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ABSTRACT 

Impedance spectroscopy is defined and some of its applications illustrated for both liquid and solid 
electrolyte situations. Particular emphasis is placed on complex least squares fitting of small-signal 
frequency response data at various immittance levels. Most such response data must be fit to an 
equivalent electrical circuit since a detailed microscopic model of the response is usually lacking. It is 
found for most ionic response data, as well as that from purely dielectric systems, that one usually must 
include in the equivalent circuit one or more distributed circuit elements in addition to the usual ideal 
elements, such as resistors and capacitors. Important distributed circuit elements useful in equivalent 
circuits are described. A number of actual equivalent circuits used in the past for both liquid and solid 
electrolytes are presented and compared. Equivalent circuits following from detailed continuum models 
of the electrical response of blocking and partly conducting systems are compared, and it is shown that 
some of the same circuits may be used even in the presence of dc bias which usually makes the charge 
distribution in the system very inhomogeneous. Because frequency response data have often been 
inadequately analyzed, the author’s general and powerful complex nonlinear least squares fitting program 
is now available for use by others. 

(I) GENERAL INTRODUCTION 

Here I shall discuss some aspects of the non-equilibrium steady-state response of 
systems which contain an electrical double layer (EDL), as nearly all not-purely- 
ohmic electrically conducting systems do. Although quasi-equilibrium measure- 
ments on EDLs with completely blocking electrodes yield primarily the total double 
layer differential capacitance, Cr, by itself, small-signal (s-s hereafter) ac measure- 
ments on EDL systems, which may or may not have blocking electrodes, yield much 
more information whether we like it or not, and we do like it when we can 
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disentangle all the information available. The basic experiment is to apply a small 
sinusoidal potential difference (p.d.) to the system and measure the resulting current 
(or vice versa)_ The amplitude of the applied p.d. should preferably be less than the 
thermal voltage Vr = kT/e. Sometimes a larger static p.d. is applied as well, but its 
presence complicates the analysis of results greatly, especially in unsupported 
situations. Measurements are carried out over as wide a frequency range as possible, 
often from lop4 Hz to lo6 or lo7 Hz, usually using automatic measuring equipment, 
and the impedance (p.d. divided by current) or admittance (current divided by p.d.) 
is calculated at each frequency. Since there is generally a phase shift present 
between current and potential, these ratios are, by definition, complex quantities, 
and it is thus tautological to speak of “complex impedance” or “complex admit- 
tance” as is frequently done by many electrochemists. 

Although there is nothing intrinsically new in the above approach, one that has 
been used in electrical engineering for seventy years or more, several new measure- 
ment and analysis elements have been added in recent years which make it far easier 
to carry out an experiment and to interpret its results. One such element is the 
development of automatic measuring equipment [l]. The combination of the basic 
frequency response experiment and some or all of the new elements has come to be 
called Impedance Spectroscopy, abbreviated IS. In this section, I shall first give a 
brief introduction to IS, with illustrations, then discuss some of its applications for 
solid and liquid systems. If one assumes, as I shall, that the experimental data are 
available, then it remains to present such data in a meaningful way and to analyze 
them so that maximum understanding of the material-electrode-interface response 

is gained. 

(II) INTRODUCTION TO IMPEDANCE SPECTROSCOPY 

Only a relatively brief background on IS will be presented because a much more 
detailed introduction will soon be available [l]. First, the word “impedance” in IS is 
a bit of a misnomer because in IS, one deals not just with impedance but with four 
closely related functions which can be subsumed under the umbrella designation of 
“immittances”. Thus IS can also stand for Immittance Spectroscopy. The four 
functions are impedance: Z = Z’ + iZ”, admittance: Y = Z-l, complex dielectric 
constant; E = e’ - ic” = Y/(iwC,), and complex modulus; it4 = e-l. Here w is the 
angular frequency (w = 2?rf ), i = J-i; and C, is the capacitance of the measuring 
cell in the absence of the material of interest. Although exactly the same fitting 
functions and mathematical models may be used for both intrinsically conducting 
systems and for intrinsically non-conducting dielectric systems [2], we shall consider 
only conducting systems here since they are more directly relevant to the response 
of even completely blocking EDL situations than are pure dielectric systems. 

Figure 1 shows the main elements in an IS experiment. The ideal situation, which 
allows estimation of the values of microscopic quantities which characterize the 
material-electrode system in detail, is to analyze the data by fitting them to a 
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SYSTEM 
CHARAIXERIZATION 

Fig. 1. Flow diagram for the measurement and characterization of a material-electrode system (reprinted 
by permission from John Wiley and Sons, Inc., copyright 6 1987 [l]). 

detailed microscopic model of the system, one which yields an explicit expression 
for impedance as a function of frequency and predicts the temperature dependence 
of all parameters present. Unfortunately, few such models are currently available, 
even when they are derived using continuum approximations (linear differential 
equations). In the absence of appropriate models one tries to make do with an 
equivalent electrical circuit which lumps the main physical processes occurring into 
macroscopic circuit elements such as capacitances, resistances and distributed 
circuit elements (does). Even then there may still remain ambiguity about the most 
appropriate way the elements should be connected together [1,3]. Such ambiguity 
may often be reduced or eliminated by carrying out IS epxeriments on the same 
system at several temperatures, electrode separations, pressures, oxygen tensions, 
etc. This matter will be discussed further later on. 

For all systems of physical interest there are two basic circuit elements which 
always appear. These are the high frequency limiting geometric capacitance, Cs, and 
the high frequency limiting resistance of the system, R,, the bulk or solution 
resistance. They are extensive quantities and are part of the bulk response of the 
system as opposed to its interfacial properties. As usual, I shall ignore the distinc- 
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Fig. 2. Two general equivalent circuits for the small-signal ac response of a material between two 
conducting electrodes [4]. (a) Circuit used in early unsupported-system analysis. Here R,’ = R,’ + RE’. 
(b) Circuit which separates out main bulk elements explicitly. 

tion between such quantities and their unit area values. The product Z&C, = mu, an 
intensive quantity, is just the dielectric relaxation time of the system. When neither 
Cs nor R, is distributed, they are frequency independent and the basic equivalent 
circuit involving them is that shown in Fig. 2b. The impedance 2, represents the 
response of all the rest of the system and is usually the quantity of primary interest. 
The circuit of Fig. 2a will be discussed later. 

