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General considerations in nonlinear least squares fitting of small-signal ac frequency response data (conductive or dielectric 
systems) are first discussed. A very general and flexible complex nonlinear least squares fitting (CNLS) program (LOMFP) is 
described which runs on microcomputers of the PC and AT type. Advantages and disadvantages of LOMFP are discussed and 
compared to those of a recent CNLS program developed by Boukamp. LOMFP incorporates many thousands of equivalent cir- 
cuits fitting possibilities and ten different distributed circuit elements which can be used in these circuits. Its fitting is both speedy 
and accurate, and it provides considerable insurance against confusing local minima tits with true least squares tits. It is optimized 
for fitting real, imaginary, or complex data of either partly conducting or purely dielectric character, and it incorporates great 
flexibility in handling and fitting data in different forms (different immittance levels and rectangular or polar representation). 
Seven different data weighting choices are provided. Exact synthetic data were generated from a typical Impedance Spectroscopy 
equivalent circuit, and the effects on CNLS fitting were investigated of rounding the exact data to 4, 3, and 2 decimal places. We 
present the results of an extensive study of the effects of transforming exact data to different immittance levels and representations 
and then rounding to two places or of transforming rounded 2-place data directly. We conclude that real data should not be 
transformed from its original measured form before carrying out CNLS fitting. Finally, the effects were investigated of various 
kinds of weightings on CNLS fitting of 2-place data, leading to the conclusion that in spite of its advocacy and use by Zoltowski 
and Boukamp, modulus weighting generally yields misleading and appreciably worse CNLS fitting results than does proportional 
weighting. The LOMFP program (source and executable tiles) is available from the first author. 

1. Introduction 

Impedance spectroscopy (IS) is a fancy modem 
name for the small-signal ac measurement and anal- 
ysis of electrical response data over an appreciable 
span of frequency, a span currently ranging from as 
low as about 1O-5 Hz to as high as 10’ Hz or even 
higher. By this broad definition it includes all such 
measurements on either dielectric or somewhat con- 
ducting materials and so has a rich history extending 
back for more than fifty years. 

In the last thirty years, the use of IS for the anal- 
ysis of both liquid and solid electrolytes has grown 
substantially. And, in the last 10 to 15 years, it has 
come to be even more widely employed because, we 
believe, of the following factors: (a) first, because of 
the development and availability of computer-based 
automatic measuring equipment; (b) second, because 
of an increasing number of demonstrations of its 
usefulness in analyzing data for a wide variety of 

materials; and (c) last, because of the development 
of powerful and time-saving methods of data pres- 
entation and analysis. These developments have 
made it much easier to obtain IS data and to analyze 
it adequately. Here we shall consider only factor ( c ) , 
the most recent of the three; the one whose use is still 
not as completely widespread as it deserves to be; 
and the one which can contribute most to the under- 
standing of the electrical properties and behavior of 
material-electrode systems. As Socrates might have 
said if he were a modem experimentalist: “The inad- 
equately examined data set is not worth generating”. 
The ultimate purpose of nearly any experimental 
procedure is “insight, not numbers” [ 11. 

The designation “impedance spectroscopy” should 
really be replaced by “immittance spectroscopy”, 
because IS can and should deal with all four com- 
mon immittance functions: impedance, Z=z’ + iz”; 
admittance, Y= Z - ’ = Y’ + i Y” ; complex capaci- 
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tance or dielectric constant, @r = Ylio = C’ - ic” (or 
t* = Cc/C, = E’ - ie”, where C, is the capacitance of 
the empty cell); and (complex) modulus, 
M,=cC-‘=ioZ=M~+iM; (or M=e*-’ 
= M’ + iM” , a dimensionless complex quantity.) As 
usual, i I J-l. IS should deal with all these quan- 
tities, even when measurements are made at only one 
of these four levels, because they weight the data dif- 
ferently and much can usually be learned by exam- 
ining two and/or three dimensional plots [2] of a 
given data set for each of these levels [ 3,4]. Because 
there have been several recent reviews that deal 
wholly or in part with IS [ 5-71, it is unnecessary to 
discuss it in general any further here. Instead, we shall 
deal only with the analysis component of IS, specif- 
ically with complex nonlinear least squares (CNLS) 
data fitting. 

2. CNLS fitting - general 

When a single, simple Debye relaxation process is 
all that appears in experimental IS results, graphical 
analysis of the imaginary part of the immittance 
function involved, plotted versus frequency, or the 
logarithm of frequency, sufficies to allow approxi- 
mate estimates of the values of the relaxation param- 
eters to be obtained. Usually, however, more than 
one process, none of them necessarily simple, com- 
bine to yield the experimental response. Graphical 
and subtractive methods have been used in the past 
to analyze such data, but they fail when the effects 
of the processes overlap appreciably in time and fre- 
quency. Further, such approaches, even when appli- 
cable, yield no information on the uncertaintites of 
the estimated parameters. 

An appreciable advance was the use of nonlinear 
least squares (NLLS) to analyze the imaginary (or 
possibly real) part of the frequency response. But 
when such analysis is done independently for the two 
parts of the response, one obtains separate param- 
eter sets whose values often differ appreciably for 
some or all of the parameters involved. Although the 
real and imaginary parts are related by the holistic 
Kronig-Kramers relations when no errors are pres- 
ent, there will always be random errors involved, as 
well as possibly some systematic ones. Analysis of 
the imaginary response alone has been much 

employed in the dielectric area and is still used for 
conducting systems as well, such as ion-conducting 
polymers [ 81. Unfortunately, it is often not stated 
how the fitting was actually accomplished in such 
work. 

By simultaneous least squares fitting of the real and 
imaginary parts (or modulus and phase) of data to 
a suitable model, one uses all the data, tends to aver- 
age out independent errors, usually reduces statis- 
tical uncertainties, and obtains a single consistent set 
of model parameter estimates, say Qj, for the sytem, 
as well as estimates of their standard deviations 
(TQj. Such CNLS fitting, which adjusts all parameter 
values simultaneously, generally yields very high res- 
olution and can thus resolve processes with strongly 
overlapping time constants. Further, estimates of the 
bQj s (here designated as S, or simply Sj) allow one 
to evaluate which parameters are important and 
which, if any, are unimportant to the fitting. 

The first complete CNLS approach for the present 
area was that of Macdonald and Garber [ 93. It 
included various weighting possibilities, an impor- 
tant feature, as we shall demonstrate later. This 
approach was further developed and discussed in 
[ lo], and the virtues of CNLS fitting and 3-D plot- 
ting were demonstrated there. Next, Tsai and Whit- 
more [ 111 discussed a CNLS approach very similar 
to those above but involving only the option of unity 
weighting. Finally, Boukamp has recently described 
a simple, approximate subtractive analysis approach 
[ 121 as well as a full CNLS one which involves mod- 
ulus weighting (MWT) [ 131. This last approach (the 
EQIVCT program) incorporates many useful fea- 
tures. It will be compared with the program described 
below, one which is a substantial generalization and 
modernization of the earlier work of refs. [9] and 

[lOI* 

3. Iteration and convergence 

Because the parameters to be estimated enter fit- 
ting models nonlinearly in NLLS, fitting of such 
models requires an iterative approach, one which 
may either fail to converge or converge to a local (not 
absolute) minimum of the sum of squares. The larger 
the number of free parameters to be detemined, the 
more likely is such inadequate convergence, but of 
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course the better the initial guesses for the parameter 
values the more likely is convergence to the proper 
least squares solution (LSS). Because of the ubiq- 
uitous possibility of inadequate convergence in 
NLLS, it is always desirable to carry out the fitting 
with two or more separate and quite different initial 
parameter values sets. If two or more of them con- 
verge to the same final parameter set, it is usually 
reasonable to assume that the least squares solution 
has been obtained. We shall discuss a further safe- 
guard later in this section. When one is dealing with 
a CNLS tit, all the above considerations again apply. 

