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Ahstrad-New developments in two main data analysis areas are discussed: (a) complex nonlinear least 
squares (CNLS) fitting of data and (b) data-transforming and optimizing integral tranforms. In the first 
category, a Monte Carlo study is used to answer the question of which of several ditferent param- 
eterizations of an ambiguous equivalent circuit model lead to minimum correlation between fitting 
parameters, a desirable condition. In addition, results are brietly discussed which address the questions of 
(1) what should be minimixed in CNLS fitting? (2) how well can one discriminate between exact small- 
signal binary electrolyte response and conventional Snite-length diffusion response? and (3) what is the 
ultimate precision of parameter estimates obtained in a CNLS fit? In the second area, new forms of the 
Kronig-Kramers relations (KKR) are discussed; the accuracy of several different ways of carrying out the 
numerical quadraturcs needed in such transforms is compared; and it is shown how random errors 
present in complex data are transformed by the KKR. Then, new transforms are described and illustrated 
that can replace exponential Fourier and KK transforms and, at the same time, can greatly reduce 
random error and some hinds of systematic errors in real, imaginary, or complex frequency response data 
or transient response data without the need for smoothing or littering parameter choices. 
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INTRODUCTION 

I summa&e three recent developments and describe 
new results of interest to impedance spectroscopy 
(IS). The 6rst four topics concern improvements in 
complex nonlinear least squares (CNLS) fitting, and 
they employ the updated LEVM CNLS fitting 
program, version 5.0[1-31. The remaining topics 
deal with noise transformation in Kronig-Kramers 
(KK) transforms and with new ways to perform opti- 
mixing integral transforms which are functionally 
equivalent to ordinary KK and Fourier transforms 
but, unlike these transforms, greatly reduce noise 
and other errors in the data. 

TOPICS IN COMPLEX NONLINEAR LEAST 
SQUARES FITTING 

Minimum correlation in ambiguous situations: 
Alternate parameterizations 

In addition to the ambiguity associated with alter- 
nate but electricalIy equivalent ways of connecting a 
set of ideal R, L and C circuit elements in various 
contigurations[l], ambiguity arises from the various 
possible ways of parameterixing a composite circuit 
element such as the ZC (Cole-Cole response at the Z 
level[l, 41). Is one such parameterixation to be pre- 
ferred to another in CNLS fitting of IS data? Here, I 
examine this question for a common situation by 
means of Monte Carlo (MC) data fitting. The 
smaller the correlations betweeen free parameters in 
a CNLS fit, the better these parameters can be esti- 

mated. Thus, usually that specific parameterixation 
which leads to the lowest correlations should be pre- 
ferred to others. 

But a dilBculty arises. When one carries out such a 
fit on data containing measurement errors, one 
obtains only a single estimate of the parameter 
correlation matrix. No estimate is then available of 
the uncertainty of the correlations and of whether 
the particular set of values found is representative of 
the actual situation or is perhaps quite unrepresenta- 
tive. Furthermore, the correlation values found from 
a CNLS fit with a computer program like LEVM 
are based on a final linearization of the problem 
around the converged values of the parameters. Such 
linearization can often lead to appreciable errors for 
a fitting model nonlinear in some free parameters, 
the usual case in the IS area. To resolve this 
problem, Monte Carlo simulation is suitable. By 
generating a large number, K, of fits of a given 
circuit (usually K > lOO,OOO), each with a different 
set of random errors, one can obtain for comparison 
welldetermined estimates of both linearized corre- 
lations and those calculated directly from the MC 
results. 

In order to illustrate the problem and to shed 
some light on its solution, I investigated the MC 
response of the ZC frequency response function, 
written in the general form 

Z(o) = Z(w) + iZ”(w) = A/[1 + (iwByl] . (1) 

When -Z”(o) is plotted in the complex plane vs. 
Z’(w) for a sufficiently large range of o values, the 
result is a semicircle with its center depressed below 
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the Z’ real axis if $ < 1. To begin with, the quan- 
tities A z R, a resistance, and B = T, a relaxation 
time, were set to unity; JI was fixed at 0.5; and 
N = 49 exact data points were calculated for the 
range 0.001 < w 4 1000, with eight points per 
decade distributed uniformly in log(w). These exact 
values were then used in the MC generation of data 
with proportional errors[2]. 

