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Exact solutions of the static Debye-Hiickel space-charge equations for one and for two blocking electrodes
are compared analytically and graphically. It is found that the simpler one-electrode solution may be em-
ployed to characterize the diffuse double layer with high accuracy in most experimental situations in place
of the less tractable two-electrode solution which involves Jacobian elliptic functions. Some consequences
of the strong nonlinear voltage dependence of the exact solutions are considered and the application of the

solutions to physical situations is discussed.

INTRODUCTION

HE treatment of space-charge formation problems

in solids, liquids, and gases involves the solution
of systems of nonlinear partial differential equations.
These equations have never been solved exactly in
complete generality, but a number of exact solutions
have been obtained for specific limiting cases. Thus,
Jaffé! has obtained an exact solution for the one-
dimensional, static space-charge distribution in a
material containing univalent free positive and negative
charges without recombination for the case of two
blocking (polarized), plane parallel electrodes separated
by a distance L. Unfortunately, this solution involves
Jacobian elliptic functions and, because of the in-
adequacy of published tables of these functions, is
difficult to use in practice.

Recently, Prim? has solved the same problem anew
but with different boundary conditions. Prim considers
an intrinsic semiconductor region bounded by #- and
by p-type extrinsic regions. The junctions between
extrinsic and intrinsic regions are not, therefore,
blocking in this case, but the solution is of the same
form as Jaffé’s.

The solution of the space-charge equations in the
time-varying case is immeasurably more difficult than
their solution in the static case. Recently, Keilson?
has given an exact solution for the time variation of
injected carriers in semiconductors, but the exact
dependence of carrier concentration on position is
not obtained. Jaffé and LeMay* have given an approxi-
mate solution for the time-dependent charging current
pertaining to the one-dimensional problem involving
two blocking electrodes separated by a distance L to
which a dc voltage is suddenly applied. Also, the
author® has published a linearized theory of space-
charge effects for ac applied voltages in the case of
two blocking electrodes for any degree of dissociation
and for any ratio of the mobilities of positive and
negative carriers.
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In the preceding paper,® the author and M. K.
Brachman discussed an exact solution to the static dif-
fuse-double-layer problem where only one plane parallel
blocking electrode is present at the boundary of a
material of semi-infinite extent containing mobile free
charges of both signs. This solution is of particular
interest because it involves only the usual well-tabulated
elementary transcendental functions. Since both this
solution and that of Jaffé for two electrodes are exact,
they show clearly the nonlinear dependence of space-
charge concentration, space-charge capacitance, etc.,
on the applied voltage. In this paper, the two solutions
are first compared in order to indicate in what physical
situations the simpler transcendental solution may be
employed in place of the more complicated elliptic
solution. Then, some of the implications of the great
nonlinearity of the solutions are discussed and applica-
tion of the solutions to physical situations considered.

EXACT STATIC SOLUTIONS FOR THE DIFFUSE
DOUBLE LAYER

Diffuse double-layer formation in the physical
situation involving a blocking anode at x=0 and an
infinite extent of material containing free charges in
the positive x direction was considered in the preceding
paper.® The free charges are assumed univalent and do
not recombine. A dc potential V, is applied between
the anode and the cathode at infinity and the zero
of potential is taken at the cathode. The results ob-
tained in II for this situation may be summarized as
follows

v¥*=y/(kT/e)=In{coth®*s[x/Lp~+sinh~(cschiV¢*) 1}

(1

n*=n/co=cy/p=1/p*=exp(*) 2
&¥=8/(kT/eLp)=2 csch{x/Lp+csch™(sinhiV*)}.

3)

In these equations, ¢ is the potential within the ma-
terial, » is the concentration of negative charge carriers,
p the concentration of positive carriers, and & the
electric field strength. The quantity ¢ is the common,

6J. R. Macdonald and M. K. Brachman, J. Chem. Phys. 22,

1314 (1954). Weshall, in the present work, refer to this paper as
II and 'that of reference 5 as L.
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homogeneous, equilibrium value of # and p before the
application of Vy; Vo*is Vo/(kT/e) ; and Lp is given by

Lp=[ekT/8me%, ]}, (4)

where ¢ is the dielectric constant of the material in the
absence of free carriers.

