RELATIVE INTENSITY

I | l ]

0.0 52 0.4 06 08 1.0
COS2(d)

Fig. 6. Transmission of waves through the wire grid polarization analyzer.
¢is the angle between the grid wires and the horizontal when the E vector
of the waves is vertical. The open circles are for clockwise rotation of the
grid viewed from behind the receiver; the X dots are for counterclockwise
rotation.

output voltage when using the analyzer grid was a function
of the distance of the grid from the receiver. To obtain
consistent results, it was found necessary to make small
adjustments in the grid-to-horn distance at each value of ¢

so as to maximize the receiver output.

With these modifications and procedures the wave in-
tensity at the receiver followed the cos® ¢ relationship for
analyzer grid rotation, as shown in Fig. 6.

VI. CONCLUSIONS

Our experience in using 3-cm electromagnetic waves
shows the necessity. of reducing wave reflections from
equipment components and surroundings in order to ob-
tain results consistent with theoretical predictions. With
the equipment modifications and operating procedures de-
scribed, students can obtain single slit diffraction patterns
for a range of slit widths that cover the transition from
Fraunhofer to Fresnel diffraction and also investigate the
polarization of the waves.

A listing of the program SLIT may be obtained from the
author.

! The equipment on which this is based was obtained from Pasco Scientif-
ic, 10101 Foothills Blvd., Roseville, CA 95661. Similar equipment may
be obtained from Sargent-Welch Scientific Co., 7300 N. Linder Ave.,
Skokie, IL 60077; from Central Scientific Co., 11222 Melrose Ave.,
Franklin Park, IL 60131; and other suppliers of educational equipment.

? For example: E. Hecht, Optics (Addison-Wesley, Reading, MA, 1987),
2nd ed.; G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart
and Winston, New York, 1975), 2nd ed.; C. L. Andrews, Optics of the
Electromagnetic Spectrum (Prentice-Hall, Englewood Cliffs, NJ, 1960).

* Handbook of Mathematical Functions with Formulas, Graphs and Math-
ematical Tables, edited by M. Abramowitz and 1. A. Stegun (Dover,
New York, 1965), pp. 301-302.
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Least-squares fitting is reviewed, in tutorial form, when both variables contain significant errors.
Various error models are described; corresponding appropriate weighting is discussed; and the
interpretation of weighting is clarified by a physically intuitive description and by graphical
results. Resources in the literature on least-squares fitting that are suitable for physics and
astronomy students are reviewed. Algorithms for straight-line fitting, indicate practical solution
methods, are summarized and numerical comparisons are given. Also described are several
readily available computer programs that allow fitting for both straight-line and nonlinear
situations and that are appropriate for both research and teaching applications.

L. INTRODUCTION

Least-squares fitting when both variables have errorsis a
perennially interesting problem, on which a dozen commu-
nications have been published in this Journal in the past 2
decades.'"'? There is also an extensive research literature
on the subject, dating back more than a century. The prob-
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lem is often called generalized least squares in the physical
sciences and the errors-in-variables (EOV) model in statis-
tics.'? Such least-squares fitting is also of significant inter-
est in astronomy'* and in chemistry.'> For students in the
physical sciences it is important to learn the pitfalls and

‘possibilities in least-squares analyses, especially since

many of the algorithms are now available in user-friendly
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programs whose underlying models may not be understood
by the user.

The major purposes of the present paper are to review
and clarify for teachers and students the common points
and differences in previous presentations, to systematize
current understanding of least-squares fitting when both
variables contain errors, and to list some relevant and avail-
able computer programs. In spite of previous considera-
tion, new information is available, problems previously un-
mentioned need attention, and future directions for
investigation are indicated.

Since confusion may arise from the varying meaning of
“linear” by different authors,”!"'? some clarification is
worthwhile. “Linear least squares” properly means that
the parameters of the fitting model appear only linearly in
it, no matter whether the model is linear or nonlinear in its
variables, e.g., y =a + bx + cx? is a linear model in terms
of parameters a,b,c. When some authors refer to “linear
least squares,” however, they mean linear in the variables,
i.e,, y=a-+ bx, which we will call “straight-line least
squares.” Thus “straight-line least-squares fitting” and
“linear least-squares fitting” are not necessarily synony-
mous. Many of the papers in this journal deal only with
fitting a straight line, but some treat nonlinear least-
squares situations, where the functional relations between
data and parameters are nonlinear, and a few of the papers
describe models that are general enough to accommodate
more than two variable types.