In the CNLS situation, the basic problem is to 
minimize the weighted sum of squares cost or objec- 
tive function [ 7,9, lo] 

+ W’~[A:-A: (Oi; Q)]’ ) (1) 

here written for an arbitrary immittance function 
A = A’ + iA ’ . Here w = 27tf; where f is the frequency. 
The e and t subscripts denote experimental and the- 
oretical quantities, and the R and I superscripts allow 
one to discriminate between the weighting used for 
the real and for the imaginary squared deviations or 
residuals. Here there are N frequency values, and Q 
again represents the set of A4 free and/or fixed 
parameters present in the theoretical model, A,(o, 

Q). 
The weights appearing in eq. ( 1)) which are all 

unity in the “unweighted” or unity-weighted (UWT) 
situation, are usually defined by W: = (g) -‘, where 
ideally the Si are the experimentally determined, 
estimated standard deviations of the individual 
measurements; then W: is the inverse variance. Here 
a = R or I. Since the ST’s are rarely known accurately 
and are often unavailable, other choices for them are 
usually made. Such choices and their consequences 
will be discussed in detail later. It is worth mention- 
ing, however, that when very accurate data are avail- 
able, the actual choice of weighting used affects the 
parameter estimates very little. Unfortunately very 
accurate data are a scarce commodity. 

Nearly all available CNLS fitting programs use the 
general Levenberg-Marquardt (LM ) approach for 
carrying out the actual minimization of SW. But var- 
ious generalizations and modifications of the LM 

basic algorithm have been produced. Here we men- 
tion briefly the particular features of our fitting pro- 
gram (BP), the LOMFP, with the letters referring to 
LM, Olson, and Macdonald. More details, and the 
provenance of the actual minimizers used in LOMFP, 
are provided in ref. [ lo]. 

Because of the convergence problem mentioned 
above, we generally use two separate CNLS pro- 
grams in series, making up the total LOMFP. Both 
operate in double precision mode. the first, LEV, 
always converges for any reasonable (and often 
unreasonable!) set of data, model, and initial choices. 
Although it usually yields the LSS, especially for sim- 
ple situations, it does not always do so. Its parameter 
estimates, reduced to eight decimal places, are used 
as inputs to the second part of the program, a more 
“delicate” minimizer named OLSON, one which also 
provides further statistical error estimates when it 
converges. When the first minimization achieves the 
LSS or obtains results near it, the second minimizer 
usually requires only one to three iterations to achieve 
convergence, taken as the condition for which the 
relative changes of all parameters from one iteration 
to the next are each less than XTOL or the relative 
change in the weighted sum of squares is less than 
FTOL. These tolerances are often taken as small as 
1 O- ’ ’ since such small choices add little to the pro- 
gram run time. 

Because the second minimizer must invert the sys- 
tem matrix, it does not always converge, even when 
the first one does. It incorporates various automatic 
procedures to obtain a converged solution, but we 
find that it nevertheless usually fails when the first 
minimization yields a result appreciably different 
from the LSS. In favorable cases, it does continue to 
iterate, however, until it achieves an appreciably 
smaller weighted sum of squares than does the first 
minimizer. It is likely that this converged result is a 
LSS, but it should nevertheless always be checked by 
using a different input parameter estimate set. When 
the second minimizer does not converge, it is direct 
evidence that the result of the first minimizer is very 
likely not a LSS; again different input choices should 
be used until both minimizers converge, if they do, 
to essentially the same result, hopefully and likely a 
LSS. 

The LOMFP uses numerically calculated deriva- 
tive values for both minimizers, unlike the EQIVCT 
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of Boukamp. There are advantages and disadvan- 
tages to both approaches. That of Boukamp, using 
calculated analytical derivatives, possibly speeds up 
convergence slightly and may lead to a small decrease 
in execution time. In our program, which incorpo- 
rates many more distributed circuit element possi- 
bilities than does EQIVCT, not all derivatives are 
available in analytic form. Further, it is a conve- 
nience to be able to use the computer to calculate 
derivative values as needed. When the step size used 
in the numerical derivative calculations (an input 
choice) is selected to fall between too large values, 
which yield inaccurate derivatives, or too small val- 
ues, where round-off becomes important, accurate 
derivative values are obtained and little or no pen- 
alty in convergence time (and none in the accuracy 
of the final parameter estimates) is incurred. 

4. Strengths and weaknesses of LOMFP and 
EQIVCT 

Although a very important safety and accuracy 
feature of the LOMFP is its serial use of two quite 
different minimizers, as discussed in the last section, 
the heart of its utility is in its flexibility and gener- 
ality for fitting complicated equivalent circuits which 
may contain a wide variety of distributed circuit ele- 
ments [ 31 (DCE’s) (see later detailed discussion). 
Here again EQIVCT and LOMFP take quite differ- 
ent approaches. EQIVCT provides three distinct 
DCE’s, and as many of them and as many R, C, and 
L’s as needed can be arranged in any geometrical 
structure by proper input choice. Here ultimate cir- 
cuit flexibility has been gained at the sacrifice of hav- 
ing available only a limited set of DCE’s. 

LOMFP involves somewhat the opposite choice. 
A much larger number of DCE’s is available to be 
used in its circuits, but although these circuits are 
exceedingly flexible and general and include thou- 
sands of possibilities selected by simple input choices, 
they only allow completely arbitrary interconnection 
choices of all available circuit elements by adding 
additional circuit structures and recompiling and/or 
relinking the program. The details of this flexibility, 
and its limitations, which appear to be of little prac- 
tical importance, are discussed later in this work. 

There are several other important differences 

between the two programs. First, EQIVCT appar- 
ently now runs only on a large mainframe computer, 
while different versions of LOMPF are available for 
mainframe use, for a Unix-based minicomputer, and 
even for Pc’s. The execution-times of typical LOMPF 
runs, all in double precision, are often less than a 
minute on AT-type PC’s with a 80287 numerical co- 
processor chip and are slow, but not intolerably so, 
even on ordinary PC’s without an 8087 chip. The 
total LOMFP source and executable programs, as well 
as detailed instructions, and, for PC’s, many useful 
batch and transformation tiles, are all available from 
one of us (J.R.M.). 

Another very important difference is in input and 
fitting possibilities. Only one EQIVCT choice has 
been discussed [ 12,131. For this choice, the data are 
in rectangular admittance form, MWT is used, and 
the fitting is apparently carried out for the data in 
the same form as that used as input. By contrast, 
LOMFP allows the input immittance data to be in 
2, Y, E (or cl), or M form, either rectangular or 
polar. The input frequency values may be in either 
for o form. Actual fitting can involve any of several 
very flexible weighting choices (including MWT), 
and the fitting itself may be carried out at the Z, Y, 
E (or c”), or A4 level in either rectangular or polar 
form, independent of the level and form of the actual 
input data. 

Finally, although CNLS is usually superior to sep- 
arate fitting of the real or imaginary parts of the data, 
one of these may sometimes be missing, or, even if 
not missing, one might like to compare the results of 
separate CNLS, RNLLS, and/or INLLS fits. Any of 
these three types of fits may be readily selected by 
changing a single character in the LOMFP input tile. 
For some complex data, some of the fit parameters 
may, in fact, sometimes turn out to be considerably 
better estimated by NLSS fitting of either the real or 
the imaginary parts of the data rather than by the full 
CNLS fit. Thus, the ability to carry out all three types 
of fitting very easily is a useful feature of LOMFP 
which can help one determine the best estimates of 
all the free parameters of the model. The current ver- 
sion of LOMFP is limited to a maximum of N= 100 
data points. Another minor limitation is that cur- 
rently a fitting circuit may contain up to a maximum 
of 30 circuit element parameters, with any or all of 
them being free to vary. Of course in practical cases 



one would usually not need so many parameters and 
would usually have only five to ten of them free. By 
means of a single input choice, each parameter enter- 
ing into a given circuit may be specified to be fned 
or free. If free, it may be constrained to be positive 
only or may be either positive or negative. 

