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Ah&act-The exact, small-signal impedance and admittance response of a fully dissociated, equi-valent 
material with arbitrary reaction rates and mobilities of the positive and negative charge carriers is 
discussed and illustrated for many diRerent parameter values of physical significance. Although such 
response does not generally lead to an exact equivalent circuit using conventional circuit elements, even 
including finite-length Warburg diffusion elements, binary data can be fitted to the full binary small-signal 
response model contained in the available LEVM complex nonlinear least squares fitting program, an 
approach usually more appropriate than one using approximate equivalent circuits, and a procedure which 
leads directly to estimates of important microscopic parameters of the system. A useful approach for 
selecting appropriate starting values of fitting-model parameters is described and illustrated. Detailed 
fitting of synthetic binary response data containing random errors is illustrated by comparing the results 
of fits to the true binary model with fits to alternate, approximate equivalent circuit models. 
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INTRODUCTION 

Binary response occurs in materials containing a single 
species of positive and a single species of negative 
charge. Examples are unsupported liquid electrolytes 
[I, 21, glass electrodes, fused salts[3], solid electrolytes 
[4], and semiconductors. Very few graphical results 
for the bulk, reaction, and diffusion small-signal UC 
response of an unsupported binary electrolyte appear 
in the literature. For an unsupported solid material, 
it is often a good approximation, during the time of 
measurement, to take the mobility of charge of one 
sign as zero, but this is not always true. Especially at 
high temperatures, charges of both signs can often 
move appreciably in a half-cycle of the measuring 
frequency, particularly when the minimum measure- 
ment frequency is of the order of lo-* I-Ix or less, as 
it often is. Of course, for unsupported binary liquid 
electrolytes, charges of both signs are always mobile. 

Here, we are specifically concerned with the 
response of a binary system with charges of both 
signs mobile and with either or both free to react at 
symmetrical, plane, parallel electrodes. Although an 
exact small-signal expression of the impedance of 
such a system has been available for over a decade[5]; 
it is suf8ciently complicated that all its implications 
have not yet been fully explored. In its full generality, 
it treats both extrinsic and intrinsic materials, arbitrary 
dissociation, arbitrary valence numbers, arbitrary 
mobilities (A and b), adsorption at the electrodes, 
arbitrary reaction rate constants (k. and k,), and 
extrinsic and intrinsic charge generation and recom- 
bination. Here the n and p subscripts denote negative 
and positive charges, respectively. 

For simplicity, we shah here restrict attention to the 
fully dissociated intrinsic situation with unity valence 
numbers and without adsorption, one appropriate for 

many solid and liquid binary electrolytes. The effect 
of incomplete dissociation has already been examined 
in some detail for the completely blocking situation 
[6J, and, to a lesser degree, for the situation where 
charge of only one sign reacts at the electrodes[5,7]. 

Further, nothing more needs to be said about the 
response of a fully dissociated intrinsic binary system 
with charge of only a single sign mobile and free to 
absorb and react at the electrodes. As Ref. [S] shows, 
its response is exceedingly well approximated by 
that of the circuit of Fig. 1 with all distributed circuit 
elements[S], the Zns, omitted. Expressions for the 
circuit element in terms of microscopic quantities 
are presented in this reference. Note that although 
bulk effects (the high frequency limiting resistance, 
R,, and the geometrical capacitance, C,), electrode 
reaction et&&s (the reaction resistance, R,, and the 

-? 

-_ 

Fig. 1. Equivalent circuit often appropriate for fitting 
impedance spectroscopy data when bulk, reaction (Ca, RR), 
adsorption (C,. RA), and possibly one or more distributed 

procemes ate present. 
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reaction, or double-layer, capacitance, C,), and ad- 
sorption effects (the adsorption resistance, RA, and 
the adsorption capacitance, C,,) may all be present, 
there are no diffusion effects for uni-mobile materials. 

