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ABSTRACT 

Some equivalent ctrcutts whtch mvolve one or two dtstributed ctrcuit elements are dtscussed. These 

ctrcuits are useful m fatting small-signal frequency response data for sohds and liqutds. A fitting circutt 

recently proposed by Bruce to represent distributed bulk effects m conductmg materials IS shown to be 

closely related to earlier work. Although Bruce demonstrated that his circuit fitted certain data better than 

a simple alternative circuit, tt is not physically realism in the htgh frequency region. We investigate how 

well the response of the Bruce circuit (whtch involves one dtstrtbuted circuit element and three ideal 

elements) can be simulated by that of sampler circutts, ones which Involve a single unified distributed 

element, possibly in parallel with a single ideal capacitor. The usefulness of several different dtstrtbuted 

elements. most of which have been widely used for data fatting in the past. is compared. Complex 

nonlinear least squares fitting results suggest that several of the simpler circutts considered are preferable 

to the proposed Bruce circuit for fitting of most ionic-conductor frequency response data. Fmally, two 

structurally different equivalent circuits which mvolve two distrtbuted elements each. so they can 

represent distributed Interface as well as bulk effects. are compared and found to be able to simulate each 

other quite well under certain condtttons. Problems whtch thus arose m choosmg the best equtvalent 

ctrcutt for data fitting are discussed. 

INTRODUCTION 

More often than not, the electrical small-signal frequency response of a conduc- 
tive or dielectric system includes a finite-length frequency range within which the 
response is proportional to a power, rz, of the angular frequency, w. The exponent n 
usually falls in the range 0 < II < 1. When both the real and imaginary parts of an 
immittance function (impedance. admittance. complex modulus, or complex dielec- 
tric constant) depend on frequency in this region with the same exponent n, the 
response is that of the constant phase element (CPE), a distributed circuit compo- 
nent whose admittance, Y = Y’ + iY”, may be written [l] 

Y&r = A,, ( iw ) n = AOwn [ cos( n7r/2) + i sin( n7r/2)] . (1) 

where A, is independent of frequency. Its constant phase angle B is thus just nn/2. 
Although the CPE is not physically realizable when considered as a response 
function over all frequencies [1,2], it, or a near approximation to it, is so often found 
in Impedance Spectroscopy (IS) (for a finite frequency range not including the 
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extremes of frequency) that such response is almost ubiquitous. This means that 
when we try to represent IS data by means of an equivalent circuit, it must usually 
include one or more distributed circuit elements (DCE’s) of CPE type or ones which 
at least exhibit CPE-like response over part of their ranges of applicability. 

Although here we shall consider only intrinsically conducting systems, such as 
ionic hopping conductors, the DCE’s we shall use, when expressed in normalized 
form, are equally applicable to dielectric systems [3]. We shall start by discussing 
equivalent circuits which involve only a single DCE and shall conclude with a 
comparison of two circuits involving two DCE’s each. 

EQUIVALENT CIRCUITS INVOLVING A SINGLE DISTRIBUTED ELEMENT 

Figures la and lb show two circuits recently compared by Bruce [4] using 
ionic-conductor IS data and complex nonlinear least squares (CNLS) data fitting [5]. 
Here C, is the high frequency limiting capacitance of the system, the geometrical 
capacitance. It is always properly present in any equivalent circuit and always 
bridges the electrodes [6,7]. It is often actually omitted from equivalent circuits used 
to fit data, however, because the data do not extend to sufficiently high frequencies 
that its effect is apparent. The resistance R was identified by Bruce only as the dc 
resistance of the material. Provided that one is working with a material that exhibits 
only bulk response, R is also the high frequency limiting bulk resistance of the 
system, R,, only equal to the dc resistance when no other resistive contributions 
appear at lower frequencies [6,7], as is the case here and in Bruce’s work [4]. Thus 
the actual, measured dc resistance is not necessarily the bulk resistance of the system 
and may even be infinite. but R r is always present in any real conducting system. 