5. Circuit possibilities 

Fig. 1 presents the five basic circuit structures 
which are currently implemented in LOMFP. The 
elements marked “DE” are DCE’s and will be dis- 
cussed in detail in the next section. The DAE ele- 
ment in fig. 1 d is a distribution of activation energies 
DCE and will be also discussed later. The L element 
which appears in all the circuits is included to account 
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for possible uncompensated wiring inductance in the 
experimental measuring apparatus. Ionic response 
in the usual IS frequency range does not include any 
inductive inertial effects of the charge carriers. We 
believe that the appearance of inductive-type phase 
shifts in IS data (often associated with specific 
adsorption and appearing at low frequencies) does 
not indicate the presence of true inductance (energy 
storage in a magnetic field), and it is best repre- 
sented by the use of negative resistances and capac- 
itances [ 141, a built-in capability of LOMFP. 

Next, note that all circuits include a geometrical 
capacitance element, C, or C,, which spans the elec- 
trodes. Such a connection, rather than one taking C, 
across only part of the circuit, is physically necessary 
[ 15-l 71. It must be noted, however, that many IS 
measurements, especially those on low impedance 

) 
(d) 

Fig. 1. Five different fitting circuits which are available in 
LOMFP. Any parts of these circuits may also be used for fitting. 
Here DE indicates distributed circuit element and DAE a distri- 
bution of activation energies element. 
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materials, do not involve a high enough frequency 
for the effects of C, to be apparent in the data. Then 
even CNLS fitting yields no estimate of C,, and it 
should be ignored. A summary of many equivalent 
circuits which have been proposed for solid and liq- 
uid electrolyte situations has been presented else- 
where [ 181. Here we shall discuss only the 
capabilities of the fig. 1 circuits. 

It may be woundered why LOMFP currently 
incorporates only five different circuit structures. 
There is, in fact, much more here than meets the eye. 
First, the DE and DAE circuit blocks or elements 
indicate that any of a variety of such elements may 
be incorporated in the circuit, providing great ver- 
satility. Second, the actual instantiation of the fig. 1 
structures in LOMFP includes a very powerful 
device. In the input tile which chooses a given cir- 
cuit, any elements of the circuit (up to 30 in the fig. 
le circuit) which are ignored in the input (i.e. set 
fixed to zero) do not appear in the circuit. Only those 
elements which are to be incorporated into a given 
circuit need be specified (and designated as free to 
vary or fixed). 

For example, in fig. la one might specify C,, R, 

and a specific DE (up to four individual parame- 
ters) as free to vary. Then only these elements would 
appear in the model which is compared with the data 
by CNLS. This feature is provided by the use of log- 
ical variables in the program. It ensures that if a 
resistor, capacitor, inductance, or DCE (at the 
impedance level) is ignored, the impedance of the 
element will be set to zero if it appears in a series 
branch, while it will be set infinite if it appears in a 
parallel branch. Boukamp [ 131 has stated that an 
elimination approach of this type leads to the need 
to carry out many unproductive calculations. This is 
not at all the case with LOMFP. Unused elements do 
not appear at all in the calculations and thus do not 
increase its run time. 

It will be noted that most of the circuits incor- 
porate a hierarchical (or ladder network) type of 
structure. When only resistors and capacitors occur 
in an equivalent circuit, hierarchical, series, and par- 
allel structure can all be made to show exactly the 
same frequency response at all frequencies [ 191, but 
this is not the case when DCE’s appear in the circuits 
[ 171. Even in the pure RC case, results of a detailed 
semi-microscopic theoretical calculation for con- 

ducting situations, such as superionic materials, 
indicate that the hierarchical structure is more basic 
(in terms of the microscopic parameters, such as 
mobility and charge carrier concentration) than the 
other possibilities [ 14,16,20]. 

It should be emphasized that the simple input 
choice conventions used in LOMFP allow any or all 
of the elements shown in the fig. 1 circuits to be 
incorporated or ignored, with no significant speed 
penalties. Thus, the five circuit structures included, 
along with the DCE choices, allow a vast possible 
number of individual circuits to be built and used 
with simple input choices. Room has been provided 
in LOMFP, however, to add other structures if they 
should ever be needed. Further, additional circuits 
can be added as simple separate subroutines outside 
of LOMFP and linked with it during compiling, 
yielding infinite expansibility. 

There is an electrochemical situation where not all 
parameters of a fitting model should be taken inde- 
pendent [20]. A LOMFP aproach to fitting several 
interdependent parameters will be discussed in the 
next section. Finally, one “circuit” choice incorpo- 
rated into LOMFP is not for direct IS CNLS fitting. 
Instead, it allows NLLS fitting of a wide variety of 
y(x) functions, ones where the parameters may 
appear nonlinearly. Up to sixteen parameters are 
currently available. Since such IS parameters as 
relaxation times and resistances may often be ther- 
mally activated, it is worthwhile being able to use 
NLLS to obtain parameter estimates from such func- 
tions as [ 4,8,21] 

z(T) =AT”exp[E,lk,( T- To)] , (2) 

essentially the Vogel [ 221 (or VTF) equation. Here 
T is the absolute temperature and kB is the Boltz- 
mann constant. This function is directly available in 
LOMFP. Here A, n, E,, and To might all be free, but 
usually n will be known ab initio. The present T,, is 
related to a glass transition temperature, and E, is an 
activation energy (enthalpy). In simple cases where 
n is taken zero and To= 0 (ordinary thermal acti- 
vation), it is customary to obtain estimates of A and 
E, by using ordinary linear least squares fitting with 
y(x) = In (7) and x= T - I. But such a transformation 
will introduce bias of its own, and it is generally bet- 
ter to avoid such bias by fitting the original equation, 
one involving 7(T) data directly determined from 
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experiments and data fitting (such as CNLS fitting 
of IS data). 

6. Distributed circuit element choices 

In this section, we identify and briefly discuss the 
various distributed circuit elements which can be 
incorporated in the DE blocks of the various avail- 
able equivalent circuits discussed earlier. Functions 
of these types are nearly always needed in fitting real 
IS data to an equivalent circuit. Any of the 11 avail- 
able circuit elements can be incorporated into a given 
circuit by the selection of a single number in the input 
to LOMFP. Because most of the available DCE’s 
have been discussed in some detail recently [ 3,5], 
we shall omit detailed discussion of them here. 

Table 1 lists the available functions and formulas 
(where practical). Pertinent references are also 
included. In this table s is a normalized frequency: 
the product of a time constant or relaxation time r 
( =RC) and o. Thus the wRC term in line 1 of the 
table may be replaced by s. The parallel RC (line 1) 
is not, of course, a distributed element, but it has been 
included in the table for comparison with the other 
elements, and because all DE blocks in the equiva- 
lent circuits can be replaced by the parallel “ele- 
ment” as well as by any of the other distributed 
elements listed. It has been shown that most DCE’s 
of interest can be defined in normalized form either 
at the impedance level or at the complex capacitan- 
ce/complex dielectric constant level [ 3,5]. Although 
they represent different responses and physical pro- 

Table I 
Summary of available distributed circuit elements. 

cesses, their normalized form is the same at these 
levels. We earlier used A to designate any one of the 
four immittance functions. To be more specific, con- 
sider Ak, where k=M, Z, Y, or E; then AZ= Z, A,= c, 
etc. Finally, define the dimensionless, normalized 
form of A,+ as 

Ik = (Ak -Akoo)~(-ha -Akm) , (3) 

where Am and Akcc are the low and high frequency 
limiting values of the relaxation process described by 
Ak. For example, at the impedance level, 

Zz(w) = [G(o) -&coI~&o -&co) , (4) 

and R,=Z;(O), R,=Z;(m). Of course the lim- 
iting frequences need not be zero and infinity but 
merely far enough from the center relaxation fre- 
quency for Z=(w) to reach its real limiting values. 
Here Z=(w) is an expression for a particular theo- 
retical DCE at the impedance level. With the above 
definitions, the normalized immittance function Zk 
satisfies Zk(O) = 1 and Zk(a) =o. 

