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Distributed elements have a long-established position in the field of impedance spectroscopy (IS). Presented here is a 
survey of a number of the more common elements, including the new distribution-of-activation-energies element. A uni- 
fied treatment of the different IS levels (impedance, admittance, complex modulus, and complex dielectric constant) is 
proposed, enabling standard distributed elements to be used in the fitting of data taken from either conductive or dielec- 
tric materials. Various distributed elements are discussed and their responses are shown graphically and compared to one 
another in both 2-I) complex plane projections and 3-D perspective plots. 

1. Introduction 

In the analysis of  impedance spectroscopy (IS) 
data, such as impedance Z versus frequency v, on 
solid or liquid electrolytes and dielectric materials, 
one does not usually have available a full mathemati- 
cal expression for the impedance following from de- 
tailed microscopic analysis of all the physico-chemi- 
cal processes occurring in the electrode/material sys- 
tem. Instead, one compares the data with the impe- 
dance of a plausible electrical equivalent circuit by 
some such means as complex nonlinear least squares 
(CNLS) fitting [1,2]. This equivalent circuit will be 
made up of circuit elements whose presence is related 
to physical processes which are believed likely to be 
present - such two-terminal elements as bulk and re- 
action resistances, double-layer space-charge capaci- 
tors, and Warbug diffusion impedances. In the pres- 
ent work, we summarize, discuss, and compare many 
of the non-ideal circuit elements, or frequency re- 
sponse functions, which are useful for fitting actual 
experimental small-signal frequency response data in 
this way. 

Although we usually employ ideal resistors, capa- 
citors and inductances in an equivalent circuit, actual 
real elements only approximate ideality over a limited 
frequency range. Thus an actual resistor always exhib- 
its some capacitance and inductance as well and, in 
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fact, acts somewhat like a transmission line, so that 
its output response to an electrical stimulus is always 
delayed compared to its input. All real elements are 
actually distributed because they extend over a finite 
region of space rather than being localized at a point. 
Nevertheless, for equivalent circuits which are not ap- 
plied at very high frequencies (say over 10 7 or l0 s 
Hz), it will usually be an adequate approximation to 
incorporate some ideal, lumped-constant resistors, 
capacitors and possibly, inductors. 

But an electrolytic cell or dielectric test sample is 
always finite in extent, and its electrical response often 
exhibits two generic types of  distributed response, 
either type requiring distributed elements in the equiv- 
alent circuit used to fit its IS data. The first type of 
response appears just because of the finite extent of  
the system, even when all system properties are homo- 
geneous and space-invariant. Diffusion [3] can lead to 
a distributed circuit element of this type, the analog 
of a finite4ength transmission line. When a circuit ele- 
ment is distributed, it is found that its impedance can- 
not be expressed as the combination of a f'mite num- 
ber of  ideal circuit elements, except possibly in certain 
limiting cases. 

The second generic type of  distributed response is 
quite different from the first, although it is also asso- 
ciated with finite extension in space. In all ordinary 
IS experiments, one uses electrodes of  macroscopic 
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dimensions. Therefore the total macroscopic current 
flowing in response to an applied static potential dif- 
ference is the sum of a very large number of micro- 
scopic current filaments originating and ending at the 
electrodes. If  the electrodes are rough and/or the bulk 
properties of the material are inhomogeneous, the in- 
dividual contributions to the total current will all be 
different, and the distribution in electrode surface 
and/or bulk properties will lead to an distributed con- 
ductance (many different elemental conductances) 
which will determine the total current. 

The situation is even more complicated when 
small-signal frequency and time dependence is con- 
sidered. Consider a material involving ion-hopping 
conduction. The immediate microscopic surroundings 
of different ions may be different at a given instant 
either because of irdaomogeneous material properties 
or because the dynamic relaxation of the positions of 
atoms surrounding an ion has progressed a different 
amount for different ions [4]. The result may be de- 
scribed in terms of a distribution of relaxation times, 
which, for example, might be associated with a distri- 
bution of hopping barrier height activation energies. 
Such a distribution of relaxation times will lead to 
frequency-dependent effects which may, at least ap- 
proximately, be described through the use of certain 
simple distributed circuit elements, such as the con- 
stant phase element (CPE) discussed later. 

In this paper we describe various distributed cir- 
cuit elements which have been or might be used in IS, 
show some of their little-known inter-relations, and 
discuss the important intensive and extensive proper- 
ties of the elements considered. All elements discussed 
will be related, insofar as possible, to physical models. 
In order to aid in the recognition of the presence of 
distributed elements in experimental small-signal data, 
we shall show their full frequency responses by means 
of three-dimensional perspective plots [5]. There are 
four impedance-related quantities important in IS. 
These are all defined only in the small-signal linear re- 
gime and are impedance, Z = Z '  + iZ";  admittance, 
Y =  Y' + iY";  electric modulus,M = M  ' + iM", and 
complex dielectric constant e = e' - ie", where i = 
~/-Si-. Let C c be defined as the capacitance of the emp- 
ty measuring cell. Then these four complex quantities 
are inter-related as shown in table 1. Thus, for exam- 
ple, Y = Z - 1  = O~Ce)e" The quantities e and M are 
dimensionless while the units of  Z and Y are ohms 
and siemens, respectively. 