For the present situation, an equivalent circuit is 
unnecessary since the impedance expression obtained 
from the exact small-signal response equations may 
be used directly for plotting or data-fitting purposes. 
In general, the impedance frequency response thus 
obtained is sufficiently complicated that it cannot be 
well approximated by that of an equivalent circuit, 
even one involving several finite-length Warburg 
diffusion elements. The exact impedance expression is 
thus likely to be superior to equivalent circuits used 
to fit appropriate binary-electrolyte data, such as that 
of Ref. [3] for a molten salt. An aim of the present 
work is to illustrate some aspects of the exact re- 
sponse and describe how it may be directly employed 
for data fitting to yield more microscopic parameters 
of the system than possible with usual equivalent 
circuits. 

In the next section, pertinent parameters of the 
response are described, and actual graphical complex- 
plane responses generated with the simulation facility 
of the LEVM fitting program are illustrated and 
discussed in the following section. Finally, fitting of 
binary data is considered in detail. 

PERTINENT PARAMETERS AND 
SIMPLE RESPONSE 

The following parameters are needed to characterize 
the present results: first, the ratio of mobilities, n, = 
u. Ill. 1 and second, the normalized reaction rates. “.. r. 
p. = (L/2) (k,/D,) and pp E (L/2)&,/0,). Here, L is 
the effective electrode senaration. and the Einstein 
relation between a diffusion coefficient, D, and the 
corresponding mobility, p, is D = (kT/e)(p/z) = 
(RT/F)(p/z), where k is Boltzmann’s constant, 
e is the proton charge, R is the gas constant, F is the 
Faraday constant, T is the absolute temperature, 
and z is the valence number of the mobile charge. 
In addition, we define M s L/2L,, the number of 
Debye lengths, L,, in the half-cell. Here we wish to 
deal with cells with macroscopic electrode spacing 
rather than with very thin membranes, so we shall take 
M = lo4 for all our calculations. The exact results[5] 
apply, however, for any M value. Our graphical 
results would be essentially the same for a larger M. 

We shall present results at the impedance or 
admittance level, normalized by R, or G, = R;‘, 
respectively. All results apply for unit electrode area. 
Thus, if Z, is the total impedance of the system, 
Z, = Z,/R, and Y, 3 ZfA. Here R, = [(ec,,/L)&, 
+ p,)]-‘, where c, is the common bulk value of the 
concentration of positive, p. , and negative, n, , charge 
carriers. It will also sometimes be useful for plotting 
purposes to normalize with the normalized dc resist- 
ance of the system, R, = [Re(Z,), ,JR, , where o 
is the angular frequency of the sinusoidal excitation 
applied to the system. R,, is given by[S] 

R 
[ 

1 1 
DN= (1 +x,)(1 +&I)+(1 +x$)(1 +&I) 1 

-I 
. 

(1) 

For such normalization we shall use a lower-case 
subscript n. Thus, Z,, E Zm/RDN E ZTlRD, and its 
real part is unity at w = 0. Because of the complexity 
of the full expression for Z, for even the present 
simplified situation, we shall not present it here and 
will instead give only the much simpler result for 
x, = 1. Note, however, that the exact expression is 
also considerably simplified for completely blocking 
conditions and its response has been considered in 
detail recently[6]. The full expression for arbitrary 
electrode-reaction conditions, including adsorption 
and degree of dissociation, has been incorporated 
into the LEVM complex nonlinear least squares 
(CNLS) program available from the author’s depart- 
ment at nominal cost. Thus, it can now be used 
directly for fitting small-signal binary response data 
[I, 396% 101. 

The geometrical capacitance C, is given by 
L/~AL, where 6 is the dielectric constant of the 
material between the electrodes. Let R e oR, C,, 
the normalized frequency; for most impedance spec- 
troscopy experiments, &, < 1. Following Ref. [5] let 
us define pI = (p, + p,)/2, 6, = @/2[ni2 + x;“*], 
y;;f)I$?);tnh(MS,), and tl = [(I + 6$)“*M]ctnh[(l 

Nbw we write the general Z, in terms of a part 
arising from R, and C,, and a part representing the 
rest of the response (eg everything beyond R, in 
Fig. I), Z, = Y;‘. In normalized form the general 
result is[5] 

z, = (I + YSN)/[YSN + jncl + ySN)l* (2) 