For added generality, where possible the formulas 
for the DCE’s in table 1 are given in Zk form with 
i = Z or E (or C). Because the CPE is not fully phys- 
ically realizable, Z,(O) does not exist for it, and it 
cannot be expressed in Zz or Z, form. The A0 in the 
table is a frequency-independent constant. Those 
DCE’s listed in table 1 without Zk expressions are 
generally too complicated to be given conveniently 
here but are discussed in detail in the references cited. 
It will be noted that in the circuits of fig. la-d sev- 
eral of the DCE’s have a resistor RA and capacitor C, 
in parallel with them. Although the DCE can be used 

No. Physical process/name Refs. Acronym Ik formula 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

parallel RC 
constant phase element 
ZC or ZARC 
Havriliak-Negami 
generalized finite-length Warburg 
Williams-Watts; stretched exponential 
generalized Jonscher element 
asymmetric exponential DAE 
symmetric exponential DAE 
symmetric gaussian DAE 
general uniform diffusion 

[ 5,23-261 
[ 5,24,26,27] 
[28,291 
[3,71 
[29-311 
[%=I 
15,331 
(5,331 
[5,331 
134,351 

PRC 
CPE 
zc 
HN 
GPW 
WW 
GJ2 
EDAE I 
EDAE2 
GDAEZ 
GUD 

[l+iwRC]-’ 
Ak= [AO(iw)+‘A] -I 
[l+(i.r)v”]-’ 
[l+(i.r)y”]-” 
tanh(i.r) V”/(i.r)vA 
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without these elements, omitting just the DCE auto- 
matically eliminates them as well. 

Several of the DCE’s are available with different 
parameterizations. The ZC is one of these. At the 
impedance level it has been shown [ 25,261 that the 
ZC may be either considered as a DE in its own right 
(involving the parameters (R,- R,), 5, and I& as 
in line 3 of table 1 or as a CPE in parallel with a resis- 
tor RD (involving the parameters RD (or R,,-R,), 
A,.,, and w). The goodness of tit of data using either 
parameterization is exactly the same for a CNLS 
solution, but the estimated relative standard devia- 
tions, S,, of r or A0 will generally differ, as will the 
intercorrelations between the parameters. Which 
parameterization to use should thus depend on which 
choice yields the smallest intercorrelations and S;s. 
Since the ZC may be considered to involve a CPE, 
which is physically unrealizable over the full fre- 
quency range, the ZC is also unrealizable and does 
not reduce to limiting single-time-constant behavior 
at both frequency extremes [ 3,261. Perhaps for this 
reason, there seems to be no plausible physically 
based theories which lead to full ZC response. It is 
worth mentioning, however, that theories of fractal 
interfaces [36,37] and of bulk hopping relaxation 
[ 381 can lead to response very similar to that of the 
ZC. Further, only at the extremes of frequency, often 
outside the usual range of measurement, does one 
expect the non-physical characteristics of the ZC to 
be of importance. Because of its simplicity, it thus is 
often found to be a useful fitting element. 

There is another powerful general choice built into 
LOMFP which is of particular interest for the anal- 
ysis of dielectric measurements. When the input 
number which specifies which of the DCE’s is to be 
incorporated at a particular position in a circuit is 
taken negative, the DCE is defined at the complex 
dielectric constant level, rather than at the imped- 
ance level as is otherwise the case. 

This transformation possibility will be made clearer 
by an example. Consider the fig. la circuit with only 
C,, RA, and DE active and take DE as a ZC. Then 
in the normal impedance level situation, 
Z,c=Rp/[l+(ior)v]-‘, where R,,=Ro-R,. The 
total impedance of the circuit, involving live param- 
eters, is then 

~=Z,,/[l+{G,+ioC,}Z,,l, (5) 

where GA = l/R,+ When the dielectric transformation 
is invoked, we obtain the new total impedance 
Z,,,, = [ io( C,IR, )Z,,,,] - ‘, where RU is a unit 
resistance included to produce the correct units. In 
the present case, the result is 

Z~NEW=(C~~CC)R,+[~~(C~RAIRU)I-’ 

+ [ 1+ (iwr)V]l[iwCcR,/R,] , (6) 

or 

Z,N,w=R,+[iwCs]-‘+[ioCzc]-’ , (7) 

where the series resistance Rs= ( CA/Cc)R, and the 
series capacitance C’, = (RJR,) Cc. The complex 
capacitance of the ZC (defined at the complex 
capacitance or dielectric constant level) is 

czc= (%I--E,)Cc = (Co-GJ 
1 +(io7)v - l+(iwr)v ’ (8) 

with C,,=(RdR,)C, and C,=(R,IR,)Cc, or 
Cb 5 C0 - C, = (RJR”) Cc. Thus a parallel circuit 
has been transformed into a series one involving the 
proper ZC DCE at the dielectric level. It can be con- 
sidered as either a unified DCE (the Cole-Cole ele- 
ment [ 241) or as a CPE in series with a resistor. From 
the fitting estimates of R..,, CA, R,,, and the known 
value of Cc one can immediately obtain the corre- 
sponding estimates of the series parameters Rs, C,, 
and C, using the above relations. Matters are even 
simpler when a single DCE is to be fitted to data. 
Then with Z data a Z form of the DCE is used, while 
with complex E data an t form is used directly with 
no transformation but with the proper interpretation 
of the parameters involved. Some of the DCE’s in 
table 1 are shown without Ik expressions because they 
are too long to fit in the table. Further, all the DAE’s 
listed in the table 1 require integration to obtain Zk; 
they are calculated in LOMFP using accurate built- 
in integration procedures. There is ambiguity pres- 
ent for some of the DCE’s in the table. Thus, for 
example, the HN element reduces to the ZC when & 
is fixed at unity and to the Davidson-Cole form when 
v/k is fixed at unity. We include both DCE possibil- 
ities, both for simplicity and because of the different 
parameterization choices provided for the ZC. 
Another overlap occurs between the GUD element 
and the GFW. The Z, for the GUD represents the 



J.R. Maedonald, L.D. Potter Jr./Impedance spectroscopy results 69 

normalized immittance of a general, finite-length, 
uniform transmission line with its termination 
impedance determined by a disposable input param- 
eter. Thus the GUD here represents diffusion in a 
homogeneous, finite-length region with an arbitrary 
reaction (or disappearance) rate of the diffusing ent- 
ity (charged or uncharged) at the boundary of the 
region. When the line is shorted (infinite reaction 
rate), the GUD reduces to just ordinary finite-length 
Warburg response [ 31, that of the GFW with v/~ fued 
at 0.5. In turn, this reduces to ordinary infinite-length 
Warburg response for s > 3. The GUD represents dif- 
fusion with no reaction when the termination 
parameter is taken zero: an open-circuited transmis- 
sion line. The DCE’s available in the Boukamp 
EQIVCT program are the CPE and the open short 
circuited limits of the GUD. 

Often some of the fitting parameters in an equiv- 
alent circuit are known to be correlated. Consider the 
fig. lb circuit with only the elements Rz, C,, R3, C,, 
and DE, present and take DES as the GUD. These 
elements and structure can then represent a typical 
reaction-adsorption-diffusion process, with R2 and 
C, being the reaction resistance and capacitance 
(double layer capacitance), R3 and C, the adsorp- 
tion resistance and capacitance, and GUD repre- 
senting the diffusion process. It turns out that all these 
elements but C, are interrelated [ 341; for example, 
they depend directly or inversely on R1, the reaction 
resistance. Although one can tit the data taking all 
these parameters and elements independent, it is 
important to be able to take their interdependencies 
into account directly. To do so when their interre- 
lations are known, we reparameterize the problem 
with new parameters which do not depend directly 
on each other. This may reduce the intercorrelations 
between the elements of the parameter set, a desir- 
able result. More important theoretically, it elimi- 
nates a paradox which can otherwise occur. If the 
parameters are taken independent, then in principle 
C, might become very large, essentially wiping out 
any diffusion effects except at the lowest frequen- 
cies. Now C, represents a property of the system 
associated with the electrode-material interface and 
so is intensive. But at low frequencies GUD becomes 
extensive when the diffusion length becomes com- 
parable with the electrode separation. It is not proper 
for a parallel intensive variable to be able to wipe out 

the almost complete effect of an extensive one since 
they are associated with quite different regions in the 
material. Although this can happen with the original 
parameter set with all parameters free to vary inde- 
pendently during the CNLS fit, it cannot happen for 
the reparameterized set, where, for example, if R2 = 0, 
then R,=O, ZGUD=O, and C3=oo. The LOMFP 
allows a choice of either type of parameterization for 
situations of the present type. 