It is worth emphasizing that Cp always spans the electrodes, as shown in the 
figure [5]. It is improper when Z, Z 0 just to connect Cs in parallel with R,, 
although this has often been done and frequently makes little actual difference to 
the analysis. In fact, Cs is usually entirely neglected in liquid electrolyte studies 
since it is generally very much smaller than the double layer capacitance, Co,. The 
C, which is derived from quasi-equilibrium studies is actually Cs + Co, when no 
adsorption effects occur, but it is virtually always identified as Co,. In IS studies it 
proves important, however, to maintain the distinction between C, and Co,. 

(II.a) Presentation of data 

The proper presentation of data can be very helpful in indicating possible 
experimental errors and in suggesting the presence of various physical processes 
leading to the overall response. Because IS experiments often extend over a wide 
frequency range, it is usual to consider response as a function of the logarithm of 
frequency (f or Y) or angular frequency. One often sees plots of -Z” and/or Z’ 
vs. log( f ), or sometimes ] Z ] and/or I#J vs. log(f) instead. Here, + is the phase 
angle of the impedance; cp = tan-‘(Z”/Z’). In the dielectric literature, plots of 
tan( #) vs. log(f) used to be common but are no longer. 

One approach which is coming to be widely used is the plotting of Im(Z) = Z” 
(or - Im( Z) = - Z” in capacitative systems) vs. Z’, with frequency as a parametric 
variable. Such complex plane plots can be very instructive. Here, however, I wish to 
illustrate the usefulness of a further development in the presentation of IS data, the 
three-dimensional plot with perspective [6], an approach which shows the full data 
response in a single graph. The three dimensions of the plot are usually the real and 
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Fig. 3. Simple equivalent circuit and two 3-D perspective plots of its response viewed from different 

directions [6]. 

imaginary parts of an immittance function and log(f) or log(w). The alternative of 
using modulus and phase instead of real and imaginary parts is possible but usually 
turns out to be less useful. Finally, when the magnitudes of the immittance 
components vary by several orders of magnitude over the measured frequency 
range, as they often do in solid electrolyte studies, it proves useful to use logarithms 
of the real and imaginary parts in the 3-D plot. 

Incidentally, many workers in the electrochemistry area use a non-standard 
definition of impedance, one which amounts to writing Z = Z’ - iZ” rather than 
Z = Z’ + iZ”. Although this usage is convenient for systems which show capacita- 
tive rather than inductive response, it is an unwarranted redefinition of a long: 
established quantity. In order to avoid the hubris of Humpty-Dumpty in “Through 
the Looking Glass”, a proper alternative is to write Z* = Z’ - iZ”, where Z* is the 
complex conjugate impedance, and refer to the conjugate impedance in place of the 
ordinary impedance. When the proper definition of impedance is maintained, one 
may use any of the equivalent designations - Im( Z) = - Z” = Im( Z * ) in plotting. 

Figure 3 shows ordinary 3-D plots for the impedance of a simple equivalent 
circuit, typical of those often appearing in solid or liquid electrolyte IS studies (with 
Cs omitted). The two plots involve different viewing positions. The heavy line 
represents the full response and the other three curves its projections in the three 
planes. In addition to showing the full response, these plots thus include all three of 
the different 2-D plots commonly used in the past. Note that the two parallel 
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Fig. 4. Three-dimensional perspective plot of 83 K Na /3-alumina impedance data [7-91. 

elements in the equivalent circuit lead to a single time constant and thus to a 
semicircle in the complex plane, a common response shape. For even more realistic 
viewing, one could use a stereoscopic pair of 3-D plots. 

Figures 4 and 5 illustrate the usefulness of 3-D plots in highlighting experimental 
errors in an IS study of the solid electrolyte Na /3-alumina [7,8]. The main response 
curve and the complex plane projection curve in Fig. 4 show that the lowest 
frequency data point is inconsistent with the rest of the response. But note that the 

Fig. 5. Three-dimensional perspective plot of 83 K Na @hnina complex modulus data 17-91. 
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projections in the other two planes, the most common sorts of plots in the past, 
show no trace of this error! Their use alone, as in the original data analysis [9], thus 
gives no clue to the presence of the error. Now the complex modulus function, 
M = iwC,Z, weights the higher frequency data points more heavily than the lower 
frequency ones. Since many higher frequency points in Fig. 4 are not well resolved 
with the scale used, a modulus 3-D plot seems desirable. 

Figure 5 shows that such a plot allows one to identify the same low-frequency 
error discussed above and to discover two new problems in higher frequency 
regions. Here one sees a curving back at the highest frequencies which is not 
theoretically likely and thus suggests the presence of measurement errors in this 
region. In addition, the bad glitch at somewhat lower frequencies arose because of 
the shift during the measurements from one type of measurement apparatus to 
another, evidently without adequate cross calibration in an overlap region. Here 
only the low frequency error shows up in the conventional projection plot of M” 
vs. log( f ). 

These results underline the desirability of constructing 3-D plots, preferably of all 
four immittance functions, before any data analysis is carried out. With modem 
computer-controlled plotting, such plots are readily produced. Of course if bad 
points show up, measurements should be repeated. If that is impractical, outliers 
should either be eliminated or weighted weakly, and possibly mild smoothing should 
even be used [l]. 

