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Abstract-Lattice gas models of the diffuse space charge layer in liquids and in ionic solids with Schottky or 
Frenkel disorder are considered with and without mean-field charge-interaction corrections. Even without explicit 
interaction corrections, the lattice gas model, by taking some account of charge carrier size in the liquid case and 
the actual lattice structure of the material in the case of single crystal solids, predicts a saturation in local charge 
density at high potentials, unlike the physically less realistic conventional Gouy-Chapman ideal gas, or independent 
particle model. Both unmodified and modified mean field corrections to the lattice gas basis are discussed and 
Coulombic interaction terms are considered in detail. The Monte-Carlo results obtained by other workers show that, 
as expected, the actual mean-field interaction terms required for fitting must be much smaller than those predicted 
by the unscreened Coulombic interaction. It is suggested that the mean field approach of Gurevich and Kharkats, 
who introduce an attractive mean field interaction between charges of like sign, is unlikely to be applicable over the 
entire space charge region of solid electrolyte systems and thus may not provide an explanation for the 
conductivity instability observed in a-AgSb&. Some possible future directions of investigation for lattice gas 
models are also briefly discussed. 

1. INTRODUCTJON 

Gurevich and Kharkats [I] (abbreviated hereafter as GK) 
have recently published a very interesting note in Solid 
State Communications which indicates that a lattice gas 
model[2] of space charge in a Frenkel-defect single 
crystal can, with the addition of mean-field nearest- 
neighbor interaction terms, exhibit an abrupt change in 
ionic conductivity as the electric field, or applied poten- 
tial difference, is increased. For some time we have been 
independently investigating lattice gas models for space 
charge with and without mean-field corrections [3-71. 
Unfortunately, we were ignorant of the earlier work of 
GK[8-111 in which some of our capacitance results had 
already been derived[8]. Luckily our work supplements 
theirs since we also consider surface adsorption effects 
and analyze in more detail then they a system of finite 
length with one blocking and one ohmic electrode [7]. 

Here we wish to deal with some of the implications of 
adding mean field interaction terms to the free energy in 
some specific lattice gas models, taking for simplicity a 
system with one blocking electrode at x = 0 and an 
ohmic one at infinity[3-51. As in the earlier work[l-I 11, 
we shall consider a uni-univalent material with a single 
negative species of mobile charge, concentration c,, and 
a single positive species of mobile charge, concentration 
c2. The lattice gas models to be analyzed are of the liquid 
(e.g. aqueous electrolyte or possibly fused salt), Schottky 
defect, and Frenkel defect types. We shall assume 
in each case a face-centered cubic lattice. 

2. ANALYSJS 

In the liquid lattice gas model (LLGM) we assume that 
charges of both signs are to be found on a single FCC 

lattice. The lattice points have a concentration of N 
points/cm3 and may be unoccupied (or occupied by a 
neutral species), occupied by a negative charge carrier, 
or occupied by a positive charge carrier. When the two 
species of ions are of such different sizes that the larger 
blocks more than one site, one can readily modify the 
analysis to account for such blocking[21; here we con- 
sider only situations where this is unnecessary. It is clear 
that a lattice gas model of a liquid is an approximation. 
Nevertheless, lattice gas models have been reasonably 
successful in the theory of liquids; at high charge con- 
centration one would expect the formation of a lattice of 
finite-size charge carriers in a liquid[l2]; and the lattice 
model, by taking some account of the finite size of charge 
carriers, should certainly be a better approximation than 
the conventional Gouy-Chapman[l3, 141 model of the 
diffuse double layer which ignores ion size entirely. The 
Gouy-Chapman model is essentially an ideal gas model 
and will be abbreviated IGM. 

