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Abstract 

Complex least squares fitting and Monte Carlo simulation have been used to generate numerical 

values for the ultimate precision with which various impedance spectroscopy fitting-model parameters 

can be estimated by complex nonlinear least squares fitting. Results are presented in terms of normalized 
relative standard deviations for bulk, reaction-rate, and diffusion parameters. The analysis applies only in 

the usual case where errors in the data are proportional to the data values themselves (constant 

percentage error). By using special normalization, we ensure that our results are of universal applicability 

and may be used for prediction and comparison of data situations with an arbitrary number of data 

values and for any reasonable error percentage. The results may be used in the design of experiments to 

predict, before any measurements are carried out, how accurately various fitting parameters can be 

determined for an assumed amount of error and a particular number of data points. Alternatively, they 

may be employed to evaluate the minimum expected uncertainty bounds of parameter estimates already 

obtained from complex nonlinear least squares fitting for comparison with the actual bounds obtained 

from the fitting. The results apply to several finite-length-diffusion situations, including restricted and 

ordinary diffusion of charged species and diffusion of neutral entities. We find that, depending on the 

specific fitting model and parameter values, there are some limiting situations where bulk resistance, 

reaction resistance, or diffusion exchange rate cannot be estimated with adequate precision by complex 

nonlinear least squares fitting. 

INTRODUCTION 

Although data collection is the first step in an impedance spectroscopy (IS) study 
of a supported or unsupported electrochemical system, the goal of understanding 
the processes leading to the data requires analysis and interpretation of the data as 
well. Quantitative analysis is best carried out by complex nonlinear least squares 
(CNLS) fitting of the data to a theoretical model and/or equivalent electrical circuit 
[l-3]. Such fitting yields both parameter estimates and estimates of their standard 
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deviations (SD). Comparison of a parameter estimate and its estimated SD allows 
one to quantify the importance of that parameter to the fit and to compare all 
parameter estimates on this basis. To do so in a scale-invariant way, it is convenient 
to define the (estimated) relative standard deviation (RSD) or coefficient of varia- 
tion, of a parameter: the quotient of the estimated SD by the parameter estimate 
itself. Then fitting results for a parameter A may be written in the forms 
A(1 f RSD) or A 1 RSD, where the second form may be used for brevity. Clearly, 
when a RSD value is of the order of or greater than 30%, the parameter is poorly 
estimated by the data, and one would like to obtain RSD values of 5% or less. 

A single CNLS fit is but one from a universe of possibilities and depends directly 
on the specific errors present in the data. Thus, it may be well or poorly representa- 
tive of the true situation. Therefore, it is worthwhile using Monte Carlo (MC) 
simulation methods to derive some universal RSD results for well-specified electro- 
chemical situations important in the IS area. To do so, one picks a theoretical model 
(usually in the form of an equivalent circuit) representing the situation of interest, 
derives exact response “data” from it, and then carries out a large number (say K) 
of CNLS fits of such data after contamination with independent random errors 
drawn from a known error probability distribution. Each CNLS-fit replication 
involves a new and independent set of errors, and the final K parameter and RSD 
estimates are themselves averaged and their own RSD’s determined. By picking K 
sufficiently large, one can ensure that the averaged quantities have as high precision 
as desired. 

Here, we are concerned with RSD results for some bulk, reaction, and diffusion- 
related equivalent circuit parameters. We use sufficiently small errors that parame- 
ter bias, always associated with nonlinear least squares fitting [3,4], is negligible and 
focus attention on precise RSD results of nearly universal applicability. Since one 
usually finds for typical IS data that the errors (as mirrored by the residuals 
between data and model predictions) are, for a good fit, close to a constant 
percentage of the model predictions, we use this proportional-error assumption in 
our present MC study. To do so, we draw values randomly from a Gaussian 
distribution with zero mean and a SD of a,, i.e. N(0, u;Z), where I is the unit 
vector. Let Yoi = Yd, + jYa:.’ represent the exact model prediction (at any immittance 
level) for the ith data point, where i = 1,2,. . . , N and j = /(-l). Then the corre- 
sponding synthetic data values are calculated as y, = y,’ + jy,“, where y,’ = ~&[l + 
u,N(O, Z,)] and similarly for the imaginary part. Here, N(0, Z,) is a random sample 
from the Gaussian distribution of zero mean and unity SD. We use entirely 
independent Gaussian values for the random error contributions to the real and 
imaginary parts of y,, but even using the same values for these contributions makes 
a negligible difference in SD estimates. As the above shows, the SD u, determines 
the size of the proportional errors in the MC “data”. 

