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Methods for calculating the small-signal ac frequency and temperature responses of thermally activated materials arising from 
the presence of a distribution of transition rates are discussed. The specific case of a double-exponential distribution of activation 
energies (DEDAE), of great importance as a data-analysis model, is discussed in detail for distributed dielectric and intrinsically 
conducting materials, and important differences in the proper analyses of these systems are particularly emphasized. For both 
dielectric and conducting distributed systems, two different and important types of temperature response are described and re- 
lated to earlier work. Model calculations are presented to illustrate frequency and temperature response possibilities for such 
thermally activated, distributed systems. Various errors in earlier work are corrected, particularly the near-universal identification 
of theoretical slope parameters appearing in the analysis of exponentially distributed systems with actual measured slopes and 
power-law exponents. The quite different experimental temperature dependences of the power-law exponents of many dielectric 
and conductive materials agree qualitatively and often quantitatively with the predictions of the DEDAE response model. Finally, 
the behavior is briefly discussed of systems which can exhibit wide-range dispersive results simultaneously in both their conduc- 
tive and dielectric responses. 

I. Introduction and background 

1.1. Dielectric and  conduct ing sys tems  

Recen t ly  Wang  and  Bates [ 1 ] have  d iscussed  non-  

D e b y e  die lec t r ic  f r equency  response  assoc ia ted  with  

an exponen t i a l  d i s t r i bu t ion  o f  ac t i va t i on  energies  

( E D A E )  ~1. H e r e  we discuss  and  c o m p a r e  the  small-  

signal response  o f  t he rma l ly  ac t iva t ed  d ie lec t r ic  and  

conduc t i ng  sys tems wi th  DAEs.  T h e  d i s t inc t ion  be- 

tween an ideal  d ie lec t r ic  sys tem,  which  can conduc t  

only  by d i sp l acemen t  currents ,  and  an ideal  con-  

duc t ing  system, where  charges  can perco la te  th rough  

#1 In eq. ( 13 ) a factor of (kT) - ~ has been omitted. In eq. ( 15 ) 
the fl in the term exp Jr( 1 - a)... ] should be replaced by - ft. 
The reference to fig. 8b above eq. (20) should be to 7b. The 
reference to eq. (7) at the top of p. 84 should be to eq. ( 17 ). 

the  ent i re  mater ia l ,  is par t icular ly  i m p o r t a n t  in the 

I m p e d a n c e  Spec t roscopy  area. A list o f  abbrev ia -  

t ions  and  def in i t ions  is inc luded  at the end of  this 

work. 

The  above  d i s t inc t ion  be tween  the d i f ferent  non-  

D e b y e  responses  o f  real systems has not  always been 

clearly m a d e  in the analysis  o f  expe r imen ta l  relax- 

a t ion  response.  P r o p e r  system iden t i f i ca t ion  canno t  

be es tabl ished jus t  on the basis o f  the absence  or  

presence  o f  dc conduc t i on  in a single exper iment .  A 

leaky dielectr ic ,  one  with  a very  small  a m o u n t  o f  dc 

conduc t ion ,  is still p r imar i ly  a d ie lect r ic  system, al- 

bei t  a non- idea l  one,  accord ing  to the present  defi-  

n i t ion ,  because  the b road  response  in the  f requency  

doma in ,  the s ignature  o f  n o n - D e b y e  behav ior ,  arises 

f rom d ipo la r  effects  in the bulk die lect r ic  mater ia l  

(See,  however ,  the d iscuss ion in Sect ion  4.) .  S imi-  

larly, a b road- response  conduc t ing  system (such as 

0167-2738/93/$ 06.00 © 1993 Elsevier Science Publishers B.V. All rights reserved. 
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Na-[3-AI203) which always involves mobi le  charges, 

may be measured with completely blocking elec- 

t rodes so no dc can flow. Nevertheless,  it remains  a 
conduct ing system. 

Debye frequency response of  ei ther a dielectr ic or  
conduct ive  system involves the presence of  only a 

single relaxat ion t ime in the frequency domain  (a 

narrow loss peak) .  But the great major i ty  of  actual 

materials  show non-Debye behavior  involving a 

broad  loss peak, response which can be descr ibed by 

means of  a d is t r ibut ion  of  relaxat ion t imes ( D R T )  
or, correspondingly,  DAEs [2,3 ]. Although non-De-  

bye behavior ,  where the re laxat ion slows as it pro- 

gresses, has been more frequently associated with a 

dielectr ic system than with a conduct ing one, the de- 

script ion of  b road-peak  conduct ing-system response 

by means  of  a DRT or DAE has been discussed since 

at least 1956 [2-41,  and it is common  to describe 

the broad frequency response of  conduct ing systems 

as characteris t ic  of  non-Debye  behavior  [5] .  The 

transient  response of  a non-Debye dielectric system 
with a general double  exponent ia l  DAE ( D E D A E )  
was first calculated in 1963 [6] ,  and the responses 

of  both  dielectr ic and conduct ing systems with 
EDAEs were calculated in 1985 [3] ~2. Further ,  at 

about  the same t ime an independent  t rea tment  of  

conduct ing-system response with a discrete D R T /  

DAE was presented [ 7 ]. 

We may think of  a cont inuous  DRT for a dielectric 

system as associated with the l imit  as N--*~ of  N 

parallel branches,  each made up of  a non-conduct ing 

combina t ion  of  a differential  resistor and a differ- 

ential  capaci tance (d iss ipat ive  e lement  and energy 
storage element,  respect ively)  in series. Each such 

series combinat ion defines a specific relaxation time. 

For  the conduct ing system, the dual  applies: N re- 

s i s to r -capac i to r  combina t ions  in series, each made 

up of  a resistor and capaci tance in parallel  and thus 
defining individual  C-system relaxat ion times. But it 
is impor tan t  to note that  these structures are not 
unique for ei ther finite or infini te N; thus other con- 

nections can lead to the same frequency response over 

the entire frequency range [8] ~3 What  is unique is 
that  an ideal conduct ing system allows dc to pass and 
an ideal dielectric system does not. 

When a DAE is present,  it is most  appropr ia te  to 
derive an expression for the response of  a D-system 
at the complex dielectric constant  level (e = e ' -  ie" ), 

and that  of  a C-system at the impedance  level 
( Z = Z '  + iZ"  ), although one can, of  course, then use 
the results to calculate the response of  a D-system at 
the impedance  level or that o f a  C one at the complex 
dielectr ic constant  level. In addi t ion,  there are likely 
to be more than a few si tuations which exhibit  both 
C- and D-system non-Debye behavior  s imultane- 
ously (See Section 4).  Then, the broad  response of  
the dielectric part  of  the overall  behavior  and that  of  
the conduct ing-system part may each be described 
by D R T / D A E s  which will generally be quite differ- 
ent. We may expect that  in thermally  act ivated sit- 
uations, the relative impor tance  of  these two effects 
will often vary strongly with temperature ,  with con- 
duct ive-system response dominat ing  at high tem- 
peratures and dielectric-system response dominan t  
at sufficiently low temperatures.  Thus, at interme- 
diate temperatures  both processes may contr ibute 
significantly to the overall  response. Such combined  
C - D  behavior  will be discussed in subsequent work. 