In the lattice gas model for solids, which is certainly 
more physically based than the LLGM, one assumes that 
negative charges reside on a lattice of concentration s, N 
and positive ones on an interpenetrating lattice of con- 
centration s2N. Let Ni = SiN. For the typical Schottky 
defect case (SLGM) where the charge carriers are 
vacancies in a crystal lattice of the NaCl type, s1 = s2 = 
1, while for the usual Frenkel case (FLGM), where the 
carriers are cation interstitials and cation vacancies in a 
lattice of the AgCl type, s1 = 1 and s2 = 2. In both cases 
N is the concentration of positive or negative ions in a 
perfect ionic crystal. GK[8] have also considered the 
s2 % s, case. 

Let i = 1 denote negative and i = 2 positive charge 
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carriers and take j = 3 - i and k independent of’ i. The 
common equilibrium bulk value of c, and c2 in the region 
of electroneutrality is co. Let Ci = ci/Ni; 8 = c,/N, the 
fractional bulk concentration; and Ai E S/si. For maxi- 
mum conciseness we define s, = s2 = 1 for the LLGM as 
well as the SLGM. Let $I = e$/kT, where tj is the inner 
potential at some point x in the material. The total applied 
potential difference between the beginning of the diffuse 
layer at x = 0 and an ohmic electrode at x = z is. in 
normalized form, & = e&,/kT. Thus b(O)= (bd and 
4(x) = 0. 

The actual applied p.d., P,,,, between a blocking elec- 
trode and the ohmic electrode is never exactly I)~ (when 
r/~~ # 01, as it may be in Gouy-Chapman IGM theory, 
because the finite size of charge carriers must be taken 
into account. The centroid of charge of each charge 
carrier in the first plane of the diffuse layer is necessarily 
separated from the equipotential plane of a blocking 
metal electrode by a distance which, in the LLGM, 
would be at least as large as the sum of about 0.5 A of 
field penetration into the electrode and a radius of an ion 
nearest the electrode. If this distance is denoted by /I and 
the capacitance of parallel planes a distance /? apart is 
defined as C,, then &, must differ[6] from J/d by the p.d. 
across C,. It has recently been proved[lS] under rather 
general conditions that tjm is a monotonically increasing 
function of the total net charge density (charge/unit area) 
qd in the diffuse layer. This result does not, however, 
necessarily preclude the possibility of non-monotonic 
behavior of &, and qd such as that found by GK[I, 
9-111. 

To facilitate the presentation of results we define a 
quantity 0, where 8 = 1 for the LLGM and 0 = 0 for the 
SLGM and FLGM cases. Minimization of the free 
energy for a lattice gas situation with mean field inter- 
actions between charge carrier pails [l, 4, 5,9-111 can be 
shown[4-61 to lead to the following distributions for the 
C,(i = 1. 2), 

G Ai 
1 - Ci - OCi = I - Ai(l t 0) exp (9ei)y (1) 

where 

& = (-l)i+‘c$ - rii(Ci - Ai) 

t Iii( C, - hi). (2) 

The Iii and Iii terms arise from the interactions between 
the charge carriers, with Iii = Iii. For non-interacting 
lattice gas models rik = 0[2, 3, 6-g]. The signs in eqn (2) 
have been chosen so that all the Iik are positive when 
the net interaction between charges of like sign is repul- 
sive and that between charges of unlike sign is attractive. 
Notice that when 4 = 0 (as at x = a), eqn (1) and (2) are 
consistent with the electroneutrality requirement ci + co 
which implies Ci -+ Ai. The present normalization ensures 
that the maximum value of the C,‘s is unity. 