The DCE’s in Bruce’s circuits were identified only as frequency dependent 
admittances but were in fact CPE’s, as shown in Fig. 1. Although Bruce ascribes the 
Fig. la circuit to a 1977 paper of Jonscher [8], its provenance is actually considerably 
earlier. The CPE was perhaps first discussed for ionic systems by Fricke [9] in 1932 

R R 

(Cl) (b) 

(cl 

Fig. 1. Four simple equwalent &cults mvolvmg constant phase elements (CPE’s). 
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and appears explicitly in the 1941 work of Cole and Cole [lo] for dielectric systems. 
The first (implicit)‘ appearance of the parallel combination of a CPE and a resistor 
(as in Bruce’s Fig. la and the present Fig. la) in the solid electrolyte area was the 
introduction by Ravaine and Souquet [ll] in 1973 of the distributed impedance 

function 

Z = Z’ + iZ” = Y-i = R/[l + (IW~~)~] (2) 

which leads, when plotted in the complex plane, to an arc of a circle whose center 
lies below the real axis for 0 < n < 1. It has thus been termed [3,12] the ZARC DCE. 
Equation (2) was proposed in analogy to the Cole-Cole (CC) dielectric-system DCE, 
which has exactly the same functional dependence on frequency at the complex 
dielectric constant level and thus leads in general to a depressed semicircle in the 
complex dielectric constant plane [3,10-121. 

Although eqn. (2) represents a unitary DCE in its own right and may be 
interpreted m terms of a distribution of relaxation times in the same way the CC is 
so interpreted [lo]. it may also be considered as a composite circuit element. the 
combination of a CPE and resistor in parallel [1,3,12]. This result follows im- 
mediately when we set M, = 7;‘. Although the ZARC has been used to fit 
considerable data. including some for P-alumina [13], like the CPE it is physically 
unreasonable at the frequency extremes. Any real linear system with time-invariant 
material properties should have a shortest (non-zero) relaxation time and a longest 
(non-infinite) relaxation time [3,12.14]. Thus at sufficiently high and low frequencies 
the response of a conductive system must reduce to that of a single ideal resistor and 
capacitor in parallel (no distributed element effects). In turn this requires that as 
w-0. [l-(Z’/R)]aw’ and -Z”ao. while for O+CJO, Z’CCW~’ and -Z”a 

0 ‘. The ZARC does not satisfy these conditions, which are often of importance 
only outside the (limited) frequency range of most IS measurements. 

The Bruce circuit of Fig. lb removes one of the frequency-extreme deficiencies of 
the ZARC and the Fig. la circuit, namely the one for ~3 + 0. The addition of the 
capacitor C, ensures that the lb circuit behaves as a capacitor and resistor in 
parallel in this limit. Incidentally. the series combination of an ideal capacitor and a 
CPE, as in the Bruce circuit, has been used for many years, since the CC dielectric- 

system DCE may be considered just such a composite element [3,10]. Bruce was 
perhaps the first, however, to demonstrate its usefulness for a conductive situation. 
Now the requirement of RC-type behavior in the frequency extremes necessitates 
that the arc of an impedance plane plot must intercept the real axis with an angle 
whose magnitude is 90” at both the low and the high frequency ends. Although this 
perpendicular-intercept condition has been in the literature for some time [15], it is 
not well known. It is a necessary but not sufficient condition for physical realizabil- 
ity since it does not ensure limiting single RC behavior. For example, for w + cc the 
Bruce circuit does lead [4] to a 90” angle (for n < 1) but not to high-frequency-limit- 
ing RC behavior. Thus this circuit is still not entirely physically reasonable and 
would require the addition of a new element, a resistor in series with C,_, to be made 
physically realistic at both frequency extremes. 
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Now Bruce has shown that IS data on the molten salt [0.4 Ca(NO,), + 0.6 
KNO,] and on the ionically conducting glass K,Si,O, are appreciably better fitted, 
using CNLS. by the Fig. lb circuit than by that of la. As may be expected, the 
improvement occurs principally at lower frequencies where the influence of C, is 
important. Although Bruce shows the comparisons by means of complex impedance 
plane plots, what he refers to as impedance and plots is actually the complex 
conjugate impedance, 2 * = Z’ - iZ”. The problem mentioned above with the high 
frequency limit of the Bruce circuit does not show up clearly on an impedance plane 
plot. One would require a plot of log( Z’) vs. log(o) to distinguish between the Bruce 
frequency exponent of (n - 2) and the proper - 2 exponent in the w ---f x) limit. 