UNIVERSAL NORMALIZATION 

It turns out that for the usual IS data situation, one where N > 25 and a, < 0.2, 
parameter SD estimates are quite closely proportional to a,/ &?. Thus, a new 
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quantity, the normalized RSD, S, = (m/a,)RSD, will be essentially independent 
of N, a,, and the parameter magnitude, and is thus of universal utility. Our results 
are therefore presented in terms of this quantity. In order to compare them with 
RSD estimates from a single CNLS fit, one needs only the value of N and an 
estimate of ur for the fit. But when proportional errors are indeed present, it is 
found that S,, the estimated SD of the CNLS fit, is an excellent estimate of a, [l-4] 
and may be used, along with N, to convert from S, values to corresponding RSD 
ones or vice versa. Note that the N data values should be selected so that they span 
the frequency region of IS response of interest. When N is increased to reduce RSD 
estimates, the same region should still be so spanned since, of course, data points 
outside the area of interest will not produce such reduction. 

Our MC calculations make use of the general and powerful CNLS program 
LEVM [1,3,4], which may be obtained from the department of one of the authors 
(JRM) at nominal cost. In carrying out the fitting, it is important that the weighting 
(or variance model) match the actual error character of the data as well as possible. 
Such matching was ensured in the present work by using FPWT: function propor- 
tional weighting [3,4]. The LEVM program also may be used to estimate the actual 
power, 5, of the model components inherent in the data. When 5 is well determined 
(small RSD) and its estimate is close to unity, the assumption of proportional errors 
is verified and the present S, values may be used with confidence. 

BULK AND REACTION PARAMETERS 

One of the simplest IS situations, pertinent for either supported or unsupported 
conditions, is that where only bulk and electrode reaction effects appear in the data 
over the measured frequency range. Then the relevant equivalent circuit is that 
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Fig. 1. Dependence of the normalized relative standard deviations, S,, of R,, R,, and C, on 
log( RR/R B) for bulk and electrode-reaction response. 



4 

shown in the inset of Fig. 1. There R, is the bulk or solution resistance; R, is the 
charge transfer reaction resistance, sometimes written as R,,; and C, is the reaction 
capacitance, the double-layer capacitance, C,,. In addition, this and all other IS 
equivalent circuits must include the geometrical capacitance, C,( -=K Cd,), which is 
connected in the equivalent circuit between the two working electrodes of the 
system (ref. 2, p. 13ff). Since this capacitance is usually very small, its electrical 
effects are generally not important until very high frequencies (far above those 
where reaction effects usually appear); it is correspondingly difficult to determine 
from the data, and it is often omitted from the equivalent circuit, as is the case in 
the present work. When the impedance response of the Fig. 1 circuit is plotted in the 
complex plane, a circular arc begins at 2’ = R, and ends at Z’ = R, + RR, the dc 
resistance. 

Figure 1 shows the dependence of S,, for each of the three parameters of the 
circuit, on the ratio RJR,. The various curves are identified by the parameter 
whose S, is plotted. Although either R, or R, or both of these quantities may be 
varied here, it is necessary that the frequency range extend over the range of 
principal variation of the data in order that the present results apply. In particular, 
one needs a range of the angular frequency o extending from the frequency of the 
peak, w0 = RRCR, to values where 1 Z$,, I/ 1 Z,&:,, 1 is less than about 0.1. If the 
complex plane arc is unsymmetrical, data points are needed on both sides of its 
peak. Although all the RSD results of the present work involved data points taken 
at equal intervals of log( w/wa), very nearly the same values may be expected with a 
different spacing of points as long as the main data variation is adequately covered. 

As Fig. 1 shows, when R, is much smaller than R, CNLS fitting cannot resolve 
R, accurately. For example, when R,/R, = 104, N = 33, and a, = 0.1, the RSD of 
R, is about 15%, and it increases rapidly as the ratio increases further. Interestingly, 
the situation is different at the other end of the scale where R, is much smaller than 
R,. At first glance the results shown for this region may seem counterintuitive. We 
see that the SN’s for both R, and C, approach limiting values. How is it possible 
to obtain good estimates of R, when it is of practically negligible size compared to 
RB? The difference between the S, response for R, and that for R, arises because 
of the presence of C, in parallel with R,, leading to Z” values which involve both 
C, and R, but not R,. For RJR, = lop3 and the same N and a, values as 
above, the RSD of R, is only about 1.7%. 