The Bragg-Williams approximation was originally 
developed for binary alloys and has been applied to spins 
(e.g. Ising model) and to adsorbed atoms and molecules. 
In such situations the mean field corrections involve only 
two possible states for each lattice site. Here we are 
concerned with a three state model in which a lattice site 
may be empty (effectively uncharged) or occupied by a 
positive or negative charge carrier. While the mean field 
treatment of this three state case is mathematically 
straightforward, it is a somewhat uncertain step to apply 
it to charged entities because of their long range and 
quite strong Coulomb interactions. But as we shall see, 
comparison of LLGM predictions with diffuse-space- 
charge-layer Monte-Carlo results strongly suggests that 
the jIi$s involved in a LLGM with mean field inter- 
actions can be considered to represent residual inter- 
actions only, with the bulk of the strong Coulomb inter- 
action between charges already implicitly incorporated 
in the noninteracting (I, = 0) IGM or LLGM solutions 
through their satisfaction of Poisson’s equation. Because 
the required mean field corrections are thus small there is 
a good chance that they can yield a valid improvement 
over treatments without them. If one wishes to obtain an 
even better approximation and yet to retain the general 
form of the results of eqn (1) and (2) one will have to 
make the Iit coefficients dependent on the local concen- 
tration or field. 

For the 8 = 0 solid LGM cases GK[ 1, 9-l 11 obtain We shall first consider the Iit coefficients for the 
esrentially the same results as those of eqns (1) and (2), full Coulomb interaction and then compare numerical 
but they take i = 1 for positive and i = 2 for negative results with those obtained from the Monte-Carlo fitting. 
carriers, the opposite of our choice. Further, they For a FCC ionic solid let a, be the conventional cell edge 

employ coefficients hi and Al2 which are related to our 
ra by 

Ai = - kT Tii (34 

and 

(3b) 

Thus, when their hi coefficients are positive, charge 
carriers of the same sign are taken to have an attractive 
interaction. 

3. SPECIFIC MEAN FIELD INTERACTION TERMS 

Gurevich and Kharkats do not give a microscopic 
derivation of their hi and A,2 terms beyond stating that 
the interactions may be indirect. The form of the inter- 
action terms in GK[9-II] and eqn (2) follows from a 
mean field or Bragg-Williams treatment of 
interactions [ 17-201. This is an approximate approach 
which takes nearest neighbor interactions into account 
and in so doing assumes that “there is no short-range 
order apart from long-range order”[l9]. It is strictly 
applicable only in the low density (s-+0) limit, since it 
assumes in calculating the energy and entropy that the 
interacting entities are randomly distributed on their 
lattices. Further, for a given finite value of 6 the ap- 
proximation is best for interaction energies smaller than 
or comparable to kT and becomes increasingly unreliable 
as the magnitude of the interaction energy increases. 
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distance. Then d = a,/2 is the lattice spacing (that be- 
tween nearest unlike charges in a perfect cubic ionic 
crystal), and d = (2N)-“3. In the LLGM we shall here 
take d as the diameter of an ion. We take the Coulomb 
interaction energy, uO, between like charges a distance d 
apart to be e2/4mocd, where e. is the permittivity con- 
stant for free space and l is an effective dielectric 
constant. Although an effective E should properly be 
obtained in a fully discrete treatment by taking the 
induced polarizability of each charge carrier directly into 
account[l2], the use of an E of the order of the index of 
refraction squared is probably a better approximation 
than taking E either unity or Ed, where eB is the bulk 
dielectric constant. Finally we define U,, = uo/kT. 

Since there are no interactions assumed between 
empty sites or empty and charged sites, one finds that 
naive Bragg-Williams theory adds interaction terms to 
the Gibbs free energy of the system of the form uoxikcick. 
Here Xik involves three factors: the number of nearest 
neighbor positions, the distance between i and k charges 
(in units of d), and a factor of 0.5 when i = k and - 1 
when if k. The factor of 0.5 takes account of duplicate 
counting for identical charge pairs. Minimization of the 
free energy involving both the ordinary lattice gas 
entropy term and the ik = 11, 12, and 22 interaction terms 
leads to the distributions of eqns (1) and (2). The specific 
values of the f&‘s for arbitrary u0 following for the 
liquid, Schottky and Frenkel lattice gas models are 
summarized in Table 1. For the LLGM we have taken 
positive and negative ions of equal diameter d, and 
assumed face centered cubic close packing. Then N = 
p.f./[4r(d/2)‘/3], where the FCC packing fraction p.f. = 
?r/3~‘(2). For d = 3A, N = 5.2 x 10” cm-‘. For a fused 
salt one might consider a lattice of charge with few 
empty sites, but for an aqueous electrolyte of medium 

molarity, there would be many more “empty” (occupied 
by water molecules) than charged sites. 