In all the MC simulations reported here, Gaussian 
errors with zero mean and the same standard devi- 
ation were used in generating data with either addi- 
tive or proportional random errors. Let N(0, c, 1,) = 
u,N(O, 1,) represent an independent random sample 
drawn from a normal distribution with zero mean 
and a homoscedastic standard deviation (SD) of a,. 
Here I,, an element of the unit vector, is unity for all 
1, 2 . . . . N values of j. It will be convenient in some 
of the following discussion to replace Z(o) by 
F(o) = F’(o) + iF”(o) in order to indicate that the 
methods apply not just to impedances and admit- 
tances, but to any real and imaginary functions of 
frequency. Now we can construct “experimental” 
MC F’ data with errors by means of the relation 

+ (1 - B)a, NO, 1,) 9 (2) 
where F:, is the error-free part of Fb, and /I = I for 
proportional random errors and /I = 0 for additive 
ones. A similar expression with different or the same 
N(0, I ) 

.f’ 
values may be written for F;(q). It follows 

that I the asymptotic SD of F:_ is defined as S, the 
corresponding relative standard deviation (RSD), 
sometimes called the coefficient of variation, S/<F& 
which is equal to S/F=, if bias is absent, is just tr, for 
/.I = 1. The choice of u, = 0.02, for example, leads to 
random proportional errors with a SD of 0.02, which 
is not the same as a 6xed 2% error for all values of 
F:. In these MC calculations, not only are random 
errors different for each of the N values of j, but they 
are also different for each of the K replications. 

Table 1 detines the seven different param- 
eterixations of A and B which were investigated. 
Here, the choices made for A and B are shown; the 
corresponding choices are given for the free param- 
eters pi and 0s; and the no-error values of these 
parameters for the data used are listed in the last 
two columns. The conventional angle 1 is given by 
(n/2)+, and the parameter $ was taken either free to 
vary during the CNLS fitting or was lixed at 0.5. 
Note that r/C has the dimensions of a resistance, 

and (since R is here the DC value of Z’) R, is the 
diameter of the corresponding JI = 1 semicircle, 
appropriate for an undistributed situation. When 
$ < 1 and thus R = R, sin(x) < R,, one is con- 
cerned with a distribution of values of some material 
property, and (under some conditions) one might 
prefer to estimate directly from the data, as in 
parameterizations three and four, the possibly more 
basic quantity R, rather than R. 

Table 2 shows the results of an extensive MC 
simulation using LEVM with the usual FPWT 
weighting[2] for fitting. Values not shown could not 
be statistically distinguished from zero and had rela- 
tive standard deviations much greater than unity. 
Results shown are essentially independent of u,, and 
no relative standard deviations are listed for the lin- 
earized estimates because they were all unrealisti- 
cally small, usually less than 10s4. Nevertheless, we 
see that there is very little agreement between the 
linearized MC estimates and the accurate MC ones 
for the first four parameterixations. For these we see 
that with $ fixed at 0.5 the two free parameters are 
uncorrelated for all four choices. But when $ is also 
free, high correlation between R or R, and I) is 
evident. In view of the uncertainties of these corre- 
lations, there is no strong basis to choose one of 
these parameterixations over another. 

The matter is quite different for parameterixations 
5, 6 and 7. Here there is substantial agreement 
between the first linearized correlation value and the 
corresponding direct estimate. Furthermore, since 
these high correlations do not involve $, they persist 
when it is fixed at 0.5. It thus appears that any of the 
Rrst four parameterixations is preferable to any of 
the last three. Furthermore, because of the high 
value of the MC correlation estimates that is found 
when I) is not fixed, it seems sensible in individual 
experimental situations to carry out a fit first with I) 
free, then fix it at its estimated value and do another 
final fitting. Finally, these results should teach one to 
view linearized correlation values with several grains 
of salt ! 

Miscellaneous IS data-fitting topics 

Although nearly all CNLS fitting minimizes the 
vector composed of squared, weighted, real and ima- 
ginary residuals[l, 21, there has been a small amount 
of work using a more complicated approachC5, 61 
where a N x 2 rectangular matrix, G, is formed 
whose left column involves the unweighted real 

Table 1. ZC narameterixation choices 

No. A 

Free parameter choices Exact parameter values 

B 6 0, 01 02 

1 R T R 7 1 
2 

5, sin(x) 
RC R C 

3 Ro Co Ro Co :/a 
4 R. sin(x) CR, siu(x)lC Ro C h 1 
5 TIC 7 C T 
6 CT sin(tilICo r Co r :i* 
7 Cl0 sWW 70 sinor) C TO 1 

Here, x = (n/2)$. and Z(o) = A/[1 + (itaB)*]. 
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Table 2. Linear&d and accurate Monte Carlo correlation estimates for 
seven different parameterixations of ZC response 

