NOTES
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In a recent accurate calculation of the vibrational-
rotational energies of HD* by Wolniewicz and Poll' (WP),
they emphasized the desirability of more detailed calcu-
lations of the radiative corrections for this molecular
ion. They, themselves, estimated these corrections by
assuming that radiative effects change the potential en-
ergy by

AE™(R) = AE™\() +aR™ + bR+ cR™? ,

where R is the internuclear distance, and AE ()
=0.272 em™! is the radiative correction for the hydro-
gen atom. They then used our values of the radiative
corrections to the vibrational energy levels AET™ of

H; and’ expectation values of R‘l, R'z, and R to obtain
optimum values of q, b, and ¢c. With these parameters
fixed and expectation values of R™" for HD* they calcu-
lated AE™ for HD', For v> 10 they used a slightly dif-
ferent formula which extrapolated to the correct asymp-
totic value.

In this Note we report a more direct calculation of
AE™ which verifies the values determined by WP and
answers their call for more detailed calculations. We
use the same method as we did for the H} corrections?;
namely, we correct the adiabatic-relativistic potential
curve of HD' (using data from Refs. 3 and 4) by

- E™(R) =0.2272[9. 781 - In(ky/hartree)]p(R) cm™ ,

where p(R) is the absolute value of the electron density
at the nucleus and In(k,/hartree) is the Bethe logarithm
(for which we take the value 2.35%). Using the corrected
and the uncorrected curves we calculate, by the
Numerov-Cooley method, the vibrational energies and
hence, from the differences, the values of AET™™. These,
with those of Ref. 1 are given in Table I. It is apparent
that there is no substantial difference between these two

TABLE I. Radiative energy corrections
for the vibrational levels of HD* in em™,

v © AE™ (Ref. 1) AE™ (This work)

0 0.351 0.350
1 0.342 0.342
2 0.335 0.335
3 0.328 0.328
4 0.321 0.321
5 0.315 0.315
6 0.310 ' 0.309
7 0.305 0.304
8 0.300 0.299
9 0.295 0.295

10 0.291 0.291

11 0.287 0.287

12 0.284 0.284

13 0.281 0.281

14 0.279 0.278

15 0.277 0.276

16 0.275 0.273

17 0.274 0.272

sets of results and fears that inaccuracies may exist in
the corrections given by WP may be laid to rest. The
slight divergence for high vibrational levels is due to the
fact that WP extrapolated to the exact asymptotic value
for »>10,

11,. Wolniewicz and J, D. Poll, J. Chem. Phys. 73, 6225
(1980),

D, M. Bishop and L. M, Cheung, J. Phys. B 11, 3133 (1978).

’p. M. Bishop and R. W. Wetmore, Mol. Phys. 26, 145
(1973).

4D, M. Bishop, J. Chem. Phys. 66, 3842 (1977).
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The ionic diffuse double layer (DDL) plays an impor-
tant role in the electrical behavior of solid and liquid
electrochemical systems, colloids, and living cells,
Three recent reviews'~® emphasize, however, that the
conventional Gouy-Chapman*® theory of the DDL breaks
down even for concentrations well below 1 M. Stimu-
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lated perhaps by this lack of an adequate theory of a
basic and widespread phenomenon, numerous com-
plicated DDL theories (reviewed in Refs. 3, 6 and 7)‘
have appeared in recent years. These theories, which
involve a planar electrode, are mathematically very
complex and often involve coupled nonlinear integral

© 1981 American Institute of Physics 3155

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3156

equations, Further, Reeves! has stated, “The collec-
tion of corrections to GCS (Gouy -Chapman -~Stern) theory
to be found in the literature are most unhelpful to the
practicing electrochemist...”

It thus appears worthwhile to present a much simpler
theory of the DDL, a liquid lattice gas model (LLGM),
which should be applicable up to 1 M and beyond, and for
potential differences across the DDL 3, from zero to
many times the thermal potential V,=kT/e. The ap-
plicability of the theory will be evaluated by comparison
to recent Monte Carlo (MC) results® for the primitive
model of an aqueous electrolyte. This model involves a
collection of positive and negative spherical ions of
diameter 4 in an agueous solution which is described en-
tirely by the unsaturated dielectric constant of bulk
water €5=78.5 at 208 K. Most of the complex DDL
theories currently available deal only with this model.
The conventional GCS [or modified Gouy-Chapman
(MGC)] model involves a continuum treatment of point
charges, an ideal gas approach. The present model
considers spherical ions on a three-dimensional lattice
of site concentration N. This model is theoretically
completely applicableonly for single crystals but yields
surprisingly good results for liquids when a mean field
correction®? is added to it.

The lattice gas model was first developed for charges
in solids and liquids by Grimley.'® It has been applied
recently™ in considerable detail to such materials as
AgCl, and the addition of mean field corrections to the
model has also been considered.**? Here we are con-
cerned only with the LLGM, a model which assumes
that a given lattice site may be empty (filled with water)
or occupied by a negative or positive ion, concentra-
tions n, or n,, respectively.