Now it turns out that for the LLGM and SLGM 
cases, the normalized charge density p* = p/eN is given 
by the implicit equation[4, 51 

- 2S[l- $1 sinh [d t ap*l 
p* = 1 t 46[1- $1 sinh2 [(4 t ap*)/2]’ (4) 

where n = 1- 0 and we have ignored the difference 
between 6v(2) and 6 in the SLGM and have thus taken 
a = r,, = r2 for both models. A somewhat more com- r 
plicated expression for p* is found for the Frenkel case. 
Ac!ually, since the r&‘s are different in both the 
Schottky and Frenkel cases, a set of two coupled equa- 
tions must be solved to obtain the self-consistent value 
of p* for a given 4, The behavior then found is not 
qualitatively different, however, from that following 
from eqn (4), where a single equation, showing negative 
feedback when a > 0, must be solved self-consistently. 
When (Y = 0, eqn (4) reduces to the ususal LLGM and 
SLGM results without interaction[2,6], and as 6+0, 
LLGM and SLGM results for p* become identical. Some 
(Y = 0 results for various S values are shown in Fig. 1. The 
dashed lines show the non-saturating Gouy-Chapman 
behavior. 

Some a f 0 curves are presented in Fig. 2. Since p*(4) 
saturates, we may formally introduce a new variable z 
through p* = tanh (2). Then the feedback term is of the 
form (Y tanh (2). But Fig. 1 shows that virtual saturation 
(charge of a single sign filling all available sites in a given 
region), occurs at relatively low applied p.d.‘s. The physics 
of the situation suggests, however, that the approach to 
complete saturation should be much slower and that 
complete saturation, a condition where a crystal might 

Table 1. Values of the interaction parameters r[k for three lattice gas models 

Parameter Liquid Schottky Frenkel 

'11 

r12 

r22 

12uo 6 f%Jo 6 f?Uo 

12uo 6Uo (8/ A)Uo 

12uo 6 f%, 3Uo 

- LIQUID LGM 

---- IGM 

I 1 I I I I I 

0 2 4 6 

Fig. 1. Normalized charge density vs potential for liquid (noninteracting) lattice gas model and ideal gas model. 
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LIQUID LGM 8 = 10-S - tanh 

---- s,nh 

20 40 60 80 100 
+ 

Fig. 2. Normalized charge density vs potential for liquid mean-field lattice gas model and proposed sinh 
modification. 

Fig. 3. Normalized integrated double layer charge vs double layer 
potential difference for noninteracting, mean field and sinh 

modification liquid lattice gas models. 

fall apart, should be unreachable at finite applied p.d. A 
simple heuristic way to achieve this end when LY > 0 and 
to make little or no change far away from saturation is to 
replace the tanh (z) term by sinh (z) so that ap* is 
replaced by lyp*/[l -(p*)‘]“*. Some tanh and sinh type 
interaction corrections are shown in Fig. 2 for several 
values of (Y. The asymptotic approach to saturation for 
the sinh modification is evident. A more complex trans- 
formation would be required to achieve a similar ap- 
proach to saturation for LY < 0. 