No. Parameters Linear 
$ free 
MC Linear 

* = 0.5 
MC 

74 

2 R-C 

0.2223 
0.3480 

-0.3536 
-0.1259 

0.3480 
-0.4823 

0.1095 
-0.1946 
-0.3185 

0.1378 
-0.1946 
- 0.4823 

0.9392 
-0.4823 
-0.3536 

0.9444 
-0.3185 
-0.3536 

0.9528 
- 0.4823 
-0.4988 

0.919~.005 
0.3938 

- 
- 0.0099 

0.919 IO.005 
- 
- 0.0511 

0.8010.16 
- 
- 0.0511 

0.8010.16 
- 

0.968 IO.033 0.9381 
- 

0.984G.013 0.9381 
- 
- 

0.977 IO.024 0.9381 
- 
- 

- 

- 

- 

- 

0.95 IO.060 

0.95 ) 0.056 

0.95 IO.060 

Here C ( D denotes a correlation C and its relative standard duration, D. 

residuals and whose right column involves the 
unweighted imaginary residuals. Then the 2 x 2 
determinant 1 G,G) is minimized, where G, is the 
transpose of G. Unweighted data fitting results using 
this multi-response approach have been compared 
with ordinary CNLS fitting results obtained using 
LEVM, and completely negligible differences were 
found[7]. It still remains, however, to compare the 
utility of the two methods for data which require 
strong weighting. 

The exact small-signal response of a binary elec- 
trolyte, one where both positive and negative 
charges are mobile, cannot be expressed very accu- 
rately in terms of an equivalent circuit made up of 
resistances, capacitances, and any of the ordinary 
distributed circuit elements[4] used in IS analysis[8, 
91. But the full expression for such response has been 
incorporated in LEVM and so can be used to fit 
data obtained from such a system. In a recent paper, 
many of its possible response shapes are illustrated 
by means of impedance and admittance plane 
plots[lO]. Under some circumstances, it is found 
that a shape nearly identical to that for finite-length- 
Warburg diffusion (or that of Davidson-Cole 
response[4]) can occur. The degree to which these 
responses can be discriminated for data without and 
with random noise is investigated in detail, and it is 
found that when the noise does not much exceed 
that usually found experimentally. LEVM allows 
one to properly identify binary response and dis- 
criminate it from the other possibilities. 

Finally, a Monte Carlo study of the precision of 
equivalent-circuit parameter estimates has been 
carried out using LEVM for several typical IS 
responses[3]. Not only do these results illustrate the 
tremendous discrimination possible with CNLS 
fitting, but they also result in universal curves which 
can be used to predict the minimum parameter stan- 

dard deviations possible for a variety of situations of 
current interest. 

NEW DEVELOPMENTS IN 
INTEGRAL-TRANSFORM ANALYSIS OF 

DISCRETE DATA 

Integration errors and random error transformation in 
Kronig-Kramers transforms 

Introduction and definitions. The Kronig-Kramers 
(KK) dispersion relations (KKR) are important 
coupled intergal transforms connecting the real and 
imaginary parts of a complex function of frequency, 
F(o) = F’ + iF”, such as an immittance. The condi- 
tions which are usually stated[ll-151 for the KKR 
to apply are: causality (ie no response before its 
stimulus is applied), linearity, stability (ie time- 
invariant physical properties), and the real and ima- 
ginary parts of F(w) must be finite at w = 0 and 
o = co and must be continuous and single-valued 
functions of o otherwise. Stability and the finiteness 
of the function at its extremes imply that the proper- 
ties of the system must lead to passive rather than 
active response, but property variation slow com- 
pared to the measurement time still allows the KKR 
to apply accurately enough for experimental pur- 
poses. The KKR have proved useful for testing the 
mutal consistency of measured values of F’(w) and 
F”(w), for obtaining the other function when only 
one can be measured, and for examining the stability 
of corroding electrochemical systems, where pro- 
perty variation usually occurs[ll-14, 161. The lin- 
earity condition, which here requires that measured 
immittance values be independent of the amplitude 
of the applied voltage, is actually often 
unnecessary[17,18]. 
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The KKR connecting F’(o) and F”(o) functions 
which satisfy the above conditions of analyticity, 
causality, and stability are 

F”(w) = 0 s 2W 
co l?‘(X) - F’WI dx, (4) 

x 0 x*-w* 
where W c wto and the value of r. is arbitrary. 
When n= - 1, we take FL w F’(0) and set FL E 
F’(oo) if n = 1, the only choice considered here. For 
discrete data, these integrals must be evaluated by 
numerical quadrature (see Appendix). 