Table 1 
Relations between the four basic immittance functions. 
Here ~ -- koC c. 

M Z Y e 

M M /~. ,uY -1  e -1 

Z g - l M  Z y - 1  bt- le-1 

Y /*M - t  Z - t  Y ~te 

e M - I  . t t - lz -1  - I y  e 

Although circuit elements in equivalent circuits in- 
volve quantities whose magnitudes depend on elec- 
trode area, we shall, for simplicity, give all formulas 
and definitions herein in unit area terms and will use 
the same symbols for all such quantities as admittance 
and admittance per unit area. Although Z, Y, or C c e 
may be measured directly, it is often valuable to exam- 
ine 3-D plots not just of  the data in their original form 
but also such plots of several or all of  the other three 
related quantities. Further, the distributed elements 
we consider all show their simplest 3-D behavior when 
plotted in a particular one of  the four types of 3-I) 
plots mentioned above. This effect is illustrated for 
the ZC element (see below). 

The next section deals with two intrinsically differ- 
ent types of  electrical response, that of dielectric and 
of conductive systems. General system immittance 
functions are defined which include both types of re- 
sponse and allow generalizations and simplifications 
of  the succeeding work. In particular, they permit one 
to use a single function which readily yields all the 
eight M, Z, Y and e response functions for unified di- 
electric and conductive systems. The following sec- 
tions first deal with general and specific homogeneous 
diffusion situations and then with the constant phase 
element (CPE), which may be related to inhomoge- 
neous diffusion. Then various composite elements 
which involve the CPE explicitly or implicitly are 
discussed, and the work concludes with discussion of 
distributed elements which are associated with a dis- 
tribution of relaxation times (DRT) or activation 
energies (DAE). 

2. Conductive, dielectric and unified response 

Let us define a Conductive System as one which 
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exhibits non.zero dc conductance, while a Dielectric 
System may be defined as one without dc conduc- 
tance. These are taken to be intrinsic properties of 
the material of interest and are not associated with 
blocking at electrodes, etc. Thus a dielectric material 
with a resistor in parallel with its arising, for exam- 
ple, from surface conduction, is not a conductive 
system under the present definition, nor is a conduc- 
tive system with a capacitor in series with it a dielec- 
tric system. We shall distinguish between dielectric 
system and conductive system quantities by a sub- 
script D or C. We shall show that because of a dual- 
ity between the two kinds of systems, elements used 
in the dielectric area may also be simply adapted and 
used as well for conductive systems. 

We may illustrate the difference between a D and 
a C system by DRT examples. Consider first a D-sys- 
tem with a continuous DRT, one whose relaxation 
time probability density is 9D(r  ), where r is a relax- 
ation time. The system response may be considered 
to be made up of an infinite number of composite 
differential circuit elements in parallel, each such ele- 
ment consisting of an elemental resistor and capacitor 
in series. Alternatively, a C-system involving a contin- 
uous DRT, 9 C (r), may be considered to involve an 
infinite number of elemental parallel R-C units in 
series [6]. Unless one or more capacitances in the 
first system is infinite or one or more resistances in 
the second system is infinite, the first will pass no 
direct current and the second may do so. 

We may now write the complex dielectric con- 
stant e D of the D-system and the impedance Z C of 
the C-system [6] as 

; 9 D (r) dr 
e D = e** + (% - e**) 1 + i6or (1) 

0 

and 

9 c (r) dr (2) 
Z c =R~ +(R o - R ~ )  1 + k o r  

0 

Results may be slightly more complex when a DAE 
is present [7]. The normalization implicit in 9 D (¢) 
and 9 C (r) is taken such that when 60 ~ 0, e D ~ e 0 
and Z C ~ R 0. Note that when 9 (r) = 8 (r - r0), 
where 6 is a Dirac delta function, these results yield 
just simple Debye response, response with a single, 

non-distributed relaxation time. Here we have intro- 
duced the new quantities, e 0 and R 0, and the corre- 
sponding co -~ oo ones, e~ andRe .  It will be conve- 
nient and is indeed customary for one to deal with e D 
and Z C quantifies whose real parts are normalized to 
unity at co = O. We shall denote such normalization, 
where appropriate, with a subscript N. Then we may 
write 

( e D - e -  1 ; 9D( r )d r  
KD -~gDs =--]13 -- - -  = (3) \ e 0 - e~ I 1 + iu~r 

and 

(Z c - R . ~ =  ? 9C(r)dz  
ZCN -- I c  -- \R  0 - R** / ~ "1 + icor (4) 

We can deal with complex capacitances instead of 
complex dielectric constants, if desired, by writing 
C D - CceD, C** - Cce**, etc. Note that we have intro- 
duced in eqs. (3) and (4) the unified, normalized im- 
mittance function l i which is a normalized complex 
dielectric constant function when i = D or a normal- 
ized impedance when i = C. 

