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The electrical, optical, and mechanical behavior of many materials, particularly polymers and
glasses, have been analyzed using the Kohlrausch-Williams—Watts stretched exponential
relaxation function in both the time and frequency domains. This function is currently of
considerable experimental and theoretical interest. Unfortunately, no relatively simple and
accurate approximation representing the small-signal frequency response of stretched
exponential relaxation has been available. Thus it has been impractical to obtain accurate
parameter estimates from fitting of frequency response data or to discriminate well between
Williams-Watts response and that of other similar response models. Here we develop such an
approximation for both dielectric systems and for intrinsically conducting ones (e.g., defect
hopping materials). It is in complex form and allows fitting of both real and imaginary parts of all
the data simultaneously (e.g., by complex nonlinear least squares) or of either part separately. For

appropriate data, which need not be electrical, fitting with the new approximation can yield
parameter estimates accurate to about 0.1%. Comparison of the results of the present fitting
method to those of a more approximate one are presented.

I. INTRODUCTION

The empirical stretched exponential transient response
function

q(t) = goexpl — (¢ /75)°] (1)
and its frequency response transform have been widely used
for about the last 20 years to analyze the small-signal electri-
cal (and mechanical and optical) response of a wide variety of
materials, from polymers and proteins, to spin glasses and
amorphous semiconductors. For example, for dielectric sys-
tems g(t) might describe the decay of polarization of a
charged sample when the electrodes are shorted. Because
reasonable agreement between the above function and data
has often been found, much theoretical work, either statisti-
cally based or involving a microscopic model, has appeared
which leads to exact or approximate stretched exponential
response. Here we shall not recite the voluminous literature
involved; many of the appropriate references are given in
Refs. 1-3. Since Kohlrausch® first suggested Eq. (1) for a
mechanical response situation, and Williams and Watts®
have popularized the utility of its frequency response trans-
form, we will refer to Eq. (1) as the Kohlrausch stretched
exponential (KSE) and to the corresponding response in the
frequency domain as that of the Williams—-Watts (WW) func-
tion (WWF).

Unfortunately, there currently exist no simple and accu-
rate representations of WW frequency response which can
be used in fitting response data (real and imaginary parts or
imaginary part only) to the WW function. The problem
arises because this function in its basic integral definition
involves a very rapidly oscillating integrand over much of
the response range of interest and is thus very difficult and
inconvenient to calculate accurately. Although series and
other approximate expressions have been presented (see
Refs. 2, 3, 5, and 6, and references cited therein), they are too
complex and/or too approximate to allow accurate esti-
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mates of such parameters as 7, and S to be obtained from
fitting frequency response data.

But the situation has changed recently. First, accurate
tables of functions directly related to the normalized WWF
have been presented.® They cover the range 0.1(0.1)1 for 8
and span the region from 1072 to 2.5 X 10 for z = wr,, the
normalized frequency variable. Second, in an article with a
title similar to the present one, the authors of Ref. 2 have
used the tabular results mentioned above to develop a simpli-
fied method of fitting €”(v) data, where €” is the imaginary
part of the complex dielectric constant; € =€ — i€”; v
= (w/2m) is the frequency of measurement; and i=y — 1.

The work of Ref. 2 represents a considerable advance
and provides a useful approximate approach to the fitting
problem. Nevertheless, there is still room for improvement
when (a) one wants to know how well data actually fit the
WWF, and (b) one wishes more accurate estimates of the
unknown parameters of the model. The Ref. 2 approach
finds parameter estimates independently of one another and
uses only a few points of the ¢”(v) data to determine them.
Better estimates could be obtained if all appropriate €”(v)
data were used (omitting any data in the tails not belonging
to the relaxation process of interest), and even better ones
would be obtained if complex nonlinear least squares
(CNLS) fitting of both €'(v) and €”(v) data were carried out.”
Such fitting yields an estimate of the standard deviation of
the overall fit, o, parameter estimates, and estimates of their
standard deviations as well. It may be applied to either €”(v)
or €'(v) data or, most appropriately, to both together. Final-
ly, the Ref. 2 method has only been applied to dielectric data.
It would be useful to have available an approach allowing
accurate fitting of dielectric or conductive system data and
even nonelectric data. We describe and illustrate one below
which uses all the data available and is appropriate for
CNLS fitting. In the following, the background and develop-
ment of the present method are described; a procedure to
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improve parameter estimates is discussed; and the new
method is applied to the same data used in Ref. 2. For those
who are only interested in using the fitting function, it is
defined by Eqgs. (2), (13)-{16), and (17). The results in Table I
may be used to improve the accuracy of parameter estimates
obtained with the method. ‘