Finally, in the special n, = 1 case, from equation 
(35) of Ref. [5] we can express Ys, as 

YSN _ PnY2 + PnPp + if& 

Pa + Y2 1’ 
(3) 

For R<< 1, the second term in equation (3), multi- 
plied by G, to remove its normalization, is iust 
ioC,[(ti)ctnh(M) - 1] = iu(O.5& - C,], where 
C,, is the conventional double laver canacitance. 
c/%rL, for large M. Since there is-a CD,’ localized 
near each of the identical electrodes, C, = 0.5CDL is 
the result of two such capacitances in series[9]. Our 
present results are easily modified to apply to a half- 
cell rather than a full one. Although we shall here be 
concerned mostly with situations where the mobility 
ratio is quite different from unity, the present exact 
results for the II M = 1 situation show that even here an 
equivalent circuit formed from conventional elements 
is inappropriate, and, in addition they may be used 
for fitting when, in fact x, = 1. 

For arbitrary rtm, we define 

A”*=(M/2)[n$*+ns,“*](12)“*. (4) 

Then y2 may be written as[5,9, lo] 

y2 = [i/i]“*ctnh[i/i ]I/*, (5) 

an expression of just the form of finite-length diffusion 
for a single reacting species in the supported situation. 
Thus the y2 terms in equation (3) can produce diffusion 
effects in the overall Z,,. Only when p,, or pP is 
infinite, however, does y2 appear by itself in equation 
(3). Then, at the impedance level, for the present 
x, = 1 situation, Z, = l/(G,y,) is given by 

ZD = R, tanh[M]“*/[M]“*, (6) 
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again, the usual form for finite-length diffusion [S, 9- 
111. In the 12, Z 1 case, a good approximation for Z,, 
when (p,, p.) = (0, cc) has been found to w5] 

Zn, = x;’ tanh[i/l]“z/[M]‘~, (7) 

which is consistent with equation (6) when or, a 1. 
The acronym FLW, finite-length Warburg, will be 
used for the responses of equations (6) and (7). The 
A term appropriate for the binary electrolyte has been 
compared elsewhere[lO, 1 l] with that for a supported 
case with a charge of only one sign reacting and 
detailed agreement found. Note that results for 
(p,, p.) and given ?r, are also found, as one would 
expect from symmetry, for the ( p., pp) situation with 
7rm,--r x,’ I 

GRAPHICAL RESULTS 

Although it is impractical to illustrate all the 
possibilities and curve shapes produced when or,, p., 
and pP are all free to vary, Figs 2-6 shows many 
representative responses plotted in the normalixed im- 
pedance or admittance plane. Figures 24 all have n,,, 
fixed at lo-’ so the mobility of negative charges is far 
less than positive ones. Tbe arrows indicate the 
direction of increasing frequency. In Fig. 2, p. is fixed 
at cc and pP varies. Note. that RDN normalization is 
used here in order to show comparative curves shapes 
and that the normalizing values are given in the figure 
caption. In these graphs, quantities like (lo-‘, 3) 
indicate values of (p , p,). 

The (0, co) curve of Fig. 2, where the high-mobility 
charges are completely blocked and the low-mobility 
ones react very rapidly, is essentially that of standard 
finite-length diffusion response. It is very closely 
approximated by the ZDN expression of equation (7). 
It follows that R, = 1 + x,’ = 10,001 for this situ- 
ation. The 1 here, corresponding to R, when R,, is 
unnormalixed, is the width on the real impedance axis 
of the semi-circle arising from the bulk response, that 
of R, and C,. It is far too small to appear separately 
in Fig. 2 except for the (lo-‘, cc) response curve. 
As Fig. 2 and the normalizing values indicate, when 
pP increases from zero the diffusion curve rapidly 
decreases in absolute size and in relative maximum 

z V.” 