The outline of this paper is as follows. We discuss in Sec.
IT A how the distributions of errors in the variables can be
handled, and in Sec. II B how weights may be assigned to
the data in forming the least-squares objective function.
The common special case of straight-line least-squares fit-
ting is discussed in Sec. II1, where numerical comparisons
are also presented. Future directions are indicated in Sec.
IV, and a brief discussion of currently available computer
programs for general EOV fitting is given in Sec. V.

II. ERROR AND WEIGHTING MODELS
FOR LEAST-SQUARES FITTING

In least-squares fitting models there are two distinct in-
gredients that are usually discussed in only a cursory way;
the first is a model for the errors in the variables, and the
second is a model for the weight that each datum has in the
fitting. We now summarize relevant concepts and tech-
niques related to these submodels, using straight-line ﬁt-
ting if an example is appropriate.

A. Error models

When both variables contain errors, any distinction
between dependent and independent variables is ambigu-
ous, although one usually attempts to control one of them,
x, and observe the other, y. In order to characterize the
problem, assume that single measured values have the form
x; =Xy +€, and y, =Y, +¢€, for each of the
{=1,2,...,N datapairs. Theexact values X ,; and Y, satisfy
a functional relationship, for example, Y, = a, + b,X,, in
the straight-line case. But the errors, €,; and €,;, are un-
known, except in Monte Carlo simulations. One needs to
make assumptions about these unknown errors, in order to
pick an appropriate solution method. We also define fitted
values, X, and Y,, related in the straight-line case by
Y, = a + bX,. The major objective of least-squares fitting
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is to obtain estimates of X; and Y, as close to X; and Y as
possible, so that for straight-line fits ¢ and b are minimum-
bias estimates of a, and b,,.

In ordinary least-squares analyses, two different error
assumptions are common, leading to'® the homoscedastic
standard error model and to the heteroscedastic diagonal
error model. The two models may be characterized by the
following expectation values (£ in statistical notation).
For both models, the average error in x and y is zero at each
datum: E(¢,;) =0and E(¢,) =0 (systematic errors are
absent), and from point to point the errors are uncorrelat-
ed; thus E(¢e,€,;) = 0and E(¢,€,) = 0 for i#/. For ho-
moscedastic errors, the vanances are assumed to be inde-
pendent of the data point: E(€},) = 0% and E(€;) = 0>.
For heteroscedastic errors, the errors are heterogeneous
from point to point: E(€%,) = 0%, and E(e},;) = 05, We
have not specified the error covariances, E(€,;,€, ), but
they are usually assumed to be zero (uncorrelated x and y
errors). A restricted form of this model is 03, /0%, =4, a
constant ratio of error variances for all data. When
Ao = oo, there are errors only in y, while for 4, =0 the
errors are only in x.

Ifthe x and y errors are uncorrelated from point to point,
then x or y error values are random samples from indepen-
dent probability distributions with zero mean, which we
writeas €,; = o, P, (0,];) and ¢, = 0,,P,(0,1;), where P,
and P, are independent distributions and I, =1 is an ele-
ment of the unit vector of dimension . For completeness,
the general error model is like the diagonal error model but
has E(e.€,;) = o; and E(€,€,,) = oy, for various / and j
values. In welghted least squares, one of the biggest prob-
lems is to obtain appropriate estimates of the error var-
iances, and the problem is greatly exacerbated when error
covariances such as o5, (/) must also be estimated. Thus
there are many formulations of this model but very few
applications of it.

B. Weighting models

For the weighting model (called a variance model in
statistics) that takes into account the relative influence of
each datum in a least-squares fit, one needs to capture the
effects of the unknown errors and to compensate for them
in optimum fashion. As Deming'’ proposed, an appropri-
ate way to do this is to use weighted least squares and to
find those sets of X, and Y, which minimize the objective
function

0= Z [w, (x, —
i=1

where the weights, w,; and w,,, are often the reciprocals of
the estimated variances for the observations. The weights
should certainly be dimensionally consistent with the x and
y variables so that O is dimension free. Physicists usually
refer to O as chi-squared, but if other prescriptions for the
weights are used, then O is unlikely to be distributed as the
statisticians’ chi-squared. In fact, the above expression,
even with the proper weights, is not exactly so distributed
when both x and y weights are nonzero.'® It is implicit in
Deming and in most succeeding work that although the
estimated weights may vary with /, they are independent of
the calculated fitting variable values, X, and Y;, for all val-
ues of / and can thus be taken constant when minimizing O
with respect to the fitting parameters. But, as discussed in

Xi)2+wyi(yi—),i)2]’ (1)

J. R. Macdonald and W. J. Thompson 67



Table I. Acronyms for weighting models for least-squares fitting with errors in both variables, as discussed in Sec. II B. The acronyms are ordered from

most general to least general.