Although, as Fig. 1 demonstrates, the S, of R, is small and essentially 
independent of the ratio RdR, for values of this ratio between 0.1 and 0.001, the 
resolution power of CNLS, while extremely high, is limited. We thus cannot expect 
constancy of S,,, to continue as the ratio approaches sufficiently close to zero when 
a, is non-zero. In fact, when RJR, has decreased to 10P6, adequate estimates of 
R, and C, can no longer be obtained for a, = 0.1, and their RSD’s become 
meaningless. For R, = lo3 Q, R, = 1 Q, and C, = 1 pF, for example, some actual 
proportional errors in Z’ may be larger than 150 Q for a, = 0.1, while the 
magnitude of the parallel RRCR combination is less than 1. Although CNLS fitting 
can still resolve R, and C, with this 150 : 1 situation, it fails for R, = lo6 a where 
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the ratio is 150,OOO:l or greater. For a sufficiently small a,., however, resolution 
would still be possible even with such a large ratio. 

Because of their normalization, S, and RSD values are the same for a quantity 
such as R, and for its inverse. Since the inverse of R, is proportional to the 
product of the equilibrium concentration of the reacting species and its reaction rate 
constant, the present results show how precisely this product can be determined by 
CNLS fitting. We see that when all other effects are negligible in the measurement 
frequency range, so that the circuit shown in Fig. 1 is all that is needed, the RSD of 
this product will be gratifyingly small. When the uncertainty of the concentration is 
much less than that of the rate constant, the RSD of R, given above applies to the 
rate constant as well, showing that even with a relatively small number of data 
points and the appreciable a, value of 0.1, even a very large rate constant (and a 
correspondingly small value of RJR,) can still be determined with uncertainty of 
less than 2%. 

The present results represent lower limits to what one would expect, on the 
average, from fitting a single data set. If such fitting yields appreciably larger RSD 
values than those calculated from the present S,,, results when 5 is found to be close 
to 1, it implies that there are systematic errors present, and/or the errors are not 
drawn from a Gaussian distribution in the fashion assumed above. It is worth 
mentioning, however, that only small changes in the results occur when the errors 
are samples from a uniform rather than a Gaussian distribution. For example, for 
R,/R, = 1, N = 33, and a, = 0.1, the RSD’s of R,, R, and CR change only in the 
second or third decimal place from their Gaussian values of 2.3%, 1.6’55, and 2.5%, 
respectively. 

Finally, it should be mentioned that in the unsupported binary electrolyte 
situation, problems may possibly arise in using the present circuit to determine very 
fast reaction rates [5]. But these problems can be avoided by using the model 
associated with the exact solution of the response problem [6] rather than the 
present equivalent circuit. This model is now available as a fitting choice in the 
LEVM CNLS program mentioned above and includes arbitrary reaction rates and 
mobilities of the positive and negative charges present. 

DIFFUSION EQUATIONS AND RESPONSE 

In this section some background on diffusion effects in IS is presented in 
preparation for the following discussion of S, results for diffusion-related RSD’s. 
The first analysis of diffusion in a supported electrolyte under small-signal ac 
conditions appeared in the classic paper of Warburg [7]. He considered the situation 
implicitly where the diffusion length, I,, was negligible compared to the extent of 
the region available for diffusion (e.g., the effective separation between electrodes, 
L, or the thickness of a diffusion layer at an electrode). Diffusion under such 
conditions, i.e. the ordinary Warburg response, may be termed, with slight exaggera- 
tion, infinite-length diffusion (ILD) as compared with physically realistic finite- 
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length diffusion (FLD). All FLD reduces to ILD when the applied frequency is 
sufficiently high that 1, < L. 

Since Warburg’s pioneering work, much attention has been given to the effects of 
diffusion of charged species in supported and unsupported liquid or solid electro- 
lytes and of mobile uncharged species in electrolytes and in electrodes [e.g., 3, 8-101. 
All AC diffusion response involves a characteristic dimensionless frequency-depen- 
dence variable, s, which can be expressed as 

s = (j)“*( L,/l,) = (joTJ’* = (jw/De)“2L, (1) 

where De is an effective diffusion coefficient, I, = (De/w)‘/*, and in = (Lt/D,). 
Here, L, is L/2 for diffusion between identical, plane, parallel electrodes, and is L 
for diffusion in a diffusion layer, half-cell, or in an electrode, each of effective 
thickness L. 