Next, let us consider the case of a blocking anode at
#=0 and a blocking cathode at x=L. Expressed in
terms of the variable y= (x/Lp—L/2Lp), Jafié’s exact
results for this problem! are

V*=In{(dny— kisny)/ (dny+Fkisny)} ®)
n¥*=1/p*=exp(¥*) (6
E*(y)=2k1/cny. (M
Here,
ki={cnM/snM }sinh(V*/4), (8)
and
dnM /enM = cosh (Vo*/4). (9)

The quantity M is the dimensionless constant L/2Lp.
Equation (9) was not given by Jaffé but follows from
his work and is useful in simplifying the exact formulas
in specific cases. The zero of potential is taken at
x=L/2. The above exact solution only applies to the
case 8*(0)< 2. This condition is usually well satisfied

" . s s L
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F1c. 1. Dependence on normalized voltage Vo*=Vo/(kT/e) of
normalized carrier concentration n¢* and electric field strength
&o* at the surface of a blocking electrode for single-electrode case.
The normalized layer capacitance C* is also shown.

ROSS MACDONALD

in cases of practical interest. Jaffé also gives exact
solutions for §*(0)=2 and &*(0)> 2, but we need not
consider them in this paper.

In most cases of interest, M will be greater than five.
When M is this large or larger, k; will be much smaller
than unity for any value of V¢*. The Jacobian elliptic
functions dn, c¢n, and s» are functions of both their
argument v or M and of k;. Thus, Eq. (8) is actually a
transcendental equation for %,. For &, <1, no tables of
these functions are available. In order to compare the
predictions of Egs. (5), (6), and (7) with those of (1),
(2), and (3), it is therefore necessary to use approximate
expressions for the elliptic functions which apply in
the case k;<<1. These expressions are

sny=tanhy+ (k:*/4) sech’y(sinhy coshy—y)  (10)

and
cny=[1—(k2/4) tanhy(sinhy coshy—y)]sechy. (11)

The function dry may be calculated using (10) and
(11) from the exact relation

dny="[(cny)*+k(sny)" .

When y is greater than about three, the final y terms
in (10) and (11) may be neglected with little loss of
accuracy.

If expressions of the form (10) and (11) are sub-
stituted in Eq. (8) for ki, a cubic equation in %, is
obtained. The cubic term is many orders of magnitude
smaller than the other terms for k<1 and may be
neglected. The exact solution of the resulting quadratic
equation for %, is

k1= 2 cschM tanh(V*/8).

(12)

(13)

This equation is a good approximation so long as the
value of k; computed from it is less than about 1/20.
This expression for %, is considerably different from
that given by Jaffé' for the same case of large M.
Furthermore, it leads to quite different y dependence
for ¢* and &* than that obtained by Jaffé. Thedifference
arises from the inclusion in the present work of the
k2/4 terms in the approximate expressions (10) and
(11), in contrast to their neglect by Jaffé. Such neglect
is permissible in the expression for smy but is a poor
approximation for the c¢ny expression. The inclusion
of these terms in the present work thus gives more
accurate final approximate expressions for %y and for
¥* and &*.

Before comparing the two dc space-charge solutions
graphically, it is of interest to compute the space-
charge capacitance represented by the concentration
of charge near the electrode(s). Let a subscript zero
denote the value of a quantity at x=0. Then the total
differential capacitance” is

Cri= —d00/0V o= (e/47) (08:/3V ),

7 All results apply to unit area of the system.

(14)
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and the less important static capacitance is simply
—ao/Vo, where oo is the surface charge density in the
material at the electrode. Using expression (3) for
&*, we obtain for the differential capacitance

CTd= (6/47FLD) COSh(Vo*/Z) (15)

in the one-electrode case. In the two-electrode case, it
follows from Egs. (7) and (8) that

Eo*=2(snM)~! sinh (V*/4).