7. Weighting and weighting comparisons 

7.1. Weighting possibilities and discussion 

/ Ideally, every data value in a LS fit should be 
i weighted using Qi, the standard deviation associated 
1 with that value. Although an estimate of ci, Si, may 

be obtained by replicating the measurements many 
times, this is often impractical and other weighting 
choices must then be used. Nevertheless, LOMFP 
allows individual values Of Si (when available) to be 
entered along with every (real, imaginary, or both) 
data point. The actual individual weights used are 
then given by W, = S; 2, the inverse (estimated) var- 
iance of the ith value. 

The simplest weighting assumption to make when 
Si values calculated from replicated measurements 
are unavailable is unity weighting (UWT) , that where 
all Si’s are taken unity (or any other constant non- 
zero value). This is often an appropriate choice when 
the immittance data vary only over a total range of 
3 or so. But immittance data magnitudes often vary 
over three or more decades, and then UWT is inap 
propriate since it will lead to parameter estimates 
determined primarily by only the largest data values. 

When the data range magnitude is large, it is often 
appropriate to assume that the random errors in the 
measurements are proportional to the magnitudes of 
the data values themselves (constant percentage error 
magnitudes over the entire range). This natural 
assumption leads to what has been termed propor- 
tional weighting (PWT). For a given data point with 
Ai=A:+ti:, then SF=IAil and S]=JA’/I. Simi- 

larly, for data in polar form, Ai=Ai, c ei, ST =Aim 
and Sy= lBi]. 

Another related weighting, modulus weighting 
(MWT), has been discussed and advocated by Zol- 
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towski [ 391 and is that used in EQIVCT. In this 
weighting, which is only meaningful for data in rec- 
tangular form, SF =S] = [(A:)‘+ (A:)*] I’*, the 
modulus of A,. Although Zoltowski [ 391 has stated 
that there is no rational basis for carrying out the fit- 
ting of data at one immittance level or form as com- 
pared to another, we disagree. We believe that if data 
are directly obtained in polar form, they should be 
fit in that form. If the measurements yield the data 
directly at the impedance level, they should be fit at 
that level rather than at the admittance or any other 
level. The reason for fitting with the data in its orig- 
inal form (a capability of LOMPF whatever the 
immittance level and form) is that to do otherwise 
will generally introduce bias into the data. Almost 
any usual transformation of the data will do so. If 
this point of view is accepted, then data obtained in 
polar form should not be fitted with MWT since to 
do so requires a transformation to rectangular form. 

Zoltowski has suggested that MWT is preferable to 
PWT for data in which the errors in A; and A : resid- 
uals are not independent. Of course if all correlations 
are known or can be well estimated, one should carry 
out the fitting using an error matrix with non-zero 
non-diagonal elements [ 401, but this is usually 
impractical. Some such correlation actually always 
occurs for several reasons. First each exact A: and 
A’/ value is related to the other through the holistic 
Kronig-Kramers integral transforms when the sys- 
tem is minimum phase, the usual situation. But it is 
highly unlikely that these relations induce correla- 
tions of any consequence between the errors in the 
A: and A: values when errors are actually present 
and are non-systematic. Although it is possible that 
the measuring apparatus itself can lead to error cor- 
relation big enough to be important, one hopes and 
expects that this will not be the case when the errors 
are essentially random and non-systematic. A final 
source of correlation in the actual CNLS residuals is 
that there are 2N of them (for complex data fitting) 
but only NDF G (2N- P) degrees of freedom of the 
system, where here P is the number of free param- 
eters in the fit. When 2N$ P, the usual situation, this 
source of correlation is negligible, however. 

Another putative reason for preferring MWT to 
PWT is that MWT leads to “tit results... independent 
of the representation” [ 131. For example, it yields 
values of Sfi the estimated standard deviation of the 

weighted residuals (a measure of the overall good- 
ness of fit) which are nearly independent of the 
immittance level used in the fit. PWT, on the other 
hand, usually leads to significant differences in &for 
fitting results at different levels. In addition, MWT 
yields parameter estimates which are also nearly level 
independent, unlike PWT. These near equalities for 
MWT certainly initially suggest that it doesn’t mat- 
ter which level is employed for the fitting. But we 
believe that for good data one should indeed see dif- 
ferences between fitting results obtained at different 
levels, such differences arising from the biases intro- 
duced by the transformations employed. If this is 
true, then MWT actually obscures and covers up 
important differences and should be eschewed unless 
one is sure that there are appreciable equipment- 
induced correlations between the real and imaginary 
errors. Even then, the first order of business should 
be to try to alter the equipment so as to reduce or 
eliminate such correlations (which will usually be 
associated with the introduction of systematic errors 
by the equipement) before final measurement is car- 
ried out. In the next section the results of some com- 
parisons between MWT and PWT fitting are 
presented for synthetic data and show unequivocally 
the PWT is much superior to MWT for such data, 
data without large error correlations. 

Not only does the LOMFP include UWT, PWT, 
and MWT, it provides several other weighting pos- 
sibilities. One of the most flexible is VWT, for which 
S:= ]A;]“, where a=R (or ‘) of I (or “), and 
O<n<oo.Whenn=O,onehasUWT,andn=lyields 
PWT. There are likely to be situations where an 
intermediate weighting, say n=0.5, will be superior 
to either of these choices, and the value of n is a sim- 
ple input choice. 

Another more general weighting choice, CWT, is 
defined by S: = 1 +Bw ]A: I “, where Bw is a param- 
eter whose value is set in the input. When it is zero, 
one again obtains UWT; when it is sufficiently large, 
one approaches VWT. This form, with n = 1, has been 
used [ 41,421 in connection with a negative entropy 
objective function, SSE, to be discussed in the next 
section. A final weighting choice available in LOMFP 
is residual iteration weighting, RWT. Define the ith 
direct residual as r: 5 A& - A$. Then RWT begins 
with a fit using VWT, saves the resulting r:‘s, and 
carries out successive runs using Sf = t-7, where rf is 
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the ith residual obtained from the previous run. Such 
residual weighting tends to decrease the effects on 
the fit of residuals of larger than average magnitude, 
and vice versa. It often converges well in one or two 
iterations, after which successive r; values do not 
change appreciably. The weighted sum of squares, 
Sw, then is closely equal to unity. Even when itera- 
tion leads to instability, it may still be stopped at a 
point where Sw is very nearly unity, a condition 
where the weighting uncertainties and the residual 
vectors are very nearly the same. Although iterative 
residual reweighting schemes somewhat like RWT 
have sometimes been used in the past for linear least 
squares situations, there seems to be no adequate 
statistical basis for it, especially for NLLS fitting. 
Nevertheless, we find that it can sometimes (often?) 
lead to a better fit (smaller biases in the parameter 
estimates - see example in section 7.3.) than say 
PWT. Its trial use is therefore encouraged. 