Now come some interesting and useful results. Sup- 
pose that for any reason we find that 1 D and 1 C are 
identical functions of frequency. In the present exam- 
ple this would require that the D.system 9 D (r) func- 
tion be identical in form with the C-system 9 C (r) 
function. I f I  D = 1 C, this equality induces a correla- 
tion or unification between the corresponding D and 
C systems. Thus whenever an 1 C or 1 D function is spe- 
cified, duality between systems leads to an implicit or 
explicit specification of a model for the other system. 
The connections which follow for various immittance 
function levels for the two separate systems are shown 

Table 2 
Relat ions between normalized immit tance  func t ions  for 
various sys tems  when  I D = I C. 

Dielectric Conduct ive Unified 

YDN ~ ~ MCN q 

gDN ~ ~ ZC N 4.  

MDN : ~ YCN " 

ZDM ". ; tcCN ~ 

LiN -- Li =/~/i 

IiN ~-Ii 

SiN ~ Si =/ i  - 1  

TiN ~- T i = (/~/i)-1 
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in table 2, where the two double-ended arrows together 
are used to emphasize the primacy of the ZCN -- KDN 
equality. All the other double-ended arrows indicate 
equalities which follow because of the table 1 relations 
between the other normalized D and C system immit- 
tance functions. For normalized functions such as we 
shall discuss later, it is convenient to replace/~ = i~C c 
by bt = is, where s is a normalized frequency variable. 
We shall do so in the following: We have selected new 
symbols, as shown in the last column of the table, to 
designate the unified-system normalized immittance 
functions and will generally omit the N subscript for 
these functions. We see that L D = YDN and L C = 
MCN, for example, and that knowledge o f I  i and/a 
alone is sufficient to allow all the eight D and C sys- 
tem normalized immittances to be readily obtained. 

These results show that we need only to consider 
the various distributed element functions which may 
be of use in IS data analysis at the I i level; specific D 
and C system response results follow automatically. 
Although the L i, S i and T i functions are simply re- 
lated to I i as we have seen, rather than present just I i 
response, it is worthwhile to examine L i and S i as 
well, particularly using 3-D perspective plots. The T i 
function is less interesting for most materials and will 
not be considered in as much detail as the others. 

3. Spedfie response functions 

3.1. Diffusion 

The first distributed element introduced into dec- 

trochemistry was the infmite4ength Warburg impe. 
dance [8], which models the one-dimensional diffu- 
sion of a particle in a homogeneous right half-space. 
This response is also completely analogous to wave  
transmission on a uniform serni-infmite RC transmis- 
sion line [3]. But experimental cells are never infinite 
in extent nor are real transmission lines. Thus one 
needs diffusion response for a fmite4ength region, say 
that between two identical, plane parallel electrodes a 
finite distance apart. Such response, that of  the finite- 
length Warburg, FLW, has been employed in liquid 
and solid electrolyte work for a long time [9,10] and 
differs from that of the infinite length Warburg only 
at low frequencies. General FLW response is analogous 
to that of  a finite-length transmission line, shorted for 
a C-system and open-circuited for a D-system [3,7,11]  

An expression for/ i  FLW response is given in 
table 3. There the normalized frequency variable s 
is £2 (o~/D), where £e is the effective length over which 
diffusion occurs and D is the diffusion coefficient of 
the diffusing particle. Note that when s ~> 3, the value 
of the tanh term is essentially unity and FLW response 
reduces to that for the infinite length Warburg. Such 
response is intensive, independent of  sample dimen- 
sions when, e.g., admittance rather than admittance 
per unit area is considered. Alternatively, when s -* 0, 
FLW response is extensive and depends on the distance 
between the electrodes. The C-system impedance for 
FLW response is just 

ZCFLW = R..  + (R 0 - Ro.)IcFLW , (5) 

and the corresponding complex dielectric response is 

eDVLW = eo¢ + (e 0 -- eo.)IDFLW , (6) 

Table 3 
Ii(s, ~0i) expressions for various distributed elements. 

No. Physical process/name Acronym I i formula 

1 uniform diffusion FLW tanh ( ,v~) / ,~  

2 nonuniform diffusion? GFW tanh(is)~ i/(is)~i 

3 constant phase element CPE (is)-~0i 

4 distribution of relaxation times ZC [ 1 + (is)~0i] -1 

5 distribution of relaxation times DC [ 1 + is] -~i 

6 Williams-Watts response WW Iiw w 

7 distribution of activation energies DAE /iDAE 
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where I i is, as usual, either I C or I D . We shall show 
graphs of FLW and other response later. 