Using the approximate expression (11) for snM with
neglect of the small k,%/4 term, we obtain

(16)

0= (2kT /el p) cothM sinh(V¢*/4). an
Thus, we find for Cr?
Cri= (¢/4wLp)% cothM cosh(Vy*/4)
=C, M cothM cosh(Vs*/4). (18)

This expression represents the total capacitance of the
two space-charge layers in series, in parallel with the
geometrical capacitance of the material, Cy=¢/4mrL.
In the one-electrode case, there was only one space-
charge layer and no geometrical capacitance, since L
was infinite in this case. The space-charge capacitance
for both layers in series in the present case is given by
Cy¢=(Cr?—C,) and may be written

C,3=C [ M cothM cosh(V¢*/4)—1]. (19)

For comparison with Eq. (15), the space-charge
capacitance of a single layer is 2C,. For large M or V*,
the C, correction is negligible and 2C,*(=Cs%) becomes

Cs1922(¢/4n Lp) cothM cosh(V*/4). (20)

This expression differs from that of (15) by the factor
coth M which is essentially unity for >3 and by the
appearance of V¢*/4 in place of V¢*/2.

It is worth noting that the linearized, small-signal
theory of ac space-charge effects presented in I yields
for positive and negative carriers of nonzero mobility an
expression for low-frequency limiting capacitance Cin the
two-electrode case of exactly the form (19) but with cosh
(Vo*/4) replaced by unity. The present solution shows
under what conditions the earlier solution for C is
valid. Of course in a linear solution there is no differ-
ence between the static and differential capacitances.

COMPARISON OF EXACT STATIC SOLUTIONS
FOR THE DIFFUSE DOUBLE LAYER

We are now in a position to compare the predictions
of the two exact space-charge solutions. Before com-
paring the solutions graphically, valuable conclusions
may be drawn from comparison of the analytical
expressions at x=0. In the one-electrode case, ¥*=V*
at x=0; thus no*=exp(V¢*), &*=2sinh(V¢*/2). For
the two-electrode case, on the other hand, y*=V*/2 at
2=0, and no*=exp(V¢*/2), ¢*=2(snM ) sinh(V¢*/4).
The principal difference in these expressions lies in the
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Fi1c. 2. Dependence for one-electrode case of #*, &%, and normal-

ized potential y* on distance from blocking anode in Debye-
length units for V*=6.91.

substitution of Vo*/2 for V¢* when passing from the one
to the two-electrode case. This result is physically plaus-
ible because in the two-electrode case one would expect
that half the applied voltage drop would occur near each
of the two space-charge layers. Since there is only one
layer in the one-electrode case, the full voltage drop
occurs in this layer.

Figure 1 shows how the quantities #o*, C*, and &¢*
depend on V¢* for the one-electrode case. Here C*
=Cr%(e/4rLp). This graph also closely gives the
dependence of n¢* and &* on Vo* in the two-electrode
case if the abscissa is taken as 2V¢* instead of V¢*
The presence of the term (S#M)~! in the two-electrode
expression for &* may be neglected because this term
is very close to unity. The C* curve represents Cs;?
(see Eq. 20) closely since coth 37 will also be essentially
unity for M 2 3.

Figure 2 shows the dependence of #*, &% and ¢* on
position measured from the blocking electrode for the
one-electrode case. The value of Vo* is selected to
make n¢*=10%. At room temperature, this corresponds
to an applied voltage of only about 0.18 volt. Thus,
only very small voltages are required to establish very
inhomogeneous space-charge distributions. Since this
is a semilogarithmic plot, the linear decay of &* and
Y* for z=x/Lp>1.5 implies that these quantities
depend exponentially on z in this range.
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F16. 3. Dependence for two-electrode case of »*, &*, and ¥* on
distance from blocking anode at =0 in Debye-length units for
Vo*=13.82 and M=L/2Lp=3.

Figure 3 is similar to Fig. 2 except it is for the two-
electrode case with M=35. The dependence of n*,
&* and ¢* is plotted for only half the separation
between electrodes. #* and ¥* are odd functions about
the center line; &* is an even function. It will be noted
that the curves of Fig. 3 are plotted for twice the value
of Vo* used in Fig. 2. Half of the voltage drop should
take place between x=0 and x=S5Lp(3=35) and the
other half from 5Lp to 10Lp(=L). Thus, by using
twice the value of V* as that used in Fig. 2, we ensure
that the space-charge layer near x=0 in Fig. 3 for
the two-electrode case will have the same voltage
applied across it as the single layer in the one-electrode
case. We are thus enabled to compare the two cases
directly.