When an analytic expression for F(o) is known 
but the integrals of equations (3) and (4) cannot be 
carried out in closed form, intrinsically or because of 
the presence of noise, again numerical quadrature is 
required, and one can readily derive the following 
expressions for the KKR useful in these 
situations[18], 

F(W)-F”= f w-” 0 
X s l WYYF”Wu) - W/V”F”P’/Vl dY (5) 

0 1 - Y* 

F”(W)= - f OS l [F'(WY) - F'(W/Y)] dY 

l-Y* * 
(6) 

0 

Although there are no poles present in the above 
forms of the KKR, the limits as X + W and Y * 1 
require careful evaluation. For n = 1, it is actually 
the two parts {F’( IV) - F’(co)} and F”(W) which are 
related by the KKR since the KK transformation of 
a constant yields xero[ 19, p. 4221. 

Dovgii et aI.[20] have described three error 
sources in the application of the KKR: (a) the error 
in the measurement of F(w) or F”(o); (b) error 
arising from the limited frequency range of the mea- 
surements; and (c) inaccuracies in the numerical inte- 
gration required in the transformation. There have 
been several studies [ZO] dealing with extrapolation 
methods used to apply the KKR outside the avail- 
able range of the measurements and thus to mini- 
mise errors of type (b) above; an interesting recent 
one is that of Esteban and Orazem for low-frequency 
extrapolation[15]. Although extrapolation of experi- 
mental data will usually introduce some error in the 
transformed results, it can be made small either by 
extending the measurements to encompass a suffi- 
ciently wide frequency range so that contributions 
from the omitted regions are negligible or by the use 
of appropriate extrapolation formulas. In the present 
work we shall either use no extrapolation or accu- 
rate noise-free extrapolation contributions. 

Numerical integration errors. Because noise does 
not satisfy the KKR, we shall initially consider data 

with negligible noise and investigate errors of type 
(c). Here, I shall first briefly compare integration 
errors associated with the differing quadrature 
schemes described in the appendix, then, using MC 
simulation, explore some of the transformation 
properties of random errors present in experimental 
data, type (a) errors. 

Although source (c) can be reduced below the 
range of importance by using sufficient points, N, in 
an appropriate quadrature formula, the number of 
points present in experimental data is usually 
limited, and it may be impractical to increase it 
greatly. Alternatively, when the number of available 
data points is small and limited, increased numerical 
quadrature accuracy can often be achieved by fitting 
the data with cubic splines and calculating as many 
interpolated points as needed, but this procedure 
may lead to bias in the results. Below, methods will 
be discussed which allow quite accurate results to be 
obtained with N reasonably small. 

Detailed results for type-c errors found in KK 
transformation are listed elsewhere[18]. For the 
transform of the Z’(w) of equation (l), with B = 
r. = 1 and A = $ = 1, (the response of an R and C 
in parallel), to Z”(w) for the integration range 
0.1 5 W s 10, we found even for N as small as 18 
that the TRAPT procedure defined in the appendix 
was somewhat superior to GTRAPEI, which, in 
turn, was somewhat superior to GTRAPGI. But for 
$ = 0.5 and the much wider range 
0.001 5 W < 1000, TRAPT was usually slightly 
better than GTRAPGI, and the latter was far 
superior to GTRAPEI for fixed N. For example, the 
relative error found in F”(1) for 162 function evalu- 
ations was -3.6 x 10w4, 1.2 x 10T3 and 3.8, in the 
same order. It was not until about N = 13,000 that 
the result for GTRAPEI fell below 1%. Thus in 
order to obtain adequate accuracy for wide-range 
data, one can use GTRAPGI with a relatively small 
value of N or GTRAPEI with a very much greater 
value[15]. 

If one were concerned only with adequate error 
control for wide-range data smooth in the large, 
such as that considered here and in the earlier parts 
of this work, lo-20 evenly spaced points per 
decade on a logarithmic scale should be quite suBi- 
cient for use with GTRAPGI. If the response 
involved appreciable small-scale structure within one 
or more decades, one could alternatively, use more 
geometrically spaced points or split the integral into 
several parts with appropriate choices of quadrature 
rule and of N for each part. 

KK transformation of data errors. Most errors 
present in experimental data do not satisfy all the 
requisite KKR conditions. Thus, close satisfaction of 
the KKR implies that such errors are negligible. But, 
of course, this is often not the case for such data. 
Thus, it is important to examine what happens to 
KK-transformed data containing errors and to 
explore ways to reduce the effects of such errors 
when they might otherwise cast doubt on the appli- 
cability of the KKR for a given set of data. Since the 
effects of data errors in KK transformation have 
apparently not been previously investigated in quan- 
titative detail[21], it seems worthwhile to do so, 
especially now that the KKR are finding more exten- 
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sive use. I summarize here a few of the results of an 
extensive MC study nearing completion[18]. 