The second'item in table 3, also related to diffu- 
sion, is an expression for a type of generalized finite 
length Warburg response [7], GFW. Its equation dif- 
fers from that of FLW only by the replacement of 
the 0.5 exponent in the FLW expression by ffi, with 
0 < ~k i < 1. Although one could take ~k C = ~D = if, it 
has become customary in the principal case where the 
same formula has been used previously for both C and 
D response (see later discussion of ZC response) to set 
~C = 1 - ~D. Then the GFW L i and S i functions both 
involve Os) n response in the frequency region where 
finite length effects may be neglected. For example 
ffl i  = (is) -~ i ,  thenLD = YDN = iSlD = (is) I-~°D and 
SC = YCN = i~1= (is) ~°c. Therefore n = ffC = 1 - ~k D, 
and the admittance calculated for either a D- or a C- 
system exhibits the same frequency dependence. Note 
that for the FLW function, where ffi = 0.5, it does not 
matter whether one takes ~k D = ~C = 0.5 or ~D = 0.5 
= 1 - -  ~0 C. Various distributed elements included in 
the term, "universal dielectric response", by Jonscher 
are discussed below (the CPE) or elsewhere [7]. 

3.2. Constant phase element 

The above considerations lead naturally to the 
CPE function introduced by Fricke [12] and Cole 
and Cole [13] and discussed recently in some detail 
[14]. Item three of  table 3 shows that the CPE, which 
is defined for all frequencies, is the infinite-length dif- 
fusion limit of the FLW when ~0 i = 0.5 or the arbitra- 
ry-~b i infinite-length limit of the GFW. Now Schrama 
[15] has shown that the CPE with 0 < ~0 i < 1 may be 
interpreted as representing homogeneous diffusion for 
~k i = 0.5 or inhomogeneous diffusion for other ~i val- 
ues, a mathematical analog of wave propagation along 
a non-uniform continuously distributed semi-infinite 
transmission line. It was this result which led to the 
GFW and its tentative identification as a heuristic, 
approximate formula for non-uniform one-dimension- 
al diffusion in a finite region. It is proposed as a tem- 
porary expedient until a detailed theory of such re- 
sponse becomes available. 

Thus one model for the CPE is that of  semi-infinite 
non-uniform diffusion. Another is its interpretation as 
a DRT [6]. But the DRT function associated with the 
CPE is non-normalizable, another indication that the 

CPE is only valid over a limited frequency range. In  
any physically realistic model there should be both a 
shortest and a longest relaxation time; the CPE exhib- 
its neither. Let us consider the FLW, a model whose 
response reduces to that of  a single series RC circuit 
as s -+ 0 for the D-system and to a parallel RC circuit 
for the C-system. Thus, its modification of  the CPE 
is physically reasonable for s ~ 0. Further, in this lirn. 
it the response is no longer intensive but becomes ex- 
tensive. But there remains a problem as s ~ o0. The 
CPE, the GFW and the FLW all yield a non-physical 
infinite conductance (when ffi :~ 1) when s ~ .o. Now 
the diffusion length associated with one-dimensional 
diffusion is £D~ = x/'D-~, which goes to zero as 60 or 
s goes to infinity. But it is obvious that ordinary dif- 
fusion theory, which involves a continuum, average 
process, will not apply when the diffusion length be- 
comes comparable to the mean free path length of  the 
diffusing elements. Thus the CPE, which suffers from 
both a s ~ 0 and a s ~ oo catastrophe must be modified 
at both ends of  the frequency spectrum in order to rep. 
resent a physically reasonable response model. 

Although we have presented the CPE in table 3 at 
the I i level for comparison with the other response 
functions listed, it cannot be converted to the Z or 
e level by means of eqs. (5) or (6) since the equivalent 
R 0 or e 0 quantifies are infinite. Instead we must just 
consider the present IiCPE as a normalized, dimension- 
less form of  the CPE which, in general, may be written 
as [14] 

ZCCPE = YCX~PE = [Aoc ( i~)  ~0C ] -1 , (7) 

or 

eDCPE = M i ~ P E  = [.4 0D (i60) ~0 D ] - 1 .  (8) 

Depending on the choice ofA0i  , general CPE response 
can be either intensive or extensive. Again, it should 
be emphasized that eqs. (7) and (8) should only be 
applied for the range 0 < 6o < oo to insure physical 
realizability. 