ll. A FITTING PROCEDURE FOR GENERAL WILLIAM-
WATTS TYPE DATA

Let us assume that one is dealing with complex frequen-
cy response data obtained from either a dielectric or conduc-
tive system, and it is desired to compare the data with the
WWEF. To do so one needs an accurate three-parameter ap-
proximation to the WWF. Such an approximation will be
developed below.

First, it is useful to discuss a way of treating both dielec-
tric and conductive system response in a unified fashion.'8
Let us therefore introduce the normalized dimensionless re-
sponse function

;_ Ui—U. 2
T Uln - Uleo ’

where i=¢€ or Z; thus U, =e=¢€"+ie), and U, =2

=Z'+iZ", an impedance. Here € = — €". Then U,

and U,  arethew — 0and® — oo limits of U;. This norma-
lization is standard for dielectric systems but has been less
used for conductive ones. Now it has been shown® that when
a formal expression for I;(w) has been found for i = € (or vice
versa), the same expression can be applied withi = Z to rep-
resent a conductive system, one which exhibits exactly the
same frequency response and thus leads to the same shape
when plotted in the complex plane at the Z level as does the
I atthe elevel. This means that a normalized WWF approx-
imation may be used for either a dielectric or a conductive
system. We shall consider the / = € situation first and show
the i = Z extension later.

The tabular results of Dishon et al.,® involving the nor-
malized frequency variable z = wr,, may readily be trans-
formed to the I, form. Let this WW I, be designated I, for
both i/ = € and / = Z. We shall develop an accurate approxi-
mation to Iy which can be used in fitting.

But experimental data involve U, not I;, since U, and
U, areinitially unknown. Since data are usually obtained at
either the admittance Y or impedance level, one should also
consider fitting at the actual measurement level. For i = ¢,
Eq. (2} leads to

€=€, +(€—¢€,)L. (3)
Let C. be the capacitance of the empty measurement cell.
Then C_, = C.e€_,, the geometrical capacitance, and C,
= Cc€,. The admittance corresponding to € (actually e,
here)is Y, = Z 7' = iwC¢, or

Y. =iw[C, +(Co—C,)]. (4)
The equivalent circuit for Eq. (4) is shown in Fig. 1(a), where
Zx =Zxc = [’w(co_cm )IE]_I' (5)

If the dielectric system were somewhat conducting, one
would need to add a parallel resistor to Z,,, but we shall
ignore this possibility.

| lCo
l
o—9¢ "0
ZX
(a)
Cx
0—!‘——‘ ZHN —0 —>» O——¢ ZHNC —0

(b)

FIG. 1. (a) A simple general circuit for fitting data from dielectric or con-
ductive systems. Here C, is the geometrical capacitance. (b} Stages in the
development of a useful Williams-Watts fitting approximation, the HNC
function.

The above results show that if I, were a two parameter
function approximating the WWF Iy, say Iy, , and in-
volving Yww = B and 7w = 7, one would fit appropriate
complex data to the Fig. 1(a) circuit and obtain estimates of
C.,{Co—C.) Tww, and ¢y . Estimates of these four pa-
rameters, estimates of the standard deviations of the param-
eters, and o, could all be obtained most accurately and ap-
propriately using CNLS fitting.

We now consider how the Iy, “data” may be used to
find a good approximating function Iy, . Since the Iyw
results do not contain €_, they may be taken for present
convenience as representing actual errorless dielectric data,

€ww = Eglww, (6)
for which €, = 1 and €, = 0. We may thus ignore € and
C in the determination of Iy, from Iy, . Let us further
write, for the present €, = 0 case,

€4 = €oalewa. {7)
When an € model is fitted to ey data, it is clear that the
estimate of the €,, parameter obtained will be an estimate of
€04, here unity. Incidentally, the quantity €,, /€, was impli-
citly taken fixed at unity by Lindsey and Patterson in their
detailed comparison® of Williams-Watts and Davidson—
Cole® functions. For actual data, €, [or, more generally,
(Co — C,, )] is never known ab initio; it should therefore be
taken as a free parameter in the fitting of real data to an
approximate fitting function.