An analysis of the e&c& of errors in the original 
data (type-a) on the KKR requires a MC simulation 
study in which all other types of errors are mini- 
mixed. Extrapolation errors were made negligible 
here by dealing with an analytic function defined 
over the entire 0 5 cu s cc range (here results are 
only shown for the ZC function of equation (1) with 
$ = 0.5 and with the other specific values selected in 
the last section), and by using exact values of this 
function for extrapolation outside the limited part of 
the range where additive or proportional random 
errors were combined with the exact data, as in 
equation (2). Numerical quadrature errors were 
minimized by employing the TRAPT approach of 
the appendix applied to equations (5) and (6) and 
using a sufficiently large value of N. 

The MC analysis involves K replications of the 
calculation of say Z.(w) [or Z#V)], each using N 
discrete values of Zk(X,) [or Z,(X,)] with different 
independent random erros for each value of j (see 
equation 2). The K values obtained for each trans- 
form define a distribution for the quantity calculated. 
One can thus calculate the SD and RSD of the 
quantity associated with its distribution. Initial 
numerical calculations led to the surprising but very 
useful result that such KK transformed SDS were 
independent of N for N large enough to make quad- 
rature errors negligible; thus, the distributions 
defined by the K values of the transformed variable 
were stable for large K. 

The above results suggested that an analytical 
study of the error effects might be possible and prof- 
itable. As shown in [18], it is indeed possible to esti- 
mate analytically the RK transformed output values 
of the SD and RSD, given the form of the input 
errors and assuming that the integration is ideal (no 
quadrature errors). Results for the two KK trans- 
forms for additive and proportional normally dis- 
tributed random input errors are presented in Table 
3. Surprisingly, we see that transformed SD’s are 
exactly the same as the input ones in these ideal 
cases! But the output SD/u and RSD/u quantities 
can still show strong dependence on the dimension- 
less frequency variable W. Because of the necessity of 
using numerical integration for experimental data, 
however, results for the above quantities with finite 
and relatively small N values may differ from the 
ideal predictions[lS]. 

Because achieving adequate accuracy in the KK 
transforms is harder when rj = 0.5 in equation (1) 
than for the narrow-range response obtained with 
$ = 1, only results for the former value are discussed 

here, but many others appear in ref. [18]. Further- 
more, results are presented here only for proportion- 
al data errors. In the MC simulations, N was usually 
taken large enough that bias was negligible in the 
transformed results. Therefore, there was no need to 
distinguish between such quantites as (Zb(w)) and 
z:,(w)* 

After calculating output values of, for example, Zz 
from input values of Z, , it is useful to plot the three 
input curves Z:,(w) and Z:,(w)[l + a,] and the 
three resultant curves Z~#V) and Z&(W)[l + RSD]. 
Figure 1 shows such response over the region 
0.001 5 W s 1000 where the MC data contain small 
errors arising from the choice u, = 0.02. A value of N 
no larger than 200 was needed to achieve accurate 
results using TRAPT with equation (6) but a much 
larger value was required for the reverse 
transformCl8). The response shown in Fig. 1 is in 
excellent agreement with the predictions of Table 3 
for the proportional-error case. At W = 0.001, the 
quantity RSD/a, was found to be nearly 50, indicat- 
ing extreme relative error amplification and uncer- 
tainty in Z” in the region where 12” 1 is small. Many 
more results of the present kind appear 
elsewhere[ 181. 

Reduction of impedance spectroscopy data errors by 
new transformation procedures 

Background. Now that we have had a brief look at 
the KK transformation properties of data errors, it is 

-3 -2 -1 0 1 2 3 
LOG(W) .I 

Fig. 1. KK transform from discrete Z’ data with pro- 
portional errors having a standard deviation of o, = 0.02 to 
Z” results. For Z,, = l/[l + (iw)“*], input curves are 
Re[Z#‘)] (solid line) and Re[Z,,(W)][l f u,] (dashed 
lines), and output curves are -1m[Z,,(W)] and 
-fm[Z,,(W’)][l f RSD(W)], where W E or0 and RSD(W) 
values were calculated using Monte Carlo simulation 

involving TRAPT numerical quadrature. 