3.3. Two D R T  distributed elements 

Two empirical distributed elements long used in 
the dielectric system area are those of  Cole and Cole 
[13], and Davidson and Cole [16] (the I ~  element). 
As shown in table 3 in rows 4 and 5 at the / i  level, 
they may be associated with specific distributions of  
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relaxation times. The Cole-Cole dielectric response 
function has also been proposed as a conductive sys- 
tem distributed element [17] and has proved very 
useful in fitting IS data for many different conductive 
systems [7,17,18]. Since 1CZ c leads to a curve in the 
conjugate impedance plane which is an arc of a circle 
whose center falls below the real axis (for 0 < ~C < 1), 
it has been termed the ZARC function [18]. Note that 
it is symmetric about its center point. Exactly the 
game shape (an eARC) occurs, of course, when IDZ C 
is plotted in the complex dielectric constant plane (a 
Cole-Cole plot). Because of its impedance-plane shape 
and its original introduction by Cole and Cole [13], it 
seems reasonable to designate the general I izc  func- 
tion by the ZC acronym. 

It is interesting to note that the l iz  C function may 
either be considered as a unified distributed element 
in its own right or as a composite element, a combina- 
tion of an ideal circuit element and a CPE. For exam- 
ple, ZARC response and Iczc  are obtained from a re- 
sistor, (R 0 -R**) in parallel with a CPE, and eARC 
response and IDZC are obtained from the series com- 
bination of a capacitor, (C O - C**) and a CPE [18]. 
One may also define the YARC and MARC functions, 
ones which lead to a displaced semicircle in the ad- 
mittance plane and in the complex modulus plane, re- 
spectively. The former may be synthesized by means 
of a resistor in series with a CPE and the latter by 
means of a capacitor in parallel with a CPE. 

Unlike the ZC, the DC element leads to an asym- 
metric curve in the complex plane, one with a peak 
toward the low frequency side of the curve. Of course 
the DC element involves a different DRT than does 
the ZC. Neither element is consistent with a tempera- 
ture independent DAE [19], yet the presence of a 
DAE (leading to an associated DRT) is probably more 
common experimentally than that of a DRT unassoci- 
ated with a DAE. Although the ZC and DC elements 
may fit dielectric or conductive system data very well, 
it is inconsistent to use them for fitting when it is 
found that the system is thermally activated with a 
temperature independent DAE. Unfortunately, this 
fact has not been weU appreciated in the past and they 
have indeed been often used in thermally activated sit- 
uations where such a DAE is likely to be present. 

Finally, it should be mentioned that neither the 
ZC nor the DC leads to physically reasonable response 
at both frequency extremes. The requirement that a 

realizable system should have a largest (non-infinite) 
and a smallest (non-zero) relaxation time leads to I" 
response proportional to s in the limit of low frequen- 
cies and to s - ]  in the high frequency limit. This mat- 
ter often seems to be of no practical consequence, 
however, since measurements frequently are not (or 
cannot conveniently be) extended to the extreme fre- 
quency regions where such response must occur. Never- 
theless, it is another reason why more physically real- 
istic distributed elements than the ZC and DC should 
be used, when practical, in IS fitting and data interpre- 
tation. 

3.4. The Williams- Watts and D A E  distributed elements 

Long ago, Kohlrausch [20] proposed the stretched 
exponential as an empirical relaxation function in the 
time domain, 

q (t) = q (0) exp [ - ( t / r o )  • ] • (9) 

In the case of dielectric relaxation, q ( t )may represent 
total charge or polarization and r 0 a relaxation time, 
a single Debye time constant when ~O = 1. In more re- 
cent times the frequency domain response following 
from eq. (9) has been discussed by Williams and Watts 
and used for fitting of dielectric system response data 
[21]. Since then, such Williams-Watts (WW) response 
has been found to follow from several different theo- 
retical models, and WW transient and frequency re- 
sponse functions have been used to fit a variety of re- 
laxation data for dielectric, conductive, and mechan- 
ical systems (see ref. [22] for many theoretical and 
experimental references). Incidentally, WW response 
leads to an asymmetric curve, rather like that of the 
DC, when Iiww is plotted in the complex plane. 

Unfortunately, it is not possible to obtain a simple 
exact expression for Iiww. Thus the WW fitting that 
has been carried out so far has not been a definitive 
test of the appropriateness of WW frequency response 
for the various experimental data sets used. Further, 
only the imaginary part of the response has generally 
been compared with approximate WW frequency re- 
sponse predictions. A more appropriate approach is 
to use CNLS fitting of both the real and imaginary 
parts simultaneously. Although this has been imprac- 
tical previously for WW frequency response fitting, 
a new, relatively simple, complete complex expres- 
sion for WW frequency domain response has recently 
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been developed [23]. It may be used for either dielec- 
tric or conductive system data fitting. This expression 
is approximate but is nevertheless very accurate for 
0.2 ~ ~0 ~< 1. It has been incorporated as part of an 
extensive and flexible CNLS fitting routine available 
from one of us (J.R.M.). This computer program al- 
lows none, one, or many distributed elements of dif- 
ferent types to be made a part of an equivalent circuit 
also involving ideal circuit elements connected in dif- 
ferent ways. Note that all fitting circuits must involve 
the geometrical capacitance C** already introduced 
above, although sometimes the measurement frequen- 
cy range does not extend high enough for this ele- 
ment to have an appreciable effect on the measured 
response. It always bridges the two electrodes of a 
measuring cell. 