Part icularly in the past, it has been common to as- 
sume that the complex conductance (the admit -  
tance)  of  a mater ial  system exhibit ing dc conduct ion 
can be well represented by the combinat ion  of  the 
response of  the b road-band  behavior  of  a pure die- 
lectric and an entirely independent ,  frequency-in- 
dependent  dc conduct ive path,  i.e., a leaky dielectric 
[9,10].  But the al ternative,  analysis in terms of  a 
b road-band  conduct ive system, where the dc path is 
an integral part  of  the non-Debye conduct ive re- 
sponse, may often be more appropriate .  When a loss 
peak is present at the complex dielectric level or at 
the impedance  level and C - D  behavior  is not pres- 
ent, the choice is clear, but  such a peak is often ab- 
sent within the available frequency range. Then, 
knowledge of  the physical  characterist ics of  the ma- 
terial  measured can often help in the choice, as can 
nonl inear  complex least squares (CNLS)  fit t ing of  

~2 The value 0.497 in table III should be replaced by 1.497, and 
the product sr in the numerator of eq. (B8) should be re- 
placed by s. 

~3 The numerators of eqs. (5) and (7) should be considered to 
be the effective DAE or DRT for normalization purposes, as 
in the present work. 
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the data [ 11,12 ] to a combined C-D model. 

1.2. Exponential distributions of  activation energies 

In the present work, we explore some important 
consequences of the distinction between conductive 
( j = C )  and dielectric ( j = D )  system behavior, and, 
in addition, compare the predictions of a DEDAE 
for two different types of temperature response, both 
of great experimental importance. The two classes of 
EDAE temperature response are Class I, where the 
EDAE is itself an intrinsic temperature-independent 
property of the material and the shape of the fre- 
quency response following from it depends on tem- 
perature [3,8,13] ~4, and Class II, particularly ex- 
plored by Wang and Bates [1 ], where the tem- 
perature dependences of the distribution and its fre- 
quency response are just the opposite. 

An EDAE is itself particularly important because 
for a thermally activated system it is the only form 
of DAE which can lead to exact power-law frequency 
response over a finite frequency range [ 3,8,13 ]. The 
most common example of such response is that of 
the constant phase element (CPE) [ 14-18 ], which 
seems to appear in the vast majority of all small-sig- 
nal ac frequency-response measurements of either D- 
or C-type. 

For dielectric, polymer, and conductive materials, 
frequency and transient response frequently involve 
regions with two power-law exponents (regions of 
constant slope when the logarithm of response is 
plotted versus the logarithm of frequency or time). 
Such frequency response often involves exponents of 
different signs and can show a peak in the imaginary 
component of the response (e.g., ~" in the dielectric 
response case or Z" in the j = C  case), but regions 
involving n~ and n2 exponents (n~ ~ n2) of the same 
sign, often termed anomalous low frequency disper- 
sion, are not uncommon [ 9,19 ]. 

All these responses can be expressed in terms of a 
finite-extent discrete or continuous distribution of 
relaxation times (DRT) or distribution of transition 
rates (DTR),  unlike simple Debye response which 
involves only a single transition rate. Many different 

~4 In eq. (17) the exp(-N~E) term should be replaced by 
exp(-qi~E), and in eq. (24) the _+ sign should be replaced 
by an equality sign. 

processes may lead to a DTR, e.g. a distribution of 
activation energies, a distribution of trap depths or 
waiting times, or a distribution of hopping distances 
[3,8,13,20]. These possibilities may be related to 
fractal structures and fractal time processes [21]. 
Although the present work deals explicitly with 
DAEs, any of the above physical processes can lead 
to identical frequency and time response: the distri- 
bution is the key. Further, it should be clear that fre- 
quency-response models based on some form of a 
DTR, such as all those discussed herein, can apply 
not only for bulk response, but they can also be used 
to describe electrode contributions to the overall re- 
sponse, especially when the electrode impedance 
shows evidence of fractal-like behavior. 

The near universality of CPE response has been 
particularly emphasized by Jonscher [9]. Inciden- 
tally, it has become common [e.g., 1,21 ] to write such 
power-law response in terms of equations such as 
Z'(o.~)~Z"(o~) ~~o -n, where Z = z ' - i z "  is the die- 
lectric susceptibility and 0 ~ n ~< 1, but this usage is 
dimensionally inconsistent unless ~ is replaced by 
~ ,  the proportionality symbol. Probably the first ap- 
pearance of a DEDAE was in 1963 when it was in- 
troduced in the calculation of the transient response 
of a Class-I D-system [6 ]. In order for the DEDAE 
to lead to the two slopes usually seen in the time re- 
sponse, two distinct regions of exponential depen- 
dence were required in this DAE, and they were cut 
off at high and low energies to ensure physical re- 
alizability [22]. Detailed frequency response for the 
single-exponential DAE (EDAE.) [ 3 ] and the more 
general DEDAE [8,13,23 ] were presented later, and 
it was found that DEDAE response could fit very well 
those of all of the conventional empirical response 
functions [ 17,18 ], including that of Havriliak and 
Negami [24] and stretched exponential response. 
Thus since the DEDAE can fit all data previously fit 
by these functions, it is an important fitting model, 
and further discussion of its frequency and temper- 
ature dependence possibilities is worthwhile. 

2. Thermal activation and the DEDAE 

2.1. Thermally activated response 

Most distributed (non-Debye) responses are ther- 
mally activated. Although both energy storage and 



322 J.R. Macdonald, J.C. Wang / The response of systems with DEDAE 

energy dissipation processes may be separately ther- 
mally activated [3],  the conventional approach for 
dielectrics is to consider only the activation of  the 
overall relaxation time, r, without attention to which 
of  the above quantities is thermally activated. For C- 
systems, this distinction is particularly important. Let 
us therefore assume that the dissipation process 
(typically involving differential resistance for either 
a D- or C-system) is activated as e x p ( o ~ E / k T ) ,  and 
the energy storage process (typically involving dif- 
ferential capacitance) is activated as e x p ( f l E / k T ) ,  
where c~ and fl are temperature-independent con- 
stants. Then the relaxation time for j =  D or C can be 
written as [ 3 ] 

r=Ta e x p ( ? E / k T )  , ( 1 ) 

where ?,-c~ + fl; r, is a characteristic property of  the 
material; E is an activation energy; k is Boltzmann's  
constant; and T is the absolute temperature. Next, 
define/~c=C~ for C-systems and /tD------// for D ones 
and use/~j in general. Although we shall actually il- 
lustrate results for the usual choices/~D = 0 and ¢tc = 1, 
so that 7= 1, for generality frequency-response for- 
mulas will be presented in terms of/t j  and 7- 

Let us define rL ( > 0) and zn ( < oo) as the min- 
imum and maximum relaxation times, respectively, 
which are possible for the system [22].  Then the 
corresponding limiting Es are EL-- ( k T / 7 )  In (rL/r~) 
and EH-- ( k T / ? )  In (rH/r~). When the frequency re- 
sponse of  the system involves two power-law expo- 
nents, it is useful to define a more or less central r, 
%, where t o -  ~'a exp () 'Eo/kT) and EL ~ Eo ~< EH- Fi- 
nally, the normalized quantity g - E / k T  will often 
be used. 