Acronym Weighting model Summary of definition
Off-diagonal weights
IGWM Independent general weighting model w,, and w,; independent
No off-diagonal weights V

DWM Dependent weighting model w,, and w, dependent

PWM Proportional weighting model s.;/X; = (const)
5,/ Y; = (const)’

IDWM Independent diagonal weighting model w,; and w,; independent

IDWMC Independent diagonal weighting model w; / w, =4

with constant weight ratio '
SWM Standard weighting model W, =w, W, =w,
w, /w, =4
OLS-y:x Ordinary least squares—y on x with y errors only Sy =0
OLS-x:y Ordinary least squares—y on x with x errors only 5, =0

Sec. IV, in many situations such constancy is unjustified
and use of inappropriate fixed weights can lead to inaccur-
ate parameter estimates, that is, to parameter bias.

Thus one needs to further distinguish between fitting
models in which the errors and corresponding weights are
independent of the fitting variables—the independent diag-
onal weighting model (IDWM), and those in which they
are dependent (DWM). Finally, the independent general
weighting model (IGWM) includes off-diagonal as well as
diagonal terms in the weighting matrix. Table I lists and
defines the weighting acronyms used in the present work.

If the estimated standard deviations of individual obser-
vations are denoted as s, ~ 0, and s, ~0,,, then the corre-
sponding weights are w,;, = 1/s, and w,, = 1/s,. For the
IDWM, the weighting model is just defined by the esti-
mates of w,, and w,. When their ratio is constant (the
IDWMC), we may define w,,/w, =s,/s5,=A, an esti-
mate of A,. Of course when the weights themselves are in-
dependent of i, then w,;/w,; = s;/s% =4, called the stan-
dard weighting model, SWM.

If there are constant proportional errors in the x data
and constant proportional errors in the y data, then one
should use the proportional weighting model, PWM, a par-
ticular type of DWM. Since the errors are proportional to
the error-free, unknown quantities X ,; and Y,;, the PWM
involves s,; proportional to X, and s,; proportional to ¥,
with X; and Y; taken as the best available estimates (after
iterative convergence) of X,; and Y ,, respectively. If the
weighting standard deviations were instead chosen propor-
tional to x,, and y,,, bias would be introduced in the pa-
rameter estimates since the data values already include er-
rors. Unless Y « X, the PWM does not lead to a constant A.
With the nomenclature introduced above, one can charac-
terize the weighting models of various authors, as shown in
Table II. ’

Mechanical analogies, illustrated in Fig. 1 for six differ-
ent weighting schemes, help clarify the distinction between
the various models. In Eq. (1) if the weights were literally
weights, then the first term in the sum would be the mo-
ment of inertia of a distribution of mass points i about the
X, and the second term would be the moment of another
distribution about the Y;. Minimizing O therefore mini-
mizes the sum of these two moments of inertia. In the
IDWMC, the two mass distributions differ only by an over-
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all scaling factor A so they are essentially the same and one
is minimizing the total moment of inertia about an axis
which is the best-fit straight line. For the SWM the weights
are all equal, so the moments about this axis will differ from
those of an equal-mass-point system only if the spacing of
data points is nonuniform. A somewhat similar geometric
representation is discussed in Lybanon.’

II1. STRAIGHT-LINE FITTING

Now that we have summarized the statistical terminol-
ogy in Sec. I, we are réady to discuss various methods for
straight-line fitting. In the following we survey appropriate

Table I1. Synopsis of least-squares analysis models with errors in both vari-
ables. The author list is chronological by year of first reference cited. The
weighting models are discussed in Sec. II B, and Fig. 1 illustrates IDWM
and SWM.

