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Abstract 

The transformation of random noise present in impedance spectroscopy data by the important Kronig-Kramers integral-transform 
relations is investigated analytically. It is found that the standard deviation of the transformed noise may be smaller than the input noise 
under certain conditions. The output noise standard deviation depends critically on the details of the numerical quadrature procedure used 
for the Kronig-Kramers transformations, so the effects of several different numerical integration routines are investigated. In most cases 
of interest, it is proved that the standard deviation of the output noise is equal to that of the input noise, in agreement with earlier Monte 
Carlo results. It has been found possible not only to derive expressions for the limiting standard deviation of the transformed noise for 
several different integration procedures but also to obtain analytic expressions for their statistical distributions in the limit of an infinite 
number of discrete integration points. Finally, it is demonstrated that the integration routine may be adjusted to obtain either very small 
integration errors (in the absence of input noise) or smaller output noise with larger integration error. © 1997 Elsevier Science S.A. 
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1. Introduction 

The Kronig-Kramers relations (KKR) are important coupled integral transforms connecting the real and imaginary (or 
magnitude and phase) pans of the small-signal frequency response of a physically realizable complex quantity, such as 
impedance or dielectric permittivity [ 1-7]. They are thus applicable to measurements of the linear electrical (or optical or 
mechanical) response of passive materials whose properties are time-invariant and satisfy causality. They have been widely 
used for a long time for analyzing situations where only a single part of a complex quantity is easily measured; then, in 
principle, one of the KKR may be used to calculate the other part of the complex quantity at any desired frequency. In 
addition, when both parts are available over a wide frequency range, they may be used to test whether the system is 
time-varying or not. This capability is particularly important for corrosion measurements. If any property variation is 
sufficiently small over the time required for immittance measurements, the resulting data may closely satisfy the KKR. 
Alternatively, when the application of a KKR to one part fails to predict the other measured part adequately, the data are 
inconsistent with the KKR conditions and should not be used for detailed analysis of the system. 

There is, unfortunately, a practical limitation to the applicability of the KKR for obtaining accurate results. Their direct 
application requires integration over the full frequency range, 0 _< to < ~, one that can only be approximated experimentally. 
Here to is the angular frequency. It is thus common to use models of the expected high- and low-frequency responses for 
extrapolation outside of the measured range, a procedure which usually introduces unknown uncertainties in the results [6]. 
Recently, it has become common to avoid this problem by using complex non-linear least squares (CNLS) fitting of the data 
to a Voigt equivalent circuit, one made up of a series combination of parallel R C s  ([8-13] and references cited therein). 
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Such a circuit automatically satisfies the KKR. By using a sufficient number of elements, any conductive-system data 
consistent with these relations can be well fitted over its full range without the need for extrapolation. Again, lack of an 
adequate fit suggests that the system was not time-invariant during the measurement. 

Orazem and co-workers [8,9,13] have found that, in many instances, the statistical variances of real- and imaginary-p~ 
response associated with stochastic measurement errors are approximately the same at each point of the measured frequency 
range. Although such behavior is probably associated with the specifics of the frequency response analyzer used for such 
measurements, and is thus unlikely to be an intrinsic property of immittance spectroscopy measurements, it has directed 
new attention to such errors and to the most appropriate weighting for CNLS fitting. It thus becomes worthwhile to 
investigate how stochastic errors are transformed by the KKR process. 

Several years ago, the surprising result was demonstrated by Monte Carlo analysis that the variance of random noise 
transformed by either of the two KKR was equal to that of the untransformed noise at each point of the relevant frequency 
range [6]. Since any experimental data analyzed by the KKR or by the alternate Voigt fitting approach (called the 
'measurement model approach' by Orazem and his co-authors) will involve stochastic errors (assumed here to consist of 
random, uncorrelated noise associated with a probability density such as a Gaussian), it is desirable to explore such noise 
behavior analytically in order to verify the above results if possible, and to obtain precise conditions for which they may 

apply. 
We shall consider two forms of the KKR for an electrical impedance, Z(to) = Z'(to) + jZ"(to), where Z(to) is a general 

impedance function and j = ~ ' 1 - .  The standard form is [3] 