Since negative activation energies are meaning- 
less, the smallest physically realizable value of  E is 
zero; then ZL--=ra. Further, since r n < ~  [22],  it is 
unphysical to consider the range o f  E to be 
-co~<E~<oo as Wang and Bates did [ 1 ]. The quan- 
tity r, may be expressed in terms of  the entropy, S, 
of  the thermally activated process; then E is essen- 
tially the corresponding enthalpy. Although negative 
entropy values have been found in some experi- 
ments (see refs. in [6] ), the min imum value of  the 
entropy for a physically realizable system cannot 
reach - ~ ,  the value necessary to make r a zero. 

2.2. The  D E D A E  for  dielectric and conductive 

s y s t ems  

By using the subscript j, taken equal to C or D, we 
can express in a common form the general DEDAE 
for either type of  system. Since there are two expo- 
nential- response regions for the general DEDAE, we 
express it in terms of  a part for the region ~L~< ~ <  
8o and a second matching part for 8o ~< ~ <  ~n- If  we 
now denote the DEDAE by Fj(ff),  it follows from 
earlier work [ 3,4,6,8,13,23 ] that F j (g)  = 0 for 8 <  d'L 
and for .~'> ~n and, otherwise, 

F / ~ ' )  

~Nexp[  (~tj-21) 8] 

= ( N e x p [ ( 2 2 - 2 ~ ) d o +  ( # j - 2 2 ) g ]  ~ o ~ < ~ e i , ,  
(2) 

logarithmic energy variables 

x_=7(d_  Zo) , (4) 

xL-7(8o-  4 ) ,  (5) 

xn - 7 ( ~ H  - g o ) ,  (6) 

and the following important slope-related quantities, 

Ok = (16 - 2 k  ) - (l~j - kTqk ) , ( 7 ) 

where - oo < 0k < ~ .  We omit the j subscript from 0 
since its value will be clear from the context. Since 
the range of  0 is not limited to 0 to 1, it is not an 
ordinary frequency power-law exponent [3,4], but 
it is closely related to such an exponent, as also dis- 
cussed later. 

where the parameters 2k and r/k, which set the strength 
of  the exponential response, are connected by 

2tk = k T q k  , (3) 

with k =  1, 2, and N is a normalization factor. By 
conservation of  probability, we may write 
F ( C )  d g = F ( E )  dE, and we shall use either F ( E )  or 
F ( 8 )  as appropriate. An equation equivalent to (2) 
for the j =  D dielectric situation with ~tD = fl= 0, was 
later derived by Wang and Bates and will be dis- 
cussed subsequently. 

Here 2k and ~/k are parameters which help deter- 
mine the shape of  the distribution; they may or may 
not be temperature dependent, as discussed in detail 
in the next section. It is also convenient to define the 
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Note particularly that with the usual choices 
~/D=~:0 and/Zc=Ot= 1, there are important differ- 
ences between the DEDAEs of D-systems and C-sys- 
tems. They arise because the activation of energy 
storage and dissipative processes must be taken into 
account separately from that of z in considering D 
and C response and in determining the appropriate 
F ( ~ )  for these systems. When only dissipation is ac- 
tivated, the usual case, only the resulting activation 
of z need be considered in determining a DRT or a 
corresponding DAE for D-systems. But the activated 
dissipation plays a separate role for C-systems and 
leads to the appearance of/lc = o~ in the above results. 

2.3. Class I and class H temperature dependences 

When the DEDAE was first introduced [6], the 
two T/s were taken temperature independent on the 
basis that a EDAE, when present, might often be ex- 
pected to be a basic property of  the structure of the 
dielectric or conductive system and so might most 
plausibly be taken entirely independent of  temper- 
ature (for at least a limited range not too close to the 
temperature of a phase change). Although the first 
detailed analysis of the frequency response of an 
EDAE system with a single q of  arbitrary value (the 
EDAE1 ) did not initially specify the temperature de- 
pendence of q [ 3 ], it was eventually taken temper- 
ature independent, thereby inducing temperature 
dependence in ~ as in eq. (7) and figs. 1 and 2, and 
this choice has been generally followed in subse- 
quent work of the first author in this area [ 13,23 ]. 
EDAEt response is of  particular interest when q>~ 0. 
For ~/> 0 one deals with an exponentially decreasing 
distribution, frequently seen experimentally in semi- 
conductors ( j = C )  as an exponential band tail [25]. 

Recent work of Kliem and Arlt [26] is very sim- 
ilar to earlier analyses of DEDAE time and fre- 
quency response for D-systems, but it does not ref- 
erence any earlier work in the EDAE field, and it also 
involves the temperature-independent choice for qk. 
It is this temperature independence of the EDAE 
which defines Class-I behavior. It leads to frequency 
response whose shape on a log-log plot depends on 
temperature. 

'Another choice, which leads to quite different 
temperature dependence of Fj(E) and of E(o~) or 
Z(og), is to set q E = 2 ( E / k T )  and take 2 - k T q  tern- 

perature independent. Such a choice has recently 
been discussed by Wang and Bates [1] for D-sys- 
tems and leads to Class-II behavior. It yields a tem- 
perature dependent F(E)  and corresponding E(co) 
response whose shape is independent of tempera- 
ture. Such behavior, where a master frequency-re- 
sponse curve can be constructed by shifting curves 
for different temperatures along the frequency axis 
(and y-axis also if necessary) until they superim- 
pose, is also consistent with the well-known time- 
temperature superposition law [27], and has been 
illustrated for a variety of materials by Jonscher [ 9 ]. 
Although much small-signal frequency-response data 
are consistent with the predictions of either a Class- 
I or of a Class-II DEDAE model, once one allows q~ 
and/or  q2 to be temperature dependent an infinity 
of possible types of  response becomes possible. Here, 
attention will be restricted to only Class I or I1 sit- 
uations, the most important ones. 

In order to clarify theoretical predictions, the re- 
suits of several model calculations for different tem- 
peratures will be presented. To maintain some con- 
tinuity with the work of Wang and Bates, we start by 
choosing the same numerical values of ~k at T= 200 
K as those used by Wang and Bates (appropriate for 
any temperature for Class II) ,  namely ~ =0.4 (the 
quantity a in Wang and Bates) and 02= -0 .66  ( - b  
in Wang and Bates). We shall use these values for 
both D- and C-systems and consider response at 
T= 100, 200 and 400 K. 