P-i 1 pn= co 

Ln 

Fig. 2. The normalized total impedance, Z. s Z/R,, 
p&ted in the impedance plane for &,, = IO-‘, ja = Q) kd 
a varietv of D, values.. The D, = 10W2 cnrve is defined by the 
open &cles’ik order to d&nguisb it from the solid >, = 
10-l curve. The live normalizing values of RDN, beginning 
at pP= 0, aTe 10,001, 5000.75. 910.008, 100.0001, and 

10.989. 

Fig. 3. The nonnaked total impedance, Z, zs Z/R,, 
plotted in the impedance plane for II, = lo-’ and a variety 

of (P,, p,) choioes. 

height until by pn B 10m3 there is a long, nearly 
flat, response region, quite different from ordinary 
finite-length diffusion response. 

In Fig. 3, which uses R, normalization, the true 
relative sixes of the curves appear for four different 
(p,, p,,) choices. Note that the pP of the (lo-‘, 0) 
curve has been selected to produce very nearly the 
same RDN value as that for (0, cc), but the first curve 
is just a full reaction semicircle without diffusion 
effects and the second is a diffusion curve without 
reaction effects. By contrast, the (lo-‘, 3) curve 
involves contributions from both processes. The input 
choices for Fig. 4 are similar to those for Fig. 3, but 
in Fig. 4, pP is fixed at lo-’ for all the curves, and we 
see the transition from all-reaction response to all- 
diffusion response as pm increases from 0 to co. 

In Fig. 5 we have set pn = m and n, = lo-‘. 
Since R, normalization is used here, the variation 
in pP changes the size, and, of course, the shape of 
the impedance curves appreciably. But note that 
the sixes and shapes of the corresponding admittance 
curves change much less. Thus, it is clear that for 
situations like this impedance plane plots will yield 
more information than will admittance plane ones. 

Detailed analysis and circuit fitting has already 
been published for the binary electrolyte with (0, p.) 
for 0 < pn 6 00 and a wide range of lr,,, values[q, so 
this situation needs little further discussion here. It is, 
however, worth pointing out that it was found that 
response calculated from the exact small-signal solu- 
tion could not be well fitted by the Fig. 1 circuit with 
no Z,s and with conventional expressions for the 
reaction circuit components. Expressions for these 

= 6000 

N’ 

’ 4000 

0 
0 5000 

ZN’ 
10000 

Fig. 4. The normal&l total impedance Z, plotted in the 
@edan~ plane for n, = lo-‘, pP = lo-‘, and a variety of 

pm values. 
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Fig. 5. Separate impedance plane plots for three choices of 
pP and the corresponding curves in the admittance plane. 

Here n,,, = 10m2 and p,, = Q). 

quantities involving M, II,, and p,, were found, how- 
ever, that allowed good fits and thus good estimates 
of such parameters as reaction rates. For the (0, co) 
case, the standard finite-length-diffusion curve shape 
of equation (7) applied well for a wide range of rrm. 
Admittance curve plots presented in the earlier 
work[l showed, however, that the curve shapes in 
this plane depended strongly on x, . For such fitting, 
the circuit of Fig. 1 was used with Z,, = Z,, = 0 and 
Z,, given by the Zn of equation (7). 

Finally, Fig. 6 presents impedance and admittance 
plane plots for several values of n, and the choice 
(0.1, co). Note the R,, normalization for the 
impedance curves. Here we see that for A, < 1 the 
shape of the low frequency arc is far from the normal 
finite-length-diffusion arc apparent for x,,, = 1. As 
in Fig. 2, a reaction semi-circle and a finite-length- 
diffusion arc meld together to yield curve shapes 
unlike those of either separately. The admittance- 
plane plots show appreciable dependence. on n, and, 
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Fig. 6. Impedance and admittance plane plots for (0.1, co) 
and several xpl values. Note the use here of RDN norrnaliz- 
ation for the Impedance plots and R, normalization for the 
admittance ones. The three normaliing values of RDN for 
z,,, = lo-‘, 10e2, and 1 are, respectively, 10.989, 10.009, and 