Comparison of the curves of Figs. 2and 3for0 <z <5
shows very close agreement. For z less than about 3.3,
the eye is unable to distinguish any difference in the
respective curves when they are centered over one
another. For 3.3<z <5, the influence of the finite
separation of electrodes in the two-electrode case
becomes apparent. In this case, #* must reach unity
at z=35, whereas unity is not reached in the one-
electrode case until z= o, Nevertheless, the difference
in the entire #* curves in the common region is difficult
to detect by eye and is essentially negligible. The
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distinction shows up more clearly in the &* and ¢*
curves in the region 3.3<z <5. For example, at z=35,
&* is 0.05 in the two-electrode case and 0.025 in the
one-electrode case. ¥ is the quantity most accessible
to measurement, however. The distinction between
the two ¢ curves would be difficult to establish experi-
mentally because in the region where the difference
appears, the potential will have fallen to values much
smaller than the applied voltage.

The foregoing discussion indicates that for M 2> 5 the
simpler one-electrode solution is sufficiently accurate
in the two-electrode case for practically all cases. To
use the one-electrode solution for this purpose, one-half
of the potential V, applied between the two electrodes
is used in the one-electrode equations. In most cases of
experimental interest there will indeed be two electrodes
separated by a distance L, but M will usually be far
greater than 5. The larger the value of M, the closer
will the two solutions coincide over their common
region. In the exceptional cases when M <S5, Jaffé’s
exact solutions for &* > 2 may be used together with
the approximate expressions (10) and (11). Note that
if one of the two electrodes is not blocking but chmic,
the one-electrode solution will apply very closely with
the entire applied voltage drop occurring across the
single space-charge layer at the blocking electrode.

DISCUSSION OF VOLTAGE-DEPENDENT
NONLINEARITY FOR THE DIFFUSE
DOUBLE LAYER

We shall now restrict attention to the consequences
of the voltage-dependent nonlinearity of the one-
electrode solution as shown graphically in Fig. 1.
Table I shows how rapidly some of the pertinent
space-charge quantities increase with applied voltage.
The last column gives the electric field strength at the
blocking electrode for a typical Debye length of 10~% cm.
These results indicate clearly that the exact solution
must fail for various reasons for some voltage between
0.1 and 3 volts. For example, the solution gives a
value of n¢* which exceeds the number of conduction
band levels available at x=0 for a voltage of the order
of one volt.

Even before these limits are reached, the solution
will fail because of dielectric saturation, which decreases
the dielectric constant in the high-field region near
the electrode, and because of high-field emission from
the electrode itself. Such failure will occur between
107! and 1 volt for Lp=10"% cm as shown by the high
values of &; in Table I in this voltage range. It should
be especially noted that if the electrode is not completely
blocking for all charge carriers, the field will not be by
any means so large as that specified by the present
solution with complete blocking. For example, Von
Hippel, Gross, Jelatis, and Geller® have given an
approximate solution for the field at a rectifying

( 8 Von Hippel, Gross, Jelatis, and Geller, Phys. Rev. 91, 568
1953).
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electrode with the neglect of diffusion. These authors
treat the case of two rectifying electrodes back-to-back
so that charges may leave through the electrodes but
may not enter, and find a square root dependence of
&oon applied voltage rather than the present essentially
exponential dependence. The reason for the difference
is that in the rectifying case charges will be entirely
withdrawn from the material at one electrode until an
exhaustion layer forms at the other electrode. The
space-charge density in the exhaustion layer is limited
by the donor (or acceptor) concentration originally
present and hence cannot rise to the astronomical
values to which the mathematical solution for #o* leads
in the blocking, one-electrode case. In practical cases,
of course, dielectric saturation and high-field emission
will limit the exponential increase to a maximum value
in the blocking-electrode case also.

The dependence of the space-charge-layer differential
capacitance on cosh(V¢*/2) is of considerable interest.
The foregoing discussion indicates that the observed
capacitance arising from space charge may be expected
to increase from a constant small-signal value up to a
value ten or more times greater before breakdown
limits the increase. Such voltage dependence might
be of considerable value for such applications as
dielectric amplifiers if it could be attained in practice.