When the diffusing species is either uncharged or charged but present in a 
supported electrolyte, De is just the diffusion coefficient of this species. Note, 
however, that the diffusion coefficient must be multiplied by the thermodynamic 
factor [ll] when concentrations are sufficiently high that activity coefficients must 
be used. This, and the following modification, have recently appeared [12] without 
attribution to earlier work. For a binary electrolyte, where both negative and 
positive diffusing species are present with diffusion coefficients D,, and Dp and 
valence numbers z, and zpr it has been found that [3,6,10] 

Q = D,D,(z, + z,>/(Dnz, + D,z,> (2) 

a result that reduces to just D when D, = Dp = D. 

Consider first just the impedance ZDG arising from diffusion of a neutral species 
in an electrode without electrode reaction or adsorption contributions. The diffusing 
species is produced by the electrode reaction at the surface of the electrode abutting 
an electrolyte, diffuses through the electrode of thickness L, and exchanges with the 
ambient atmosphere at the far side with an exchange rate constant k,. The present 
diffusion process is fully analogous electrically to wave motion along an RC 

transmission line with arbitrary terminating resistance and is thus more general than 
other diffusion processes discussed below. In the electrode diffusion case, the 
effective terminating resistance is proportional to l/k, and the impedance is given 

by [I31 

Z,,(w) = RD p+(s) ctnh(sj s2 + (ps) ctnh( s) 1 I =R l+dtanW/d 
D p+ (.s) tanh(s) 1 (3) 

where p = (L,/D,)k, is a normalized, dimensionless rate constant and R, is 
proportional to R,. Equation (3) shows that Z,,(O) = (1 + p- ‘)R,. 

Two limiting cases of the eqn (3) result are of particular interest. First, when 
p -+ co one obtains the usual FLD response result, termed just Z, here, 

zD(0) =RDb’h(d/d (4) 

which also applies for the important case of diffusion of a charged species in a 



Fig. 2. Complex plane response of the general-diffusion 
choices of p, the normalized exchange rate constant. 

impedance expression, (3), for several 

supported electrolyte with identical electrodes [2(pp. 60,88,105),3,8,10]. Note that a 
much more complex result is found when the electrodes are not identical [14]. 
Equation (4) applies to high accuracy in the identical-electrodes, unsupported 
binary electrolyte situation as well, so long as both species are mobile [3,5,6,8,10]. 

The other limiting case is that where p -+ 0; then eqn. (3) reduces to 

Zoo(~) = bbw)/~l (5) 
This expression applies not only for diffusion of a neutral particle without exchange 
with the ambient atmosphere (complete blocking) [13,15], but also to the diffusion 
of a charged species in a supported electrolyte where a reaction occurs at one 
electrode and the other is completely blocking (i.e., restricted diffusion) [14,16,17]. 

Figure 2 shows the complex-plane response of Z,,(o)/R, for a variety of p 
values. Here, the arrow indicates the direction of increasing frequency, and the 
frequency ratio between adjacent points is 10 . 0°5 For p = 0, the maximum value of 
Z,,(w)/Rn, attained at the low-frequency end of the response, where it becomes 
capacitative, is just l/3. Note that when p is very small but non-zero, the response 
is primarily a circular arc with a limiting low frequency value of (1 + p-‘) R,, and 
with a very small ILD region buried at the left comer. In order to distinguish such 
response from that of a pure circular arc arising from a resistor and capacitor in 
series, the high-frequency end of the data must be examined carefully. If the data 
have relatively low errors, CNLS fitting using the full expression for Zoo, available 
in LEVM, compared to that for a full semicircle should allow the proper choice to 
be made. 

Further ambiguity is possible at the other end of the scale as well. As Fig. 2 
shows, when p >, 1 the response shape is still close to that for p = co. CNLS fitting 
of exact Z,, response data with the Z, response function of eqn (4) shows that a 
pretty good fit can be obtained even with p = 1, but the difference between the 
fitted response and the original data would be evident in a complex-plane plot for 
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real data unless their errors were appreciable. But as p becomes larger than 1, 
resolution becomes more and more difficult and will require exceptionally good data 
for p = 4 or greater. The result is that if the true Z,, response is confused with the 
ordinary FLD response and fitted with Z,, the estimated ho will be larger than it 
should be by a factor of about 3.7 for p = 1, reducing to about 1.6 for p = 4. These 
results suggest that p cannot be well distinguished from 00 when it is greater than 2 
or so. This matter is further investigated quantitatively in the following section. 