Fig. 1 shows typical relaxation DEDAEs, ex- 
pressed as normalized F(E)s ,  for a Class-I dielectric 
system. Their slopes are defined as S = d [In{F(E) } ] / 
dE, and the corresponding qk values, consistent with 
the above Ok choices, are shown in table 1, along with 
slope and qk relationships in the top part of  table 2. 
Note that the temperature-dependent values of qk 
shown in table 1 apply for Class II. Fig. 2 shows the 
corresponding DEDAEs for a conductive system, 
peaked only at E=EL. For Class-II behavior, the 
T=200  K DEDAEs of the figures apply at all 
temperatures. 

Although it is reasonable to take the DEDAE EL, 
Eo, and EN values temperature-independent for either 
response class, the dimensionless cutoff parameters 
XL and xH are then temperature dependent, and their 
values follow from xe=O.14 /kT  and xH=O.24/kT 
for the DEDAEs of figs. 1 and 2. The arbitrary values 
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Fig. 1. Double-exponential distributions of activation energies 
(DEDAE), for the three temperatures listed, for Class-I dielec- 
tric situations. For Class-II dielectric-system behavior, the curve 
for T= 200 K is applicable for all temperatures. 

Table 1 
Values of q~ and q2 in (eV)-~ for Class-II response with ¢~ = 0.4 
and ¢2 = - 0.66 at T= 200 K for dielectric and conductive systems. 

T(K) Dielectric Conductive 

711 q2 q l  ~]2 

100 -46.42 75.59 69.63 192.63 
200 -23.21 38.30 34.81 96.32 
400 - 11.61 19.15 17.41 48.16 

0.14 and 0.24 eV have been used for i l lustrat ion in 
figs. 1 and 2; in practice they can be es t imated  using 
CNLS fit t ing of  sufficiently wide-range frequency re- 
sponse data. The abrupt  cut-offs shown in the figures 
are appropr ia te  for discrete d is t r ibut ions  since they 
reflect the finite values of  the longest and shortest 
relaxat ion t imes of  the system. For  cont inuous  dis- 
t r ibut ions,  the actual  t ransi t ions  might  be somewhat  
smoother  and less abrupt ,  but  this would neverthe- 
less lead to no appreciable  effect on the frequency or 
t ransient  response. 

2.4. General frequency-response expressions 

It is useful to write the normal ized  frequency re- 
sponse, Is(co), of  ei ther a C-system or of  a D-system 
in terms of  a single equation [3].  Let U~(co) be either 

the part  of  the impedance  associated with relaxation- 
dispers ion for an intr insically conduct ing system 
( j = C ) ,  or the part  of  the complex dielectric con- 
stant associated with pure dielectric relaxation 
( j =  D) ,  and define 

b(co) - [ (Q(co )  - Q o g ) / ( C ) o -  Qog) ] ,  (8) 

where Ujo and ~o9 are the l imit ing low and high fre- 
quency values, respectively, of  Uj(co) for a single 
d is t r ibuted  process. For  j = D ,  for example,  UDo- 

eo and UD~ -- eo~. 
The general expression for Is(co) when a DAE, 

F j ( E ) ,  is present may be writ ten [3,13,23] as 
+ o 9  

f F i l E )  dE 
I2(co/coo) = l+i(co/coo)(Z/Zo) , (9)  

- -oo  

where cooZo- 1 and r is given by eq. ( 1 ). This equa- 
t ion is consistent  with the discussion given above of  
discrete and cont inuous  dis t r ibut ions of  relaxation 
t imes for j =  D and C. We see that  F j ( E ) ,  which may 
be a discrete or cont inuous function, specifies the 
weighting of  the r ( E )  relaxation t ime involved in the 
response. When  co is taken zero, eq. (9)  reduces to 
jus t  the normal iza t ion  condi t ion  for F(E) .  Now 
transforming from E to 6, using eqs. ( 1 ) and (2) ,  
and evaluat ing N, one may write the normal ized  fre- 

quency-response as [23] 

lj( co/coo) =-Jj( co/coo) /Jj( O ) , (10) 

where 
0 
t~ e x p ( ¢ l y )  dx  

Jj(co/coo) ~ j 
1 +i(co/coo) e x p ( x )  

- -XL 

( 11 ) exp(¢2x)  dx  

+ 1 +i(co/coo) e x p ( x )  ' 
0 

and 

J j (0 )  ----¢71 [ 1 - e x p (  -- ¢IXL) ] 

+ ¢ f l [ e x p ( ¢ 2 X n ) _ l ]  , (12)  

for ¢1 and ¢2 both nonzero. When  they are both zero, 

Jj(O)=xL +xH=7( ~H--~L). 
For  numerical  work it is s traightforward to eval- 

uate the integrals of  eq. (11)  by numerical  quad- 
rature, although for certain integral and fractional  
values o f  ¢ simple closed forms are available (see 
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Table 2 
Exact slopes, Sl and $2, for the DEDAE and approximate slope relations for the corresponding relaxation-situation frequency response. 
For the illustration,/to = 0,/tc = 1, and at T= 200 K: 2 ~ = - 0.4 and 22 = 0.66 f o r j  = D and 21 = 0.6, 22 = 1.66 for j =  C. 

Situation General Class I Class II Illustrative values 
(at T=200 K) 

quantity region ~/1, r/2 and EDAE 2~, 2 ~ and/j (~o/tOo) 
temp. independent temp. independent 

DEDAE EL <~E<~E° - ~1 .~ l / k T =  - ~ 1  i~ l / k T  23.209 ( e V )  -1 
Eo <~ E<.<. EH -- t h 2 1 / k T =  - th - 2 2 / k T  - 38.295 (eV) -1 
to< rno -02 - # j + k T q :  -#j+22 0.66 

I; w>~Oo - 0 1  - / t j + k T ~ h  -/tj+21 - 0 . 4  
(.o<09o 1 --¢z  1 +kTrl2 1 +2z (1.66) --, 1 

g5 ~o> e) o 1 - 0 1  1 + kTql  1 +2~ 0.6 
y,~ to< o) o -¢2 - 1 + k T t  h - 1 +2 2 0.66 

o)> (n o 01 1 - kTql  1-21 0.4 

~- 10 2 
~ - ~  T = I O O K  
~>  " T = 2 O O K  
@ 1 0  "~'- , . . . . . . . . . .  T = 4 O O K  

b_ 

1 0 -2 ,L ''" 

0.0'' 0 1 0 2 0 3 0 4 'd.'~' 6.6 
E(eV) 

' / .  , . 

Fig. 2. Double-exponential dlstnbutmns of activation energies, 
for three temperatures, for Class-I conductive-system situations. 
For Class-If conductive-system behavior, the curve for T= 200 K 
is applicable for all temperatures. 