2 ~ [ x Z " ( x ) - t o Z " ( t o ) ] d x  
Z' ( to ) = Z' ( oo ) + --  x 2 _ to2 (1) 

and 

2to fo  [Z'( x) - Z'( to)] dx 
Z " ( t o ) -  - - -  , ~ (2) 

"fl" X "  - -  t o "  

Note that the first of these relations does not allow one to estimate Z'(oo) from knowledge of Z"(to), so its value must be 
determined separately. When the KKR are transformed to apply over the range from 0 to 1, one obtains [6] 

2 , [ t o y Z " ( t o y ) - ( t o / y ) Z " ( t o / y ) ] d y  
Z'(tu) - Z'(oo) + - -  fo (3) ~'to 1 - y2 

and 

2 , [ z ' ( t oy )  - z ' ( t o / y ) ]  dy  
Z' (  to) - - - -  fo (4) 1 _y2  

The Monte Carlo study cited above was entirely numerical and dealt only with discrete values of the quantities involved 
in the above expressions. Numerical integration of Eqs. (1) and (2) was accomplished using equal intervals in the logarithm 
of the x variable, while that for Eqs. (3) and (4) involved equal intervals in y [6]. Noise samples e(x)  were drawn 
independently from a random, stationary Gaussian distribution with zero mean. Because of the iinearity of the KKR, in the 
present noise study we need only to consider the KK transformations of the noise 

2 ~ x e ( x ) f ( x ) d x  
(5) 

and 

2to ff (x)f(x)dx 
1 " ( t o )  - x 2 _ to2 ( 6 )  

and their Eqs. (3) and (4) equivalents. There is no reason to expect l '(to) and l"(to) to be parts of a causal, analytic 
complex variable. Here f (x )  is an arbitrary continuous function used to 'color' the noise samples, so that their frequency 
behavior need not be necessarily homoscedastic. Since f ( x )  is arbitrary, the two expressions above are essentially 
equivalent as far as noise transformation is concerned, a fact exploited in Appendix A. We assume that the e (x)  is a white 
noise, so that for every x, x', x ~ x', random variables e(x)  and e(x ' )  are independent and identically distributed with 
expectations zero and variances tr 2. 

The present analysis, like the Monte Carlo study in Ref. [6], deals with discrete-quadrature approximations to the KKR 
integrals. If one defines a step size h and a total number of discrete points for the approximation as N, then in order to 
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obtain high accuracy for the transformations in Ref. [6], it was necessary to use a large N (often greater than 1000) and a 
correspondingly small h (when it was taken constant for a given integration). In the present work, we shall consider the 
limits h ---* 0 and N ---, oo, with hN not necess~mly tending to infinity. It will be shown that the transformation of errors by 
numerical integration of an integrand involving a pole of order less than unity leads, in the |imit, to output errors with zero 
standard deviation (i.e. no error), while that involving a pole of order greater than unity yields output errors with infinite 
standard deviation! Thus, only transformations such as those of the KKR, which involve order-1 poles, are interesting and 
physically sensible. 

In order to explore KKR error transformations adequately, it is worthwhile to consider a number of different cases. In the 
work below, we shall explore the following: (a) standard KKR and transformed KKR equations; (b) proportional and 
additive errors (as in Ref. [6]); (c) endpoint and midpoint integration routines; (d) equal step size, geometric spacing, and 
smoothed geometric step size. These different choices are further discussed in Section 2. As the reader will see, detailed 
analysis of these different choices confirms the results of the Monte Carlo study in Ref. [6] in most cases. In addition, 
however, we derive, for the first time, expressions for the distribution of the output noise for each of ,he above 
transformation possibilities, as well as its standard deviation. 