APPLICATION TO PHYSICAL SITUATIONS

Both the Jaffé! and the Miiller-Macdonald-Brach-
man® solutions apply to the situation where mobile,
univalent, noncombining charges of both signs are
present. This is the case, for example, in strong elec-
trolytes, which are completely dissociated. In weak
electrolytes, dissociation is incomplete and recombina-
tion must be taken into account. If bimolecular re-
combination terms are added to the Debye-Hiickel
differential equations which govern the space-charge
distribution, the equations become even more non-
linear and, apparently, cannot be solved exactly in
closed form. The linearized solution of the author®
with the ac frequency taken zero applies to this case,
however, for very small applied voltages (Vo*<1).
When Vo* is no longer small compared to unity,
neither the linearized solution nor either of the present
nonlinear solutions apply. Of course, in this case, the

TasLE I Voltage dependence of various space-charge
quantities at room temperature.

&o for
Vo Lp=10~% cm
(volts) Vo¥ no¥ &o* C* (volt/cm)
102 0.385 147 0.388 1.02 1.0X 103
0.0316 1.22 3.39 1.298 1.19 3.4X108
10 3.85 470 6.74 3.52 1.8X10*
0.316 122 2X105 446 223 1.2X108
1 38.5 5X10% 2.2X108 1.1X108 6 X10u
3.16 122 1X10% 3% 1026 1.5X10% 8§ X10®
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nonlinear solutions will be better approximations to
the exact solution.

Another case of considerable physical interest is
that where charges of only one sign are mobile. An
insulator containing donors such as the F centers in
alkali-halide crystals is an example. Also, a semi-
conductor containing a fairly high concentration of
donors or acceptors may represent this situation
provided that the carriers originating from donors or
acceptors are present in much higher concentration
than are the intrinsic carriers. If the mobile carriers
can recombine, no matter how infrequently, with the
immobile charges of opposite sign (e.g., donor ions),
it is easy to show that the final static space-charge
distribution is specified exactly by either the Jaffé or
the Miiller-Macdonald-Brachman solution as the case
may be, provided that the ionized donor concentration
predicted by theory never exceeds the total neutral
donor concentration originally present at any point.
Effectively, charges of both sign are mobile because
the release of a mobile charge at one position in the
material and its capture by a center of opposite sign
at another position represents an actual transfer of an
immobile charged center from one position to the other.
If recombination is very infrequent, a long time will be
required before the space-charge distribution will be
close to that represented by the exact solution; never-
theless, the exact solution will eventually apply. If
we denote by Lp; and Lo, the Debye lengths corre-
sponding to univalent mobile carriers of only one sign
and to mobile carriers of both signs, respectively, then
V2Lpy=2Lp;. When one is dealing with mobile, re-
combining charges of a single sign, M may be equiva-
lently given as L/V2Lp, in all the preceding equations.
Note that VZLp, is the rms Debye length for a single
carrier.

When charges of only one sign are mobile but there
is no recombination (infinite recombination time),
there is no way for the immobile charges of opposite
sign to move and they will not, therefore, contribute
to the space charge. Unfortunately, the Debye-Hiickel
equations pertaining to this case cannot, apparently,
be solved exactly in terms of closed functions for either
the one-electrode or the two-electrode case. The
linearized solution of I shows that M=L/2Lp; here
as would be expected. However, the nonlinear voltage
dependence required by the nonlinearity of the differ-
ential equations does not appear in this solution. It is
possible to obtain a series solution to the differential
equations by means of the reversion method,® first
employed by Helmholtz. Unfortunately, in the case
of most interest, for which the nonlinearity is appreci-
able and Vy*3 1, the convergence of the series is too
slow to make the solution practical. A physical situation
where charges of a single sign only are mobile and where
there is absolutely no recombination is unlikely. On

? G. I. Cohn and B. Saltzberg, J. Appl. Phys. 24, 180 (1953).
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the other hand, if the recombination time is very long,
an initial space-charge distribution involving the mobile
charges only may be established long before recombina-
tion can effectively mobilize the immobile charges of
opposite sign so that they can contribute to the space-
charge distribution. The final static distribution will
be the same as if both carriers were mobile, but there
may be an initial quasistatic distribution which may
persist relatively unchanged for a long time.