Now it is of interest to see how well the Bruce circuit can mimic some other 
equivalent circuits found useful for fitting of IS data. Since most of the circuits to be 
considered have been used in the past to fit a wide variety of frequency response 
data. the degree to which the Fig. lb circuit can simulate the response of these other 
circuits will yield a measure of its generality and usefulness. Instead of using the 
Bruce circuit to fit separate “data sets” generated from each of several other circuits 
involving DCE’s. for simplicity we shall reverse the procedure, generate “data” using 
the Bruce circuit and attempt to fit it with other simple circuits using full CNLS. The 
data used by Bruce in testing the appropriateness of his circuit were given in their 
original publication [16] only in the form of complex modulus function graphs for 
several different temperatures. It is not clear whether the Z values actually fitted by 
Bruce were derived by reading points off of these graphs and transforming or not. In 
order to avoid the errors introduced by such a procedure, but still to maintain a 
close connection to Bruce’s work, we shall generate the “data” to be fitted here using 
the parameters he obtained for his circuit by CNLS fitting of K2Si,0, data [16]. 
The temperature associated with these results was not stated by Bruce but appears to 
be 49.6”C. The parameter values (in specific form) are R = 1.266 X lo9 D cm, 
C, = 3.249 X lO_” F/cm. A, = 1.978 X 10-l’ 9-l cm-’ s”, n = 0.562, and C’, = 
7.137 X lo-i3 F/cm (there is a misprint in this last value in ref. 4). Using these 
values and the Fig. lb circuit, we generated 51 values of Z distributed uniformly in 
log angular frequency in the range 1 G w/s-l G 105. 

The circuits fitted to the above “data” all initially consisted of C, in parallel with 
a conductive-system unitary DCE. The DCE’s used were the ZARC, the 
Havriliak-Negami [17] (HN), the Williams-Watts [18] (WW), and that following 
from a distribution of activation energies (DAE) model [3.19], involving a double 
exponential probability density, the DAE,. Only the DAE, model, of all those 
considered in this work, is physically reasonable at both frequency extremes [3]. The 
empirical HN DCE is of the form 

Z = R/[l + (i~.&]‘~ 

which reduces to the ZARC of eqn. (2) when li/, = n and Ji, = 1. Exact analytic 
expressions for the impedances of the other two DCE’s are not available, but very 
accurate approximations for them [3,20] are built into the CNLS fitting routine used 
here [5]. This routine, which allows many different ideal and DCE’s to be used in 
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TABLE 1 

CNLS fitting results of Impedance “data” derived from the Bruce circuit with the parameter values 

shown. The last column shows the results obtained from a fit of the “data” transformed to the complex 

modulus level. Parameter estimates are shown in the form Q/a,, where q is the esttmated relatrve 

standard deviatron of Q 

Parameter Bruce 

circuit 

ZARC HN DAE, DAEz 

10-9R/fI cm 

lO”A,/Q-’ cm-’ s” 

10%,/s 

10’sCJF cm-’ 

10’3C,/F cm-r 

1.266 1.274/ 

8~10-~ 
1.978 _ 

1.4146 1.679/ 

0.036 

0.562 0.7820/ 

8.3~10-~ 
_ _ 

32.49 - 

7.137 2.83/ 

0.14 
_ - 

_ 3.6 x lo6 1.59x lo6 

1.2706/ 1.2648/ 1.2276/ 

4x1o-4 2x10-4 2.1 x 1om3 
_ 

2.984/ 

0.030 

0.7809/ 

3.9x1o-3 

0.489/ 

0.024 

_ 

2.092/ 

7.6~10-~ 

1.2103/ 

2.6xlOK’ 
- 

_ 

1.959/ 

3.3x 1om3 

1.3179/ 

1.33x1o-3 
_ 

_ 

8.233/ 
9.7 x 1o-3 
_ 4.048/ 6.513/ 

0.016 0.014 

9.47 x lo5 1.27x 1O-4 

many different circuit configurations, is available from one of the authors (J.R.M.). 
Fitting results are listed in Table 1 and presented in Figs. 2 and 3. In the tables, (I~ 