Table 3. Ideal results for the KK transforms of data containing random errors drawn from a normal 
distribution with zero mean and a standard deviation (SD) of a, 

KK 
Transform 

Im+Re 

Realm 

Error 
type 

Additive 
Proportional 
Additive 
Proportional 

output 

Input output SD/u RSD/a 

g?w) f e, WV f e, 1WV1-i 
F”(w) f Q, F”(W) F’(W) f 0, F”(W) I’WV I F”o+wm I 
JVV f 0, F”(w) f 0, IWVI-’ 
F’(w) f e,F’(W) F”(w) f Q, F’(W) I F’W’W”Wl I 
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time to ask how they can be reduced or eliminated. 
Here I describe a new transformation method which 
avoids the arbitrary element present in usual 
smoothing/filtering techniques and yet yields opti- 
mixed results. Its background is discussed in [18]. 
Alternatively, when one is confident that a good 
choice is available for a function or equivalent circuit 
with which to fit frequency-response data, CNLS 
fitting is the method of choice. But when this is not 
necessarily the case, much can be learned from KK 
and other transformations. The power of the present 
approach depends both on its explicit recognition of 
causality requirements and on smoothing associated 
with integration[18]. 

Let us assume that input data, F,(o) = F&u) 
+ iFA or f,(t) are available in either continuous 

or discrete form. These data may not fully obey the 
KK relations, may not be entirely causal, and may 
contain appreciable random noise. We wish to 
operate on the data in a way which will yield those 
parts which obey the KKR as closely as possible, 
which eliminates all or a great deal of the acausal 
component, and which removes most of the random 
noise. Such a process is described below and leads to 
the optimized results F,(o) E FO(w) + i&(o) and 
fo(t). 

Analysis. The four building blocks of the opti- 
mization algorithm, which is discussed in more detail 
and depth elsewhere[18], are as simple as ABC and 
are 

(d) fo(t) = (l/n) 
s 

mRe(F,(x) exp(ixt)) dx 

= 0&mk41 - ~,Cu41~ 9 (7) 

s 

OD 
(#) F,(o) = fo(t) exp( - id) dx 

0 

= ~,C_Mt)l - i*,Ch(t)l , (8) 

s 

m 
(V) F,(w) = f,(t) exp(-iot)dt 

0 

and 

= ~,Cf&)l - ~.C.L(Ol I (9) 

(9) Jo(t) = (l/z) 
s 

mRe(F,,(~) exp(ixt) dx 

= ( W&,(~)l - ~,CF;;(41~ 9 (10) 

where the right sides show how the relations may be 
expressed in terms of the sine and cosine integral 
transforms, 9, and #,[19]. These &, a, Yp and 9 
relations, applied in various orders, allow one to 
carry out all needed transformations of given data to 
an optimixed form. Thus & transforms frequency 
response data to optimized time domain response, 
while (B transforms time domain data to optimized 
frequency-domain response. 

The sequences a# and v% respectively, optimize 
complex frequency-response data and transient- 
response data. There are some situations where opti- 
mization is improved on iteration, such as 
&a%%%@. . . or Y919a99.. . . The present rela- 
tions are not equivalent to the usual exponential 

Fourier transforms used to pass from the frequency 
domain to the time domain and vice versa. Such 
transforms provide no optimization; thus, for 
example, an exponential-Fourier frequency + 
time 4 frequency transformation sequence yields an 
unoptimized output identical to the input. Minor 
changes in the d algorithm allow one to start with 
either F,(o) or FL(o) and obtain the optimized 
results Fe(w) and F;(U), yielding an optimized form 
of the KKR. Also because of the discontinuity in a 
causalf(t) between t = 0 - and t = 0 + , in discrete- 
data calculations minor corrections to fo(t) help to 
reduce small Gibbs-phenomenon osciIlations[ 181. 

Discussion of optimization results. Consider exact 
frequency response data of the form F,,(o) = R/(1 
+ ioro) + (1 + iw)-‘, whose exact transient 

response is I.,(t) = (Rlrd exd - t/To) -+ exp( - 79, 
where we take R = 1, z. = 1 as before, and set T = 
t/To. We shall be concerned with discrete F,,,(W,) = 
Z(w,) and f,(T) data constructed from F,, and f., 
with added errors of various kinds. Then the d to 9 
integrals must be carried out by numerical quadra- 
ture. In the following, I have used either GTRAPEI 
or GTRAPGI. Note that, unlike the usual discrete 
Fourier transform situation[22], it is not necessary 
to use the same number of points for time and fre- 
quency transform calculations. In fact, given N mea- 
sured points for F,, for example, one should 
calculate as many values off0 , say iU, using &, as 
needed to allow accurate numerical integration in 1, 
possibly a considerably larger or even smaller 
number than N. 