Non-linear, NL

Weighting Approximate  linear, L or

Authors; year (Ref.) model or exact straight line, SL
Deming; 43,647 IDWM A NL
Madansky; 59°* SWM E SL
York; 66 IDWM E SL
Gerhold; 69' IDWM E L
Powell et al.; 7277 IDWM E NL
Britt ez al.; IGWM E NL
73_753.28..\1
Barker ef al.: 74° IDWM A L
Macdonald; 75° IDWM A SL
Riggs et al.; 78%° SWM E SL
Jefferys et al.; IGWM E NL
80——902"21
Ross; 80° SWM A SL
Krane et al.; 827 IDWM E SL
Orear; 82° SWM A NL
Lybanon; 84>'° IDWM E L
Christian et al.; IDWM A NL
84_861542]
Fuller; 87" IDWM E NL
Reed; 89'! IDWM E SL
Squire; 90" IDWM A NL
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Fig. 1. Weighting models illustrated for straight-line least-squares fits.
The data values, (x,p) = (1,1),(2,5),(4,3), and (6,5), are centered in the
circles and are the same for all fits. Shaded rectangles indicate weights,
with x weights, w,,, as widths in the x direction and y weights, w,,, as y
heights, if they are not smaller than the circles. Dashed lines show differ-
ences whose weighted sum-of-squares is minimized. Solid lines are least-
squares fits obtained with the program GENLS. In OLS-y:x one mini-
mizes unweighted y differences; in OLS-x:p unweighted x differences are
minimized; in SWM all x and y weights are equal (square weights); in
IDWMC the ratio of weights A is constant (weights of constant shape); in
IDWM weights vary independently; and in PWM the weights are inverse-
ly proportional to the squares of the X and Y values.

algorithms, some simplifications of these, and we present
numerical comparisons.

A. Survey of algorithms

Many scientific data-analysis problems can be analyzed
by straight-line fitting after appropriate transformation of
variables, albeit often with introduction of bias in param-
eter estimates.'® Further, the complexity of the analysis is
greatly reduced for straight-line fits. Therefore, this survey
emphasizes straight-line fitting algorithms.

Table II summarizes representative papers of the past 40
years, particularly those appearing in this Journal. Not
widely known are the extensive Monte Carlo simulation
studies carried out by Riggs et al.,”® who discussed 34 dif-
ferent straight-line solutions and investigated their applica-
bility for the standard error model using the SWM. There is
an extensive literature on least squares in astronomy, '*?!:2?
an observational science in which the distinction between
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dependent and independent variables is usually irrelevant.
The pedagogical literature in chemistry (such as Refs. 15
and 23) also discusses straight-line algorithms.

An important advance in straight-line fitting for the
IDWM (including the SWM) was made by York.? It has
recently been discussed by Reed,'" who points out that it is
exact (see Refs. 2, 4, and 23 for earlier recognition of this),
and who discuss methods of calculating the slope estimate
b from York’s quasicubic equation. Earlier calculational
approaches for the IDWM were described by Gerhold' and
Williamson?’ (for straight-line situations only). Although
Williamson’s iterative solution is based on that of York, it
requires no root selection. Squire'® responded to Reed’s
work by emphasizing that any solution requiring the selec-
tion of roots, such as that of York and Reed, cannot be
strongly recommended. Instead, he suggested using a more
general method allowing solution of the IDWM for nonlin-
ear situations as well. The computer program that he rec-
ommended, NLLSQ, is not currently available.?® Further,
the method that Squire suggested yields an exact solution
only for straight-line fits.

Two general algorithms without such defects had al-
ready been devised by Powell and Macdonald,”” and by
Britt and Luecke.?® They were the first algorithms for non-
linear situations that converged to exact solutions upon
iteration. The Britt and Luecke method is more general
than that of Powell and Macdonald, but it requires analytic
expressions for first derivatives. The Powell-Macdonald
approach uses special numerical derivatives that greatly
speed convergence, and it has recently been generalized
and incorporated in the program GENLS discussed in Sec.
V.

Later, Jefferys®' described an algorithm very similar to
that of Britt and Luecke but generalized to allow additional
constraint equations, which are often needed in astronomy.
It was later embodied in the program GaussFit.”> When
applied to the same data and fitting model, the Jefferys
approach leads® to the same converged solution as does the
Powell-Macdonald algorithm,”” suggesting that they both
properly yield least-squares results.

B. Simplifications and practical methods

As Squire'? pointed out, a general program is valuable
for solving the IDWM problem for either linear or nonlin-
ear situations. Such a program should also yield the York
solution for straight-line fits. The algorithms described in
Refs. 22, 27, and 28 do so, and they avoid the need to
choose one of three roots to estimate the slope. For those
who do not have the appropriate program (Sec. V), it is
worthwhile to consider useful simplifications of York’s re-
sults that follow”* when the ratio of the weights is indepen-

dent of /, that is, the IDWMC in Fig. 1.