Figure 3 shows the dependence of the normalized 
integrated charge in the double layer, Qd = q,/2ecoL,, on 
the p.d. across the layer, +,+ Here L, is the two-mobile 
Debye length, which involves co. As we see, the sinh- 
modification results only differ from the tanh ones at 
high values of &. The normalized diffuse layer capaci- 
tance, CON = - dQdd& = C&Cd, where C, E cB/4rL, 
is the & -+O limiting Gouy-Chapman capacitance per 
unit area, is shown in Fig. 4. It is important to note that 
the peak capacitance is essentially independent of S 
when 8 G 0.1 for LY either zero or non-zero. In the former 
case, the peak occurs at about [7] & = In (2.51/a). This is 
somewhat more accurate than the value In (2.75/S) given 

Normalized diffuse double layer capacitance vs double layer potential difference for noninteracting, mean-field and 
sinh modification liquid lattice gas models. 
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by GK[8]. The x = 0 maximum value of Cm is about 
0.319 C,/d(S), again when S ~0.1. 

So far we have been using LY as a rather arbitrary 
parameter. Now, however, let us evaluate it for Coulomb 
interactions in typical LLGM (NaF aqueous electrolyte) 
and SLGM (AgCI single crystal) situations. For the NaF 
electrolyte we shall approximate Na’ and F- as sphere 
of 1 A radius and consider that ions very close together 
either lose their hydration shells so that d = 2 8, or that 
they retain a single hydration sheath SO that d = 
2(1 At 3 A) = 8 A is the effective diameter of a hydrated 
ion approximated as a sphere. Now, the water molecules 
surrounding an ion are partly dielectrically saturated so 
that an appropriate value of t to use in u. is about 15 in 
the second case[l2] or 3 in the first. At T = 298 K the 
above values lead to U. 293.5 and 4.67 for the un- 
hydrated and hydrated cases, respectively, and thus to 
a = 1120 and 56. The two values of N are 1.77 X 
IO*’ cm-3 and 2.76 x lo** cmm3. For a 1 molar solution, the 
corresponding values of 8 are about 3.4 x 10e3 and 0.218. 
For AgCl near its melting point [6], T = 700 K and S = 
1.02 x 10e3. Also for this material N = 2.34 X lo** cm-’ 
and d = 2.78 A. On using E = 3, one finds U. = 28.7. If we 
take a as the average value of rrr and rr2, one finds 
(Y = 7.24 lJo = 208. 

Now we have already seen that (Y values even as small 
as 10 lead to appreciable differences between (Y = 0 and 
a # 0 results. Values of 200-I 100 lead to much larger 
effects than are likely to occur. These results are direct 
indications of the inadequacy of naive mean field models 
with full Coulomb interactions. Further, it is important to 
note that significant difference may occur for all values 
of 4. When /4.i/ is SO small that sinh (6ei) = $ei, eqn (4) 
may be solved directly to yield 

p* = - 26(1- $)d/[ 1 t 2S(l - $)a]. (5) 

The corresponding IGM result in the small 14) region is 
just - 284. For the LLGM, where n = 0, one sees that p* 
is altered by the factor [I t 28~1, which may be, appreci- 
able. For the present unhydrated and hydrated LLGM 
situations one finds 28~ = 7.6 and 24.4, while the SLGM 
AgCl results yield about 0.42. Even this last smaller 
value leads to difficulties. 

There are some recent Monte-Carlo double layer 
results[21, 221 which involve 0.1 and 1 molar aqueous 
electrolyte solutions but only extend up to an equivalent 
(&,I of approx. 2. Th ey give charge concentrations as a 
function of distance from a blocking electrode which 
appear to differ negligibly from IGM predictions. More 
recent Monte-Carlo calculations [23] give results for 
normalized qd vs & up to nearly & = 6. These results 
differ appreciably from IGM predictions, even for &, = 
1. It has been shown1241 that these 1, 0.1 and 0.01 molar 
Monte-Carlo results can all be well fitted with a = -3. 
This value is much smaller in magnitude than predicted 
for Coulomb interaction and is negative, implying posi- 
tive feedback. At room temperature it corresponds to a 

(uol of only about kT/4 = 0.0064 eV. For one-molar con- 
ditions, 2a8 is of the order of -0.2, by no means 
negligible compared to unity. 