Figure 2 shows complex-plane da optimization 
results when an acausal damped exponential is 
added to the exact data. For this analysis, N was 
1024 and the minimum and maximum values of W 
were 0 and SOR, so no extrapolation was needed. 
Very similar results were obtained using only 128 
points with W_ = 4n and high-frequency extrapo- 
lation for larger W. The method of plotting 
employed in Fig. 2 and in subsequent figures allows 
one to see not only how well the shape of the opti- 
mized result curve, Z,(W,), approximates that of the 
Z,, part of the data, but also how well the frequency 
response agrees. If the solid points fall exactly in the 
middle of the exact square-box points, optimization 

Re(Z) 
Fig. 2. Complex plane plots of the optimizing transform of 
singlbtime-constant input data with acausal systematic 
error : Z=Z,=[l+iwJ-‘+~exp[(@){-O.llWI 
+ iW}]. with E = 0.2, W z eq,, and the numerical value 

of q, tak& to be unity. The calculations were carried out 
with N = 1024 and the squares are cexitered at exact data 
values. In this and subsequent figures, lines between the dis- 

crete points have been included only to guide the eye. 
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is perfect. Here, we see that it is exceptionally good 
over the full frequency range shown and that the 
part of the input data which does not satisfy the 
KKR has been eliminated. 

Figure 3a presents input data with proportional 
random errors for the real and imaginary parts 
drawn from independent normal distributions with 
zero means and with standard deviations, uI, of 0.1, 
appreciably larger than usual experimental errors. 
Results of the d transformation of these N = 128 
data points appear in Fig. 3b and demonstrate much 
smoothing. The unimportant deviations from the 
exact response at large T approach zero as N 
increases and/or u, decreases toward zero. Finally, 
Fig. 3c shows the results of the I transformation 
using M = 351; for clarity not all optimized points 
are included. Although the optimized Z(w) values 
are not perfect, they clearly agree far closer with the 
exact response than do the input values. Thus, the 
signal-to-noise factor has been greatly increased by 
the optimization. Accurate extrapolation was used 
here for W > 4x. Even better results are obtained 
with larger N values. With u = 0.1 and additive 
rather than proportional errors present, much larger 
input errors are present in the high-frequency region, 
and optimization error reduction is large but not so 
close to perfection in this region. With error-free 
input data, the f&T) and Z,(w) optimized outputs 
are indistinguishable from feX( T) and Z,,( IV), respec- 

_._ 

o.o- . 
-C.l 

, I , . I - 
0.1 0.3 

, 

0.5 0.5 
I- 

0.9 1.1 

0% 
I . I - I 

1.0 2.0 do do 5.0 
T 

izo.5 

20.4 

‘i 0.3 

0.2 1 
oonoo EXACT DATA 
l * l l l OPTIMIZED OUTPUT 

Fig. 3. Results of &L# optimization of Z = [l + Fig. 4. Results of ‘%8 optimization of the noisy time 
iWJ_‘[l + random noise with zero mean and a, = 0.11. response f(T) = exp( - 7’)[1+ random noise with zero 
Part (a) is a complex plane plot of the noisy input data; mean and u, = O.l]. where T = t/z,. Part (a) shows the 
Part (b) shows the corresponding optimized time response noisy input data points; (b) shows the corresponding opti- 
with T = t/To; and part (c) presents the final optimized fre- mized frequency response; and part (c) presents the final 

quency response. optimized transient response. 

tively, when N is sufficiently large [ie 2 100 forjo 
here and even less for Z,( IV)]. 

Figure 4 shows ST9 time --* frequency + time opti- 
mization results starting with M = 351 random 
errors with ur = 0.1. These errors are added pro- 
portionately to the exact response, f(T) = exp(- 7’), 
where T = r/r0 and ~~ = 1 s as usual. No T extrapo- 
lation was needed here. Although the input noise 
does not appear large, this is because it is plotted on 
a logarithmic scale. The exact time domain response, 
and this response with noise, are presented in Fig. 
4a, and the resulting optimized frequency response 
with N = 512 appears in 4b. Finally, the results of 
Fig. 4c show that the original transient-response 
noise is almost entirely eliminated from the opti- 
mized response. But, unlike &cTI# optimization, we 
start with causal data here; thus there is no causal 
filtering and that apparent for Jo is a filtering effect 
primarily associated with the finite value of W_ 
used. Here Wmin = 0.03x and W_ = 4n. When W_ 
remains at this value but no extrapolation is used for 
larger W, the resulting Jo(T) curve is smooth but 
contains appreciable oscillations which increase with 
increasing T. On the other hand, when there is again 
no large-w extrapolation but W_ is increased to 
2571 or more, IO is nearly indistinguishable from f, . 
In all of these situations, however, F, remains close 
to F,,, as in Fig. 4b, and becomes closer and closer 
to F,, as M increases. 