First, form the total weight for the ith data point W, that
associated with the effective variance approach to straight-
line EOV fitting”**?°>*! | in terms of the slope b,

W,=(w;"'+bw;") " (2)
Now for the IDWMC, we can express W, as
Wi=w,(A+b6%) '"=w,(1+b%/4)"". (3)

Define the weighted sums over [ from 1 to N
S =2ZW; S, =2Wx;and S, =3W,y,. Then the weight-
ed means of x and y are

x=S5./S, (4)
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and
7=5,/5,. (5)
We may now define

Su=Y W(x, —%)7, (6)
SnyZ IJ/i(yi—y)z’ (7)
and
SxyEz I’V,(X,*x)(.]h—y), (8)

which are analogous to weighted variances and covar-
iances.
If A is a constant, then so is

y=(AS,, —§,,)/28,,. €]

York’s pseudocubic then reduces®® to the quadratic
(b2 4 2yb — A) = 0. Although this might appear to be a
quasiquadratic because the W, implicit in ¢ involve b2, as
shown in Eq. (3), this is not so. Since the denominators in
Eg. 3) are independent of 7, they cancel in Eq. (9), and we
may replace the W, in Eq. (9) by either w,; (for0<A < )
or by w, (for 0 <A< ). When such replacement is made
in Eq. (9), solution of the quadratic (which is maximum
likelihood when the errors are normally distributed),

gives?*3? for the dimensionless quantity S=5 /44 :
B = — (y/NA) +sgn(S, W1+ /D)
=1/[ (W/NA) +sgn(S, VT + P/ ],

where b is the estimated slope and sgn(S,, ) selects the
appropriate root. Numerical accuracy is best with the first
form when y and sgn(S,, ) have opposite signs, but with
the second for the same signs.

When ¥ involves only the w,,; weights, Eq. (10) is equiv-
alent to that given by Deming.'” Although Deming applied
his result whether or not A was a constant, only when A is
constant does Eq. (10), or the more general Deming algo-
rithm,'” yield an exact least-squares solution.”*** Al-
though the slope estimate b obtained from Eq. (10) would
be minimum bias for the IDWMC if
w,; = /0%, w, = 1/0,;, and A, were used in calculating
¥, in practice one must use the estimates
w, = 1/s3, w,, = 1/s;,, and 4, with consequent introduc-
tion of unknown bias. A promising alternative is outlined
in Sec. IV.

For the SWM (Fig. 1), all weights cancel in Eq. (10)
and only A and the unweighted sums remain. The resulting
expression for # has been named the PW solution (for per-
pendicular least squares, properly weighted) by Riggs et
al.®® The PW is quite distinct from the PWM discussed in
Sec. II B. The PW yields the exact solution when the SWM
is appropriate and A = A,,. Even for this situation, Riggs ef
al. found that the Eq. (10) estimate by, is appreciably
biased for data with a correlation coefficient less than about
0.7. Thus even the exact solution of the least-squares equa-
tions can be biased. Further, they found that b,y is ex-
tremely biased whenever A is a poor approximation to A,.
Fuller'® has also discussed such bias effects.

In all the above analyses, whenever a slope estimate has
been obtained, the corresponding estimate of the intercept,
a, follows from

(10)

70 Am. J. Phys., Vol. 60, No. 1, January 1992

a=jy— bx. (11)
Therefore, bias in b will necessarily cause bias in a.

Further simplifications are worth mentioning. When
A— w,sothatw,; - o and W, = w,;, Eq. (10) leads to an
estimate of the slope of y on x, for relatively negligible x
errors,

b,,=S,/S,.. (12)

This is an ordinary least squares fit of y as a function of x,
which we show as OLS-y:x in Fig. 1. Alternatively, when
A -0, sothat w, —  and W; may be replaced by w,;, one
obtains for relatively negligible y errors,

b, =S,/S,,. (13)

This may be termed OLS-x:y fitting, as shown in Fig. 1, but
it is expressed in terms of the y-on-x slope, to allow direct
comparison with the Eq. (12) result.

Finally, consider the SWM situation and use the estimat-
ed standard deviations of the data for weighting. Thus take

2 1
sxi
wxi

=(N-1""Yx —x’=s,

and

1 _ =2
S=—=N-1""'Su -’=s,
i

for all /. Then Eq. (9) yields ¥ =0 and b = b\, where
bom =sgn(S,,)(s,/s,) =sgn(S,,)/S,,/S.x

(14)

This estimate is the geometric mean (GM) of the two ordi-
nary regression slopes and thus must lie between them, as
does the slope following from the PW solution. Clearly, one
can obtain b5, by making two fits of the data with an
ordinary linear least-squares fitting program, then using
Eq. (14). Riggs et al.?” consider this result to be of central
importance, partly because it appears to be independent of
A. Since, with the choice of weights just made, b ,, can be
expressed as sgn(S,, )JJA , it seems improper to consider A
and S,,/S,, as separate variables in GM fitting. The GM
solution thus implies that

A=Acm=S,,/S=b%u, (15)

entirely determined by the data and not available for ad-
justment.