We shall consider data which yield a complex 
plane plot like that in the top block of Fig. 5. The arc 
shape suggests that the dominant process in finite- 
length diffusion, perhaps occurring not in a binary 
system but in a supported electrolyte. Then the Zs 
response would be of the general form of equation (6) 
with R, replaced by R, and A by o+, where Rw and 
TV are unknown diffusion parameters. For general- 
ized finite-length Warburg response[8] (GFLW), the 
0.5 exponents in equation (6) would be replaced by 
the free parameter I,&, where 0 < Jlw < 1. Further, 
the data shape is also of the form expected from 
Davidson-Cole (DC) response at the Z level. Its 
appropriate Zs expression is[ 131 

1.982. Zs = R,/(l + ioxDc)80c, (8) 

for A, = 1, the admittance curve looks much like a 
reversed impedance-plane tinite-length-diffusion curve. 
Note that in all the admittance plots presented herein, 
the high-frequency spike appearing at Y., = 1 has 
been chopped off at the top of the figure. It arises 
from C, and causes Y; to approach cc as o -) co. 

Although only a limited set of binary electrolyte 
responses has been included herein, they give some 
idea of the richness of complex-plane curve shapes 
possible for such a system. With the present avail- 
ability of the exact binary response[S] incorporated in 
the LEVM CNLS fitting program[lO, 121 one need no 
longer attempt to fit to an approximate equivalent 
circuit but can now fit binary response. data directly 
to this model and thus obtain estimates of important 
material parameters such as k,, $, A, pp, c, , and 6, 
as demonstrated in the next section. Only if one or 
more of the material parameters of the system are 
appreciably distributed is such fitting likely to fail, then 
fitting to an equivalent circuit will still be necessary. 

DATA FITTING 

(a) Fitting the proper model 

When it is known or suspected that data to be 
analysed involve a binary situation, the binary-model 
fitting choices available in the LEVM program may 
be used for either a completely blocking situation or a 
partly conducting one. But since an equivalent circuit 
is usually inappropriate for such data, how should 
their analysis proceed? Although a discussion of the 
transformation of binary fitting parameters to micro- 
scopic quantities is presented in Section V of Ref. [5], 
obtaining adequate initial parameter estimates for such 
further analysis may not always be straightforward. 
Therefore, an actual ab initio data fitting is illustrated 
here in order to demonstrate some of the fitting 
procedures available and appropriate for binary data. 

We shall purposely illustrate the fitting of data 
which are more ambiguous and less accurate than 
average in order to demonstrate a difficult fitting 
situation. Although exact binary data and data with 
random errors will be generated for fitting, so that all 
parameter values are known, we begin the data fitting 
without any prior parameter knowledge, just as one 
might for real data. We assume, however, that valence 
numbers are unity and that we are dealing with a fully 
dissociated situation, but LEVM can handle more 
complicated situations as well. 
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EXACT BINARY DATA 
2 3000- _______ DC-C FIT 
N _ l l l l l BINARY DATA:o,=0.05 

Fig. 7. Impedance plane plot of exact binary data, Davidson- 
Cole fit to the exact’ data, binary data with proportional 
errors (points only), and generalized finite-length Warburg 

fit to the exact data. gee Table 2. 

with 0 < /Inc Q 1. These fitting possibilities will be 
investigated below in addition to binary-model fitting. 

We shall fit to exact data, to data containing small 
proportional random errors (a, = 0.01) and to data 
incorporating appreciably larger proportional random 
errors (Us = 0.05), larger than commonly encountered 
in practice. If Z:(q) is an exact value of the real part 
of the impedance, then the corresponding value with 
proportional error is Z’(Wi = Z:(Oi) [1 + 6i], where 6, 
is an independent random sample from a normal 
distribution with zero mean and a standard deviation 
of a,. The errors in the imaginary values of Z are 
formed in the same way but with an entirely indepen- 
dent set of 6iS having zero mean and the same 0,. 