Let us start our search for a useful /.y, function with
that of Havriliak and Negami (HN),'® which can be written
at the present € level as

€un = €oqlun = €4/ [1 + (iw0Tun )’/}'] v, (8)

where ¢, and ¥, fall in the range [0,1]. Since z = Ty, this
result may be rewritten as

€un = 6'0.4/[ 1 + (izty )'/l']w’, 9

where t,;; = Tyn/Tww- The HN function has been used to
fit considerable dielectric data. Note that when ¢, =1 it
reduces to the Davidson-Cole (DC) function, when 3, = 1
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to the Cole~Cole!! (CC) function, and when ¢, = 9, = 1to
simple one-time-constant Debye response.

By CNLS fitting, with unity weighting, of the €, = €y
function of Eq. (9) to the ewy, data, we find that neither the
DC nor the more general HN function yields a satisfactory
approximation. Results for #ww = 0.5 are shown in Fig. 2.
Notice particularly the deviations of the €,,/€, estimates
from unity. Although even the HN function is unsatisfac-
tory, Kenkel'? has found that a reasonably good approxima-
tion to €y is obtained when one uses, at the dielectric level,
a capacitor (C, — C_ ) in series with a CC function defined at
the impedance level. We have found that this composite
function is also a better approximation than that provided by
a capacitor in series with a DC function. But these results
nevertheless suggested that the WWF might be even better
approximated by a capacitor in series with a HN function at
the Z level, as in Fig. 1(b).

Let us begin by writing the independent series combina-
tion

= (10
[1+ (forax)”]?
where it is necessary that C, = (C, - C_ ) for proper € be-
havior as @ — 0. But we need a unified distributed element
with minimum number of free parameters. Let us therefore
take R, as the following function of 7ww, C,, and fww:

R, = (Tww/Cx)ranc (Yww ) (11)
with 74 (0) = 1. Note that in order to yield a good approxi-
mation to the WWF, the ¢, and ¢, parameters of Eq. (10)
must also be functions of ¢y . For ¢y, — 1, ¢, — 1, and
¥, — 0. Then one obtains just the capacitor C, and the resis-
tor R, in series, yielding Debye response, as required in this
limit. Further, R, C, is the Debye 7y, value for $yw = 1.

Finally, let us write 75y — Tyne and define tyne (Yww)
= Tunc/Tww» With tyne (0) = 1. Now the resulting imped-
ance,a Z,, is

Z, =(iwC,)"" +

TwwTHNC ]
[ + (loTww tunc id 1 v:

Tuanc ] (12)
[1+ (iztgnc)* 1 .

Zyc=C; 1[(1-(0)—1 +

= (Tww/cx)[(iz)_l +

0.6 I . I ' I
WW "DATA" Vww=0.5
—-——DC Fit
014_———HN Fit ]
0
NS e
w U~
0.2 N, —
a
7 )
00 | | | | \
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FIG. 2. Comparison in the normalized complex dielectric constant plane of
accurate gy = 0.5 WW data with Davidson—-Cole and Havriliak—Negami
results obtained with complex nonlinear least squares (CNLS) fitting.

But for the €y, ‘““data,” we may take z as the frequency
variable itself; then 7w = 1. In order to make the HNC
element a good approximation to €y, we must determine
the functions rync(¥ww) func(@wwh ¥i(¥ww), and
¥,(¥ww ). To do so we used CNLS fitting of the I, data to
the above HNC element, transformed to a normalized com-
plex dielectric constant. Excellent fits were found for ¥y in
the range 0.1(0.1)1 covered by the tabular data when the
above four parameters were taken as free and disposable. See
the discussion in the next section.