7.2. Statistics calculations 

Here we describe the statistical calculations and 
outputs available in LOMPF. Define the weighted 
residuals (including unity weighting) as 
R$i zrtlg and the relative residuals as 
R$ = rTIAii. They are the same only in the PWT case 
provided signs are properly accounted for. Further, 
define ZV, as N for real or imaginary fitting (a = R or 
I), and as 2N for full complex data fitting. Then 
NDF= N,- P. The LEV part of LOMPF provides the 
following outputs and statistics: estimates of all the 
free parameters; r: and r:; R:i and R’:i; AV(R,i); 
AV(R,i); SD(R,i); SD(Rri); and SSE. Here AV(R,i), 
for example, is given for complex fitting by 

AV(R,i)=NT’ $ (R:i+R:i) e (9) 
i=l 

For real-only fitting, RF i = 0. Similarly, for example, 
the estimated standard deviation of R,i is 

=[SwINDF]L’2=S’=Sf. (10) 

Since the R,ls are the residuals actually minimized 

in the fit, we expect that AV(Rwi) will be very small 
for a good fit, For such a fit, we certainly expect 
1 AV( Rwi) 1 to be less than 35” since the expectation 
value of AV( Rwi) is zero. Let SD( R,i) = S,+ Then 
again we expect 1 AV( R,) 1 to be no larger than 3S,+ 
Usually the averages are much smaller than the above 
values for a good fit. Only in the PWT case will the 
two estimated standard deviations defined above be 
identical. 

As part of every LEV CNLS fit we actually cal- 
culate three 5” values, that for the real part of the 
data separately, that for the imaginary part, and that 
for both together. When one of the first two S’ val- 
ues turns out the be appreciably smaller than the third 
(and, conversely, one bigger), it is an indication that 
a separate full fit for the part of the data with the 
smallest S, should be carried out for comparison with 
the full CNLS fit since some parameter estimates may 
then be better for the former fit than for the latter. 

The negative entropy objective function SSE, 
which is not minimized directly in LOMFP, is 
[41&l 

SE= 1+ WWJI --I ii1 kiln , 

where for CNLS fitting 

(11) 

qi G [(K02 + (RCi)211ii, [(RLi)2 + (R4)21* (12) 

The quantity SSE, another measure of the goodness 
of fit in addition to the two estimated standard 
deviations defined above, falls in the range of zero 
to unity. It is unity if all but one of the 4;s are zero 
and is zero if they are all equal to N,- ’ . It is thus a 
measure of the constancy of the magnitudes of the 
weighted residuals. It has been suggested [ 4 1,421 for 
ordinary nonlinear least squares fitting that the 
parameter Bw of CWT be selected to make SSE a 
minimum. We have not evaluated this approach suf- 
ficiently for CNLS fitting to be able to make a rec- 
ommendation for this case. 

It should be noted that SSE and 5” are normalized 
quantities and do not vary greatly with the type of 
weighting and fitting immittance level, as does Sfi 
since it depends directly on the scale of the weight- 
ing. Thus, in determining the weighting which gives 
the best tit of the data, the first two measures should 
be compared for different weightings and immitt- 
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ante levels in preference to the last. 
The OLSON subprogram of LOMFP provides the 

same residual listings as does LEV and also includes 
a $, output. In addition, OLSON yields the param- 
eter variance-covariance matrix, the correlation 
matrix for the parameters, their estimates, and their 
estimated standard deviations and estimated rela- 
tive standard deviations. Only if the parameter esti- 
mates and $+, values are very nearly identical for the 
LEV and Olson outputs should the LEV statistics be 
judged appropriate and should it be assumed that a 
true LSS has been obtained; and even then it is a good 
idea to fit again with quite different starting param- 
eter guesses. 

7.3. Fitting results for different weightings 

In order to illustrate the use of LOMFP with dif- 
ferent weightings, we have generated “exact” repro- 
ducible immittance data from a relatively simple 
equivalent circuit and rounded them to various 
numbers, n, of decimal places. We used a circuit con- 
sisting of C,, R,, and a ZC DCE at the impedance 
level. In circuit (a) of fig. 1 the five elements present 
were C,, R,= R,, and DE set to the ZC. The ZC 
parameters were RD (equal to R,,-R,), 7, and y. 
Their exact values, used in generating “exact” 13- 
place data, are given in table 2. Twenty-seven angu- 
lar frequencies, distributed equally on a log scale, 
were used with 10m4 6 w < 10’. The resulting ratio of 
the maximum to minimum value of 2” in this fre- 
quency span was about 250. 

A three-dimensional perspective plot [2] at the 
impedance level of the data and its three projections 
is presented in fig. 2. The solid lines represent the 
exact data and the dashed ones (which are hardly 
visible over most of the range) show the result of a 

Fig. 2. Three-dimensional perspective plot of exact synthetic 
impedance data (solid lines) and CNLS PWT fit of the data 
rounded to two decimal places (dashed lines). The log,,(o,) scale 
unit used here is unity. See text for identification of circuit and 
element values employed in generating the data. 

PWT LOMFP fitting of rounded 2-place data to the 
equivalent circuit used to generate the data. The 
plotting routine connects points with straight lines 
and there were too few points in the high frequency 
(w N (R,C,)-‘) region to yield the true rounded 
appearance, that of a semicircle with its center on 
the real axis. Some overlap is apparent between the 
bulk R,, C, effects and the wide ZC displaced 
semicircle. 

Also shown in table 2 are estimates of the relative 
standard deviations, S,, for thej= 1 to 5 parameters 
for fits of the exact impedance data with UWT and 
with PWT. Here the designation ZR-ZR indicates 
that the original data was in rectangular impedance 
form and was fitted in the same form. Although the 
table shows that UWT can yield excellent estimates 
of the parameter values using the exact data, it is evi- 
dent that the precision of the parameter estimates is 

Table 2 
Fitting parameters and their estimated relative standard deviation, S,,, with U and P weighting; 13-place data and ZR-ZR fits. 

Parameter no. 

1 
2 
3 
4 
5 

Identity 

&(MQ) 
T(s) 

k(MR) 
C,(pF) 

Exact value S,: UWT S,: PWT 

2.0 2.5x lo-’ 3.4x IO-‘4 
1.0 1.6x 1O-6 1.9x lo-” 
0.30 4.4x lo-’ 3.5x lo-‘4 
1.0 2.3x lo-’ 4.7x lo-j4 
1.0 5.1 x lo-’ 3.9x lo-l4 
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six or seven orders of magnitude worse here for UWT 
as compared to PWT. 

Table 3 shows some results of PWT fitting of the 
data rounded to various levels. Since the exact 
parameter values used to generate the exact data are 
known, one is able to calculate the relative error, Erjy 

in the parameter estimates, Qfi If Qej denotes the 
exact parameter values, then ErjE ( Qej- Q$)/Qep In 
the table we compare E, values with the estimated 
parameter relative standard deviations, S,, for sev- 
eral rounding levels. Although the results show 
expected statistical variability, they indicate that the 
&is generally provide reasonable and useful esti- 
mates of the magnitudes of the relative error actually 
present in the parameter estimates. 

ulus immittance level, Y for the admittance level, and 
E for the complex dielectric constant level. The orig- 
inal exact data at the 2 level was first rounded to two 
places and then converted to other levels. Thus the 
Z-level data should be representative of reasonably 
good experimental data taken at that level, and the 
other fits show what can be obtained from trans- 
forming the data and using only UWT. Here 0 and 
L designate the OLSON and LEV subprograms. 

The last line in table 3 is for n = 2 fitting with iter- 
ative RWT, and the results should thus be compared 
with those in the line above. Iterative weighting was 
carried out in LEV, and the resulting residual weights 
used in OLSON to obtain the values shown in the 
table. As expected, S, has been driven very close to 
unity; further the relative error in four of the five 
parameter estimates is smaller than that with PWT, 
suggesting that RWT may indeed be useful. It should 
be noted, however, that rounding does not yield a 
close approximation to a Gaussian distribution of 
the actual random errors in the data, although it cer- 
tainly does not introduce systematic errors. Perhaps 
in part because of this, converged RWT fitting leads 
here to much smaller (and unrealistic) S, estimates 
than does PWT. 

First, on comparing the ZR-ZR line of table 4 with 
the n=2 PWT results of table 3, one sees that PWT 
yields much decreased relative error of the param- 
eter estimates and much smaller S, values. Second, 
the ZR-MR results for LEV and OLSON fitting seem 
comparable based on their Sf values but yield very 
different parameter estimates! The OLSON run has 
changed the LEV parameter estimates used in its 
input very much for the worse while still maintain- 
ing nearly the same S/value. Here we know that the 
LEV results are actually much better, but if no addi- 
tional information were available one would pre- 
sumably choose the OLSON ones since they show a 
slightly smaller SF This example indicates what can 
happen when inappropriate weighting is used and a 
true LSS is not reached. 