The unnormalixed impedance plane plot for the 
exact data we shall use is shown in Fig. 7 and covers 
an angular frequency range of 10-s-106s-‘. The 
separate points present in the figure are for the data 
with 6, = 0.05. Such data will be referred to as con- 
taining 5% proportional errors, but since the actual 
errors are drawn from a normal distribution a few of 
them may be as large in magnitude as 10 to 20%. 
Now, in order to carry out a binary-model-fit of the 
5% data (the hardest of the three sets of data to fit), 
one needs initial guesses for the following parameters: 
R,, C,, M, q,,, pp, and p,,. Since all quantities are 
given per unit area here, impedance and resistance 
units are ohm cm2 and capacitance units are farads 
cm-*. For simplicity, they will be suppressed hereafter. 

Examination of the Fig. 8 plot and the data in the 
high-frequency range where the cusp occurs suggests 
that the initial values R, = 104 and C, = 1.2 x lObE 
would be reasonable. Only approximate values are 

_ EXACT BINARY DATA 

& 
I 

4 6 

81oo Zf2 

Fig. 8. Log-log impedance plane plot in the high-frequency 
region of the exact binary data and of the data with 

a, = 0.05 proportional errors. 

needed. Because of the high resolving power of 
LEVM fitting, initial values of most of the parameters 
can be incorrect by 10 times or more and convergence 
will still be obtained, although the more parameters 
to be determined and the worse the data, the closer 
the parameter initial values need to be to their tinal 
ones for immediate convergence to occur. To demon- 
strate LEVMs resolving power or lack of it, we shall 
actually choose somewhat worse starting parameter 
guesses than the data suggest. 

Next, since we assume or know that the data 
are associated with a cell of macroscopic rather than 
microscopic size, we expect that the electrode separ- 
ation distance will contain many Debye lengths. 
Therefore, use a minimum choice of 100 for M. 
Comparison of the complex plane shape with that of 
the top block in Fig. 5 suggests that pP should be 
small and pn very large. Thus, initial choices of 0.1 
and lo9 (or any value greater than 10’) seem reason- 
able. We shall hold P,, tixed and only later test the 
validity of its choice. Finally, the above comparison 
suggests that x, should be less than unity. If we 
initially ignore rr, compared to unity, we can use 
equation (1) for R, to obtain an improved starting 
estimate for pp. From the data and the above estimate 
for R,, R,,- 50. Then equation (1) leads to the 
approximate estimate pP = 0.02, which we shall use. 
Finally, we pick rr, = 0.1, larger than one might 
guess from the comparison or from consistency with 
equation (1) but chosen to make the fit more difficult. 

The first line in Table 1 shows the above choices. 
Since the a, > 0 data contain proportional random 
errors, it is appropriate and desirable to use function- 

Table 1. Steps in the complex nonlinear least-squares fitting of binary data with u, = 0.05 to the binary 
response model 

Number of 
Run no. R, c, M x, PP iterations 

1 in 
,Z) 

1.2 x 10-s 100 0.1 0.02 n.c. 
2 in 100 0.1 20 2 out 

(;;) 

‘;.; 

(I:2 

; ;;I:) 1.16 x 10’ 
5.87 x 

10-l (ii;) 
- 

3 in x lo-s) 1.16 x 10’ 5.87 x lo-’ 0:02 7 
3 out 1.2 x 10-s 9.22 x 10r 1.06 x IO-2 1.05 x 10-s - 
4 in 104 1.2 x 10-n 9.22 x lo) 1.06 x 10-2 1.05 x 10-r 6 
4 out 100.8 1.017 x 10-s 9.96 x lo’ 1.017 x 10-r 1.012 x IO-2 - 

Parameter values shown within parentheses were held tixed during fitting. Here n.c. indicates no 
convergence, and the number of iterations equals the number of function evaluations required for 
convergence. 
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proportional weighting (FPWT) for the fitting, a 
choice that matches the input errors as well as possible 
and leads to parameter estimates with appreciably 
smaller bias than the other weighting possibilities[lO]. 
When a binary-mode1 fit was attempted with all five 
parameters free (run l), no convergence was found. 
Now let numbers in parentheses indicate fixed par- 
ameter values. Run 2 indicates that convergence was 
achieved with 20 function evaluations. The result of 
the fit is listed in line 3. Next pP was set free and run 
3 carried out. Its results were used in run 4 with all 
five parameters free, leading to the last line in the 
table. 