=sgn(S,, )b

C. Numerical comparisons

Now that we have a variety of models, it is interesting to
compare them when applied to representative data. Before
launching into the details of numerical comparisons of
straight-line least-squares algorithms, we point out a phys-
ics-wise and pedagogically inappropriate aspect of earlier
analyses. Namely, the dimension of the parameter A has
been systematically ignored, in spite of the fact that its di-
mension is that of the square of y/x. The parameter Bin Eq.
(10) is an appropriate dimension-free parameter. In the
examples discussed below, x,y, and therefore 4, are implic-
itly dimension free.

We first consider analysis of the data in Reed’s'' Table I,
where he set 5, =s, = 0.01, so 4 = 1, a SWM situation.
When the PW is used, one immediately finds his solution:
Y~ — 0.365 + 1.167.X. But in obtaining his direct solution
of the York pseudocubic he spent 30 iterations that did not
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converge to a root, and 9 more iterations from a different
starting value that did converge. Clearly, as York implied,
when a constant A is assumed it is far more efficient to use
the PW simplification, Egs. (10) and (11), for the IDWM
or the SWM.

But what about the even simpler GM solution? For
Reed’s Table I datait yields Y~ — 0.336 + 1.135X, not far
from the PW result. If the intercept estimate value is calcu-
lated as the average of the y intercepts for the OLS y:x and
x:y solutions instead of from Eq. (11), one obtains a
~ — 0.357, somewhat closer to the PW value. But, accord-
ing to Eq. (15), A gm = 1.288, appreciably different from
the value of unity assumed in Reed’s PW solution.'' If one
believed that the A = 1 choice (in dimension-free units)
were accurate, then one could immediately calculate the

GM slope as A , obtaining unity here, somewhat farther
from the PW solution than that calculated from Eq. (14).
In their Monte Carlo study Riggs ez al.?° found that the Eq.
(14) solution was essentially unbiased for 4, = 1, but gen-
erally one does not know A,,.

Finally, it is worthwhile to examine an SWM situation
where A is not expected to be close to unity. We select the
15-point data in Table 1.3.1 of Fuller,"* who took 4 = 1/6.
For this A the PW yields Y~(1.1158 + 0.89)

+ (0.7516 + 0.087)X. The + terms are estimated stan-
dard deviations'”** and the parameter estimates are shown
with more precision than is justified by their uncertainties
to permit comparison with Fuller’s results. The parameter
estimates agree fully with his values. The GM leads to
Y~(1.4867 +0.87) + (0.7147 4+ 0.085)X, statistically
consistent with the PW results. Further, A 55, =~0.511, but
the square root of the assumed value of 1/6 is about 0.408,
not a good estimate of the likely b value, thus possibly indi-
cating a poor weighting choice. If we follow Riggs ef al.*°
and define K?=A4 /b %y = B Gu, where A is the assumed
value, then K ? is about 0.326. For A = 1, the PW result
becomes Y= (1.715 + 0.85) + (0.692 4 0.084)X, K ?
~1.96 and the GM solution remains the same. If we select
A =b}y =0.5107, so that K* = 1, then the PW and the
GM solutions are identical.

The above numerical comparisons suggest that when-
ever a constant ratio of errors is believed to be appropriate,
itis worthwhile to calculate both the PW and GM solutions
and to compare them. To minimize bias in the estimated
parameter values, as good an estimate as possible for 4 is
needed. When A is very uncertain, the GM solution is likely
to be better than the PW solution.

IV. FUTURE DIRECTIONS

The purpose of least-squares fitting is to obtain accurate
estimates of parameters with uncertainties as small as pos-
sible. The Monte Carlo results of Riggs et al.?° show that,
even with true minimization of Eq. (1) for straight-line
fitting using the SWM and a solution such as York’s, the
parameter biases are usually nonzero (instead of zero as in
conventional straight-line least squares fitting), and they
are usually functions of the weighting-ratio parameter A.
Evenifs; and s; were accurate estimators of o2 and 02, a
poor solution might still be obtained. For experimental
data, estimates of the 52, and s, values used for weighting
are often quite far from optimum, leading to even worse
results. Under such conditions, it scarcely seems worth-
while to expend appreciable effort on obtaining a compli-

71 Am. J. Phys., Vol. 60, No. 1, January 1992

cated exact solution, and simpler solutions, such as those in
Sec. ITI, may suffice.