The DAE distributed element of table 3, line 7 
also cannot be expressed exactly in simple closed form 
in the most general case. But it can be represented by 
an integral which can be easily evaluated numerically 
and has been incorporated as a part of the CNLS fit- 
ting program mentioned above. There are several 
forms of the DAE but they all involve an activation 
energy probability density which depends exponential- 
ly on the activation energy (properly, enthalpy of ac- 
tivation). The transient response of the general DAE 
model was discussed in detail some time ago [24] and 
the corresponding frequency response, that ofliDAE , 
has only recently been considered [7]. It should be 
noted that although all of the distributed elements 
considered herein show power-law frequency response 
of the CPE type, at least over limited frequency ranges, 
only the DAE also exhibits physically realizable re- 
sponse in both frequency extremes. 

The most general form of the DAE (which should 
properly be designated the EDAE, for exponential 
distribution of activation energies) involves two slope 
parameters, 0il and 0i2, which are related to frequen- 
cy-response power-law exponents, such as the ~ki's al- 
ready introduced. But unlike the ~bi's, which must fall 
in the range [0,1 ], the 0i's may take on values be- 
tween _oo and +oo. Nevertheless, when they are rea- 
sonably close to 0.5, they play a role like the ffi 's. 
There are two simplified forms of the general DAE 
where only a single ¢i occurs, the DAE1 and the DAE 2. 
For the DAE 1 , which leads to an asymmetrical com- 
plex plane shape like that of the DC or WW, one has 
Oil = 0i2 = 0i" On the other hand, when 0il = -0i2 

= 0i, one has the DAE 2, a model which leads to a 
symmetric shape in the complex plane like that of  
the ZC. When neither of these conditions applies, one 
has the general DAE, a model which can lead to even 
more complicated shapes in the complex plane [7]. 
Finally, there is one other parameter present in the 
DAE model which needs to be mentioned;r (or r2), 
the ratio of maximum to minimum relaxation times 
present in the system. It can become very large at low 
temperatures. 

Now it is found that when "data" covering a t'mite 
frequency range and derived from one of the distri- 
buted element models of rows 1 through 6 of table 3 
is fitted with the DAE model using full CNLS, an ex- 
ceptionally good fit is found [7,22,25]. Thus one or 
another form of the DAE can simulate any of the 
other distributed elements considered herein over the 
frequency range of experimental interest. We have al- 
ready mentioned that the DAE is physically reason- 
able in the frequency extremes while the other distri- 
buted elements are not. Another important virtue of  
the DAE model is that it leads to explicit temperature 
dependence predictions for the 0i's of the model, pre- 
dictions which usually seem to be in good agreement 
with experimental results. On the other hand, no spe- 
cific temperature dependence predictions are avail- 
able for the ~ki's of the other distributed elements, and 
they are inconsistent with a temperature independent 
distribution of activation energies. 

4. Graphic illustration o f  response curves 

The first element to be considered will be the CPE. 
We shall suppress the i subscript of ffi and ¢i in this 
section for simplicity. Only the response of  the DAE 1 
model will be considered here since that of the other 
DAE models has been discussed elsewhere [7]. The 
CPE must be treated by itself since, as noted previous- 
ly, it is the only element which does not have a con- 
vergent value for both low and high frequencies in any 
system. The CPE thus cannot meaningfully be included 
in perspective 3-D plots with any of  the other elements. 
Fig. 1 shows 1" and S plots (corresponding to Z* and 
Y in a conductive system) for a CPE with an exponent 
of  1/2. It is easy to see how this element derives its 
name from the constant phase angle in the complex 
plane projection. The angle, measured from the real 
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(a) z*" 

~a = I / 2  

,-,,//ii 

le# 

(b) s~ 

. . . . .  i i • 
Log(s) origin:-4 

Fig. 1.3-I) perspective plots of the constant phase element (a) 
in the I* plane (corresponding to impedance or dielectric re- 
sponse) and (b) in the S plane (corresponding to admittance 
or complex modulus). The normalized logl0 frequency axis 
is marked in units of 1 and in (a) the I axes are in units of 
7.1 while in (b) the S axes are in units of 0.067. 

axis, is simply 0 = Ir ffi/2 = 7r[4. The phase angle for the 
S plot is the same here. Notice the great difference in 
frequency dependence between the 1" and S curves, 
however. 