is the estimated standard deviation of the overall fit, and the estimated parameter 
values, Q, and their estimated relative standard deviations, a,, are shown in the form 
Q/u,. Parameter values shown without a a, value were fixed. Unity weighting was 
employed in the fitting results of Table 1. The parameter values used in the Bruce 
circuit to generate the “data” fitted are shown in the second column of Table 1. 
There are two time constants, not involving C,, which may be calculated for the 

~ Bruce Clrcuat “Data” 
---- HN Fit 

6 ---.-.- ZARC Fit 

E 

; 
r$ 4 

b 

x 

‘;‘2 

Fig. 2. Complex Impedance plane plot comparmg “data” calculated from the Bruce ctrcurt wrth HN and 

ZARC CNLS fats. As m Table 1. C, 1s non-zero here. 
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Y 

- Bruce Circuit “Data” 
---- DAE, Fit, r2 free 

Fig. 3. Complex Impedance plane plot comparmg the Bruce “data” wth the result of a DAEz CNLS fit. 

Here. no extra C, element was present. 

Bruce circuit. The first. which applies at sufficiently low frequencies that the effect 
of C, is dominant, is given by r,_ = (CL/A,)“, where m = l/(1 -n). It is a CC 
dielectric-system time constant. The other, To = (ZUO)‘/“, is a ZARC conductive- 
system time constant, dominant when the effects of CL are negligible. For the 
present Bruce parameter values, or = 0.0162 s, and the value of 7, is given is column 

two for comparison with the similar time constants of the other DCE’s. 
The DAE, DCE here involves the four parameters R, cYd,, q,, and +. Here 

& = 8, - g0 = 0.5 ln(r,), where r, is the ratio of the ,maximum to minimum time 
constants in the system. In addition, 6 E/kT; go is the lowest normalized 

activation energy of the system; &i is the central normalized activation energy: 

&In,, = (28, -&O) is the maximum normalized activation energy. Although g0 may 

be zero, gmaX must generally be finite [3]. Since we are dealing with a thermally 
activated system, it turns out that Q is of the form 7” = ra exp( b,), where we have set 
the y of the earlier work [3] equal to unity here and 7a is temperature independent. 
When r, is of the order of 10’ or larger, the complex plane shape following from the 
model is virtually independent of r2. but it does depend on r, as r, becomes smaller, 

as is the case here. 
It was found that much worse fits were obtained using the DAE, in parallel with 

C, than without it. For example, the uf estimate obtained using the DAE, with C, 
taken fixed and equal to the Bruce value and with the other parameters free was 
4.67 X 106. We found that several DCE’s which lead to quite unsymmetric complex 
plane plots [3] did not yield good fits of the Bruce circuit “data” and their fitting 
results are therefore not included in Table 1. As Figs. 2 and 3 show, these “data” 
produce very nearly symmetric impedance plane plots. We do include the potentially 
asymmetric HN results in Table 1 and in Fig. 2; clearly the actual asymmetry is 
small here. Not included are the results of WW fitting, which led to a uf of about 
3 x 106. Here a non-zero C, of about 8.7 X lOPi F/cm was quite necessary in 
order to allow a fairly good fit to be obtained. Incidentally. Boesch and Moynihan 
[16] (BM) fitted their data only with the WW model, using an approximate approach 
to do so. 
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The Table 1 results show that very consistent R estimates are obtained from all 

the fits, as well as reasonably consistent r0 estimates. But exponent estimates appear 
to be quite different. Differences arise in part because + is not quite the same kind 
of quantity as are n and 4. The possible range of $J is - 00 < + < 00. allowing it to 
vary linearly with temperature under some conditions [3]. Only when $I + _t w or 
r, -+ 1 does the DAE, lead to single-time-constant Debye response. 