Since neither the SWM nor the IDWM is broad enough
to represent adequately many types of possible experimen-
tal errors, there is a need for programs that include general
weighting possibilities for the many-variable situation
where the fitting function need not be expressed explicitly
in terms of one of the variables, and where nonlinear as well
as linear models can be used. We are currently developing
methods of treating generalized weighting models depen-
dent on calculated variable values. There are technical dif-
ficulties in the general nonlinear EOV situation to estimate
simultaneously by maximum likelihood the parameters of
both a fitting model and a weighting variance model if the
latter may depend on the dependent and independent vari-
ables, as in the PWM. Much progress has already been
made, however, for complex and real nonlinear least-
squares fitting with the independent variable error
free.**

In practice, one would first make a fit with all param-
eters of both the fitting and the weighting model free to
vary. Once meaningful estimates of the weighting-model
parameters were obtained, they would be fixed at their esti-
mated values and a final-fit solution obtained. Such an ap-
proach would remove some uncertainty in picking the
proper weighting; it would reduce bias in parameter esti-
mates; and it would probably also lead to better estimates
of the parameter standard deviations. Until the develop-
ment of an EOV algorithm which allows free parameters in
both the fitting and the weighting models, one can use one
of the programs discussed below, GENLS, which allows a
weighting model dependent on the calculated variable val-
ues but with fixed weighting-model parameters.

V. AVAILABLE COMPUTER PROGRAMS

Although the simple PW and GM solutions discussed in
Sec. III are usually adequate for straight-line fitting with
either the SWM or the IDWM, especially when a good
estimate of A, is available, more-general situations often
occur. Even for the straight-line fit, the weights may not
yield a constant value of A. The A value is variable, for
example, for the important case of proportional errors, that
is, constant percentage errors for the x variable and con-
stant percentage errors for the y variable. GENLS fitting
results using the corresponding weighting model, the
PWM, are shown in Fig. 1. Further, the fitting model is
often nonlinear in its parameters, so more powerful fitting
programs are frequently necessary. The following more or
less complete programs may be used for both linear and
nonlinear situations.

Britt—Luecke: Two implementations of the original
Britt—Luecke algorithm are available. The first, GENLSQ,
is an IDWM realization of the original IGWM algo-
rithm.*® It may be obtained from Dr. R. L. Luecke, Depart-
ment of Chemical Engineering, University of Missouri,
Columbia, MO 65211, by sending him a diskette. Only
FORTRAN source code is provided; the user must provide
code for the fitting function. A commercial version, incor-
porated in a chemical process simulation system, may be
purchased from Dr. H. I. Britt, Aspen Technology, 251
Vassar St., Cambridge, MA. The following two sets of pro-
grams involve many elements of the Britt-Luecke ap-
proach.
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Fuller: Several complete EOV programs are available for
IBM PC/AT computers and their clones from the Statisti-
cal Laboratory of Iowa State University, Ames, Iowa
50011. Some description of these algorithms appears in
Ref. 13. The cost of the programs ranges from $150 to
$500. In most cases, they are likely to yield somewhat
smaller parameter standard deviation estimates than does
GENLS.

GaussFit: The program GaussFit** allows fitting with
constraint equations. It may be obtained through E-mail by
anonymous file transfer program (ftp) to bessel.as.utexa-
s.edu. The GaussFit, Fuller, or Britt-Luecke approaches
must be used if the fitting model cannot be expressed as
Y = f(X) or X = g(Y¥), or if more than two kinds of vari-
ables are observed. The required first derivatives are auto-
matically calculated symbolically in GaussFit. In addition,
it allows the user to define the fitting function, followed by
an automatic interpreter step to produce the final program.
GaussFit is available for UNIX operating systems and for
Macintosh computers; it requires various uncompression
procedures and Microsoft Word to obtain the extensive
manual; and it also requires a C-language compiler.

GENLS: If the fitting model can be expressed as
Y = f{X) or X = g(Y) and no extra constraints are neces-
sary, the GENLS program has many advantages. It uses
the Newton-Raphson approach, whereas the Britt—
Luecke, Fuller, and GaussFit programs use a Gauss—New-
ton algorithm. GENLS is available from J. R. Macdonald
by sending a formatted disk and a stamped, self-addressed
disk mailer, or through E-mail by anonymous file transfer
to ftp.oit.unc.edu, directory pub/fitit. It is fully self con-
tained; it includes both FORTRAN source code and a
ready-to-use executable program file for MS-DOS operat-
ing systems; and it does not require a manual. GENLS
provides many different fitting-function choices which can
be used without recompilation, but it requires recompila-
tion for fitting functions not included in it, or for use on a
Macintosh computer or a machine running UNIX.