Appendix  B o f  [ 3 ] ) .  Incidental ly,  the D-system 
transient  response associated with the DEDAE has 
been expressed in closed form and can lead to ap- 
preciable regions o f  power-law t ime behavior  [6 ]. 
Apparen t ly  unaware o f  this work, Kl iem and Arlt  
[26] recently gave the t ransient  response only in 
quadra ture  form and evaluated it numerically.  

Since 1985, the complex nonl inear  least squares 
((2NLS) Impedance  Spectroscopy fit t ing program,  
LEVM, has included both t ransient  and  frequency- 
response DEDAE fit t ing and s imula t ion  capabi l i t ies  

and has been used in the present  work. It incorpo- 

rates a great many more possibil i t ies as well [ 1 1,12 ] 

and is available at nominal ,  nonprof i t  cost from the 

first author ' s  Depar tment .  
Eqs. ( 1 0 ) -  (12)  define the general frequency re- 

sponse for the DEDAE. When the data  show only a 

single power-law response region, one need only set 

0N01,  02 ~--0, and XH=0 in eq. (11)  to obta in  the 
single-slope EDAE~. It leads to asymmetr ical  peaked 

loss in the frequency domain  but to response gen- 

erally different from that o f  the DEDAE. 

How then can one tell the frequency response of  

the DEDAE and the EDAEI apar t  since they both 

show peaks? The best way to obtain quant i ta t ive  re- 

sults is to fit the data  by CNLS to each model.  But 

a log- log graph of  ly (o ) )  versus o) will usually allow 
such discr iminat ion.  Because cutoffs lead to l imit ing 

I~'(o9) response with power-law exponents  of  _+1, 
and DEDAE slopes near  a central peak will involve 

exponents  appreciably less than uni ty in magni tude  
for a broad  DRT or DAE, it is s traightforward to dis- 

t inguish between the two possibil i t ies p rovided  the 

measured frequency range is sufficiently large. In the 

EDAE~ case, the left slope will asymptot ica l ly  ap- 

proach 1, while at the right of  the peak a negative 

slope of  magni tude  less than 1, associated with the 
single O, will be followed by a l imit ing slope of  - 1. 
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3. Specifics of EDAE response 

3. I. Illustrative examples o f  frequency-response 
possibilities 

Fig. 3 shows the complex-plane responses of I(co) 
which follow from the DEDAEs of figs. 1 and 2. In 
fig. 3 the low frequency limit is that the right and the 
high frequency one is at the left. The solid-line curves 
involve the cutoffs of figs. 1 and 2, and the dashed 
ones were calculated using " inf ini te  range" ( IR)  val- 
ues of xL and xx. To obtain such infinite-range re- 
sponse, it is merely necessary that xL and xH be suf- 
ficiently large that further increasing their values 
results in negligible change of the response within the 
frequency window considered. For the present range, 
values greater than 10 or so are sufficient to meet 

this criterion. 
In fig. 3 the curves involving circles are for C-sys- 

tem response, and the others apply for j =  D. In ad- 
dition, the T =  200 K responses apply for either D or 
C systems. For Class-I behavior, the temperature re- 
sponse is as shown, but for Class-II, the curves 
marked 200 K apply for all temperatures. 

Fig. 4 shows the corresponding log[ ly(co) / I~)]  
versus log[co/coo] response curves for D-system 
Class-I behavior. As before, the T =  200 K curves also 
apply for C-systems, and for Class II only the curves 
identified by T =  200 K are present and apply for all 

E 
I- ' ,0./+ ' 

1@.2 

0"00.0 0.2 0.4 0.6 0.8 1.0 

Fig. 3. Complex-plane plot of DEDAE normalized frequency re- 
sponse for three temperatures, lj(og) is a normalized impedance 
for conductive systems (j= C ) and a normalized complex dielec- 
tric constant for dielectric systems (j=D). The dashed curves 
were calculated without the cutoffs shown in fig. 1. Here,j= D or 
C for the T= 200 K curve, and j=  D for the others except that the 
solid (400 K) and open ( 100 K) circles show correspondingj=C 
response. 
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Fig. 4. Log-log plot of the normalized response quantity 
[/j'(o9)/lj'(og0)] versus (o9/o9o) for the three temperatures of 
fig. 1 0=D),  for the identicalj=C 200 K curve, and for single- 
time-constant Debye response. Here IR indicates that the effec- 
tive range of the DEDAE is not cut off. The T= 100 K curve is 
the one at the top here. 

temperatures. For the present choices, the IR crite- 
rion is well met for the T =  100 K curves and is nearly 
met for the co< coo part of the T = 4 0 0  K curve, where 

the determining cutoffparameter  is xn-~ 7. Although 
no C-system T - 4 0 0  K curve is shown here, it is 
broader than a Debye curve but has the same lim- 

iting slope values. 
For frequency-response situations, we define 

"slope", s, to mean the slope obtained from a straight- 
line region of a log-log plot, such as that of fig. 4. 
Expressions for the approximate slopes of I)' (co) in 
the central regions of such a plot are presented in the 
middle part of table 2. In such constant-slope re- 
gions, one may write Iy oc co -+ r/Im and s is just  + ntm 

or - n, with 0 ~< n,m ~< 1. If the full response is well 
approximated by the CPE, then I~ ~ co-+n'm as well, 
but  for added generality let us take I~ sc co + nRo, where 

0~<nRe <~2. 
The single-time-constant Debye curves of figs. 3 

and 4 apply when En-*EL, and the l imiting left and 
right slope values of the Debye curve m fig. 4 are 
s~=nn= + 1 and S r =  Y / I r =  - -  1. These same values are 
found for DEDAE response at frequencies beyond 
cutoff where only the lowest and highest relaxation 
times operative in the system dominate  the response 
[3,8,13,22]. But in regions nearer coo, I~'(co/coo) ex- 
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hibits other slopes whose values are determined by 
those of 0k, as presented in table 2. Table 3 shows 
actual j=D a n d j = C  values of 2k and 0k for the Class- 
I responses presented in figs. 3 and 4. Incidentally, 
the more complicated temperature dependences of a 
0 arising from linearly related entropy and enthalpy 
distributions and/or from a glass-like transition have 
been considered [3,6] but are not incorporated in 
the present results. 

It is worth emphasizing that only the differences 
E o - E L  and E H - E o  affect the results plotted in figs. 
3 and 4. Thus, such normalized plots are indepen- 
dent of the actual value of Eo present. But since 090 
depends on Eo, the latter can be estimated if values 
of 090 for several temperatures are available. By fit- 
ting the DEDAE model to frequency-response data 
for different temperatures using, for example, the 
LEVM fitting program, estimates may be obtained 
of ~oo, za, Eo and some orall of 01, 02, XL, XH, Uo, and 
u~. 