Note that the Bruce and HN circuits involve five parameters and the ZARC and 
DAEz only four free parameters, including a C, parameter in all but the DAE, 
case. Figure 2 shows that even a ZARC fit of actual experimental data like the 
present Bruce exact “data” could be distinguished from a Bruce-circuit CNLS fit of 
such data only if the data had very small experimental errors indeed, smaller than 
typical errors of nearly all real data. The ZARC fit obtained here seems appreciably 
better than that Bruce obtained with the same fitting circuit. Certainly the HN and 
DAE, fits are so good that they could not be so distinguished unless good data were 
available which extended far down in the high and/or low frequency tails of the 
complex plane plots. Although Fig. 3 shows that complex plane graphical distinction 
between the results of the DAE, and the Bruce “data” is impossible over the whole 
frequency range covered, examination of the numerical fittmg residuals showed that 
deviations increased at the highest frequencies, those where the DAE, is physically 
realistic and the Bruce circuit is not. 

The results shown in Table 1 for the ZARC, HN, and the first column of DAE, 
estimates were all obtained from CNLS fitting of the “data” in Z form. the same 
level considered by Bruce. But the actual BM data [16] were all given at the M, or 
complex modulus level. where M = M’ + M” = luC,Z. Here C, is the capacitance of 
the measuring cell when empty. It thus seemed worthwhile to carry out a DAE, 
CNLS fit of the data in M form for comparison with the Z-fit results. The last 
column of Table 1 summarizes the results of such a fit. 

In order to transform the Z data to the M level, one needs a value of C,, a 
quantity not mentioned by BM or Bruce. Since M’( w -+ W) = M, = C,/C,. how- 
ever, one can obtain C, from knowledge of IV, and C,. Although BM presented no 
C’, values, they did list M, ones. If we therefore combine the BM M, = 0.118 
value for their 49.6”C data with the Bruce value of C,, we obtain C, = 8.422 X lo-l4 
F/cm, the value we employed in the data transformation. 

Because of the different effective weighting and magnitudes of data at the Z and 
M levels, one obtains very different sr values for A4 fits than for Z fits. If the model 
were an exact fit to the data, one would, however, obtain exactly the same parameter 
estimates for either type of fitting. The differences found here are indicative of the 
effects of systematic errors present in fitting a model to data which are not entirely 
consistent with the model. Further, the M transformation weights the higher 
frequency end of the data set more than the lower end. Incidentally, the M-level 
DAE, fit was appreciably better at the high frequency end. where relative residuals 
were less than one percent, than at the low frequency end of the data. Indeed the 
transformed M data. and predicted values from the fit, were reasonably close to 
actual 49.6”C BM data points read off their graphs. 



How is it possible that the DAE, can yield a very good fit of the Bruce “data”, 
either at the Z or the M level, without a C, in the fitting circuit? The reason is 
clear. All the other fitting models. including the Bruce circuit. are physically 

unrealistic at the high end of the frequency range where the effect of C, is greatest. 
They all thus need a C, in order to allow improved fitting in this region. But the 
DAE, goes to the physically realistic limit of a capacitor and resistor in parallel, in 
the present conductive-system case, as w + cc. Thus the DAE, can well fit data like 
that of BM, which approaches a constant M, in the high frequency limit. without 
the explicit addition of a separate C, element. A C, is thus implicitly included in 
the DAE, fit. When. in fact, a separate free C, parameter is included in the fitting 
circuit. its value is driven down towards zero during the CNLS fitting process, just as 
one would expect. Only if experimental or theoretical data were obtained from a 
model well represented by a resistor in series with a DAE, DCE would a separate 
C, element be needed. If the original BM data were available. fitting with such an 
element and a series resistor would be warranted. Note that one of the virtues of 
CNLS fitting is that the addition of possible redundant circuit elements in the 
equivalent circuit being fit does no harm. If an element is redundant, its final 
estimated value will either be negligible compared to the effects of other circuit 
elements and/or its relative standard deviation will be of the order of unity or 
greater. Such elements can then be eliminated from the circuit used for a final 
fitting. 