When all five parameters are fixed and only pn is 
taken free, one obtains a fit estimate of it of 1.1 x 
106] 17. The first number is the estimate and the 
second is its relative standard deviation (RSD), termed 
the coefficient of variation by statisticians. When this 
value of pn is taken free, along with the five of the 
table, their new estimates are essentially unchanged 
and one obtains for p. the result 8.6 x 10s] 16. The 
very large value of the RSD in these fits indicates that 
the actual estimates of pn above are completely 
untrustworthy. On the other hand, their large values 
still indicate that a large fixed value of pn is indeed 
appropriate. This conclusion is confirmed by the 
results of runs like that of run 4 of the table with p. 
fixed at various values. With p. = 100, the 4 estimate 
is less than lo-* and completely uncertain. Results 
approaching those of run 4 are obtained for pn > 10” 
and are quite close to the run 4 estimates for pn = 10’. 
Thus, the value of pn of lo9 used hereafter is indeed 
appropriate. This value was, in fact, used in generating 
the exact binary data. 

Now, how good is the run 4 fit and how appropriate 
are its estimates? This question is answered by the first 
three lines in Table 2, where B stands for the binary 
fitting model. Line 1, a fit to the exact data, yields the 
parameter values used to generate the data, all of 
which show neglible RSDs. In this table S, is the 
standard deviation of the fit itself, a measure of the 
goodness of fit. For proportional weighting, it should 
be an excellent estimate of u,[lO]. Another more 
sensitive estimate of goodness of fit listed in the table 
is the fit quality factor (FQF)[14, 151. The smaller 
(algebraically) the value of FQF, the better the fit. 
Comparison of the fit results of lines 2 and 3 shows 
that although the RSDs of the parameter estimates 
increase by a factor of five, as they should, when u, 
increases from 0.01 to 0.05, the estimates themselves 
remain remarkably close to their no-error values, 
even for the quite irregular 0, = 0.05 data. The par- 
ameter estimates of the third line in Table 2 are, of 
course, identical to those of the last line of Table 1. 
Finally, note that the S, values are indeed very close 
to the ur values. 

There is a built-in procedure in LEVM that trans- 
forms binary fitting parameter values to correspond- 
ing microscopic ones. When it is used with the values 
in line 1 of Table 2, along with a value of the absolute 
temperature (here taken to be 3OOK), it yields the 
following results: c/L = 112.9 cm-‘; n,L =poL = 
c,L = 3.23 x 1014cm-2, A/L’= 1.915 s-‘V-i, and 
/l,/L2 = 191.5 s-1 v-1. The corresponding results 
for the a = 0.05 fit are still very close: 114.8, 
3.26 x lo”, 1.916, and 188.3, respectively. In an 
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actual experimental situation, a good independent 
estimate of L will be available, so values of r, c,,, cc, 
and h can be calculated. Since 4 = (L/2)(k,/D,,), 
one can use the Einstein relation to obtain Dp from 
cr, and then calculate the reaction rate constant k, 
using the value of pp found from the fitting. Note that 
even when values are known for all these parameters, 
one cannot calculate all the parameters of an equival- 
ent circuit such as that of Fig. 1 from them. In the 
present case, one can, however, calculate[5,9] corre- 
sponding values of R, and C,, but their use, along 
with the values of R, and C,, and a FLW distributed 
response element for the Z,, of Fig. 1, does not lead 
to a circuit which can closely represent the binary 
data, as demonstrated below. 