2. The variance of random errors transformed by the KKR using numerical integration 

In the present work, emphasis is on the effects of errors in data, and extrapolation error is avoided by dealing only with a 
continuous function defined over the entire 0 _< to < ~ range or its Eqs. (3) and (4) equivalent, 0 _< y _< l. Since the actual 
numerical integrations required for KK transformation were carded out in Ref. [6] using open integration formulas, we 
study here primarily procedures of this type described in Ref. [14]. In general terms, the procedures may be described as 

fxi~'g( x ) d x = h [ c l g  I + .. .  +c~gN] (7) 

for endpoint formulas or as 

f i g( x ) d x = h [ c l g 3 / 2  + . . .CN_lgn_l/2] (8) 

for midpint formulas. Here h = Xk+ I -- Xk, gk = g(Xk), gk+ t/2 = g(xk + h/2),  k = 1,2 . . . . .  and the weight coefficients c a 
take a variety of values. For example, for c I = . . .  = c N = 1 Eq. (8) describes the extended midpoint rule, an open analog of 

23 
the trapezoidal rule, with an accuracy of integration of O(N-2). If in Eq. (7) one sets c ~ -  0, c 2 = ~ ,  c 3 = 7 ,  

~ ~ 7 2 3  c 4 . . . = c N _  3 I, c~_ 2 ~ ,  cN-i ~ ,  c N = 0, the accuracy for a smooth enough g is O(N - 4 ) ( s e e R e f . [ 1 4 ] , p .  
109). This second example suggests, as well as most of the algorithms described in Ref. [14], a rather complicated notation 
cic =-Ck(N) because several last members of the sequence {ck,k = l . . . . .  N} actually depend on N. In non-confusing cases 
we shall omit the argument N. From this point on we shall assume that the weights ck(N) stabilize as N becomes large: for 
any fixed number k, beginning with some large N, ck(N) = c k, so that they do not depend on N. This is valid for all the 

algorithms described in Ref. [14]. 
Most of results presented in Ref. [6] were obtained with the midpoint routine applied to the transformed KKR, that is to 

the integrals in Eqs. (3) and (4), but Gauss-Legendre and Gauss-Cbebyshev quadrature routines were also used. 
Further, for data extending over a wide range of frequencies, say several decades or more, such as the responses 

considered in Ref. [6], it is generally more efficient to use geometric intervals in xk, for example, xk+ l/Xk = [XN/Xt] l/tN- ~. 
We study such extensions of the algorithms as well; see Table l and the discussion below. To do so, we use the more 

general notation w k = x~+ ! - xl,, so that w k = h in Eqs. (7) and (8). 
Now we discuss how to introduce random errors into quadrature formulas for Eqs. (3) and (4). In accordance with Eqs. 

(1) and (2) and Eqs. (5) and (6), since points toy and to/y are different, the random errors should be introduced separately 

Table 1 
Numerical integration parameters 

Endpoints Yk wk Midpoints Yk 

Geometric e-(N-k+ I)h e-(N-k)h _e-(N-k+ I)h e-(N-k+ I /2 )h  

Equal ! - ( N -  k + l)h h 1 - ( N -  k + l /2 )h  

Geometric smoothed e-(~-~+ I)h ½[e-~N-t- I)h _e-{N-k+ I)h] for k = 2 . . . . .  N -  I, e - (N- t+  I/2)h 
Wl = e - ( N - I ) h  _e-Nh, WN _~. l--e -k 
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and statistically independently into both of the terms of differences in square brackets. We denote by elk, e2, independent 
identically distributed random variables with zero means and variances equal to or 2. That is 

2 ~ Ctv_k+iWk[toykZ"(toy,)--(to/yk)Z'(to/y~)] 
Ze(to) - Ze(°°) = ~'-"~ k=i 1 - y2 

and 

2/3 ~ %,_,+ lwt[ t oykZ" ( toy , ) e lk -  ( toly,)Z'(  tolyk)e2,] 

71"0) k= l 1 -- y2 

2(1 - / 3 )  ~ CN_k+IW,[ toY, e l , - -  ( to /y , )e2t  ] 
+ 2.; (9) 

7rto k = ! 1 - y~ 

4 ( , o )  - 
2 ~ Clv_j, + lwt<[ Z'(coy,)  - Z'( tolYt,)] 
7rk= I 

2/3 ~ CN_k+lWt<[Z'( toyt<)~lk--Z'( toly,)c2k ] 
I - -  y~  7r k=l l - -  y~  

2(I- 1) 
71" k,=l l --y~ ( 1 0 )  

Here ana in the following, since there is a pole at y = 1, this point is of most interest, and we number the integration 
coefficients c a from right to left. We study the stochastic errors of the numerical integration in two cases: /3 = 1, that is 
proportional random errors, and 13 = 0, that is additive random errors. 