The T= 100 K C-system DEDAE of fig. 2 would 
reduce to an EDAE~ if its right slope approached 
- ~ .  Since its magnitude is quite large here, its cor- 
responding frequency response should be close to that 
of an EDAEI, and the T= 100 K curve of fig. 3 is 
similar to EDAE~ response [3 ]. To test the matter, 
the actual DEDAE frequency-response data were fit- 
ted by CNLS to an EDAEI model. The standard de- 
viation of the fit, obtained with optimized unity 
weighting [ 11 ], w a s  about 1.5 × 10 - 3  and the EDAE~ 
0 estimate was about (0.1722 + 0.0002), close to the 
input DEDAE value of 02 = 0.17. Thus, for this sit- 
uation extremely accurate data would be required to 
allow adequate discrimination between DEDAE and 
EDAE~ fitting models. 

There are two reasons why we speak here of ap- 
proximate rather than exact slopes in the frequency- 
response domain. First, in any physically realizable 

system there can be no non-zero DAE probability 
density outside of a finite region of E (EL to EH). 
The resulting cutoff effects in the frequency response 
may lead to a finite region of no well-defined con- 
stant slope (the actual case for the right-hand region 
of the T= 400 K curve of fig. 4) or to one where r/Re 
and n~m are not entirely equal even for co> mo [3,13 ]. 
Generally, cutoff effects are seen more often for C- 
system than for D-system response. 

The second reason is even more important. The 
second and third parts of table 2 are appropriate for 
IR conditions. They indicate that the Iy slopes are 
approximately given by -02  and -01,  respectively. 
But when r/l and r/2 are non-zero, the magnitudes of 
01 and 02 can increase indefinitely as T increases for 
Class-I behavior, and as 10[ increases beyond 1, DE- 
DAE response approaches simple Debye behavior. 
But the actual slopes must satisfy ]s~m[ ~< 1 and 
fSRel ~<2 [3,13,23]. Thus, the predicted approxi- 
mate slope of 1.66 given in table 2 is actually limited 
to unity. Even when cutoff effects are negligible, the 
relations n~l= 1021 and nit= 10~1 certainly cannot 
hold when f01 > 1 or when 0<0.  Fig. 5 in ref. [23] 
illustrates how ni~ and nge approach their limiting 
values as 0 exceeds 1 or 2. 

The above restrictions were apparently not appre- 
ciated by Kliem and Arlt [26]. They dealt with a 
Class-I dielectric response system and made the se- 
rious conceptual error of directly equating the actual 
frequency- and time-response power-law exponents 
to the DEDAE slope parameters [26], the present 
0k. Although Wang and Bates used actual tempera- 
ture-independent 10~r values less than unity and so 
did not directly face the problem of the difference in 
the ranges of 0k and s, they nevertheless also equated 
power-law exponents to theoretical slope parame- 
ters. It is of interest to note that it is the slope of the 
high-E right side of the DEDAE which determines 

Table 3 
Values of 2 ,, 22, 0~, and 02 for Class-I response with the same 0z, and 02 values at T= 200 K for dielectric and conductive systems. 

T(K) Dielectric Conductive 

2z 22 ¢~ ~2 

100 - 0.2 0.33 0.2 - 0.33 0.3 0.83 0.7 0.17 
200 -0.4 0.66 0.4 -0.66 0.6 1.66 0.4 -0.66 
400 -0.8 1.32 0.8 - 1.32 1.2 3.32 -0.2 -2.32 
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the slope of the low-frequency left side of frequency- 
response curves (and vice versa), a result com- 
pletely consonant with the presence of a thermally 
activated process which occurs more slowly the higher 
the energy barrier. 

The curves of fig. 4 are quite similar to some of 
those calculated by Kliem and Arlt and compared by 
them (but not fitted) to actual experimental data on 
polyethyl-methacrylate. The magnitudes of the ex- 
perimental slopes increase with increasing temper- 
ature, consistent with earlier predictions for a Class- 
I D-system (see tables 2 and 3). Note, however, that 
the slopes of a Class-I C-system at the Ic level are of  
the approximate form - 1  +kT~lk. Thus for a posi- 
tive qk, the associated slope will be near - 1 at low 
temperatures and will decrease in magnitude as the 
temperature increases, with 0c reaching zero at 
T= Tok =-- 1/kqk. For the present Class-I conductive 
case, it follows from the temperature-independent 
values of~/k in table 1 (those on the T=200  K line) 
that Tok is about 333 K and 120 K for k = l  and 2, 
respectively. As the j =  C 0k values in table 3 show, 
the slope magnitudes initially decrease with increas- 
ing temperature, but as the T=  400 K curve of fig. 3 
demonstrates, as the 0k go negative, Debye response 
is approached. 

Finally, note that the peak loss ofi(09/09o) curves 
similar to those of fig. 4 will only occur at 09/ 
09o---09Zo=1 when the condition 0 ~ = - 0 2  holds, 
yielding a symmetric curve (termed the EDAE2 in 
earlier work [ 1 3,23 ] ). Otherwise, the peak occurs to 
the left or right of the 09=090 point, depending on 
whether 1 01 ] > [ 021 or vice versa, respectively. This 
phenomenon, which does not require equality of XL 
and xn, implies that one should not generally deter- 
mine the values of ro at a given temperature from 1 / 
top in the usual way, where cop is the frequency at the 
peak. Instead, CNLS fitting of the full data should be 
used to obtain an appropriate estimate of  Zo. Inci- 
dentally, although Kliem and Arlt [26] considered 
an asymmetric situation, their peaks all occur at 
09=090, contrary to the above expectation. The dif- 
ference arises because they evidently implicitly de- 
fined 090 as 09p, rather than as 1/to. 

3.2. Class-lI frequency response 

In the Class-II situation recently considered for di- 
electric materials by Wang and Bates [ 1 ], the 2k are 

temperature independent and the shapes of the cor- 
responding frequency-response curves are tempera- 
ture independent in the IR approximation used by 
Wang and Bates. Thus the T=  200 K curves of figs. 
3 and 4 apply at all temperatures. But as T increases 
indefinitely for the realistic finite-range situation, 
F ( g )  approaches a flat-top box distribution shape 
and XL and xn approach zero, yielding a g-function 
in the limit so that again only simple Debye behavior 
remains. Nevertheless, if XL and xH are sufficiently 
large over the entire temperature range Of measure- 
ment, frequency-response curves for different tem- 
peratures can be shifted in frequency, to account for 
the temperature dependence of z, so that they all fall 
on a single master curve. 

Although many experimental situations of this type 
are discussed by Jonscher [9], they need not nec- 
essarily be associated with a Class-II EDAE. Instead, 
for a thermally activated situation, it is sufficient that 
the pre-exponential factor in z have a power-law 
(Pareto) distribution [ 6,8,1 3 ]. Unlike Class-I EDAE 
response, where the temperature dependences of the 
slopes are an important signal that an exponential 
DTR is present, there is no such indicator available 
which allows one to readily distinguish between 
Class-II EDAE response and a power-law distribu- 
tion of the pre-exponential term. 