Smce the KK relations with n = 1 apply to the 
combination Z’(o) - Z’(a), rather than to just 

4. 0.0 I.,.,,,, 

1.0 2.0 3.0 
1 

4.0 5.0 
T 

ET 
q0.4 

0.2 

/ 
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0.04 , , , , , -0.1 0.1 - 
0.3 oi 0.7 

I~-----! 
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Z’(o), it is reasonable to ask whether the optimizing 
transformation can properly handle data for which 
Zycc), eg bulk or wiring resistance, is non-zero. To 
find out, I generated 128 data values from Z(y) = 
(0.5 + [ 1 + ‘W,] - ’ + (independent random errors 
with CJ, = 0.1)) for the range 0.03x < W 5 4n. Here 
full convergence required 665 iterations but led to 
complete elimination of the 0.5 offset as well as great 
reduction in the original noise. Full convergence was 
achieved with only 185 iterations when a, was taken 
zero, but in either case only slight improvement was 
found after about 100 iterations. In actual practice, 
one would usually have available a reasonably good 
estimate of Z’(co), which could be subtracted from 
the data before optimization. Then optimization 
would allow one to further refine the initial value of 
Z’(co) and to greatly reduce errors, both random and 
acausal. Although .&sS? optimization results are not 
shown here when only imaginary or real data values 
are used as input [see 183, values of&(w) and F;(w) 

are found from such optimization which are very 
nearly as satisfactory as those of Fig. 3c. 

SUMMARY 

The present results demonstrate the power of the 
optimizing transformation to carry out KK trans- 
forms, to do the work of ordinary Fourier trans- 
forms, and, at the same time, to largely eliminate 
random errors and some systematic errors. It is 
worth again emphasizing that the present &BI opti- 
mization procedure is not a traditional smoothing/ 
filtering approach, but one which can usually 
accomplish the same task better and more objec- 
tively since there is no need to select a particular 
filter high-frequency cut-off limit or a specific degree 
of smoothing. Although the present results were cal- 
culated using data that become negligibly small 
within a relatively narrow frequency range, the same 
optimization technique is applicable for data involv- 
ing one or more different physical processes and 
covering a frequency range of many decades, provid- 
ed that the numerical integration required is carried 
out sufficiently accurately. 
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APPENDIX 

Although an experimenter can usually select the X, or yi 
values used in discrete approximations of equations (3) to 
(a), and often chooses values separated by a constant 
increment, this choice is inappropriate for data extending 
over many decades of X since it requires an excessively 
large value of N to achieve adequate accuracy. See, for 
example, the work ocl5]. Furthermore, one sometimes 
needs to analyze data with variable intervals. To do so, I 
have developed and found particularly useful the following 
generalized trapezoidal quadrature procedure, GTRAP. It 
is appropriate for arbitrary X, spacing, and is expressed as 

I= = i w,h(X,), (Al) 
1-1 

where k(X) is any appropriate function, and the w, are the 
quadrature weights, the crucial element in the procedure. 
They are given by 

w1 = fCX, - x,1 1 (0 

wf = iCXj+I -X,-J, (1 <i < NJ. (A3) 

and 

WN = gx, - x,_ J . 

The approximation in equation (Al) is actually exact when 
h(X) is a firstdegree polynomial in X and reduces to the 
ordinary closed, extended trapezoid rule[22, pp. 107-1111 
for equal increments (EI) in X : GTRAPEI. 

For reasonably smooth d ata, extending over a wide 
range of X, say several decades or more, (such as the 
responses considered herein), it is generally more efficient to 
use geometric intervals (GI) in X, rather than EI. Then one 
might choose, for example, 

x,*,/x, = [X,/X,]“(N-“, 

with X, # 0, resulting in the procedure GTRAPGI. 
Because of the narrow range in Y of equations (5) and 

(6), GTRAPEI may be used for a discrete quadrature 
approximation to them. We[18] have actually used the 
o-p&r midpoint generalization of the trapexoidalintegration 
rule with eoual incrementsf22 DD. 116-1171 for the MC 
study of KK noise transfot%ratib;l. This combination, for 
equations (5) and (6), is designated TRAPT. 