Although our main comparisons will use PWT and 
MWT and will all be at the n= 2 level in order to 
approximate typical experimental error levels, it is 
worthwhile to present a few n = 2 UWT comparisons 
as well, as in table ‘4. Here in such data-fit designa- 
tions as ZR-MR the M stands for the complex mod- 

No convergent OLSON results were obtained for 
the ZR-YR and ZR-ER cases. The LEV output 
shows some large biases and, in fact, even the LEV 
results are not particularly trustworthy here. In any 
event, the major deleterious effects of transforma- 
tion of the data immittance level before fitting are 
well illustrated here for a poor weighting-type choice. 

Now it can be readily shown for both PWT and 
MWT (but not. UWT) that fitting results for either 
of these weightings will be identical for the Z and the 
M immittance levels. The transformation from Z to 
M or vice versa makes no difference. Similarly, tit- 

Table 3 

Relative error and relative standard deviations for ZR-ZR PWT data, rounded to n places. 

II 1 O”S, 1 O”‘?$ 11 OYS, 

1 2 3 4 5 

4 1.55 0.242 IO.353 -2.6011.96 -0.195~0.418 -0.48610.458 0.063 I 0.335 

3 1.20 -0.225 IO.272 2.7411.51 0.51610.322 0.21810.353 -0.1901 0.258 
2 1.29 - 0.420 (0.294 -1.5111.65 -0.57610.351 -0.17810.383 -0.00410.280 

2i 99.92 -0.41410.006 - 1.0510.228 -0.666 IO.037 -0.157(0.006 -4.61 x 1O-4/ 0.001 
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Comparison of tit results with U weight using data rounded to two places for all four immittance levels. 

Input-fit 1 PGM S, 1 o2&j I1 O”S, 

1 2 3 4 5 

ZR-ZR IO 1.58 x104 3.491 1.24 6.44 I 7.44 -5.7412.12 -2.721 1.18 -0.335 I 2.40 

ZR-MR I L 2.286x lo9 2.761- -75.71- 10.61- -0.3581- -0.498 I - 
ZR-MR IO 2.280x IO9 722) 439 527 I 476 -27.7 I 233 -1.131 3.98 -0.505~0.103 

ZR-YR I L 5.17 x10-’ -39.31- -48.1 I - -16.21- -1.341- -0.1201- 

ZR-ER I L 2.26 xIO-~ 1.061- -98.1) - -84.41- -10.51 - 5.2x 10’1 - 

ting results for the Y and E levels will also be iden- 
tical. Thus since all the rest of our results will be for 
either PWT or MWT it is sufficient to carry out tits 
only for the 2 and Y levels. 

Tables 5 and 6 present our main PWT and MWT 
results. Those weight letters with an asterisk super- 
script indicate fits made without immittance level 
transformation of the data, and thus, according to 
our earlier hypothesis, they should yield best fits. For 
example, in table 6 the ZP-ZPIP* line involved 
original exact 13-place ZR data which were first con- 
verted to polar form, then both components of all 
the ZP data points were rounded to two places, and 
the results were finally employed in ZP, PWT fitting. 
The data for other lines in the ZP group of this table 
were calculated, however, from the ZP-ZP 2-place 
data by transformation. Thus, the lines involving 
asterisks maintain to the maximum degree possible 
with 2-place rounded data the maximum informa- 
tion from the original exact data. We have tried to 

present as many fitting combinations as possible in 
tables 5 and 6, but it will be noted that ZP-ZR 1 P, 
ZP-YR I P, YP-ZR 1 P, and YP-YR I P lines are miss- 
ing from table 6. Not even a good LEV fit could be 
obtained for these particular cases, presumably 
because the transformations carried out to obtain 
them destroy and/or scramble too much needed 
information from the original 2-place data. 

There is a lot of information in tables 5 and 6. Here 
we shall only summarize some main conclusions with 
the hope and expectation that most of them will apply 
to the fitting of real data which have negligible sys- 
tematic errors. First, on the average, based on both 
E, and S, estimates, the asterisked lines yield better 
results than the others, showing, as expected, the 
danger of transforming data with appreciable errors 
before fitting, even when the errors are random. In 
increasing order of goodness of fit judged also by A’, 
one has ZR-ZRIP, ZP-ZPIP, YR-YRIP, and 
YP-YP I P. One must conclude that YP-YP 1 P is bet- 

Table 5 

Comparison of fitting results for various levels, weighting, and forms of the data for 2-place data rounded from exact ZR level data. 

Input-fit I WT 102sr 1 O%,, I 102&, 

1 2 3 4 5 

ZR-ZR I P* 1.29 -0.42010.294 -1.5111.65 -0.57610.351 -0.17810.383 -0.00410.280 

ZR-YR I P 2.76 -0.1951 1.35 -5.2914.33 -0.903 I 0.736 -0.026 I 0.494 -0.02110.945 

ZR-ZP I P 1.83 -0.49410.603 -3.7312.42 -0.777 I 0.502 -0.197~0.501 -0.12910.654 

ZR-YP I P 1.82 -0.432 I 0.598 -3.7112.41 -0.780) 0.499 -0.09510.501 -0.15610.646 

ZR-ZR I M 1.10 2.301 1.64 2.10111.9 -3.73) 2.49 -2.0410.916 -0.47010.435 
ZR-YR I M 1.10 2.261 1.63 2.33111.8 - 3.76 I 2.48 - 1.88 I 0.908 -0.481 IO.431 
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Table 6 
Comparison of fitting results for various levels, weighting, and forms of the data using 2-place data rounded from exact ZP, YR, and YP 

level data. 

Input-tit 1 WT 1 O’S, IO%,, 11 O’S, 

1 2 3 4 5 

ZP-ZP ( P* 1.24 0.175 IO.409 - 1.05 1 1.62 0.102) 0.337 -0.096 IO.339 -0.3241 0.441 

ZP-YP 1 P 1.24 0.232 IO.409 - I.021 1.62 0.097 1 0.337 +O.OlOlO.338 -0.35310.441 

ZP-ZR I M 1.13 2.781 1.71 9.571 12.4 -4.441 2.58 -1.5410.940 - 0.29 1 I 0.444 

ZP-YR I M 1.13 2.481 1.71 9.71 I 12.4 - 4.36 I 2.58 -1.3210.944 - 0.304 I 0.444 

YR-ZR I P 1.11 -0.371 IO.254 - 1.561 1.40 0.501) 0.299 -0.308 IO.329 0.428 I 0.241 

YR-YR 1 P’ 0.826 -0.456 IO.405 - 1.121 1.28 0.058 I 0.219 -0.012lO.146 -0.253 I 0.283 

YR-ZP 1 P 0.868 -0.49410.286 -1.211 1.13 0.262 1 0.236 -0.19610.237 -0.141 IO.306 

YR-YP ) P 0.867 -0.48310.286 -1.211 1.13 0.262 I 0.235 -0.18710.236 -0.161 IO.309 

YR-ZR I M 0.410 - 1.8410.566 - 10.214.02 2.43 I 0.901 0.48410.307 0.3681 0.161 

YR-YR 1 M 0.410 - 1.8210.568 - 10.2 I 4.02 2.42 I 0.900 0.486 IO.307 0.3551 0.161 

YP-ZP I P 0.681 -0.20510.225 -0.81810.889 0.1531 0.185 -0.21910.186 0.016 I 0.242 

YP-YP I P* 0.683 -0.193lO.225 -0.81210.891 0.1541 0.185 -0.204lO.186 -3.4x10-410.243 

YP-ZR I M 0.501 - 1.48 IO.704 -2.631 5.00 1.721 1.11 0.676 IO.377 0.12510.196 

YP-YR 1 M 0.502 - 1.5OlO.705 -2.69 I 5.02 1.781 1.11 0.706 IO.376 0.108lO.197 

ter than, for example, ZR-ZR ] P because the former 
retains more of the original information in the exact 
data (at either the ZR or YR level) than the latter 
does when rounding to n = 2 is carried out. 