Next to be considered are the ZARC-Cole, or ZC 
element, and the YARC distributed element. The tom- 

plex plane admittance plot of  a YARC has the same 
form as the complex plane impedance plot of  a ZC, 
hence its name. The responses of  these two elements 
are illustrated in fig. 2 in each of the four different 
systems. It turns out that the best way to directly 
compare these two elements on the same graph is to 
display them in different systems, with one system 
being the complex conjugate of  the reciprocal of  the 
other. For instance, fig. 2a presents an 1" plot for the 
ZC (corresponding, for example, to Z*)  and an S plot 
for the YARC (corresponding to II). We shall not gen- 
erally distinguish between an I and an 1" plot when 
the context is clear. Fig. 2a also exhibits an important 
aspect of  the response of  the ZARC and YARC ele- 
ments: there are converged limits at both the low and 
high frequency ends and there is a clear peak in the 
imaginary values (centered at s =1 for these normal- 
ized data). In fact, of  all the distributed elements dis- 
cussed in this section, only the YARC exhibits this 
peaked behavior in the S system - for the others it is 
found in the 1" system, as with the ZC. Note particu- 
larly that the shapes of  the I* and S projection curves 
are identical (but with opposite frequency dependence) 
for the Im-log(s)  and I m - R e  planes. 

Concentrating only on the ZC response curves, one 
sees in fig. 2b that for low frequencies the imaginary 
component of  T* (corresponding to K*)is about 100 
times greater in magnitude than the real component. 
Note that because of this extreme variation, a log-log 
plot is presented for these T and L systems. At high 
frequencies, the two are of approximately the same 
order of  magnitude. The S and L plots (figs. 2c and 
2d) appear to be neatly identical, and indeed they are 
very close. However, while L approaches zero at high 
frequencies, S approaches one. The great similarity 
between these graphs also comes from the symmetries 
introduced by considering only ~ = 1/2. Figs. 2e and 
2f show the same two curves for ~ = 1/3, where these 
symmetries have broken down. 

The general trends exhibited by the ZC element in 
these four systems are shared by all of  the other dis- 
tributed elements to be covered in this section. It is 
somewhat difficult to easily see the differences be- 
tween elements when viewed in systems other than 
I* since it is the only one which is well behaved and 
converged for both ends of the frequency spectrum. 
So for easier reference, all major comparisons be- 
tween elements will be made using/* plots. 
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Fig. 3. Comparison o f  distributed elements with @ = ¢ = 0.5. (a) shows the 1" projections o f  the elements while the rest are 3-D per. 
spective plots o f  the ZARC in comparison with the other response curves. For the 3-D curves, the log(s) units = 1 and the I units = 
0.1. The responses plot ted are (b) Debye, (c) DC, (d) GFW, (e) WW and (f) DAE 1 . 
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Fig. 4. Comparison o f  distxibutod elements with ¢ ~- ¢ = 1/3. 
(a) shows the I *  projections o f  the elements while the rest 
are 3-D comparisons with the ZARC. Log(s) units = 1 , I  units 
= 0.1. The responses plot ted are (b) DC, (c) GFW, (d) WW, (e) 
DAE 1 . 
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Fig. 3 presents a series of comparisons between 
the various elements at ¢ = 1/2. Fig. 3a is a standard 
2-D complex plane plot, provided to show in more 
detail what the complex plane projections of the 
3-D perspective plots look like. For the 3-D plots of 
fig. 3 b - 3 f  each of the elements is presented on the 
same graph as a ZC element, chosen as a reference 
because of its high symmetry. In 3b a ZC is shown 
along with a standard Debye response. Note how 
much greater the frequency range of the ZC is over 
that of the Debye element - approximately 8 de- 
cades compared to 4 decades. The Debye also has a 
much sharper peak of I* versus log(s), and it comes 
into the real axis vertically at either extreme of fre- 
quency as required by physical realizability. 

The other elements are presented in figs. 3c 
through 3f. It is clear from the 2-D plot that all of 
the distributed elements have a CPE-like response at 
high frequencies, and all but the ZC have a Debye- 
like response at low frequencies (the DAE 1 also ac- 
tually has a Debye-like response at high frequencies, 
but this will be treated in more depth later). It is no 
surprise that while the ZC is symmetric about the 
peak the other elements approach the peak more 
sharply from the low frequency side, acting more 
like the Debye curve from this end. The element 
with the sharpest peak is clearly the GFW (here, at 
~b = 1[2, the same as a finite length Warburg or FLW). 
It also has a fairly distinct region of transition be- 
tween Debye-like and CPE-like behavior. The DC 
and DAE have very similar shapes, an aspect which 
will be discussed later. The Williams-Watts curve 
appears closest to the ZARC with its fairy shallow 
peak, though it has been shown [23] actually to be 
closer to the asymmetric DC curve with some rescal- 
ing of parameters. Of all the elements in this figure, 
the WW is the one which is currently used most often 
in fitting data for dielectric systems, meaning that its 
I response is usually treated not as an impedance but 
as a complex dielectric constant. 