Now we specify other parameters of numerical integration; they are the points y~ and steps w,. Table 1 summarizes all 
the cases we study. For the equal spaced points Yk the parameter h should be chosen to be 1/N. For geometric points it 
should be chosen to be much larger as one approaches the right end of the interval (0,1), as discussed later. But everywhere 
it is required that in the limits h --* O, N --* oo, Nh tends to a constant. 

The direct numerical integration of the KKR in standard form, Eqs. (1) and (2), is possible also. Here we consider the 
most natural specification of the Yk and the w k. Namely, we consider geometrically spaced points 

Xk + i l X k  ._. [ Xl¢l., i i  ] '  I (N -  ') 

that is, x k - x  I e h* and h ffi log(x,+ i/x,).  We suppose that to is one of the points x k. After the substitutions of variables to 
obtain the reduced transformations of Eqs. (3) and (4), it is easy to see that this numerical integration procedure corresponds 
to the ease of geometric points described by Table 1, with a slight variation of the points and interval lengths around the to 
point. Thus, considering the cases from Table 1, we simultaneously consider some direct numerical integrations of Eqs. (1) 
and (2). 

3. Summary of results 

3.1. Stabilization of the output standard deviations 

Since the differences in square brackets in Eqs. (9) and (10) are statistically independent either for/3 = 1 or /3  = 0, we 
can apply the general evaluations given in Appendix A. 

3.1.1. Geometric, geometric smoothed and equal intervals using endpoints (see Table 1) 
In these cases, by Eq. (A-8), the limits of the output standard deviations are equal to 

~'-'ov~lz'( to)l c21 -e and ~'- 'oV~lZ"(to)l Ec21-2 (11) 
i--I 

for proportional random errors and 

4 (12) 

for additive random errors. 

Note that for ct - 1, the sum is the Riemann zeta-function of 2, that is 7r2/6 (see Ref. [15], eq. 0.233), and the limits 
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equal orlZ'(00)l/Cr3" and orlZ"(0o)l/Cr3 - for the proportional errors and or/V~ for the additive errors. Thus, for this situation 
the output errors are actually smaller than the input errors. 

3.1.2. Geometric, geometric smoothed, and equal intervals using midpoints (see Table 1) 
By Eq. (A-10), the limiting standard deviations equal 

2V~-or IZ'( ~o)l ct2 and - -  

¢r ( 2 1 -  l)  2 ¢r (21-- l)  2 

for proportional errors, and 

2¢r-zl/2or c2(21 - l)  -2 

(13) 

(14) 

for additive errors. 
For c~ = 1 the sum is equal to ¢r2/8 (see Ref. [15], eq. 0.324), and the limits thus equal ¢rlZ'(¢o)l and orlZ"(oo)l in the 

proportional errors case and just or in the additive errors case. Thus, the results obtained in Ref. [6] by the Monte Carlo 
approach are verified by the present analytic study. 

3.2. Stabilization of  the output error distributions 

The hypothesis of stabilization (the existence of the limit as h -* 0) of the output error distributions was suggested in 
Ref. [6]. Now, using Eqs. (A-13) and (A-14) for the endpoints cases, and Eq. (A-15) for the midpoints cases, we summarize 
the results as follows. 