For comparison with the M-level DAE, fit. we also carried out a ZARC plus C, 
fit at the M level. The fit was appreciably better, relative to that of the DAE,, at the 
M level as compared to that at the Z level. For example, a value of ur of 
1.32 x lop4 was found, much closer to that of the DAE, at this level. Further. the 
estimated C, value found and its estimated relative standard deviation were 
6.95 x 10P’3/2 x 1O-3 F/cm, much closer to the actual Bruce value used in 
generating the data. 

Although the present fitting results are not completely comparable to those of 
Bruce using the Fig. la and lb circuits, they show that the ZARC and a parallel 
capacitor can simulate the Bruce circuit much better than Bruce concluded. The 
origin of the difference is unknown. In any event, it appears that the ZARC. or even 
better, the HN, with a parallel C’, can simulate the Bruce circuit more than 
adequately in almost all practical cases; both circuits also require the same or fewer 
parameters and are simpler in form than Bruce’s circuit. Thus Bruce’s claims for the 
special usefulness of his circuit and his identification of a particular physical process 
modelled by C, seem somewhat nugatory. 

It is quite clear that the original data [16] are associated with a thermally 
activated system; further they also involve a distribution of relaxation times (DRT). 
not just a single-time-constant Debye response. It is thus plausible to assume that 
the DRT arises from a DAE and that the DAE, model is therefore particularly 
appropriate for analyzing the data. Certainly it can fit the present Bruce “data” very 
well indeed with only four parameters, as opposed to five for the non-thermally- 
activated Bruce circuit, and it may well be the most appropriate model for the 
original BM experimental data as well. 



EQUIVALENT CIRCUITS INVOLVING TWO DISTRIBUTED ELEMENTS 

Thus far we have dealt with a situation where some or all of the bulk properties of 
the material are distributed and have paid no attention to interface effects. But most 
ionically conducting materials with highly conducting electrodes do exhibit such 
effects. particularly when the frequency range is extended to very low frequencies. 
Further, it is often more likely that interface properties are distributed than that 
bulk ones are, especially for homogeneous materials and single crystals. Just as 
distributed bulk properties lead to the need for one or more DCE’s m a fitting 
equivalent circuit, so too do distributed interface properties. Therefore. it is not 
unreasonable to expect to find that two or more DCE’s are needed to fit experimen- 
tal data that cover an appreciable frequency range, particularly one extending to low 
frequencies. Here we shall compare two such circuits. omitting C’, elements for 
simplicity. 

The circuit of Fig. lc has been used by Bates [21] to fit some of his recent data on 
single-crystal p-alumina at room temperature and below. That of Fig. Id has also 
been used to fit [22] earlier data [13] on this material. Note that it is essentially just 
the Fig. la circuit with a CPE in series with it to represent interface effects. Bates 
was kind enough to send us some of his new data, along with fitting results for 
T = 150 K for the Fig. lc circuit. It was thus natural for us to try fitting these data 
with the Fig. Id circuit. We were initially quite surprised to obtain parameter 
estimates nearly identical to those obtained from Bates’ fitting. To investigate these 
results more systematically, we used the parameter estimates obtained from fitting to 
generate new Fig. lc “data”. These data involved X9 impedance values covering the 
range from 100 to 7 X 10’ Hz in equal logarithmic steps. Because of the wide range 
of impedance magnitude covered by the data, for the CNLS fitting we used 
weighting derived by assuming that the uncertainty in a real or imaginary data value 
was proportional to its magnitude. 