We have not tried to fit the numerical results for the
above four functions exactly over the 0.1(0.1)1 ¢, range,
but have sacrificed some accuracy for simplicity. Ordinary
nonlinear least squares fitting yielded the following approxi-
mations:

¥1(Yww) = sin(0)[0.898 79 + 0.088 7811¢ww ], (13)
Yo(Yww) = ctn(@)[0.627 503
+ 0.614 423 exp( — 3.7732T¢ww)], (14)
Panc (Uww) = 1 + ctn(@)[0.359 585
+ 34.1304 exp( — 7.377 36¢ww)
+ 1.862 83X 10° exp( — 36.8585¢y,w)], (15)
and
tHNC(¢WW)
=1+ {ctn(@)[ 1.3672 + 136.604 exp( — 8.040¢ww )
+ 16615 10° exp( — 39.3333¢ww) ]}, (16)

where 0 =(7/2)iww . Note that since ¢, — 0 as ¢y, — 1,
¥, and tyc become unimportant when t,y, is very close to
unity.

When the above relations are substituted into the first
form of Eq. (12), one has available a new approximation to
the WWF, which we shall call the HWW function. It may be
used at any immittance level (and for nonelectrical situations
as well), and its I, expression is just

; ~1
IWTww'aNc ]
L]

[1+ (loTww tunc )'ﬁ']w2 ()

I eHWW —

where the four functions involved are given by Egs. (13)—(16).
Note that it is necessary that 1,1, be less than unity in order
to obtain the proper high frequency limiting behavior, that
where I « (iw) ="' ~ %%, Because Eqs. (12) and (17) are only
approximations to the WWF, we cannot expect them to
yield perfect estimates of (¢, — € )=¢€,, Tww, and Yyw
even when fitted by CNLS to perfect WW data. They will
instead yield estimates of these quantities which we shall
denote C, (or €,), Tww, and ¢ww We shall consider actual
fitting and adequacy of fit shortly.

Note that the distinction between the general HNC
model, or distributed element, and the specific HWW model
is as follows. The first involves the five free, disposable pa-
rameters C,, (R, C, ) = Twwunc»> Tuncs ¥1, and ¥, asin the
first form of Eq. (12). When these parameters, many of which
have no obvious physical interpretation, are free, the HNC
can fit WW frequency response very well, and probably
many other responses as well. On the other hand, the HWW
function, the combination of Egs. (17) and (13) to (16), being
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specifically tailored to the WWF, involves just the direct
WW parameters, C,, Tyw,-and fyw, all physically mean-
ingful.

We may now invoke the duality relation mentioned ear-
lier to obtain an approximation function for conductive sys-
tems. To do so, we need merely rename I ;pw 88 Izgww and
consider it a normalized impedance. Then the shape of an
I ww plot in the complex dielectric constant plane will be
exactly the same as that of Iy in the 2D impedance
plane. In order to show the inclusion of the C _geometrical
capacitance of Fig. 1(a) in the simplest way, we shall write
the result for the response of the Fig. 1(a) circuit, with
Z,=27,,;ww, at the admittance level. The result is

Y, = Yyuww =i0C,, + Ryt (Ry—R.,)

X{l {OTww Fiane ]_l]_l (18)
[1+ (forww tunc )# ] ¥ .

Note that five initially unknown parameters are involved,
C.,Ro R, Tww, and ¢y . Similarly, for the Y, expres-
sion following from Eq. (17) for a dielectric system, there are
four unknowns, C_ , C;, Tww, and gyw.

The HWW Z, (or €,) and Z, approximation functions
are incorporated as separate unified distributed circuit ele-
ments in a very flexible CNLS fitting program available from
one of the present authors (JRM). This routine allows many
different circuit configurations to be used for fitting, with
many different types of distributed elements incorporated as
parts of the circuit employed. Thus, one can have additional
resistors, capacitors, and distributed elements like the HN
and HWW, all interconnected in different ways. Further,
weighted real, imaginary, or complex data fitting can be car-
ried out.

lil. ACCURACY OF THE APPROXIMATION AND SOME
FITTING RESULTS

Figure 3 shows comparisons in the complex dielectric
constant plane of WW data and the results of fitting the
HWW function to these data. For each iy, value, the full
data set of Dishon et al.® was used, 99 data points covering
about 6.5 decades of frequency. In spite of the large number
of points, their distribution was such that a few of the

tww S 1 curves show an odd straight-line region at the left of
their peaks. These regions arise because the plotting routine
connects adjacent points with straight lines, indicating here
the absence of data points sufficiently close together to yield
the illusion of a smooth curve.