(II.b) Complex non-linear least squares data analysis 

Even the most complete data presentations are only suggestive of the processes 
occurring in the system investigated; a complete characterization requires that some 
kind of a comparison be made between the data and a theoretical model and/or 
reasonable equivalent circuit, as depicted in Fig. 1. In the past various graphical 
and/or simple mathematical fitting procedures have been carried out, often involv- 
ing subtractive calculations, which can be very inaccurate. Further, these approaches 
generally do not analyze all the data simultaneously, and they usually yield 
parameter estimates without any uncertainty measures. An approach which avoids 
these difficulties and has great resolving power as well is that of complex nonlinear 
least squares (CNLS) data fitting [lo]. Here all the real and imaginary data values 
(or the modulus and phase values) are fitted simultaneously by weighted, nonlinear 
least squares to a model or equivalent circuit, determining the best-fit estimates of 
all the free parameters, as well as first-order estimates of their standard deviations. 
The latter results are an essential part of the analysis since they indicate which 
parameters are well determined and which, if any, should be eliminated. 

An illustration of the accuracy and resolution of CNLS fitting is presented in 
Fig. 6. Here the lumped-constant circuit shown was constructed using actual 
elements whose values, listed at the top, were separately measured at a few 
frequencies. The admittance of the full circuit was then measured with IS for many 
frequencies between 0.4 and lo4 Hz. Three-D impedance and admittance plots are 
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Fig. 6. Three-dimensional perspective impedance and admittance plots of the response of the lumped 

constant ladder network shown. CNLS fit values shown in parentheses [6]. 

presented in the figure and show little resolution of the two main time constants of 
the system. CNLS led to a very good fit of the data, however, as well as the 
parameter estimates and standard deviations shown in parentheses. These values 
agree excellently with the individually measured ones and are, in fact, probably 
more accurate [6,10]. 

Finally, Fig. 7 shows a 3-D plot and the results of a CNLS fit of data obtained 
from IS measurements on the solid electrolyte /3-PbF, with platinum electrodes. 
Although the circuit is rather similar to that of Fig. 6, the response is of very 
different character, primarily because of the needed presence in the circuit of the 
impedance Z,, a constant phase element (CPE), a dce. Such elements will be 
discussed in the next section. The small values of the relative standard deviations of 
the parameters obtained from the fit show that it was a good one and that all the 
parameters present were needed. The heavy dots in the 3-D plot are the original 
data points while the fit predictions are shown by solid triangles. The projection 
lines from these points down to the bottom plane begin to show slight discrepancies 
(because of imperfect fitting) at the lowest frequencies, indicating that the circuit 
cannot represent the data perfectly in this region. Note that seven parameters have 
been well estimated here. Good estimates of even more parameters can be obtained 
from CNLS fitting when data extend over a sufficiently wide frequency range. 
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Fig. 7. Three-dimensional perspective impedance plot of p-PbF, data and CNLS fit response for the 
circuit shown [6]. 

There are two further sources of possible ambiguity in CNLS fitting. First, a fit 
may involve only a local minimum rather than the absolute least squares minimum. 
This problem becomes worse the larger the number of parameters to be determined 
in a non-linear least squares fit, but it can nearly always be circumvented by 
carrying out the fitting several times with very different initial values for the 
parameters. If the final parameter estimates are the same in all such fits, it is likely 
that the true least squares solution has been obtained. 

Second, it is not always obvious what kind of weighting to use. In the absence of 
weights derived from replicating the experiment a number of times, unity weighting 
(UWT) or proportional weighting (PWT - the uncertainties of the components are 
taken proportional to their magnitudes at each point) is customarily used. Luckily, 
the weighting employed has only a small effect on the parameter estimates when the 
errors present in the fit are reasonably small [lo]. It has been suggested that when 
the errors in the real and imaginary components are strongly correlated, modulus 
weighting (MWT) should be used [ll]. In this case the weights for both components 
are just ( II-*, where I is the immittance function being considered. Now if one fits 
the data in their original form without transformation to another immittance form, 
as one should, and if the errors are random, as one would hope, they should be 
uncorrelated. But transformation from a given function to its complex inverse, as 
from impedance to admittance, will induce some correlation in the errors of the 
individual components at each frequency; then for comparison of fits with these two 
forms, MWT may indeed be appropriate. 

Computerized fitting has recently been criticized [12] because the deviations 
between the data and the fitting results (residuals) may show systematic behavior. 
Indeed they may, but this is a strength, not a weakness, of such methods as CNLS 
fitting! Such results provide very important information, namely that the model or 
equivalent circuit used in the fitting is not a perfect representation of the data. 
When the deviations are large enough, they are a stimulus to try to discover and 
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eliminate systematic errors in the data themselves and/or to try more appropriate 
models or equivalent circuits. Although residuals are not usually calculated and 
examined in the older approximate (non-computerized or non-CNLS) analysis 
methods, as they are as a matter of course in the CNLS approach, they are always 
likely to be larger than with CNLS and thus to indicate systematic behavior more 
frequently, sometimes when it is only an artifact of the inadequate analysis 
procedures used. 

(III) DISTRIBUTED CIRCUIT ELEMENTS, MODELS. AND CIRCUITS 

No matter how accurate and extensive one’s data are, it is fair to say that the 
unexamined data set is not worth crowing about! Ony when one has derived 
maximum enlightenment from it about the system involved has it served its purpose. 
To do so nearly always requires some comparison between the data and theoretical 
expectations, as discussed in the last section. A detailed model should always yield 
an expression for impedance vs. frequency, but it may or may not allow a useful 
equivalent circuit to be constructed. Whether or not such a circuit is available, the 
model impedance can be fit to the data using CNLS. On the other hand, when no 
model is available an often heuristic equivalent circuit must be used. Since real 
systems are distributed in space and their properties are frequently distributed as 
well [13], one usually needs to include one or more dces in the fitting circuit. These 
are elements which cannot be represented by a finite number of ordinary ideal 
circuit components but subsume the response of a distributed process, say diffusion, 
into a single expression. I shall discuss some of them briefly in the next section, and 
then move on to consider some models and equivalent circuits which have been used 
to represent and analyze the s-s ac response of supported and unsupported solid and 
liquid electrolyte systems. Some pertinent reviews appear in refs. 12 and 14-19. 