REACTION AND DIFFUSION PARAMETERS 

We now consider parameter uncertainties for CNLS fitting of data that is well 
represented by a reaction resistance, R,, in series with Zoo or one of its simplifica- 
tions. For actual data, the resistance in series with Zoo will involve R, and R, in 
series, and even a series adsorption resistance if adsorption is present, but the 
present R, may be reinterpreted as necessary. Although CR will always be present, 
the time constant R,C, will usually be much smaller than ro, since diffusion 
effects usually occur at very low frequencies. When this is the case, the effect of C, 
is negligible in the frequency range spanning the diffusion response, and it may thus 
be neglected just as the effect of C, = Ca was neglected for the bulk-reaction 
calculations presented above. 

Figure 3 shows results involving the Z, response. The data covered a frequency 
range for which -Z&/R, ranged from a maximum of about 1 to a minimum of 
about 0.018. The figure shows that the S, of the series resistance, here R,, rapidly 
becomes large as R,/R, increases, just as it did for the results of Fig. 1, but at an 
appreciably smaller value of the abscissa ratio. In addition, Siv’s of the other two 
parameters are considerably larger than those in Fig. 1. The corresponding results 
for the Z, response of Fig. 4 show that R, and ro can be appreciably better 

Fig. 3. Dependence of the normalized relative standard deviations, S,.,, of RR, R,, and 7D on 

log(R,/R,) for electrode-reaction and restricted-diffusion (p = 0) response. 
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Fig. 4. Dependence of the normalized relative standard deviations, S,, of R,, R,, and 78 on 

log( RD/RR) for electrode-reaction and normal, FLD diffusion (p = CO) response. 

determined for the Zo, as compared to the Z,,, response. Further, R,, and so the 
electrode reaction rate, cannot be determined from CNLS fitting of the present 
circuits with adequate precision when R, is less than about 0.01 R,. Note, 
however, that when pertinent data are available, it can be determined with good 
precision for the situation of Fig. 1. 

Figure 5 shows how the SN’s of the Z uo parameters vary with the normalized 
exchange rate p when no series resistance is present. Note the use of a logarithmic 
scale for S, here. It turns out that it is not always appropriate to use the parameter 
p directly in Eqn. (3) since it depends on both k, and DC. Let us define 
k,, = p/r,, = k,/L,, not a dimensionless quantity but one which does not involve 
De. The LEVM program allows either p or k,, to be taken as a free or fixed 

Fig. 5. Dependence of the normalized relative standard deviations, S,, of R,, T,,, kco, and p on p for 

the general diffusion response of eqn. (3). 
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Fig. 6. Dependence of the normalized relative standard deviations, S,, of R,, C,-,, R,, T,,, kGD, and p 
on log( R ,,/RR) with p = 1 for electrode-reaction and general diffusion response. 

parameter in the model defined by eqn. (3). For the MC runs involving k,, free, 
the r,, value used in generating the exact response was set to unity; thus p and k,, 

values were numerically the same for any choice of these quantities. The dashed S, 
curve for k,, in Fig. 5 shows that k,, can be estimated with far less uncertainty 
than can p. In addition, the correlations between p or k,, and other free 
parameters are appreciably reduced when kGN is used as a free parameter instead of 
p. Nevertheless, the curves of Fig. 5 show that none of the free parameters of a 
CNLS ZDG fit can usually be estimated with adequate precision when p is greater 
than two or three or so. As an example, with N = 56 and the probably unrealisti- 
cally low value of a, = 0.01, the RSD’s of R,, -rD, p, and k,, are, respectively, 
about 4%, 8%, 32%, and 21% for p = 4. When fitting leads to a p estimate of two or 
more whose RSD is large, fitting with Z, rather than Z,, is then more ap- 
propriate. 

Finally, Fig. 6 shows S, results for a circuit involving Z,, in series with R, for 
data calculated with p fixed at unity. The results are similar to those of Figs. 1, 3, 
and 4, but note the larger S, scale here. As before, k,, results for S, are much 
superior to p ones. The dashed curve below that marked R, involves yet another 
reparameterization of eqn. (3), again available in LEVM. For this choice, instead of 
taking R, as a free parameter, we use a capacitance C, instead and calculate the 
R, of eqn. (3) as ro/C,. Thus, the dashed line represents S, results for C,, and 
we see that they are 15% to 20% smaller than those for R, directly. 
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