The contribution to G/kT, the normalized free energy
per unit volume, arising from the mean field approxi-
mation is a [} /2N) + (% /2N) - (nyn, /N)], where o is a
normalized pair interaction energy, taken the same ex-
cept for sign for like-sign pairs and unlike-sign ones,
and taken positive for repulsion between like-sign pairs.
When this contribution is included in the LLGM free en-
ergy, ! one obtains®®

p* =25 sinh(¢,)/ [(1 - 26) +26 cosh(e,)] , 1)

where ¢,=¢ +ap* and 6=co/N. Here p*=p/eN is the
normalized local charge density; ¢ =¢/Vq, where § is
the local potential referred to zero in the far bulk; and

§ is the fractional bulk concentration of positive or nega-
tive charge (n; =n, =c, in the bulk). Finally, the total
charge in the diffuse layer o4 is given in normalized
form by! 13

Qs =0, /0y = — 5gndy) [(a"! f °‘p*<¢)d¢i)]“z, @)

where 0,=VC,=2ecq Ly, C4=€5/4nLp, and Ly is the
Debye length. The integral can be carried out exactly
when @ =0, and when 5—~0 as well, it yields the usual
GC result, @, =~ 2sinh(¢,/2). Here ¢, is the total

normalized P.D. across the diffuse layer (not includ-
ing the charge-free Stern layer). In the present case
of interest a #0 and the implicit nonlinear Eq. (1) for
p* must be solved by iteration for each value of the
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integrand in Eq. (2). It has been found simplest to solve
Eq. (1) in the transformed version F(W) =A sinh(6)
+sinh(W) =0, where A=26/(1 -25), W=tanh™*(p*), and
8=¢ + W+atanh(W).

In the LLGM, N=V2/D% obtained from FCC packing
of spheres of diameter D. Then §=4.26x 10°*D%M,
where M is the molar concentration, D is in f\, and
initially I take D =d. The present @, is related to the
normalized o,, o*, used previously® by @, =ec, d-%¢*,
equal to 15.11M "/ 2¢* for the choice® d =4.25 A, Fitting
the above theory to the M =1 MC resultsyields the curves
of Fig. 1. The «=-3 curve agrees with the MC results
everywhere within one standard deviation of the MC"
values, agreement over a far wider range than any other
current theory can provide.

A negative value of o implies attraction between
charges of like sign; further, the magnitude of « found
here is very much smaller than that following from pair-
wise Coulomb interactions, even those involving the un-
saturated e, =78.5 value.® But much of the Coulomb
interaction has already been implicitly incorporated
through the local satisfaction of Poisson’s equation.
The sign of o found suggests that it has been overcom-
pensated by the MGC and o =0 LLG models. Thus, the
negative ¢ value needed to yield agreement with the
MC resulis provides a residual attraction between
charges of like sign to compensate for the excess re-
pulsion inherent in the MGC and « =0 LLG theories.
The curvature in the a = -3 curve at high 1Q,| arises
from the approach to close packing.

With D=d, 6=3,27%x10°% and 3.27x10"* for M/ =0.1
and 0.01, respectively. Very good LLGM fits of all the
MC results can be obtained if both @ and & are indepen-
dently varied. Even with @ =~3.4 and §=3.27x10"% a
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FIG. 1. The normalized diffuse double layer charge density vs
the normalized potential difference across it. Monte Carlo,
modified Gouy—Chapman (MGC), and liquid lattice gas model
(LLGM) predictions are compared for a 1 m situation.
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fairly good fit for 0.1 M is obtained. A comparable fit
occurs with @ =-3 and §=5.2%10%, implying D=4, 96
A. Again with ¢ =—3, the 0.01 M MC results are very
well fitted with 6 =0.0016, implying D=17.25 A. Since
mean field theory suggests that o should be concenira-
tion independent, it is reassuring that good fits are pos-
sible here for 1 to 0.01 M with a constant ¢ value, It is
likely that the LLGM requires an increasing lattice step
size with decreasing concentration because a fluid situa-
tion is being approximated by a lattice model. Finally,
dielectric saturation can be readily added to the LLGM,
leading to a more realistic treatment. When MC resulis
for both fluids and lattice situations become available it
will be of interest to see how the LLGM ¢« (and perhaps
N as well) depends on d, €5, and M. The LLGM could
then be of direct value to practicing electrochemists for
both liquid and solid electrochemical applications since
it would yield a much more accurate representation of
DDL behavior than does conventional Gouy —Chapman
theory.
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In recent years there has been a growing interest in
the Lanczos algorithm® and its applications to problems
in physics and chemical physics.? In particular, this
algorithm was shown to be very useful in the calculation
of correlation functions for slow motional ESR spectra.?®
Generally, in past work the computational value of this
algorithm was emphasized. The Lanczos algorithm is
not widely recognized as a theoretical method that can
concisely extract the relevant information from a gen-
eral description of physical systems, *

The value of the Lanczos algorithm to theoretical
analyses derives from its close relation to the more
general method of moments, ® which may then be used
in the study of the dynamics of classical statistical
systems. One generally employs correlation functions
to describe both the dynamical properties of a many par-
ticle system and the experimental data. We show here
that the Lanczos algorithm leads in a natural way to
their continued fraction representation.

Let us recall briefly the Lanczos algorithm, For a
given self-adjoint operator A, defined in a Hilbert space
€ and given a normalized starting vector |z) < ¢, the
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method of moments® defines the nth approximation A, of
A by the relation

A, =P, AP, , (1)

where P, is the operator that projects any vector belong-
ing to ¢, onto the subspace ¢, constructed with the vec-
tors Izk,,1> =A*|z) for k=0to n—1. If, by means of a
Schmidt orthonormalization procedure, we produce an
orthonormal basis set spanning ¢, represented by the
vectors. | k) for k=1 to n, we obtain the recursion rela-
tion characteristic of the Lanczos algorithm!3®

Bl =(A-a,  V|k-1-p%, |k -2 . @)

A tridiagonal self-adjoint matrix T,, with the a,’s as
diagonal elements (q,=(k|A, !k =1 Al%)) and the B,’s

as off-diagonal elements (8,=( 14,1k - 1) =1 AlR - 1)),
constitutes the representation of A, in this new basis set.

The application of the Lanczos algorithm to the cal-
culation of the classical autocorrelation function (acf) is
straightforward, once the acf is written as

F@®)=f@)*f0) =(PL % |e 1t | P23y ®
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