(III.a) Some distributed circuit elements 

The diffuse layer differential capacitance is itself a dce since it represents space 
charge response over a finite region of space. Although it shows some frequency 
dependence at very high frequencies (see the next section), such dependence may be 
neglected in the usual experimental frequency range. Many different expressions for 
its capacitance have been derived, depending on the exact physical conditions 
considered. Here I shall give only an approximate but usually adequate expression 
applying for the common situation of two identical, plane, parallel blocking 
electrodes separated by a distance 1 which contains many Debye lengths, LD. Thus 
we shall actually be concerned, in the present case of the low-frequency-limiting 
differential capacitance, with two diffuse layer capacitances in series, one associated 
with each interface, and with Cs in parallel with the combination. As the general 
circuit of Fig. 2b shows, however, only in the low frequency limit can we take Cs in 
parallel with this combination alone. Since I shall be usually dealing with two 
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identical electrodes in the following, when I am, I shall define C,, as the series 
combination of the two diffuse layer capacitances without the effect of Cs included, 
and take Cn as the series combination of the two inner layer capacitances. Then the 
(combined) double layer capacitance, CDL, satisfies CD: = C,; ’ + C, ‘, and, for 
sufficiently low frequencies, CT = Co, + Cs. For solid electrolytes, Cn for a single 
interface will generally be large since it is then approximately the capacitance of two 
parallel plates separated by an ionic radius. It may often be set infinite to good 
approximation in such cases. 

Although the use of two identical electrodes, a common practice for solid 
materials, may seem a limitation, especially for liquid electrolyte situations where 
half-cells are often employed, this is not the case when no static potential difference 
appears across the cell. Because of symmetry, two-electrode s-s ac results may be 
considered to be equivalent to the results which would be obtained for two identical 
half-cells in series, with each half-cell involving the boundary conditions of the full 
cell at one end and that equivalent to an ohmic electrode, undisturbed bulk 
concentrations, at the other. Thus full-cell solutions include both cases. 

Let us ignore for the moment the effect of any Cu by taking it infinite; then C,, 
and Co, will be the same. Consider a situation where the continuum (igm) model is 
appropriate, and a static potential difference of #, is applied across the electrodes; 
thus #a/2 occurs across each diffuse layer. Then one finds for the quasi-static 
differential capacitance [20,21] 

CT = C,[(W ctnWf)l ~sh(W4W (1) 

Here M, the number of Debye lengths in a half cell, is defined as 1/2Lo. This 
expression for CT is intensive, as it should be for an interface-related quantity, when 
A4 >> 1 and Cs plays a negligible role. When 1 $JV, 1 -K 1, one obtains the usual 
small-signal ac expression for C, (not distinguished from CDL by many authors) 
when M X- 1, and one finds the extensive result C, = Cs when M * 1. 

I shall now turn to the consideration of frequency response which may be 
associated with a distribution of relaxation times or activation energies and which 
applies for a single, possibly wide, dispersion region. A very important dce, whose 
response, or response very close to it, appears over a limited frequency range in 
nearly every distributed situation and in most other dces, is the constant phase 
element (CPE). Its admittance is of the form [l-3,13,22-25] 

Y=A,(iw)” (2) 

where 0 d n < 1. This element is not physically realizable at the extremes of 
frequency and so should be used in conjunction with other limiting elements or in 
truncated form. A degenerate form of the CPE, when n = 0.5, is infinite-length 
Warburg response associated with uniform diffusion in a right half space [26]. It has 
been widely used in electrochemical IS studies but suffers from the same lack of 
physical realizability as the CPE. Its impedance is usually designated as Zw, and it 
is an intensive quantity. 
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For a single dispersion region whose low frequency limiting resistance is R, and 
whose high frequency limiting value is R,, it is convenient to introduce the 
normalized impedance function [2] 

rz=(Z-R,)/(R,-L) (3) 
whose limiting real values are 1 and 0. Another dce associated with uniform 
diffusion, but more physically plausible than the CPE or Z,, is the finite-length 
Warburg, impedance Z,, where 

Z zo = tanh(fi)/fi (4) 

and s = wrM is a normalized frequency. The time constant rM involves mobilities or 
diffusion constants and the electrode separation, 1. Since all real systems involve a 
finite separation of electrodes, Z,, defined by eqns. (3) and (4), should always be 
used in place of Zw, although formally it reduces to Z, when R, = 0 and s > 2. 
In this limit, the response is intensive, as appropriate for a region near an electrode. 
Note that in the zero frequency limit Z, reduces to the impedance of a capacitor 
and resistor in parallel, even when R, = 0. Here the response is extensive in 
character because diffusion effects then extend over the entire region between the 
electrodes. 

The response form of eqn. (4), which is also the normalized input impedance of a 
finite-length shorted transmission line [27], first appeared in the present context in 
1953 [28] for the unsupported situation and in 1958 [29] for the supported one. 
Comparisons of the two approaches [30] show that although the frequency response 
is of the same form, the coefficients and time constants involved are generally 
different, although the coefficients may be the same in one simplifying case. 
Franceschetti and Macdonald [27] have considered many more complicated diffu- 
sion effects in supported and unsupported small-signal response. Besides the above 
particular finite-length response, associated with a fast reaction at the electrode, 
another such limiting response appears when the diffusing entity is blocked (and 
possibly adsorbed) at the electrode (the analog of a finite-length transmission line 
with a infinite terminating resistance). Let its impedance be designated Zoo. Then 

[27,311 

Z zoo = ctnh(fi)/fi (5) 

which becomes purely capacitative in the low frequency limit but shows Z, 
behavior again for s > 2. Responses of the above types can appear when the 
diffusing entity is either charged or neutral. Both types of response are seen fairly 
frequently in experimental results. It has even been suggested [31,32] that Z,, 
response may arise in electrochromic thin films where the diffusing metallic ion is 
supported by electronic conduction. 

Another important dce which has been widely employed in equivalent circuits for 
both dielectric and conductive systems leads to a complex plane curve which is a 
semicircle with its center depressed below the real axis, a common shape when a 
distribution is present [1,2,13,23,25,33]. Its I, representation is 

I, = [1+ (is)“] -I (6) 
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where s is again a normalized frequency variable. This result, which has been 
termed the ZARC or ZC dce, may either be considered as a response function in its 
own right or as the parallel combination of a resistance and a CPE. There are 
several other interesting combinations of a CPE and an ideal circuit element [l], but 
the ZC is the most common. Unfortunately, it is not physically realistic at both 
frequency extremes since it does not meet the criterion that its response reduce to 
that of a system with a single relaxation time at very low frequencies and to another 
single relaxation time in the limit of high frequencies [2,3,25]. In many practical 
cases measurements may not extend to the regions where these deficiencies become 
apparent, however. 