In many physical cases, it will be a poor approxi-
mation to assume that the charge carriers can approach
arbitrarily close to the blocking electrode. Thus, in
electrolytes, the center of a charged ion will certainly
be unable to approach much closer than the normal
ionic radius. If there is negligible ionic chemisorption
at the polarized electrode, the double layer may be
characterized by an essentially surface charge on the
electrode, a region next to the electrode containing
no charge, and a diffuse-layer region extending into
the solution within which the concentration of ions
of one sign decreases toward the bulk value and that
of opposite polarity increases toward this value. In

J. ROSS MACDONALD

some cases, the charge-free layer may consist of a
layer of hydration between the electrode and the
nearest ions in addition to a layer of thickness deter-
mined by the distance of closest approach of the
unhydrated ions. The mathematical solutions discussed
in this paper apply only to the final diffuse layer in
electrolytes. All the above results may be applied for
this region, however, provided that it is recognized
that the potential across the diffuse layer is not Vo,
the total applied potential, but is less than V, because
of a potential drop in the charge-free layer, and provided
that the distance x in the foregoing formulas is measured
not from the electrode but from the boundary between
the charge-free and the diffuse layers. The present
solution is, therefore, not a complete solution for
double-layer structure and behavior in electrolytes,
but it will be applicable when the charge carriers are
electrons. A theory of the complete double layer in
unadsorbed electrolytes will be presented in a later
paper.

The author is much indebted to Dr. Malcolm K.
Brachman for several valuable discussions.
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Infrared Reflection Spectra of Phosphate and Arsenate Crystals*

GEORGE M. MURPHY AND GEORGE WEINER,
Chemistry Laboratories of Washington Square College, New York University, New York, New York
AND
Joun J. OBERLY,T Crystal Branch, Metallurgy Division, Naval Research Laboratory, Washington, D. C.
(Received October 22, 1953)

Crystals of KH,PO,, NHH,PO,, KH,AsO,, and NH,H:AsO; were examined in the 1-25 micron region.
Data were obtained at room temperature for all four crystals, and in addition the spectra of the potassium
compounds were examined below their Curie points. In order to avoid the use of thin crystal cuts required
for absorption measurements, an optical system was designed which permitted recording of reflection
spectra. At the low temperature an increase in the number of bands was observed, and the phosphate and
arsenate spectra seemed displaced to higher frequencies. The transition from hydrogen bonding prevailing
at room temperature to hydroxyl bonding below the Curie points is considered likely.

I. INTRODUCTION

N a previous communication to this journal' we

reported on the infrared reflection spectra of
KH2P04, NH4H2PO4, KHzASO4, and NH,H:As0,
crystals. These observations have now been extended
toward both longer and shorter wavelengths. It is
well known that these piezoelectric crystals become
ferroelectric below certain temperatures known as the
Curie points. These temperatures are 122.0°K, 147.9°K,
95.6°K, and 216.1°K for KH,PO, NHH,PO,,

* Based on a dissertation presented by George Weiner in partial
fulfiliment of the requirements for the degree of Doctor of
Philosophy at New York University, February, 1953.

t Now at Sprague Electric Company, North Adams, Mas-
sachusetts.

17, J. Oberly and G. Weiner, J. Chem. Phys. 20, 740 (1952).

KH;As0,, and NH:HAsOy, respectively.? By far the
largest polarization is exhibited along the z axis. We
conducted experiments at room temperature and at the
temperature of liquid nitrogen, 72.6°K, which lies below
the Curie points of these compounds.

When cooled below the respective Curie points, these
crystals break up into smaller regions.? The potassium
salts develop some parallel cracks but generally remain
optically homogeneous and transparent. In contrast,
NHH,PO, and NH;H»AsO, shatter completely, becom-
ing an inhomogeneous, nontransparent, white mass.23
For this reason we could make low-temperature
measurements with only the potassium salts.

*W. G. Cady, Piezoelectricity (McGraw-Hill Book Company,
Inc., New York, 1946).

® Matthias, Merz, and Scherrer, Helv. Phys. Acta 20, 273
(1947).
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