In the endpoint cases, the distributions of the output errors tend to the distributions of the random variables 
o~ 

l--I 

where K is either 2trlZ'(to)l/Ir  and 2trlZ'(to)l/1r for proportional errors or 2 t r /1r  for additive errors. 
In the midpoint cases, the distributions of the output errors tend to the distributions of the random variables 

K E e/( E l l -  e 2 , ) ( 2 1 -  l)  - l  
l=l 

where K takes the same respective values as above. 
Particularly for the extended midpoint rule, the stabilization is around the distribution of the random variables 

oo 

K~ (el,- e2,)(2l- 1)-' 
I=1  

The results hold for both equal and geometric integrating intervals. 
The present analysis, together with the corresponding evaluations in Appendix A, show that for Eqs. (3) and (4) output 

stochastic errors are generated in a small neighborhood of the pole at y = 1. To reduce the stochastic error, one should 
space the points of integration thinner around the pole. Consider an example. Let us use the midpoint rule, c I = . . .  = c N = 1, 
with a modification so that the integration points are Yk = 1 - ( N - k  + l / 2 ) h  for k = m ,  m + 1 . . . . .  N ,  so that the 
intervals lengths are equal to w~ = mh, w 2 = w 3 = . . .  = h. It is easy to see that the limit of stochastic error is then 
proportional to 

X =  ~ ( 2 1 -  1) -2 
l f m  

with the same coefficients as in Eqs. (13) and (14). With m = 2,3,4, we find decreases in the output-error standard deviation 
by 0.48, 0.35, and 0.29 times respectively. On using the trapezoidal integration rule, X = ~/ -m/ (2m-  l), this leads to the 
close approximations 0.47, 0.35 and 0.29. 

Notice that the numerical integration error will have, for fixed m, the same order as N becomes large. To investigate 
both kinds of error carefully, it is necessary to optimize the density of the Yt around the pole. In other words, one must 
choose between optimizing the procedure for either small integration error (many points near the pole) or small transformed 

noise error (few points near the pole). 
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4. Note added proof 

Since this papcl' was accc:)ted, one which deals in part wire the same subject has recently appeared (M Durbha, M.E. 
Orazem and L.H. Garcia-Rut~io, J. Electrochem. Soc., !44 (! 997) 48). One of the present authors (JRM) provided a long, 
detailed review iJi April 1996 of the original version of this paper, and recommended that the MS be accepted only after 
extensive revision because its analytical proof of KKR noise-transformation was incorrect. However, the Orazem work 
prompted the present authors to subsequently develop a completely different and correct proof. The present paper is the 
result, and a preprint of it (identical to the present accepted version) was sent to Dr. Orazem in June 1996, along with the 
identification of JRM as one of the reviewers of the original version. 

The new proof in the revised Orazem paper, which was received by the journal near the end of September 1996 but not 
seen by the present authors until its publication, is quite different from their original one and is less general and more 
approximate than that presented here. It is noteworthy that, in the Orazem paper, neither are the referees thanked for their 
comments and suggestions nor is the early receipt of, or existence of, the present work acknowledged. Nevertheless, on 
comparing the final version of the Orazem paper with this one, it is obvious that their proof involves many crucial elements 
first introduced in the present work. In particular: (a) the basic idea of proving the equality of the input and output error 
variances using the rules and constraints of numerical integration; (b) the essence of their Eqs. (13), (14), (15), (27), and 
(28); and (c) the recognition that output stochastic errors are generated in the immediate neighborhood of the pole in the 
integrand. Their proof does not contain specific definitions of the placement of their integration points, y,,, or of their 
weights, yet the present work shows that the transformed variances depend sensitively on such details as the specific form 
of the numerical integration procedure. Thus their proof is both derivative and sufficiently incomplete to preclude its 
application to actual numerical integration without further information. The Orazem work introduces a Taylor expansion, 
stated to be valid when the error variance is continuous at the pole position. However, such an expansion requires the 
existence of two-times differentiability (with a continuous second derivative), conditions not mentioned. Further, all the 
proofs in the present work require no differentiability conditions, are valid for non-constant but continuous variance, and do 
not require the assumption of a particular error structure. 