Many other dces have been proposed over the years. Some of them are discussed 
in refs. 1, 2, 13 and 34. Here, however, it will suffice to mention three of them of 
current interest: the Williams-Watts (WW), Exponential Distribution of Activation 
Energies (EDAE), and Gaussian Distribution of Activation Energies (GDAE) dces. 
WW response has been found in many theoretical and experimental studies (many 
references are listed in the present ref. 3), although most comparisons with experi- 
ment have been inadequate, in part because the integral definitions of the WW Z’ 
and Z” functions are very difficult to evaluate accurately. Recently, however, an 
accurate approximation for WW response has been developed [35] and incorporated 
as an elective part of a powerful CNLS fitting program (available from the present 
author). 

Although the GDAE and EDAE responses are also defined as integrals, they are 
readily evaluated numerically and are also included in the CNLS computer pro- 

Fig. 8. Three-dimensional perspective impedance plot showing a comparison of accurate WW response 
(solid lines) with response obtained [3] by fitting the EDAE model to the “data” by CNLS (dashed lines). 
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gram. The general EDAE dce has been found to be able to fit very well the 
responses of nearly all the other dces which have been proposed [2,34,35]. For 
example, Fig. 8 shows the result of a CNLS fit of the EDAE model to accurate 
calculated WW response. When the system being investigated is thermally activated, 
as it often is, and shows evidence of distributed character (wider dispersions than 
arise from single-time-constant Debye response), the EDAE is probably the dce of 
choice, both because it is fully physically realizable and because it leads, unlike 
other models, to temperature dependence predictions in good agreement with 
experiment for the fractional frequency and time power-law exponents often found. 

(III. b) Circuits and models 

(III. b. I) General discussion 
The presence of a supporting, or indifferent, electrolyte in supported situations 

decouples the charged ionic species of interest from the rest of the charges in the 
system, thus making its electrical effects very much easier to calculate in an 
approximate but usually adequately accurate way. The situation is quite different 
for an unsupported solid or liquid where Poisson’s equation couples charges of both 
signs together strongly. It is thus generally much more difficult to solve electrical 
response problems, particularly under large signal (non-linear) conditions, in unsup- 
ported than in supported situations. Here I will primarily consider s-s solutions for 
unsupported conditions, finishing with some numerical results for the highly nonlin- 
ear situation where a static bias, p.d., $J,, is present as well as a small sinusoidal p.d. 

When an equivalent circuit involves only ideal elements, it is found that some 
circuits with the same number of elements but with different interconnections may 
yield exactly the same impedance for all frequencies [3,14,18]. Three such circuits 
are shown in Fig. 9. The first is a series type, the second essentially parallel, and the 
third a hierarchical connection. The circuit elements are named differently in each 
circuit because they must have different values in order that the impedances of all 
three circuits be the same. This ambiguity may sometimes make it difficult to find 
the most appropriate circuit for a given situation, but it can usually be eliminated by 
considering the dependences of the circuit elements on one or more other experi- 
mental variables besides frequency, as mentioned in Section II. Further, it turns out 
that when the circuit being investigated requires the presence of one or more dces 
which involve CPE-like behavior the ambiguity discussed here disappears [33]. For 
all the circuits presented in this section, the resistances and capacitances shown are 
taken to be frequency independent unless otherwise noted. 

In the following circuits, I shall follow prior usage in defining R,, as the solution 
resistance for liquid materials, but I shall use R, as a more general definition of the 
high frequency limiting bulk resistance of either a liquid or a solid material. In 
many electrolyte equivalent circuits the quantity Co, (or C,,) appears defined as 
just the double-layer capacitance without distinction being made between the three 
concepts here denoted by Cdl, CDL, and Cr. When an expression is given for it, it is 
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Fig. 9. Three circuits which can have exactly the same impedance-frequency relation [18]. 0 1981 IEEE. 

usually that of the CT of eqn. (1) in the s-s A4 X= 1 situation: c,/47rL, for a single 
electrode or er,/8rrL, for two identical electrodes. Here l r, is the dielectric constant 
of the bulk material. Since Co, turns out to be closely associated with charge 
transfer reactions at an electrode involving a reaction resistance R,,, or R,, I shall 
often denote Cm as C,. 

Figure lOa-e shows some representative equivalent circuits which have been 
proposed over the years as appropriate representations of the response of supported 
(liquid) electrolytes. The circuit of Fig. 10f is for a membrane with only charge of a 
single sign present in the membrane, somewhat similar to a supported situation. 
Other circuits are discussed in refs. 12, 14,42, and 43. Note that only the last of the 
Fig. 10 circuits includes Cs and a few do not include R,. Although some of these 
circuits have been used for data analysis, it is unfortunate that rarely have several 
different circuits been used to analyze the same data in order to try to discover 
which one is the more appropriate, and hardly any supported-situation data have 
been analyzed with CNLS. Such fitting and comparisons are still much needed, 
especially since the presence of dces in circuits of this kind eliminates most of the 
possibility of ambiguity discussed above. The important circuit of Fig. 10a is known 
as the Randles circuit (although it had already been discussed by Ershler). Randles 
[36] calculated expressions for R,, and Z, appropriate for the simple charge 
transfer reaction 

Ox+n e-@Red (7) 

where n is here the total number of electrons transferred in the reaction, and Ox 
and Red are oxidized and reduced species. 
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Fig. 10. Some circuits proposed for the impedance of a supported electrode-material situation; (a) 
“Randles” [36], (b) Laitinen and Randles [37], (c) Llopis et al. [38], (d) Barker [39], (e) Timmer et al. [40], 

(f) de Levie and Vukadin [41]; a membrane situation; see text. Here R, and C, are adsorption resistance 
and capacitance; AC is the capacitance difference between low and high frequency; Rww and Cww are 
Warburg-l&e elements for diffusion-controlled adsorption; R, is a membrane (bulk) resistance; and R p, 

is a phase transfer resistance. 