GENLS does not require the user to provide analytical
expressions for derivatives, and its use of nonconventional
numerical derivatives greatly accelerates its approach to
convergence.”’ Because it requires the inversion of only a
p X p matrix, where p is the number of free fitting param-
eters, rather than the generally far larger N X N matrix of
Gauss—Newton algorithms, its execution time is far less for
the same problem, particularly when ¥, the number of data
values, is large. GENLS can provide PW and GM solutions
for straight-line fitting, as well as the general solution for
linear or nonlinear situations. It is fully interactive and
menu driven, thus making it very easy in a single run to
carry out many different operations, such as changing
weightings, observing and saving the results, displaying
screen plots of residuals, and varying the number of fitting
parameters.

t22

In addition to SWM, IDWMC, and IDWM weighting, '

GENLS includes a DWM, an important option not avail-
able in any other EOV program. Te do so, it incorporates a
special iterative procedure that allows accurate fitting with
combined constant and power-law weighting.'®'**% It
thus includes both PWM and Poisson weighting (appro-
priate for errors proportional to the square roots of error-
free values). Further, different weighting models may be
used for the x and for the y parts of the fit, as dictated by the

physical situation involved. A future version of GENLS

will include more-general weighting possibilities.
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Deterministic chaos in the elastic pendulum: A simple laboratory

for nonlinear dynamics
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The chaotic motion of the elastic pendulum is studied by means of four indicators, the Poincaré
section, the maximum Lyapunov exponent, the correlation function, and the power spectrum. It
is shown that for very low and very large energies the motion is regular while it is very irregular for
intermediate energies. Analytical considerations and graphical representations concerning the
applicability of KAM theorem are also presented. This system and the type of description used are
very suitable to introduce undergraduate students to nonlinear dynamics.

I. INTRODUCTION

The elastic pendulum, although rather a simple mechan-
ical system, combines a complex dynamical behavior with
a wide applicability as a mathematical model in different
fields of physics, such as nonlinear optics or plasma phy-
sics.! The techniques used to tackle this simple but at the
time complex system range from perturbative studies
(where parametric resonance has been found, due to the
existence of energy transfer among the different modes) !~
to experimental studies that use stroboscopic techniques.*
In any case it is clear that such an apparently uninteresting
system with just 2 degrees of freedom displays a rich and
varied dynamies. A method that is complementary to the
above mentioned, and which has been widely used in the
literature for other dynamical systems, is the numerical
computation of several indicators able to characterize the
kind of evolution one has for each set of parameters and
initial conditions. However, each indicator alone can be
misleading. We shall see later that the joint use of several
indicators may greatly clarify the analysis of the evolution.
Our system displays one kind of motion for a range of para-
meters, and a drastically different motion for other values.
This feature enables us to compare the efficiency of stan-
dard methods in the numerical characterization of chaos.

We consider a Hamiltonian system, with N degrees of
freedom, to be chaotic when the maximum number of dyn-
amical variables in involution (i.e., with Poisson brackets
equal to zero) is less than the number of degrees of freedom
N. This is because an important theorem due to Liouville>¢
states that when there are N conserved quantities in involu-
tion the solution of the equations of motion can be obtained
by quadratures and the behavior is regular. Moreover, it is
observed that when this is not the case the system behaves
stochastically, at least some of the solutions being unstable.
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As it is not easy to prove that there are no such quantities,
one has to resort to some indicators, four of which are stu-
died in this paper. We will admit that there is chaos if se-
veral of these indicators show this to be the case.

In the next section we shall briefly describe our system.
We will stress the lack of a sufficient number of conserved
quantities for the system to be exactly solved. Then we con-
sider some formal arguments at high and low energy re-
gimes, which may explain numerically observed behaviors.
They will tell us about the exact integrability of the system
at those particular regimes. The applicability of the KAM
theorem will also be examined and consistency with nu-
merical results will be checked. In the third section the
main results of the paper are presented. We characterize
the motion by use of four different numerical indicators
(Poincaré section, maximum Lyapunov exponent, correla-
tion function, and power spectrum)). This is done for exam-
ples of both regular and irregular types of motion. Finally,
some conclusions are presented.

I1. EQUATIONS OF MOTION

The Lagrangian of the plane elastic pendulum, in the
Cartesian coordinates of Fig. 1, is

L=m(*+j)/2 — mgy — (k/2)[ (x* + y*)2 — ],
(1)

where no approximation has been made; /, is the natural
length of the pendulum, k is the spring elastic constant, m is
the mass of the bob, and g is the gravitational acceleration
on the Earth surface. The Euler-Lagrange equations of
motion are

X= —ax + gAx/(X* + )2, (2)
V= —g—yol +gAy/(X* + y*)'72, (3)
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