Finally, the Orazem paper contains incorrect and inappropriate criticisms of the original JRM Monte-Carlo work (Ref. [6] 
herein), ones absent from their original version, but perhaps related to the recommendation in the JRM review that their 
actual references to the earlier work were misleading and misplaced and that the results of the earlier work should be 
recognized as the justification for developing an analytic proof of the noise transformation relations. After reading the above 
discussion of the history of these matters, the reader will not be surprised to learn that this recommendation was not 
implemented. 
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Appendix A. Numerical integration around a pole in the presence of random errors 

We study the sum which generalizes all introduced stochastic errors: 

f (  ) ,--, CN- k + 1 Wk Yk Ilk 

k=i 1 -y~ (A-l) 

where f is a continuous function on [0,1], and the e k are independent identically distributed random variables with 
O, var[Ek]- cr 2. 

A. 1. Stabilization of the output standara deviations 

We begin with the calculation of the limit of the variance of ~ as h ---* 0 and N --, oo. Since the e k are independent, the 
variance of the sum is equal to 

2 

• ar[ ] = Z 
k=, (l -yl) 2 (A-2) 
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Take a sufficiently small 6 > 0 specified below and split the sum in Eq. (A-2) into two parts: 

• 2 _2 W 2 t /  N C 2 . _ k + l W k f ( y t )  2 N C.N_ t + I t j t y k )  2 

var  [ ,~  l =try'  E 2)5 + t r 2  E (1 y2) 2 (A-3) 
k y k ~ i - 6  (1 --Yk k:Yt,< i - / i  - -  

First we establish that the second term plays a negligible role in generating the limiting output standard deviation errors. 
Moreover, since this term is the variance of 

iv CN_k+ iwk f (  yk)ek 
--"% = E 1 - y2 ( A - a )  

k : y k <  ! - 8 

we thus establish as well thai this latter sum plays a negligible role in producing the limiting output error distributions. 
Using the inequality 

2 < wk maxk [wk] W k --  

and the trivial identity ~ ' _  lwk = y~ - Yl, we obtain that for any positive 6 

"~ 2 iv C?~_k+ lwkf(  yk) "~ 
v a r [ - - ~ ]  = ° ' 2  ~ 2 <C20"28-2max[w~]  max f ( y ) 2 ~ 0  (A-5) 

" k : y , < , - ~  ( ;  _ y 2 )  k y~10.11 

as h ~ 0, uniformly in N, with C bounding the coefficients ck. 
Consider the first term in Eq. (A-3), which is the variar, ce of 

iv Clv_k+lWkf(yk)ek 
- -  y '  ( A  6)  i ¢  ~ 

--!  1 - y~ k : y k >  ! - ti 

Given r > 0 but arbitrarily small, choose the 6 so small that 

I f ( y ) 2 - f ( l ) 2 l _ <  K for any y >  l - t l  

Then 

N C ~ _  2 ) 2  N 2 2 
CN_k + IWk lw~cf(Yk < ( f ( l  + K )  )". (! y2) 2 E ): 

(l-y f - - 

>-- E 

(A-7) 

Now for all cases described in Table l we shall calculate the limits of the last sum and show that they do not depend on tS. 
Since K > 0 was arbitrary, it follows that one will obtain the same limit as that of the sum in Eq. (A-2). 

A. 1.1. Geometric, geometric smoothed, and equal intervals using endpoints, see Table 1 

We have for the geometric cases 

2 N N C 2 _ k + l W k  _ y ,  

E (1 
k:yk> I - 8  --  . _ - 

where 1 = N -  k + I. 
Since for small enough 8 and for all ! such that e -th >_ 1 - 8 

1 - e -zth > l h / 2  and 1 - e -h < h 

C2-k+ ! e-2(N-k+llh( eh - 1) 2 

1 - e-2(N-k)h] 2 

i:e-'"> l-,s c 2 e-2th(eh _ 1) 2 

E 
1 = !  ( 1  - -  e - 2 1 h )  2 

the summand in the last sum is at most  4C2/ l  2, where C is the constant bounding the g .  Therefore this sum is bounded by 

the converging series 

E 4 C 2 1 - 2  

l = l  

Further, as h -~ 0, for any fixed l, the limit of the lth summand equals c2/(412). Thus, by the Lebesgue-Fatou Lemma 