An important difference between supported and unsupported conditions is 
associated with the mobilities of the charges. Most supported situations are present 
in liquid electrolytes, where both positive and negative species are mobile, usually 
without a tremendous difference in mobilities. Unsupported situations occur, how- 
ever, in fused salts and in solids with ionic or electronic conduction. Although 
charges of both signs may be mobile in solids and have comparable mobilities, it is 
common to encounter situations where the difference in mobility is so large that the 
slower charges may be taken completely immobile over the time scale of the 
experiment. 

(III.b.2) Unsupported conditions: models and theoretical results 
The earliest correct treatment of the s-s frequency response of an unsupported 

situation appeared in 1953 [28]. It involved uni-univalent charges of arbitrary 
mobilities, complete blocking conditions at the two identical electrodes, and no 
applied static p.d. This theory and most of those discussed below apply to 
semiconductors as well as to solid or liquid electrolytes, but I shall emphasize the 
latter materials here. 
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No full theory of s-s frequency response for unsupported conditions with partial 
discharge at the electrodes appeared for some time after the above work. Such 
discharge occurs when a charge transfer reaction, such as that of eqn. (7), is present. 
Although I obtained, over a period of some years, many new theoretical results 
[4,15,30,44-521 incorporating the simple discharge boundary conditions of Chang 
and Jaffe [53], these results were made more complicated and harder to use by their 
analysis in terms of the equivalent circuit of Fig. 2a, and later by the use of the first 
circuit shown in Fig. 9. The Fig. 2a circuit isolates the zero-frequency limiting 
resistance of the system, R,, and R, is given by the parallel combination of R, 
and R,. By contrast, the Fig. 2b circuit separates out the high frequency elements, 
R, and Ca, of the total response and turns out to lead to much simpler analysis and 
fitting [4,54]. 

The Chang-Jaffe (C-J) boundary conditions, which do not take an inner layer 
into account but do involve a pure concentration overpotential, were later gener- 
alized by LArryi [55] and the present author [15,49,50,54] by taking the discharge 
parameters for positive and negative charges complex and frequency dependent in 
such a way that the possible presence of sequential specific adsorption, as well as an 
electrode reaction, could be simply included. Some resulting complex plane curve 
shapes are shown in Fig. 11. Note that each semicircle involves a single time 
constant, such as ~a = RRCR for the reaction arc. The negative loops in Fig. lla 
imply the presence of inductive or negative differential resistance and capacitance 
response. It has been shown [54] that the representation of the adsorption response 
in terms of negative resistance and capacitance is preferable to the introduction of a 
non-physical inductance. The rather exotic sorts of behavior shows here have 
actually been observed when adsorption is present. 

The most complete theory using the generalized C-J boundary conditions 
appeared in 1978 [4]. It leads to a complicated expression for the Z, of Fig. 2; 

Fig. 11. Complex plane response curves for adsorption/reaction (A/R) situations [15,54]. Arrows denote 
direction of increasing frequency. Here R identifies a reaction arc, B a bulk arc, and D a diffusion arc. 
The r,,s are rate constant parameters. The curves in (a) apply for n,,, S- 1, and those in (b) for q,, = 1 and 
- w-=r,,<-2. 
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involves arbitrary mobilities, valence numbers, and discharge parameters; and treats 
both intrinsic and extrinsic conduction possibilities, with inclusion of dynamic 
dissociation and recombination effects. It thus includes the five important processes: 
charge separation near an interface, adsorption-desorption, charge transfer at an 
electrode, mass transport (diffusion effects), and intrinsic-extrinsic generation-re- 
combination. Its results are too complicated to yield a useful equivalent circuit in 
the most general case, but such circuits may be found for some less general 
situations. Of course when an equivalent circuit is derived from the exact solution, 
expressions for the circuit elements in terms of microscopic parameters of the model 
follow immediately. In the present overview I shall not define in this way all the 
elements appearing in the equivalent circuits discussed since the detailed relations 
are available elsewhere. 

It is possible to obtain a simple equivalent circuit for the completely blocking, 
intrinsic, equal valence numbers, equal mobilities case, with or without recombina- 
tion. One finds [4] the exact result that Z, = Z,, is made up of a capacitance Csfi in 
series with a resistance R&‘, where t, = [(M\I;L) ctnh(M&) - l] and J, = 1 + 
iw~o. These elements are thus frequency dependent in the o = rD1 region where 
bulk effects dominate. In the usual lower frequency region where w < ~6~ and 
interface effects dominate, however, they are essentially frequency independent; 
t, a r - 1; and r = (M) ctnh( M), a quantity usually much greater than unity. Then 
the series resistance can be neglected compared to R, and the capacitance becomes 
just the usual C,, = Cg(r - 1). In the limit of low frequencies, C, = Ca + C,, = rCg, 
in full agreement with the result of eqn. (1) when 4, = 0. 

Exact results are considerably more complicated when the mobilities are unequal; 
then diffusion effects usually appear even in the completely blocking case [4,28,56]. 
The limiting low frequency finite-length-diffusion capacitance following from Z,, 
sometimes called a pseudo-capacitance, is proportional to I and may be very much 
larger than C,, [4,30,45-471. When I/J, is non-zero, exact analytic solution of the 
coupled set of non-linear differential equations which determine transient response 
or s-s frequency response is impossible, but Franceschetti and Macdonald [31,57,58] 
have solved the equations numerically for many different cases of interest. The 
static potential difference, +,, may include an applied component and/or intrinsic 
Frenkel layer contributions. 