Results of our various fits are summarized in Tables 2 and 3. The first column 
shows the parameter values from which the data were generated and the second 
shows the results of CNLS fitting to the Id circuit. All CPE “A” parameter values 
correspond to the A, parameter of eqn. (1). As mentioned above, very close 

TABLE 2 

Clrcut transformatlon fitting results m the form Q/a,, where 0, 1s the estimated relative standard 
dewatlon of Q 

Circuit Fig lc Cmxut Fig. Id Circuit Fig. lc 

R,=13X105 R,=l 26~10~/2.6~10-~ R~=1.300x105/~.7x10-~ 
A,, = 3.5x10-’ A2=3537X10-y,'5.8X10~J A,=l.864~10-‘,‘4.9~10-~ 

n* = 0.91 n, = 0.9103/7.1 X 1o-5 

A;=3,73XlO-“/3.7X10-’ 

n, = 0.9100/7 2x10m’ 

,4,=3.5x10-” A,=2.046~10-“‘/3,4x10- 

uh = 0.96 n, = 0.9569,‘2 98 x 10m ’ n,, = 0.9599/3.2x10- 4 

of = - a,=1.26~10-’ 0, =1.24x10m” 
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TABLE 3 

Clrcmt transformation flttmg result5 

Clrwt Fig lc Ctrcmt Fig. Id 

R,=1.3X105 R,=3.29x102/8.3x10K 
A, = 10~” Az=1.097~10-y,‘4.2~10-4 

,I ,, = 0 91 n z = 0.9565,‘2.4 x lo-’ 

A,=10_9 A,=2.31~10~‘/3.3~10~’ 

n,, = 0.96 11, = 0.9647/2.6x 10m3 

lJf = - 0,=1.75x10-’ 

Circmt Fig. lc 

R,=2088~10’/94~10~” 

A&=244x10-‘“/1.7~10~’ 

n, = 0.9612/1.3~10~~ 

A,=6.12~10~~/7.2~10~~ 

nh = 0.9563,‘5.8 x lo-’ 

q = 6.1 x~O-~ 

agreement is obtained for the Table 2 values. Note especially that the interface DCE 
of the Fig. Id circuit, CPE2, corresponds to the CPE in series with R, in Fig. lc, 
CPE,, as might be expected. When this identification is appropriate, CPE, describes 
distributed bulk effects in Fig. lc. The two circuits then become identical when no 
interface element is present. 

It was also of interest to examine how well the reverse transformation worked. 
Thus we used the parameter estimates of the middle column to generate “data” from 
the Fig. Id circuit and fitted these data using the Fig. lc circuit. With perfect fits one 
would expect to recover the exact column 1 parameter values. Comparison of the 
column two and three values of Table II shows that the corresponding CPE A values 
are appreciably less close to each other than are those of columns 1 and 2. Finally. 
comparison of the column 3 results with those of column 1 indicates the degree to 
which systematic errors distort the fitting results. Clearly, we can estimate CPE tz 
exponent values here appreciably better than A ones, and only little weight should 
be given to the absolute values of estimated u, values in situations where appreciable 
systematic errors are present. Figure 4 shows a complex plane log-log plot of the 
original Fig. lc impedance data and the Id fitting results. Even in the Fig. 5 linear 
complex plane plot (of part of the data only) little or no difference between original 
and fitted values can be discerned. Nevertheless, the above comparison shows that 
even for such an excellent fit we are unable to return very closely to the original A 
parameter values. Since the above conclusions are often not well recognized, they 
need to be emphasized. 

Table 3 summarizes similar fitting results. but ones where we have appreciably 
changed the ratio of the two input A parameters as compared to the Table 2 
situation. Here interface effects are relatively more important over the frequency 
range covered (a smaller value of the A parameter leads to a larger value of the series 
interface impedance magnitude). Further, the values shown in columns two and 
three agree much less well than those found for the Table 2 results. Particularly 
interesting is the R value of column two which is about 400 times smaller than that 
of column one. We see that although both circuits can fit data of the present type 
more or less equally well, they can predict very different bulk resistance values. If we 
did not know in advance which circuit was most appropriate for given data, we 
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Fig. 4. Complex Impedance plane plot. with logarlthmw scales, of “data” associated wth columns one 