It is clear from Fig. 3 that the fits were excellent, except
at the very lowest frequencies of the ¥ww =0.1 and
Yww = 0.2 curves. As can be seen, the range of variation of
€" /€, was small for these curves, especially for that with
Yww = 0.1. The lack of sufficient data at the extremes of
frequency resulted in much less accuracy for the fyw = 0.1
HNC parameters than that for the higher ty, values.

Table I shows a number of important results obtained
from unity-weight fitting of the ey data. First one sees the
standard deviation estimates for the overall fit o, using the
HNC and the HWW models. They differ for each specific
Yww value for two reasons. First the HNC fitting involved
one more degree of freedom than did that for the HWW.
Second, the HWW parameter expressions, Egs. (13)-{(16), are
not exact but are only good approximations to the actual
numerical estimates of these parameters obtained in the
HNC fitting. It is nevertheless gratifying that oy and
Tmww are as comparable as they are.

The small numerical values of the ¢’s indicate that the
fits obtained were very good, in agreement with the compari-
sons shown in Fig. 3. When using the present HWW model
for either dielectric or conductive fitting of data believed to
be of WW character, one should not expect to obtain o,/ U,,
values much smaller than those shown here even when the
data are of perfect WW character, as are the €y results we
have used. Here U, =U, — U,_ is the important data scal-
ing factor; U, = U, =€, =1 (or C, = 1} in the present fit-
ting. Some statistical variation is to be expected, but it will
generally lead to larger o,/ U, values than those shown here.
When o,/U,,, obtained from a CNLS fit with the HWW
model, is found to be an order of magnitude or larger than
the values shown here, one can certainly conclude that the
data are not well represented by the WWF.

The three remaining columns of Table I are the heart of
our present results. They show how estimated parameter
values differ from true values for HWW fits to exact WW
data. Because the estimates were generally so close to the
true values, we have shown their estimated relative de-
viances rather than their actual values. For each value we

TABLE L Standard errors of fit for the HNC and HWW, and HWW fit correction functions.

Yorw .
Yww 100 e 10*Garorw [1— (Yww/Yww)] [1— (Fww/Tww)] 1-U,/U,)
0.1 8.8 1.6 — 1.8 —21.14 6.52x1072
0.2 4.3 6.6 (—6.62 +0.04)x 102 (—4.91 +0.47)x10™2 (2.87 +0.37)x 1073
0.3 8.6 6.4 (1.92 4+ 0.03)x 102 (2.34 + 0.15)x 102 (—3.35+0.22)x1073
0.4 11 8.3 {2.19 + 0.04) x 102 0.87 + 1.31)x 1073 (~3.05+0.22)x1072
0.5 9.8 8.3 (7.52 + 0.44)x 107° {(—0.76 +9.38)x 10~* (—2.1140.18)x 1073
0.6 713 6.7 (8.66 + 3.51)x10~* (—9.57 +0.62)x 103 {—8.60 4 1.35)x 10~*
0.7 44 5.0 (—2.36 + 0.26)x 1073 (—3.64 +0.39)x10°3 (—1.78 £ 0.96)x 10~*
0.8 20 2.5 (—3.06 +0.13)x 1073 (6.28 +£0.17)x 103 (—0.71 + 4.63)x 103
0.9 0.52 0.56 (—1.23 +0.03)x 1073 (9.18 4+ 0.03)x 1073 (—2.55+1.02)x10"%
1.0 ree 101 0 0 0
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FIG. 3. Comparison in the normalized complex dielectric constant plane of
accurate WW data with CNLS fitting results of the HWW model to these
data.

also show the standard deviation of the quantity, except for
the lower accuracy ¥ww and ¢y = 0.1 results. It is par-
ticularly useful to show the standard deviation estimates be-
cause when a standard deviation is comparable to or larger
than the quantity with which it is associated, no credence
can be attached to this quantity and it may as well be set to
zero. An extreme example is the ¥y = 0.5 value of v in
Table 1.

It should be noted that the HNC parameter approxima-
tion formulas of Eqs. (13)—{16) were developed without using
the ¢ww = 0.1 fitting results since the Iy, data were insuf-
ficient to yield good numerical parameter estimates for this
value of Yy . Further, the ¢y = 1 pure Debye data were
also not directly used in the least squares fitting which led to
Eqgs. (13)(16) since the necessary values of the parameters
were known in this limit. When the HWW model was used
for pure Debye data (see last row of the table), we obtained a
perfect fit (within the double-precision accuracy of the calcu-
lations) and exact (to about 14 decimal places) parameter
estimates.