The frequency response of material in finite-length half cells with one completely 
blocking electrode or in full cells with two such electrodes, has been calculated [31] 
for several values of the mobility ratio, or, = ~,/~P, and many values of 4: = $JVr. 
Some representative complex plane impedance and admittance results for a half cell 
with n;, = 5 are presented in Fig. 12. The equivalent circuit of Fig. 13a was found, 
by CNLS fitting, to represent the data well with 4, zero, positive, or negative. 
Compare the supported-case circuit of Fig. 10d. For J/, = 0 and or, = 1, it turns out 
that Z, = 0, R, = R,, and C, = Cdl, as given above. We have used the designations 
R, and C, here in place of R, and C,, to emphasize the dependences on 4, found 
for these quantities and for the parameters of Z,. These dependences are in 
agreement with expectations for charge accumulation and depletion layers; that for 
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Fig. 12. Impedance (a) and admittance (b) plane plots for a half cell with a blocking electrode, A4 = 10, 
and q, = 5, for several values of the normalized applied static potential difference [21]. 

R, is very small; and that for C, agrees very closely with 
$,-dependent analytic expressions [31], such as that of 
considered. 

appropriate quasi-static 
eqn. (l), for the cases 

For the 4, = 0 full-cell situation where positive charges are taken completely 
blocked at the electrodes and negative ones may react at the electrode with an 
arbitrary rate constant, k,, Macdonald and Hull [59] have used CNLS fitting of an 

Fig. 13. (a) Equivalent circuit appropriate for one or two blocking electrodes, no specific adsorption, 
arbitrary rr,,,, and either without or with an applied static bias p.d. (b) Equivalent circuit appropriate in 
the small-signal, arbitrary mobilities situation (591. (c) Equivalent circuit presented by Archer and 
Armstrong [17] for one-mobile blocking conditions. 
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appropriate circuit to the exact theoretical response [4] in order to investigate how 
the circuit elements depend on rr,,, and on recombination effects. The best fitting 
circuit found is shown in Fig. 13b. Notice that it would be identified as a Randles 
circuit (with a finite-length rather than infinite-length diffusion impedance) if 
supported behavior were being considered. Attention was concentrated on the 
wr,, CK 1 frequency region, and for rrm = 1 exactly the above result for C,, was 
found from the fitting. But C,, increased rapidly for rr,,, > 1 and quickly dropped for 
V~ < 1 to about 0.7 times its rrm = 1 value, or, more precisely, to C,(r, - 1) for 
rrm -=XK 1. Here r, = (Ml) ctnh(M,) and Mi = Z/L,,. The latter result may be readily 
understood. When V~ < 0.1, the effective Debye length is no longer that appropriate 
when charges of both sign are mobile, L,, but is well approximated by the 
one-mobile value, L ,,, = &&. 

The resistance R, also showed interesting and important behavior. Although it is 
usually taken to be the reaction resistance, proportional to k;‘, it was found to be 
non-zero and dependent on M- * even when k, was taken infinite. Such pseudo-re- 
action rate response, associated with the drag of charges of one sign on those of the 
other sign and not with a finite reaction rate at all, can lead to entirely incorrect 
estimates of reaction rate values when it is unrecognized; and even when its 
presence is accounted for, it sets an upper limit on the maximum reaction rate value 
which can be reliably estimated when using CNLS to fit data as accurately as 
possible to the present circuit. 

For the rest of the discussion I shall be concerned only with the one-mobile 
situation (a single species of mobile charge present) appropriate for many solids. 
Charge of one sign is taken immobile, and is uniformly distributed in the absence of 
recombination, while that of the other sign is assumed to be mobile and may react 
or be blocked at the electrodes. Archer and Armstrong [17] have discussed the 
equivalent circuit of Fig. 13c for a blocked, one-mobile situation with specific 
adsorption. Since it has no dc path, it allows no Faradaic current and thus no 
charge transfer reaction occurs. Although the exact s-s solution [4] yields a relatively 
simple expression for Z, for the general one-mobile case, it still does not lead to a 
relatively simple equivalent circuit when recombination is possible and dissociation 
is incomplete. In the full dissociation limit, however, it does yield a simple circuit, 
that of Fig. 14 when all the Z,s are taken zero and C, = Cur = C,,. The resulting 
hierarchical structure is then equivalent to the ladder network of Fig. 9 and is also 
equivalent in form to the supported-case circuit of Fig. 1Oc when one Z, in Fig. 14 
is taken non-zero and is approximated by Zw, and Cs is ignored. 

Actually, the exact solution shows that the C. in Fig. 14 should be replaced by 
the impedance Zso, identified above for the completely blocking situation, but with 
M and r replaced by M1 and rl since L,, rather than L, is the appropriate bulk 
Debye length in the present one-mobile case. Thus, the Fig. 14 circuit, with the 
restrictions above, is accurate Only in the wro -=K 1 frequency region. In this region 
it can, however, lead to all the kinds of complex-plane curve shapes shown in Fig. 
lla. Note that when R, = co, only adsorption is present, but the structure is 
different from that of the Fig. 13c circuit. When R, and Zo, are both zero, one has 
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Fig. 14. General equivalent circuit. For the one-mobile situation without diffusion of reaction products, 
all Z,s are zero [4,18]. Q 1981 IEEE. 

the situation of heterogeneous reaction without adsorption. As shown above, the 
basic one-mobile situation involves no diffusion elements, but if a neutral reaction 
product diffuses in both the electrode and in the solid, at least two non-zero Zos 
may need to be included in the Fig. 14 circuit [18,27,60,61], but their effects will 
usually show up only at very low frequencies. 

One might ask how the quasi-static circuit of Fig. 9 of the preceding paper [62] 
for diffuse and inner layer capacitances could be extended to be consistent with the 
reaction/adsorption parts of Fig. 14. A tentative suggestion is as follows. When a 
reaction is present, Cs will be paralleled by a low resistance and their combined 
effects could probably be ignored in the measurable frequency range. Then if one 
identifies C, as Cn and Coo as Cdl, their series combination is just C,. One needs 
only to add R, in series with C,, and R, in parallel with it, to obtain the pertinent 
part of the Fig. 14 circuit. 