(clrcult of Fig. lc. -) and two (CNLS fit using wcuit of Fig. Id, - ~ - ) of Table 2 

could end up with a wildly inappropriate R estimate by fitting with the wrong 
circuit. Again, as shown by the log-log complex plane plot of Fig. 6, the CNLS fit is 
so good here that one cannot distinguish graphically between the original data and 
the predicted impedance values, even though they are associated with different 
fitting circuits involving appreciably different parameter values. Clearly, additional 
information beyond goodness of fit is needed in cases such as these to allow a proper 
choice of fitting circuit to be made. 
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Fig 5. Complex impedance plane plot, wth hnear scales. of “data” associated with columns one (clrcult 
of Fig. lc, -) and two (CNLS ht using wcwt of Fig Id, - - -) of Table 2. 
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Fig. 6. Compler Impedance plane plot. wth logarithmic scales, of “data” associated with columns one 

(circuit of Ftg. Ic. -) and two (CNLS fit usmg clrcult of Ftg. Id. - - - ) of Table 3. 

The close agreement of the results of columns one and two of Table 2 and even 
the appreciable differences in the corresponding values of Table 3 can be explained 
in the following way. It will have been noted that for the present Bates type of data 
the values of n, and nh are close to unity, making the CPE’s approximate ideal 
capacitors. Consider circuits like those of Fig. lc and Id where the CPE’s are indeed 
replaced by capacitors with the same subscripts. Thus A, + C, and so on. Then with 
the proper relations between the parameters of the two circuits, they may be made to 
exhibit the same impedance at all frequencies [6,7]. The relations are 

R, = R,S2 R, = R,A-’ 

c, = c,/s C, = C,A 

C,=C,+C, C,=C,A 

and 

c, + c, = s-V, 

where 

6 = C,/(C, + C,) and A= CJ(C, + C,) 

Now because the n’s are all close to unity for the results of Tables 2 and 3, the 
above equations still hold approximately when the C’s are replaced by A’s, as may 
be readily verified using the present parameter values. For example, the predicted R, 

of Table 3 is about 1074, and the R, of column 3 is about 1.6 x 105. But such 
approximate relationships between the parameters of the two DCE circuits naturally 
become less and less accurate as the n values decrease from unity. A consequence is 
that the Fig. lc and Id circuits are able to simulate each other, by being able to fit 
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parameters of Table 2, column one, but with rzJ = 0.5 and n,, = 0.8 (cwcult of Fig. lc, -). and from 

fittmg these data with the clrcmt of Fig. Id (- - - ) 

data derived from the other, worse and worse as the n’s decrease. Thus, for example, 
if the n, and nb values of column one of Table 2 are changed to 0.5 and 0.8, 
respectively, or to 0.4 and 0.7, respectively, and all other values kept the same. the uf 
values found from fitting with the Fig. Id circuit are 0.021 and 0.051, much worse 
fits than obtained with the larger n’s, Actual log-log complex plane comparison for 
the first choice above appears in Fig. 7. 

The results of Bruce and of the present work suggest that when an equivalent 
circuit which contains one or more CPE’s, rather than other more physically realistic 
DCE’s, is to be used in attempting to find a good fitting circuit, one should usually 
try comparing the efficacy of the circuit containing ordinary CPE’s with the same 
circuit with capacitors in series with some or all of the CPE’s. When CNLS fitting is 
employed, as it should be, any useless parameters can be readily identified, by 
comparison of CQ estimates, and eliminated on the next fit. On the other hand, the 
present results also suggest that there will usually be a superior alternative to using 
fitting circuits involving non-physical CPE’s. 

The search for an appropriate equivalent circuit to fit experimental IS data should 
always include CNLS fitting with several different circuits in order to determine the 
best fitting one. When the circuits tried include one or more DCE’s, one of the 
selected circuits will usually yield an appreciably better fit than the others. If it is 
physically reasonable as well, it should be selected. But if two or more circuits yield 
comparable fits, either because of the ambiguities discussed above or possibly 
because of the presence of appreciable errors in the data. other information is 
needed to allow the best choice to be made. For example, one could repeat the 
experiment for several different temperatures and/or electrode separations. That 
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circuit which led to the least, or the most plausible, dependence of the parameters on 
these variables would then be the most appropriate. 
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