3.3. Fitting of other response models 

Fig. 3 curves are similar to ones presented by Kliem 
and Arlt [26], plotted by them in the Z complex 
plane. Although they did not specify that they were 
actually plotting Z"/Zo versus X'/Zo, they must have 
done so since the maximum value of all their Z's is 
unity. Further, Kliem and Arlt identify the shape of 
these curves as being of Cole-Davidson (CD) char- 
acter. But it has long been known that the DEDAE 
without cutoffs can excellently fit Cole-Cole, CD, and 
other empirical response functions [3,1 3,23 ], and 
its response is in general very similar to that pro- 
duced by the empirical Havriliak-Negami (HN) 
expression [ 24 ] 

1(09/09o)={1+ [i(09/09o) (Z/to) ] ' -~ )  -~ , (13) 

where the slope parameters satisfy 0~<~< 1 and 
0 ~< fl~< 1. This expression reduces to that of CD when 
c~=0 and to that of Cole and Cole forf l= 1. So is the 
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CD identification made by Kliem and Arlt most ap- 
propriate here? 

As a test of model appropriateness, the T= 200 K 
DEDAE I(o~/O~o) complex data of figs. 3 and 4 were 
fitted by LEVM to the CD and the HN expressions, 
using optimized function-proportional weighting 
[ 11 ]. The DEDAE data used were calculated for IR 
since this choice is appropriate for these empirical 
functions, which involve no cutoffs. The estimated 
standard deviation of the CD fit was found to be 
about 0.34, while that of the HN one was about 0.016, 
a far better fit. The values of a and fl estimated from 
the HN fit were 0.344+0.002 and 0.614+0.002. 
These values correspond to asymptotic HN slopes of 
s~ = nn = 0.656 and sr = - nlr = --  0.402, satisfactorily 
close to the actual values of 0.66 and -0 .4 ,  respec- 
tively. On the other hand, the HN estimated value 
of ro was about 55% too high, reflecting a systematic 
error arising from using a wrong fitting model for the 
data. 

Wang and Bates [ 1 ] also compared HN DAE and 
DEDAE shapes, and corresponding frequency re- 
sponses, for a choice of T= 500 K and found agree- 
ment which appeared very close when plotted in log 
form. Their DEDAE comparison has been repeated 
by means of nonlinear least squares fitting of IR DE- 
DAE data extending from E=0.01 to 1.89 eV, with 
weighting as above. First, following Wang and Bates, 
the HN c~ and fl parameters were fixed at values 
which yielded the same asymptotic slopes as those of 
the DEDAE, and Eo was left free to vary. Parameter 
values and the Eo estimate, E~, are shown in fig. 5 
and are consistent with the corresponding ones of 
Wang and Bates. Fig. 5 is a plot of the relative re- 
siduals of the fit, joined by a smooth curve. The fit 
results show that at E=Eo there is about a 27% rel- 
ative difference between the DEDAE and the HN fit 
and asymptotic relative differences of about 1% at 
low E and 5% at high E. Alternatively, when a, fl, 
and Eo were all free, a slightly better fit was obtained 
which yielded the a,  fl, and Eo estimates 0.348, 0.617 
and 1.197 eV, respectively. Clearly, there are appre- 
ciable differences between the DEDAE and the HN 
DAE, especially near their peaks. 
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Fig. 5. Relative residuals versus E obtained from a nonlinear least 
squares fit of  DEDAE data with negligible cutoffs to the Havri- 
l iak-Negami empirical response function for parameter choices 
used by Wang and Bates [ I ]. 

3.4. Comparison of dielectric and conductive system 
admittance responses 

Not only is it of interest to compare the slope pre- 
dictions of table 2 with actual slopes of I~ and I~' 
curves in the IR case, where cutoffeffects are outside 
the range of measurement, but it is also instructive 
to compare full curve shapes for normalized admit- 
tances. We shall do so for the T= 200 K data of figs. 
3 and 4. For simplicity, we shall set Uj= =0  and 
YD(0) --= GD0 =0  as well; some of the effects of these 
quantities, when they are not negligible, have been 
discussed elsewhere [4]. Then, it is appropriate to 
define for j =  C the normalized admittance (complex 
conductivity) YNc=l/Ic, and f o r j = D  the normal- 
ized admittance YND ~ (ic0/O)o)I D. 

Because of our choice of the same Ck values at 
T= 200 K for both the j =  D and the j =  C situations, 
/j(co/o)0) curves will be the same for b o t h j = D  and 
C. But this will not be the case for the two YNj(CO/ 
COo) responses since they arise from different re- 
sponse levels. In fig. 6, the frequency dependences of 
the above three different complex quantities are 
plotted. The limiting slopes of both real and imagi- 
nary quantities are equal for o9> o90 (CPE response) 
and are generally consistent with the values given in 
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Fig. 6. DEDAE log-log frequency response of normalized re- 
sponse functions for the T=200 K DAE of fig. 1 without cutoffs. 
Here, the choice lc(og/tOo) =1i)(0)/090) has been made and the 
corresponding normalized admittance responses are illustrated 
forj=D andj=C. 

the bot tom part of  table 2. But although the low-fre- 
quency slope of  Y~D is limited to unity, that of  
Y~D is not so limited and exhibits the expected value 
of  1.66. For the o9>o9o region, notice in particular 
the difference in the slopes o f  the YNc components  
from those o f  YND. Incidentally, Yc(o)) response as- 
sociated with a D T R  or other processes has recently 
been discussed in detail [4,20],  and Yb(o)) slopes 
of  approximately Class-I form, 1 -kTr l  with q>~0, 
have recently been reported by Lee et al. [28] ~5 
Some discussion of  these results is presented else- 
where [29 ]. 

4. Discussion of some response models 

Although there exist a great many theories which 
yield CPE-like response with one or more slopes (see 
[ 8,13,20 ], and references therein),  few of  them pre- 
dict slope temperature dependences and none pre- 
dict such dependences from an ab initio many-body 
treatment. Thus, as in the present and earlier EDAE 
approaches, rather arbitrary assumptions are gen- 

a5 In this work, the authors associate power-law frequency re- 
sponse with stretched-exponential transient response, but this 
is only asymptotically true in the high-frequency region. 

erally made about such temperature dependences. 
Although these models are thus incomplete, when 
good agreement between EDAE predictions and 
measured frequency and temperature response is 
found, it is probable that there is a DTR present in 
the material-electrode system being investigated• 
Further, Class-I and Class-II responses together cover 
the majority of  experimentally seen D- and C-system 
slope-temperature responses. For Class-I response, it 
is usually found that in the ~o> O)o region the mag- 
nitude of  the lj slope increases with increasing tem- 
perature for D-systems and decreases for conducting 
ones. Further, when one transforms experimental 
power-law exponents to corresponding ¢ values, the 
linear dependences of  ¢ on temperature shown in ta- 
ble 2 are frequently found over an appreciable tem- 
perature range [ 13,28 ]. 