We have given little attention to the effect of C, so far since its presence is 
ignored when C-J boundary conditions are employed. Luckily, a transformation of 
variables method has been developed [54] which allows known exact s-s solutions 
using even generalized C-J reaction/adsorption parameters to be transformed to 
solutions taking proper account of C, and involving even more general overpoten- 
tial-dependent, first-order electrode reaction kinetics than conventional Butler- 
Volmer (B-V) kinetics. When this method is applied for the present one-mobile case 
without adsorption, it leads [63,64] to the exact equivalent circuit of Fig. 15a. This 
circuit shows that it is possible to separate out all Cn effects into a separate series 
circuit which reduces to just C, when the mobile carrier is completely blocked. 
Here Cs” is the geometric capacitance of the system excluding the two inner layer 
regions and R,, is the bulk resistance also excluding these regions. The exact 
solution for the total impedance Z, is relatively complicated and although it could 
be used directly for CNLS fitting, it is useful to derive simpler approximate results 
[63,64]. 
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Fig. 15. Equivalent circuits which take the inner layer into account. Applicable for the one-mobile 
situation with general reaction kinetics [64]. (a) Exact small-signal circuit; (b) first approximate circuit; 
(c) second approximate circuit, appropriate with or without a Faradaic current flowing. 

Such results are embodied in the equivalent circuits of Fig. 15b and 15~. That of 
Fig. 15b is quite accurate even up to or,, = 1, while that of Fig. 15c is a good 
approximation up to wrn = 0.1 or so. It is surprising that the complicated circuit of 
Fig. 15b can be well approximated by a circuit of the same form as its left half, the 
ordinary C, = 0 solution, but this is indeed the case. The exact s-s solution shows 
that to a good approximation C, = Cs, and RI = R,. Further, when the kinetics 
used are simplified to B-V form, it turns out [54,64] that R, is exactly R,, entirely 
unchanged by the presence of Cn. The identity of the present unsupported-case R, 
with the conventional R,, reaction resistance used in supported situations and 
derived for B-V kinetics was pointed out long ago [47]. In addition, it has been 
shown [54] that the unsupported and supported expressions for the adsorption 
capacitance C, are also identical. 

But C, is not generally equal to Co,, even for B-V kinetics. The results do show, 
however, under what specific conditions the conventional approximation is ap- 
propriate. For the general kinetics, a complicated expression for C, is obtained [64] 
which involves most of the parameters of the Fig. 15b circuit. The result is much 
simplified for B-V kinetics but still involves R,. It turns out, nevertheless, that for 
ordinary conditions in cells with large M, it is a good approximation to set 
C,=C,,, where C$=C,;‘+C,’ a s usual. Then the Fig. 15c circuit is just that 
long used for both supported and unsupported conditions. For thin membranes 
with small M most of these results definitely do not apply, however, and the exact 
results should be used for fitting [64]. 

Finally, Franceschetti and I have obtained numerical solutions for the present 
situation with static bias applied for both full cells and half cells [58]. Typical 
complex plane results are shown in Fig. 16 for C-J and for B-V kinetics. Although 
the curves look very similar for the two cases, notice the quite different biasing 
currents listed. The Fig. 15c circuit was found to be quite adequate to represent the 
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Fig. 16. Impedance plane plots for M = 100 symmetrical cells with several biasing currents [58]. (a) 
Chang-Jaffb electrode kinetics; (b) Butler-Vohner electrode kinetics. These two figures were originally 
presented at the Spring 1979 Meeting of the Electrochemical Society, Inc. held in Boston, MA. 

results, but except for C, the parameter values agreed only with those discussed 
above under zero-bias conditions. Although R, was found to have only small bias 
dependence, R, and C, varied appreciably and systematically with bias but showed 
considerably less variation for B-V than for C-J kinetics. 

For both supported and unsupported situations, IS s-s measurements often do 
not agree with ideal theoretical results. For example, the RR--CR reaction arc 
appearing in the complex impedance plane is not always found to be a perfect 
semicircle with its center on the real axis but often is depressed, with its center 
below the real axis. Although the exact s-s theory yields some such depression when 
q,, is appreciably different from unity [47], the possible amount of depression is 
insufficient to explain most results. Further, “diffusion” arcs often have high- 
frequency power-law exponents different from the theoretical n = 0.5 value. Al- 
though it appears that the general hierarchical circuit of Fig. 14 (with one or more 
2,s set to zero) is an appropriate starting point for fitting either supported or 
unsupported data, it must clearly be modified for use with data showing non-ideal 
behavior. One approach which often helps is to replace one or more of the ideal 
circuit elements or 2,s by more general dces such as ZCs, WWS, or EDAEs. 
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Although considerable s-s frequency response data, both supported and unsup- 
ported, have been analyzed, the analysis employed has often fallen short of the state 
of the art. A representative list of unsupported solid materials whose data have been 
analyzed might include Na /&hunina (single crystal) [7,8]; (KBr),,,(KCN),, (single 
crystal) [34]; polyphenylene-oxide (polymer film) [56]; fi-PbF, (single crystal) [61]; 
lithium nitride (single crystal) [65]; and zirconia-yttria (polycrystalline) [66]. The 
data have not always been plotted in ways that show up dubious points; CNLS 
fitting has not always been used; and most important, too few different models or 
equivalent circuits have been fitted for a given set of data to allow a best choice to 
be established with some confidence. Much yet remains to be done, both in 
developing new theoretical models (e.g., see the recent work on response of 
three-phase electrodes [67]), and in analyzing data sets in ways worthy of them. 

ACRONYM DEFINITIONS 

dce 

igm 
p.d. 

;IsD 

B-V 

C-J 
CNLS 
CPE 
EDAE 
EDL 
GDAE 
IS 
MWT 
PWT 
UWT 
ww 

distributed circuit element 
ideal-gas model 
potential difference 
small-signal 
three dimensional 
Butler-Volmer 
Chang- JaffC 
complex non-linear least squares 
constant phase element 
exponential distribution of activation energies 
electrical double layer 
Gaussian distribution of activation energies 
impedance spectroscopy 
modulus weighted least squares 
proportional weighted least squares 
unweighted least squares 
Williams-Watts 
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