Because the ¥y, = 0.1 data was not used in the devel-
opment of the HWW approximate model, the large results
for Yww = 0.1 shown in Table I represent quite chancy ex-
trapolations. Nevertheless, they are included here since they
are likely to be of more use than nothing for estimation of
WW parameters when tyw <0.2.

The purposes of fitting a model to data are to see how
well the model fits and, if the fit is sufficiently good, to obtain
estimates of the values of the parameters of the model so
their physical significance can be assessed and interpreted.
When the HWW is used to fit appropriate data and the re-
sulting oaww /U, is less than about 10~2, one will obtain
meaningful estimates of the WW parameters ¢ww, Tww>
and U,,. Although we have defined w=[1—(U,/U,}] in
Table L, the factor U, /U, is equal to €, /€, (or C,./C,)inthe
i=¢ case and to R./R, in the i=2Z case, where
R.,=R,—R_.. Thus, in general we may write
w=[1-U,/Uy}]

The results of Table I show that when the HWW yields a

ood fit to a set of data, the raw estimates ¥yw, Tww, and
U,, obtained from CNLS fitting will be no more than about
1% from the true WW values for most of the ¥y, range.
Such accuracy may be sufficient for many purposes. But the

Table 1 results allow one to obtain parameter estimates
which are about ten times more accurate if WW data is in
fact involved. First notice that the u function depends on
Yww, While the v and w ones are functions of ¥y, the true
value of the WW exponent. Now the table may be used in the
following way to obtain much improved estimates of ¥y,
Tww and U, . We shall designate the new estimates with two
superscript carets.

To illustrate the method, suppose fﬁww = 0.45. One
may now use linear, graphical, or curvilinear interpolation
between the Yyw = 0.4 and the ¢y = 0.5 u values in the
table to find an estimate of #{0.45). Curvilinear interpolation
yields u(0.45)~0.0142. Then the improved estimate of ¥y
follows from

Yww = Yww/[1 — u(bww)]. (19)
In the present case, this yields @ww = 0.4565. This result
may now be taken as the best available estimate of Yww.
Thus, we next take ¢ww = ¥ww and interpolate using the
v(ww) and w(¢ww) functions in Table I. We obtain
v(0.4565)~3.4X 10~ % and w(0.465)~ — 2.52 107>, These
results yield 7y = 1.000 347y, and U = 0.9975 U

As a final fitting example, we apply the present methods
to the data of Sasabe and Moynihan'? used by Weiss ef al.? to
illustrate their approximate analyses method for WW
data.'® Only seven £” /£, vs v data values were used and they
were less accurate than the original data since they were
digitized from a small published figure. Although they thus
do not allow a very significant test of the present approach,
some instructive results are found. Here £/, is the maximum
(peak) value of £”(v). Its actual value does not appear in the
original paper.’® Unfortunately, Weiss ef al. did not recog-
nize that the actual data were given in normalized form as

£"/€”, vs v rather than as £” vs v. Thus they determined ¢,

independently from the data (implicitly assuming &"/e;,
= £") and obtained the estimate ¢}, = 0.981 rather than the
correct (for the above assumption) value of unity. All their
quoted original data £” values are actually £” /¢};, values.

Our nonlinear least squares fit of the above data using
the HWW model yielded the following estimates:

Jww = 0.5991(1 + 7.9 1073),
Fww = 1.821X 10741 + 1.2X 107 2)s,
U, =3.0352(1 +7.1x1073),
and
o,/U,, =1.05x107>.

Here we have taken U,, = (g, — € )/¢],, and the + terms
are estimated relative standard errors. We tried to determine
a separate ¢ /€, parameter from the fitting but the data
were too few and did not extend to sufficiently high frequen-
cies to allow a meaningful estimate to be obtained.

The relatively small value of 0,/U,, suggests that the
data are indeed well fitted by the WWF, but data covering a
wider frequency range (as in the original paper) would be
needed to confirm this hypothesis. Since ¢ is likely to be
between 0.593 and 0.604 according to the above result, it is
scarcely worthwhile to apply the improvement technique de-
scribed earlier. Thus, although it yields wa ~0.5996, we

J. Chem. Phys., Vol. 84, No. 1, 1 January 1986

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. R. Macdonald and R. L. Hurt: Dielectric system frequency response 501

shall take ;/)ww ~tpyw = 0.60. Then the v and w results in
Table I lead to

Forw==1.804X10"* s

and

U, ~3.033.