Now GK[l, 9-l 1] have considered mean field inter- 
action corrections to the LGM which involve Tii values 
both greater or less than zero. They do not calculate 
numerical values from a mode1 but only consider qualita- 
tive behavior. They give little attention to the I’ii > 0 
negative feedback situation which we have dis- 
cussed in detail above. Instead, they are largely con- 
cerned with the Fii < 0 case which involves attractive 
interactions between like charges. They find that for 
Tii < - 4 the resulting positive feedback leads to instability 
and a phase transition. This sort of instability has long been 
known in mean field treatments of attractive interactions 
between atoms or molecules [18, 251. 

Gurevich and Kharkats seem to have been the first to 
apply a mean field theory of attractive interactions to 
ionic charges of the same sign, consistent with the above 
negative value of a. The GK treatment predicts a phase 
transition from low to high conductivity only for a cer- 
tain range of potentials, and thus it should occur only 
over a limited spatial region in the system. Further, GK 
state that the transition potential corresponds to a center 
of symmetry of the S-shaped concentration-potential 
curve. If indeed the Tii < -4 situation were physically 
likely, we believe that the transition potential would have 
to be determined from minimization of the overall Gibbs 
free energy of the entire system and would not cor- 
respond to the center of symmetry, a concept not further 
defined by GK, but perhaps implying equal areas as in a 
Maxwell-type construction. Whatever the precise nature 
of the transition, one expects on qualitative physical 
grounds that the formation of a high concentration of 
mobile charge near an electrode would restrict most of 
the potential drop across the sample to a relatively thin 
double layer region at the electrode, leaving most of the 
electrolyte material in the original low conductivity state. 
Thus it seems somewhat doubtful that the treatment of 
GK provides an explanation of the observed instability 
of the conductivity of cu-AgSb$ as GK suggest. 

For certain superionic conductor situations, work has 
been done involving attractive interactions between 
interstitials [26, 271 leading to Tii < 0. Such interactions 
may arise from coupling to the strain field of the 
crystal[261 and lead to quite small (10e2 to 10-l eV.) 
contributions to the interaction energy. Although these 
contributions may play an important role in solids, the 
Monte-Carlo results which led to a = - 3 are for a primi- 
tive model of a liquid, the reason the LLGM rather than 
the SLGM or FLGM was used. It thus appears that a 
negative value of a is required is such a situation to 
compensate for errors in the ordinary solution of Pois- 
son’s equation, errors introduced at least in part by the 
conventional replacement of the potential of mean force 
on an ion by the local continuum electrolyte potential. 
The negative value of (Y found suggests that the con- 
ventional solution overcompensates for Coulomb inter- 
actions and, e.g. in simplistic terms the ordinary attrac- 
tion between charges of opposite sign must be reduced 
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slightly by the mean-field-approach introductioti of a 
small repelling force between them. 

4. FUTURE DIRECTlONS 

The Monte-Carlo results just discussed do not actually 
require that 28~~ be zero but only that it be relatively 
small in magnitude. Therefore, a may be used as a fitting 
parameter which can be accurately determined as Monte- 
Carlo results for a continuum or on a lattice become 
more accurate and are extended to higher 14dl. Such 
fitting, if successful, should allow the dependence of (Y 
on d, bulk concentration, es, and other quantities to be 
determined, making the LGM of direct predictive value. 

Most of the more complicated cluster and other ap- 
proaches to the theoretical analysis of the diffuse double 
layer (e.g. those briefly mentioned in Refs.[21-231 cannot 
readily be extended to regions where Ip*l is 20.2 or so 
and the approach to saturation begins to be felt. This 
suggests the usefulness of modifying a lattice gas ap- 
proach, where saturation is an inherent feature, to better 
account for particle-particle’ Coulomb interactions. This 
was, in part, our own motivation for using a LGM in past 
work and considering mean-field corrections to it. In the 
future, one might modify the LGM with a more complex 
interaction-averaging approach, one such as the Bethe- 
Peierls approximation(l91, which takes into account 
specific short range ordering. 
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