Wang and Bates [ 1 ] have recently proposed a semi- 
microscopic hopping model for polar materials which 
involves charged-particle activation in a potential 
double well. By restricting the motion of  each ion 
present to the double potential well with which it is 
associated, Wang and Bates actually treat a non-con- 
ducting D-system rather than a C-system, although 
at sufficiently high temperatures one would expect 
that a fraction of  the ions could percolate through 
the entire material, yielding some C-system response 
as well ( C - D  response). A good discussion of  such 
C - D  response involving ion pairs and ionic conduc- 
tivity has been given by Johari and Pathmanathan 

[3Ol. 
The work of  Wang and Bates leads to exactly the 

DEDAE of  eq. (3) with ¢tD = 0 and thus yields a loss 
peak in ( ' (o ) ) ,  just as the relaxation of  rotating per- 
manent  dipoles would do. Alternatively, if one ap- 
plied their approach to ions in a C-system and did 
not assume that each ion was bound to a single dou- 
ble exponential well, one might obtain the j =  C ver- 
sion of  eq. (2),  and the peak would then occur in 
Z"(~o), where such effects are commonly observed 
in ionic solids and liquids [3,8,23], not in e"(~o). 

It is especially worth emphasizing that for a con- 
ductive system a peak in Z"(co) versus o) does not 
lead to a peak in e"(e)). Also for a dielectric system, 
a peak in E"(~o) does not lead to one in Z"(e)) .  But 
the situation is more complicated for a C - D  system. 
Then a peak can appear in either Z"(~o) or ( ' (o) ) ,  
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although none may be evident because of a limited 
available frequency range. 

A simple example is provided by a resistance in 
parallel with a non-Debye j = D  response function. 
Assume that at the dielectric constant level the latter 
alone yields a peak in e ~ (co), although none will ap- 
pear in the corresponding Z~(o~). But when a non- 
zero resistor is put in parallel with ZD(e)), the re- 
sulting overall impedance, Z(co), will show a peak 
in Z"(e)) and the corresponding e"(co) will not. Here 
the (frequency-independent) resistor may be taken 
to arise from an undispersed ohmic path between the 
electrodes and so is a limiting form of C-system be- 
havior, and the combination of the two processes 
yields a (leaky-dielectric) type of C-D system 
response. 

The other interesting limiting form of C-D re- 
sponse is that produced by a non-Debye C-system in 
parallel with a frequency-independent capacitance 
Cg, the geometric capacitance of the system, which 
is associated with e~. In impedance spectroscopy ex- 
periments, the effect of Cg is often negligible in the 
available frequency range [ 18 ], but since it is always 
present in principle, one should strictly treat all C- 
system behavior as that of a C-D system. 

The full expression at the impedance level for dis- 
persive bulk C-D system response, which includes 
the above two limiting cases, may be written 

Z(a))=Ro~ + ( R o - R ~ ) I c  

X { l +ioJ{ [ Cg + ( C o - C g ) l D l  

× [Roo + (Ro -Roo)lc)1}} - ' ,  (14) 

where Uco-=Ro (the dc resistance) and U c = R o ~ .  
In actual situations, one usually needs to add an ad- 
ditional electrode impedance in series with the eq. 
(14) response, a contribution generally of most im- 
portance at low frequencies. These possibilities have 
all been incorporated in the LEVM fitting program 
and allow one to fit complex data to combined C-D 
response or to C- or D-system response separately. 
A closely related, but different approach to C-D data 
fitting has been presented earlier [30]. 

By somewhat arbitrarily assuming that - 2  ~ (their 
"a")  and 22 (their "b")  are positive and by taking 
both quantities temperature independent, Wang and 
Bates arrive at Class-II peaked relaxation response 
but do not extend their work to include other pos- 

sibilities, even though their own earlier work on Na 
[3-alumina [ 31 ] is consistent with Class-I 0 ~ 1 - kTq 
electrode response with q> 0 (and temperature in- 
dependent) over an appreciable temperature range. 
Instead of taking the 2k temperature independent in 
order to obtain Class-II behavior, the alternate choice 
of taking the qk temperature independent yields Class- 
I response instead. 

In earlier work, Elliott [10,32] also considered 
hopping of charged particles (electrons) over a dis- 
tributed barrier between two sites. Unlike Wang and 
Bates, however, he found a single Class-I Y~ fre- 
quency power-law exponent of approximately 
[ 1 - k T ( 6 / W M )  ], of exactly the form of the EDAE~ 
result for 0, where the binding energy WM was ap- 
proximated by the energy gap of the material. This 
gives an explicit result for q, and others are also dis- 
cussed for amorphous semiconductors [ 10,32 ]. Al- 
though these results confirm that hopping can lead 
to Class-I behavior, the world still awaits the avail- 
ability of full microscopic theories for dielectric and 
conducting systems which lead at the macroscopic 
level to good approximations to DEDAE Class I and 
II response, since only then will one- or two-slope 
dispersion data be explicable without the need for 
any ad hoc assumptions. 
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ABBREVIATIONS AND DEFINITIONS 

A. Acronyms 

C 
CD 
C-D 
CNLS 
CPE 
D 
dc 
DAE 
DEDAE 
DRT 
DTR 
EDAE 
HN 

Conductive system 
Cole-Davidson response function 
Conductive-dielectric system 
Complex nonlinear least squares 
Constant phase element 
Dielectric system 
Direct current 
Distribution of activation energies 
Double EDAE 
Distribution of relaxation times 
Distribution of transition rates 
Exponential DAE 
Havril iak-Negami response function 

B. Subscripts 

j C o r D  
k l o r 2  
1 Left 
H Highest value 
I Imaginary 
L Lowest value 
N Indicates normalization 
O AL<Ao<AH; A arbitrary 
r Right 
R Real 
0 Zero limit 

Infinite limit 

C. Principal definitions 

Class I 
Class II 
E 

F 
I 
J 
k 
n 

s 

The EDAE is temperature independent; see section 2.3 
The EDAE is temperature dependent; see section 2.3 
Activation energy 
E/kT 
DEDAE distribution function: eq. (2) 
Normalized frequency response function: eqs. (8) to (10) 
Normalization factor: eqs. ( 11 ) and (12) 
Boltzmann constant 
Power law exponent 
Log-log frequency response slope 
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S 
X 

Y 
Z 
O~ 

7 

2 
/t 
"C 

¢ 

Z 
O) 

EDAE slope 
Logarithmic energy variable: eqs. (4) to (6) 
Admittance 
Impedance 
Energy dissipation thermal activation parameter, or HN parameter 
Energy storage thermal activation parameter, or HN parameter 

a + f l  
Complex dielectric constant 
Parameter o f F ( ~ ) :  eq. (3); see also section 2.3 
Parameter o f F ( ~ ) :  eq. (3); see also section 2.3 
/Zc= or;/2D=fi 
Relaxation time 
Slope-related parameter of F (~ ) :  eqs. (7), ( 11 ), and (12) 
Dielectric susceptibility 
Angular frequency 