For the present ratio-type data there is another test of the
appropriateness of the WWF available. For 3y, = 0.6 we
find from the original exact Iy, data that the correct value
of U_,(0.6) is 3.096, about two percent larger than the esti-
mates above and about three standard deviations larger as
well. This large a difference is quite improbable for true WW
data but may arise here from the paucity and inaccuracy of
the data.

There is a misprint in the Weiss et al. paper which needs
mentioning before we can directly compare their WW pa-
rameter estimates with ours. In order to agree with earlier
definitions and with the tabular exact ey data,’ the param-
eter A appearing in their Eq. (4) and elsewhere should be
replaced by 74, so that 4, = A4 /7. Their original A4 is not
equal to (g, — £, ) as stated but to 7(g, — £, ) for ordinary £
data. Thus the redefined A4, 4,, equals (¢, — £ ). Another
correction to 4, pertinent here only because of the interpre-
tation of the (¢” /) data as £” data, arises from the use by
Weiss et al. of their inappropriate £}, = 0.981 estimate. To
obtain U, values comparable to those determined directly
from the present fit, the Ref. 2 values of 4 must be divided by
{0.9814). This has been done to obtain the U,, values quoted
below. )

Weiss et al.? derived four different sets of Yrww, Tww,
and U_, estimates from these same data using their three-
point approximate method. Their values fell in the following
ranges:

0.59< Pyw <0.61;  1.80X 10™*< Py <1.82X 107%

Lo ' ! .
L o DATA
Y x WBD Fit
0.9l . +HWW Fit  _
' &
0.8 : .
*E
w
S
v .
0.7 . _
%-
0.6 L -,‘ —
0.5 : . -
25 3.0 35 4.0
log,g (V)

FIG. 4. Complex dielectric plane plot of dielectric data (Ref. 2); fitting re-
sults using the HWW model, and fitting results of Weiss, Bendler, and Di-
shon (Ref. 2). The dots are included here to help guide the eye.

.oF ! ' N
P ¥ . o DATA
¥ x DC Fit
09 . + HWWFit
®
0.8 * —
Y: .
>
\u .
0.7+ . —
¥
0.6 s |
0.5 ! I 'g L
2.5 3.0 3.5 4.0
lOg|0 (v)

FIG. 5. Complex dielectric plane plot of dielectric data (Ref. 2); fitting re-
sults using the HWW model; and fitting results using the Davidson—-Cole
(DC) model.

and
3.05< U, <3.14.

Using the set thyw = 0.60, #yw = 1.81X10™%, and
A =9.54 (U, = 3.095), they calculated estimated values of
&” for each frequency. When we take these values, consider
them as new data &”, and fit using the HWW, we find the new
estimates

Pow = 0.6223(1 + 7.8 1073),
Faw = 1743 107%(1 + 1.1X 10~ 2)s,
ern U, =2.954(1 + 6.7.1073),

and .
o/ U, = 1.16 1073,

In turn, these values lead to
Pww = 0.6223,
Fow = 1.737X 107 %,
and
e U., =2.944.

The resulting values of /(}ex and 09: are 3.011 and 3.001,
respectively. Since these values, obtained by using all the
data together, differ somewhat from those used to produce
the data, we thus get some idea of the uncertainties inherent
in the Weiss et al. approach. It would certainly be useful in
providing initial estimates of WW parameters tobe usedina
HWW CNLS fitting.

, Figures 4 and 5 show some of the fitting results graphi-
cally. The WBD points in Fig. 4 are those of Weiss, Bendler,
and Dishon.? Figure 5 includes the results of a DC fit of the
griginal data. It yielded an estimate of U, of
U., =3.0553(1 + 6.1X 10~?)and a value of 5,/ U, of about
1.08 10~2. It does not yield estimates of Yy and Ty, of
course,® but led to ¥pc = 0.428(1 + 1.1X1072) and #p
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=4.479% 10741 + 1.9X 1072). Since this fit is nearly as
good as that with the HWW, it is clear that the present data
are insufficient to allow a firm choice to be made between the
DC and the WW models.
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