(Ref. [ 16], p. 17) 

iv c2 k+lw 2 o-2f(l)  2 ~ c~ (A-8) 
- -  = l im E = ~ E T 2 lim var  [ --,- ] 0"2f( 1)2 h--+0 k: v k> ! ii I i= h~0 • . - - ( l _ y 2 )  4 
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In the important case ct = 1, we have from the Riemann zeta function of 2 

lim v a t [  ~ ] = o'2f( 1)"rr2/24 (A-9) 
h ~ 0  

(see Ref. [15], eq. 0.233). 
For equally spaced points, calculations are easier, and the result is still the same. For the smoothed cases, all analysis and 

evaluations are still the same. Only the first term of the final sums is different, but it is easy to show that the limit is the 
s a m e .  

A.1.2. Geometric, geometric smoothed and equal intervals using mMpoints, see Table l 
By the reason given in the previous paragraph, we need to consider on!y the non-smoothed case. Again, differences with 

the previous cases are minimal. The bounding series is 
OD 

E C 2 ( 2 1 -  I) -2 
!=1 

and the limit as h ~ 0 of a summand in the final sum is equal to c2/(21 - !) 2, so again using Lebesgue-Fatou Lemma 

lim v a r [ _ ~ ] -  tr2f(l)  2 E c2( 2 1 -  !) -2 (A-10) 
h~O I=1 

In the important case c t - 1, we have 

lim va r [  ~ ]  = t r2f( l )2~r2/8  
h--.0 

(see Ref. [15], eq. 0.324). 

(A- I I )  

A.2. Stabilization of  the output error distributions 

By virtue of Eq. (A-5) we need only study the sum -~l, (Eq. (A-6)). Setting in Eq. (A-7) f l(Y) =-f(Y) - f ( l ) ,  we get 

[ v : 
var ~ , - f ( l )  E CN-~+,," , k"~ CN-k+,(N)2w~ 

k:v,>,-8 I---; <K (A-12) 
. - --Yi" k:.vk>,-8 (l-y~) 2 

and by Section A. 1.2 the multiplier of K is bounded for all considered cases. We are thus now in a position to calculate a 
limit of the second term under the vat  sign. It follows from Eq. (A- 12) that if the limit does exist and it does not depend on 
8, the sum E tends in quadratic mean to the same limit. 

A.2.1. Endpoint cases 
Consider the sum 

~, = ( f ( l ) / 4 )  E c te t l - '  (A-13) 
i = l  

which obviously converges in square mean, so the random variable ~:~ is well defined. Since the ~k are independent, we 
easily calculate that 

N CN- ,(N)wk% f(1) N CN_k+lek 
var f(1) ~'. k+ ~'~ N--k+l 

k:y t>  i _  6 l _y2  4 k :e_ tn_t ,  i)h> l _  6 

I:Ytc-I+I>I-6 c I (N)WN- I+IeN_I+I  f ( l )  I : e - t h > l - 6  
=valr f(l) E E 

t=I l -- Y~-t+ i 4 t=1 

l :e-th> ! - 8  [ =:<,>. 
_- l y2_,+, 41] 

By the assumptions on the ct(N) for a constant C~ and for all N 
N 

E [ g ( N )  - _< c, 
1 

CII~N-I+ ! 

l 

(A-14) 
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,CA ~Al ' t  Using this inequality, it is stra;,ghfforwal , to show that the sum in the right-hand pm't of Eq. ~,-k,,~ tends to zero as h ~ 0 
Since the variables ~t and eA,-t~ t h~ve the same distribution, the distribution of the output error stabilizes to the 
distribution of ~:l. 

In the smoothed case we again find stabilization to the same distribution of ~ .  

A.2.2. Midpoint cases 
Following the same reasoning, we get the stabilization of the output error to the distribution of the random variable ~2' 

given by 

~2 = f ( l )  Y',ctet(21- 1 ) - '  (A-15) 
I 
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