Fig. 4 presents perspective plots of these same 
elements at ff = 1/3 which bring out several interest- 
ing features. First, all of  the elements have peaks 
which are spread out along a wider frequency range. 
The DC, GFW, and DAE 1 all exhibit a much longer 
region of CPE-like behavior at intermediate to high 
frequencies, while the WW and GFW curves no longer 
have much Debye.like behavior at low frequencies. 

Note also that the DAE 1 and DC are very similar in 
both the complex plane plot and in their full 3-D 
frequency response. For this exponent, the GFW 
does not have such a sharp region of transition be- 
tween the peak and the region of CPE behavior. 

To round off the study of the powerqaw-region 
behavior of  these functions, fig. 5a gives a complex 
plane plot of the responses of all the distributed ele- 
ments except the WW. For this exponent value of 
2/3, the GFW more or less "blows up" in a large re- 
gion where its projection is circular, with the center 
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// " \  
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/ ' \  
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Fig. 5. Part (a) is a 2-D I *  plot o f  various distributed elements 
at @ = ¢ =  2/3 and (b) isa 3-I) perspective plot o f  the GFW 
element displaying anomalous behavioz at this value o f  ¢ 
(log(s) unit = 1 , I  units = 0.1). 
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above the real axis. As fig. 5b shows, however, this be- 
havior appears only over a narrow region of frequen- 
ties, thus exhibiting a very sharp peak in the/*"-fre- 
quency plane. Because of this strange behavior, the 
GFW seems best used at values of  ~ at or below 0.5. 
The behavior of  the other elements clearly illustrates 
their approach to the Debye limit as ~ -~ 1 for the 
DC and the ZC and for ¢ ~  1 for the DAE 1 . 

Because of  the similarity between the DAE 1 and 
DC elements, several CNLS fits were made between 
the two elements to see how closely they corre- 
sponded. Reasonably close results were obtained for 
converged (upper limit r~> 10 8) DAE 1 responses. In 
general, lower ¢ and ~ values gave better fits. Fits 
made using DAE data generated with smaller upper 
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0.4  
:= 

0.2 

0.0 
0 . 0  

~i = I / 2  
(Debye) 

r = l  ~ ~ -- -- ~ 

/ / / /~  '°3 
i = = = 

0 . 2  0 . 4  0 . 6  O.B 1.0 
zi*' 

(b) DAE r : I0 I0 = I0 3 10 4 

limits gave increasingly poor fits. The optimum expo- 
nent values for the DC were found to be lower than 
those for the DAE 1 . Fig. 6 presents two of these fits 
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Fig. 7. DAEI properties. Part (a) shows the limiting r cases 
t.og ~ origm:-IO " ~ , .  ~ of the DAE 1 r l ~ n g  from the Debye function to that of a 

converged DAEI ; (b) shows an S plot of the low frequency 
behavior of the DAEt,  with varying r values, in comparison 

Fig. 6. Fits of Davidson-Cole model to the DAEI at (a) ¢ = with other distributed elements. Finally, (c) shows the ¢ 
¢ = 1/3 and Co) ¢ = ~ = 1/2. Log(s) unit = 1 , I  units = 0.1. variation of the DAE_I. 
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graphically, showing regions of difference. It is clear 
from these results that the IX2 has a significantly 
sharper peak than the DAE 1 , though they are similar 
in other regions of the curve. Note that although the 
DAE 1 cannot fit the DC very accurately, it turns out, 
as already mentioned, that the more general DAE can 
do so [25]. 

There is a clear reason why the unconverged DAE 1 
response, that with upper r limits on the order of 104 
or less,would not fit the DC as well as that with r>~ 
108 . While at high frequencies the DC acts essentially 
like a CPE, the DAE eventually exhibits Debye-like 
behavior as r -+ 1. The lower the upper limit is, the 
more dominant this behavior becomes. This is illu- 
strated in figs. 7a and 7b. In the high frequency re- 
gions of the curves in 7a, it is possible to see the re- 
gions where the DAE 1 approaches the real axis almost 
vertically in all of the curves except the r = 108 one. 
Note also that the limit as r -~ 1 is a Debye curve. 
Likewise, fig. 7b for the S function dearly shows how 
higher upper limits cause the DAE 1 to behave like a 
CPE over longer and longer regions. This graph also 
illustrates the limiting behavior of the other elements. 
Fig. 7c shows more completely the $ dependence of 
the DAE 1 for saturated r. The Debye limit is ap- 
proached as $ -+ oo. More details of general DAE re- 
sponse are given in ref. [7]. 
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