated form Q' (eqn. 31). 

The quant i ty  f~ is de termined by three independent  parameters  which may 
be taken as klb, kle~, and 6~x/Die .  A number  of special cases of f '  are note- 
worthy.  When 5 -* 0, f~ becomes umty  and one formally obtains the boundary  
condi t ion considered earlier [13,14,18,22]  for a simple first-order electrode 
reaction w~th the produc t  concentra t ion  held constant .  On the other  hand,  
when D i e  --> ~ ,  we obtain f~ = [kle~ + 1 ~ 5 ] / [ k l b ~  + klef) + iwS],  formally 
equivalent to earlier reac t ion/adsorpt ion  results [16--18 ,22] .  When kle~ -~ 0, so 
that  exchange of the produc t  with the surroundings is forbidden,  f~ ~ i¢o/(kl t ,  + 
iw), a form previously obtained for simple specific adsorpt ion [16--18]  and one 
which vanishes as co -~ 0. in the opposite ex t reme when k le~ -~ o~, one obtams 
f~ -+ [klb(Q'15) -1 tanh(Q'~ 5) + iw] / (k lu  + ico). 

(IV) SUMMARY 

The diffusion of an electroactive species through a planar electrode and 
along a planar e lec t rode/e lect rolyte  interface has been considered. These condi- 
tions may be incorpora ted  directly into the present exact  t r ea tmen t  of the 
small-signal response of unsuppor ted  systems through the artifice of complex,  
f requency-dependent  rate constants.  The authors  have incorpora ted  the gener- 
alized form of the rate constants  into existing compute r  programs for non- 
linear least squares analysis of complex data [ 30] and hope in future work to 
discuss the t r ea tmen t  of exper imenta l  data. 
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