The tables also show that the transformed runs 
(those without asterisks) yield worse results than the 
untransformed ones which were derived directly from 
the exact data by rounding. This conclusion is not 
indeed obvious for the MWT results if one looks only 
at the S/values. But it is clear that even though the 
ZR 1 M and YR 1 M 5’, values are essentially the same 
and are lower than those from corresponding PWT 
runs, the MWT parameter estimates, and thus the 
relative bias values in the tables, are generally very 
much worse. Therefore, the .S’ values are strongly 
misleading for MWT. This is one reason why the LEV 
program also calculates the 5” estimates of the rel- 
ative residuals. They show a different story indeed. 
Although Sfi=S,for PWT, the quantities are quite 
different for MWT. For example, the S, values for 
the ZR-ZRIM and ZR-YRIM runs are 2.87x 1O-2 
and 3.66 x lo-‘, respectively, results which should 
be compared to the far better ZR-ZRI P value of 
1.29~ 10e2. Similarly, for example, the YR-ZR]M 
and YR-YRIM S,+ estimates are 2.07x 1O-2 and 
1.95 x 1 Oe2, respectively, which should be compared 
to the YR-YR I P value of 8.26 x 10-3. These results 

suggest that MWT runs generally yield Sfi results 
between two and three times worse than those using 
PWT. Finally, the results of tables 5 and 6 suggest 
that when one takes statistical variability into 
account, Srj values are generally good estimates of 
the corresponding relative error magnitude values to 
be expected. For PWT the actual I E, I values nearly 
always fall within one or two times the S, standard 
deviation estimates. 

Some of the foregoing conclusions are made even 
clearer by study of the relative residuals, R::, result- 
ing from the various runs. Figs. 3, 4 and 5 present 
Rki and Ryi results for n=2 ZR input data in two 
different forms. The (a) graphs are complex plane 
plots, and the (b) ones show the dependences of the 
relative residuals on log,O(oi). Of course for PWT, 
weighted and relative residuals are the same. Scaling 
is such that the residual values shown are in per cent. 
One should examine these plots in conjunction with 
the correlation matrix of table 7. Correlations are 
presented for the three relative residual sets of figs. 
3-5, for the log angular frequency vector, 
[LW] = [loglo(w and for the exact n=2 input 

relative residuals, designated ZR ) E, calculated by 
subtracting the n=2 rounded ZR data from the 
“exact” n= 13 ZR data and normalizing with the 
exact data values themselves. 
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Fig. 3. Plots of relative residuals, R:, and R’;,, from a ZR-ZRlP CNLS fit: (a) complex plane;(b) R:;and R’:, versus log,,(wi). 

First, table 7 shows that there are no very large is unable to reproduce the imaginary input relative 
correlations with [ LW] , although the ZR 1 M results residuals very closely. 
show the largest such correlations. We might expect Fig. 4 shows that the ZR-YR I P relative residuals, 
that a good ZR-ZR 1 P fit should yield relative resid- derived from a CNLS fit carried out after transfor- 
uals in good agreement with the ZR 1 E ones since no mation of the immittance level, leads to very appre- 
transformations have been carried out. In fact, one ciably larger residuals than does the ZR-ZRlP fit. 
finds correlation values of 0.99 1 for the real sets and Further, fig. 4a shows a strong correlation between 
0.861 for the imaginary ones, quite large values. If Rti and R’:i for the transformed fit. As table 7 indi- 
one tits the ZR I P results versus the ZR I E ones, one cates, the actual correlation is 0.885, greatly increased 
finds a slope parameter of (1.009 + 0.027) for the real fromthe -0.414ofZRlEandthe -0.453ofZRlP. 
sets, consistent with unity slope, but (0.67 f 0.09) These results are striking evidence of increased cor- 
for the imaginary sets. Thus the ZR I P fit, while good, relation associated with a Z-to-Y transformation. 

Table 7 
Pearson correlations between [ LW] and various n = 2 relative residual sets, all derived from ZR input. The set marked ZR 1 E comprises 
the exact input relative residuals. Here ZY 1 P is an abbreviation for ZR-YR 1 P, etc. 

lLW1 ZRlE ZRlP ZYlP ZRlM 

l&l lR’:l [RI P:l [WI [RF1 [WI [R;l 
[LWI 1 

ZR(E [Kl - 0.097 1 
[R:l 0.501 -0.414 1 

ZRlP (%I -0.211 0.991 - 0.464 1 
[R:l 0.216 - 0.438 0.861 -0.453 1 

ZYlP [RI - 0.064 -0.840 0.129 -0.826 0.116 1 
[R:l 0.007 -0.965 0.381 -0.946 0.485 0.885 1 

ZRlM WI1 -0.476 0.749 - 0.499 0.786 -0.501 -0.439 -0.680 1 
[R:l 0.566 -0.143 0.181 -0.196 0.402 0.030 0.197 -0.284 1 
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Fig. 4. Plots of relative residuals, Rki and Ryi, from a ZR-YR 1 P Fig. 5. Plots of relative residuals, R;, and R: ,, from a ZR-ZR 1 M 
CNLS fit: (a) complex plane;@) RLi and Rri versus logI,( CNLS tit: (a) complex plane;(b) R;! and RTi versus log,,(w,). 

Fig. 5.shows the normalized residual results for the 
ZR 1 M fitting. Note that this fitting, as compared for 
example to that of ZR 1 P, has much larger relative 
residuals and shows in fig. 5b a much more system- 
atic behavior of R:i with logro(Wi) than do any of 
the other tits. Further it has reduced the correlations 
with the input ZR 1 E relative residuals from the val- 
ues 0.991 and 0.861 of the ZR]P tit down to 0.749 
and 0.181! When autocorrelation calculations with 
lags of 1, 2, 3... are carried out for all the relative 
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residual sets considered here, only the MWT [R:] 
set yields significant results: for a lag of 1 the auto- 
correlation found is (0.692 f 0.192), a very signiti- 
cant result. Thus MWT increases serial correlation 
greatly. When the MWT [ R:] is cross-correlated with 

. [ LW], one finds values more than twice their esti- 
mated standard deviations for lags of 0, - 1, - 2, and 
-5. 

It is interesting to note that the original input rel- 
ative residuals involve a cross-correlation of - 0.4 14 
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between [R:] and [R’: ] ; the corresponding value of 
-0.453 for ZR-ZRlP is close; but the value for 
ZR-ZRJ M is -0.284. None of these values is large 
enough to indicate much significant correlation 
between the real and imaginary components, but 
again the MWT results yield less agreement with the 
input residuals. Even though the PWT correlation is 
appreciably larger in magnitude than the MWT one, 
such larger correlation does not keep PWT from 
yielding far better results than does MWT, contrary 
to Zoltowski’s conclusions [ 391. 

The foregoing results make it quite clear how such 
level transformations as 2 to Y (or vice versa) can 
lead to undesirable results: worse overall fits and 
larger error in parameter estimates. In addition, it 
should be evident that at least in fits like those dis- 
cussed here and very probably generally, MWT yields 
much degraded results compared to PWT. This con- 
clusion is usually entirely obscured, as we show in 
tables 5 and 6, if one compares only SF&., values, 
but it is made obvious by comparison of Sfi values, 
those given by eq. (10) with Rwi replaced by Rrj. In 
conclusion, we therefore suggest that the LOMFP be 
used for immittance data analysis with zero or min- 
imum data transformation and with PWT, VWT, or 
RWT in preference to MWT. 

In future we plan to add further weighting choices 
to LOMFP and to provide, in addition to least 
squares, the capability of minimizing the sum of the 
absolute values of the residuals. Finally, anyone who 
has been using a version of LOMFP &ted earlier than 
December 1986 may request a free update to the 
present more extensive, general, and flexible ver- 
sion, as described herein, by writing one of us 
(J.R.M.). 
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