(b) Alternative model fitting 

Although the foregoing results demonstrate un- 
equivocally that LEVM can be used to obtain excel- 
lent binary-model fitting results for a difficult data 
situation, what about the usual bane of impedance 
spectroscopy CNLS fitting: model ambiguity? We 
have purposely chosen a data set where such ambiguity 
seems likely. How well can it be resolved? Although 
the binary model is the correct one for these data, can 
other models yield as good fits, especially for data 
with errors? This question is answered by the results 
of the remaining lines of Table 2; the lines marked 
FLW and GFLW contain fitting results to the exact 
binary date for finite-length-Warburg-diflwion model 
response and for generalized finite-length Warburg 
response. We see that even without data errors these 
models yield quite inadequate fits. What value should 
we expect for R,,, and z,? Using the exact data, the 
first quantity should equal R, - R,, here equal to 
about 4975. If equation (4) were applicable to this 
situation, it would predict a value of TV of about 2550 
instead of the values near 1000 actually shown in the 
table. 

Now, it is found that an appreciably better fit is 
obtained if the diffuse double layer capacitance, Ca in 
Fig. 1, is taken non-zero. Then, the full equivalent 
circuit involves R, , C,, and a Zs made up of the 
parallel combination of CR and the GFLW expression. 
Results for fitting this model, designated GFLW-C, 
are shown in the table. The fit is much better, and 
although the RSD of C, is appreciable, the C, 
estimate is still statistically significant. The presence 
of C, improves the low-frequency part of the fit 
considerably, but, as shown in Fig. 7, there is still an 
extensive middle-frequency region where the fit is 
poor. How well does the value of C, accord with our 
expectations? For a large M value, C,/C, = M/2, as 
already discussed, a result[5] independent of the value 
of II, when it is neither 0 nor 03. In the present situ- 
ation the theoretical C, is thus 5 x 10e5, close to the 
fit value. Incidentally, when the reaction resistance RR 
was included as a free parameter in the fitting, along 
with the other six free parameters, LEVM drove its 
estimate down toward zero with a vary large estimated 
RSD. Thus, its presence is inappropriate. 

We now turn to fitting results obtained using the 
Davidson-Cole distributed response element. Since 
again it was found that the presence of C, improved 
the fit, it was taken as a free parameter as above, and 
all the DC results in the table are designated as 

DC-C. The DC-C line in the table for a; = 0 is a much 
improved fit compared to the GFLW-C one for the 
same exact data. Its response is shown in Fig. 7, and, 
although it is quite close to the exact-data line, its 
deviation from this line is an illustration of systematic 
error entirely arising, from the choice of a wrong 
fitting model. The last two DC-C lines in the table 
show what happens when both systematic and random 
errors are present. On comparing these results to the 
corresponding binary-fit lines in the table, we see that 
for a, = 0.01 it is still quite clear that the binary fit 
is much more appropriate than the DC-C one. At 
c, = 0.05, however, the differences in goodness of fit 
are much less substantial and, although one would 
still pick the binary fit as best, especially since it 
requires only five free parameters instead of the six of 
the DC-C, the choice is no longer overwhelming. 
Clearly for sticiently larger random errors, one will 
no longer be able to make a meaningful choice. 

The above results suggest that when fitting either 
binary or non-binary impedance spectroscopy data 
one should carry out as accurate measurements as 
possible. One should use the data, its impedance 
plane plots (and possibly plots at the complex modulus 
and/or admittance levels as well), and fitting model 
information to determine best estimates of the starting 
parameters of the model. If fitting convergence does 
not occur with these estimates all taken free, some or 
most of them should be held fixed while a few free 
parameter values are estimated from convergent fits. 
Then, more and more of the parameters should be 
taken free until convergence is obtained with all of 
them free. 

It is very important, in order to obtain low-bias 
parameter estimates, that CNLS fits be carried out 
with the proper weighting. Luckily, LEVM has a 
facility that allows one to determine, during the least- 
squares fitting itself, estimates of the most appropriate 
values of the parameters of the weighting model as well 
as the fitting model[lO]. When it is invoked, one need 
not determine weights subjectively. In the present 
work, this approach was not required since it was 
known that any errors in the data were of propor- 
tional random character. As a test, however, when 
a weighting model parameter which determines the 
fractional power of the model values used in calculat- 
ing the weights was taken free, its LEVM estimate 
confirmed that proportional weighting was indeed 
the most appropriate choice for the present data with 
errors. 
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