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The conclusionK. L. Ngai, A. K. Rajagopal, R. W. Rendell, and S. Teitler, Phys. Re2886073

(1983] that simple exponential decay is a nonviable model for electrical relaxation, because it fails
to satisfy the fundamental Paley—Wiener Fourier transform criterion, is shown by direct analysis to
be inapplicable to small-signal electrical relaxation situations. Thus, not only is exponential decay
and its associated single-relaxation-time Debye frequency response a valid model for relaxation,
but, by extension, all distributions of relaxations times and energies which use a superposition of
simple exponentials or Debye functions are also acceptable descriptions of relaxation phenomena.
Reasons why the earlier conclusion is nonviable in the present context are discuss&fi97©
American Institute of Physic§S0021-89787)05115-3

I. INTRODUCTION pressed in terms of such DRY&89If the Ngaiet al.result$

. 1 . , are indeed applicable, these treatments must be rejected in
' I'n 1933, Ngalet al” published a paper V\{lth the gbqve principle, although in practice, it will usually be impossible
title in which it was shqwn that _the Paley—Wlener_ criterion, 1y yiscriminate adequately between s@=1 and S

a necessary and sufficient requirement for the existence of a3 9999 situations.

Fourier transform of a given function, predicted that a relax- Although there have been many theoretical treatments
ation function involving linear exponential decay was not,,ni-h indicate that simple exponential decay is an approxi-
acceptable. As these authors pointed out, this conclusion hasation (e.g., Refs. 10 and 1lthe deviations from such a
far-reaching consequences. If a simple exponential reIaxatio,réSponse may be vanishingly small in many cases of interest;
function is invalid, then the superposition of such functions,e conclusion may not be applicable to the present situation:
to produce a discreteor continuous distribution of relax-  4nq “in addition, such theoretical analysis is itself idealized
at!on times(DRT) cannot be “a viable descrlptlon' of relax- 44 approximate and cannot capture the full complexity of
ation phenomena.” Note that for a thermally activated pro-paqre Thus, although these considerations should not be
cess, a DRT can be readily cast in the form of a distributiony, icient to preclude the use of linear exponential decay in
of activation energieDAE);"® so these possibilities are i theoretical and experimental treatments, it would be

also ruled out. The purpose of the present work is t0 demory, ,ch more serious if the Paley—Wiener criterion indeed re-

strate that the Paley—Wiener criterion does not, in fact, Projecteq the possibility of such a response. Since Ngai and
hibit the existence of a simple exponential relaxation func

h " ) ; “associatéshave used this criterion as the “touchstone” of
tion as a viable model for small-signal relaxation. their demonstration thad,(t/7,) is not a valid relaxation

Let us define the important stretched-exponentiaknction, it is worthwhile to examine the matter more care-
[Kohlrausch—Williams—Watt$sKWW)] temporal relaxation fully.

response in conventional fofas

bt/ 7 =exd — (t/79)”], (D) 1. PALEY-WIENER ANALYSIS

where7 is a characteristic relaxation time and the exponent  Consider the standard form of the relationship between
satisfies 6<B<1. For =1, simple linear exponential re- the normalized linear-system relaxation functiap(t) [a
sponse is obtained; for this case replagdy 7o and ¢s by  causal function since(t)=0 for t<0] and the associated
¢o. In contrast to thgg=1 situation, Ngakt al.* found that  complex system functiorl(w). Written as a Fourier trans-

for B<1 the Paley—Wiener criterion was not violated. form, it is may be expressed®8??

Hundreds of papers are published each year which make e
use of a DRT or DAE, and many of them either directly |(w):f exp(—iwt)[ —de(t)/dt]dt. 2)
involve a discrete or continuouslifferential) superposition -

of simple exponentials, equivalent in the frequency domain=g, the dielectric response  situation| (w)=[ e(w)

to a superpo;ition of simple one-relaxation-time Debye re-_ () ]/[€(0)— e(=)] and —d(t)/dt is the normalized
sponse functionge.g., Refs. 2, 3, 6, and)®r can be ex-  yangjent current present when a fully charged relaxing sys-
tem is short circuited at=0. Thus, ¢(t) is a step-function
aElectronic mail: macd@gibbs.oit.unc.edu response functiofr}?> We take it to be nonnegative, nonzero,
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and square integrable. Although here we shall assume thatliieen possible to accurately compare experimental frequency-
is nonzero over the entire range<®<, it may alterna- response data with KWW-model predictiofisln addition,
tively be time limited and thus be zero above a particulamwith the above rehabilitation of the simple exponential decay
value oft. model, it can also be used where appropriate.

In order to deal with dimensionless quantities, let Why is the negative conclusion of Ngat al. inappli-
=wTty, Wherer, is a honzero characteristic relaxation time cable to the usual relaxation situation defined herein? The
or scaling factor. Then, we may replaag by xT, where difference arises from their use of definitions of an energy
T=t/7y. Linear exponential decay may now be expressed adistribution function and its Fourier transform, a complex

_ _ relaxing amplitudeg¢(t), which are not immediately relevant
¢(T)=do(T)=exp(—T). © to smagljl—sig?]al rela§<a)tion in conducting and die}llectric Sys-
When one substitutes E@43) into Eq. (2), rewritten with  tems. Much of the work of Ref. 1 is based on an earlier
dimensionless variables, and carries out the transform, thanalysis of Khalfir?® which is most appropriate for the decay
result, not surprisingly, is just of an almost stationary state, as in radioactive decay. Thus, it
1o(x)=1/(1+i%), 4) should not be surprising if Pgley—Wiener conclusiqns \(alid
for such a system are inapplicable to the present situation.
simple the one-relaxation-time Debye response. Note that its ~ Although the meaning and usage of thé&) complex
associated distribution of relaxation timesdigr— 7o) in un-  function in the time domain was not fully discussed in Ref.
normalized form. 1, it was later considered in some detail in Ref. 17. There,

Consider now a generap(T), its associated(x), @ the relaxation functionp(t) was identified as the positive-
complex function, and its amplitud®(x) =|1(x)|. A(x) also  time part of a function®(t), even in the time variable and
must be nonzero, nonnegative, amdx)=A(—X). By  equal to the real part of the Fourier transform of the energy
Parseval's theorem, sincé(T) has been assumed square distribution function. Althoughb (t) was taken as causHlijt
integrable, A(x) is also square integrable and vice versa.js only its positive-time partg(t), that is causal.

Now, according to the P_a_ley—Wiener criterib’ﬁ,l_Sa neces- Ngai and associatesake their/c(t)| as theA(x) appro-

sary and sufficient condition that a givef(T) exists is that  priate for use in Eq(5), but, following the work of Khalfin,
+2 [In{A(x)}|dx they d_efine thex v_ariable not_ as _freqllJSency, as is conven-

T<m' (5)  tional in the electrical-relaxation field;** but as time, with

the Paley—Wiener denominator term written ast? andt

We can now examine whether the Paley—Wiener critenot dimensionless. On setting théi(t)|2 equal to a form of
rion is satisfied for the exponential relaxation functionthe KWW response function of E@l), they conclude with
éo(T) of Eqg. (3). It follows from Eq. (4) that Ay(X) Khalfin that the Paley—Wiener criterion is not satisfied for
=|1o(x)|=[1+x2]"Y2. On using this result in Eq5), one  B=1. A further measure of the difference between their
obtains analysis and conventional results is their expression for their
energy distribution in thgg=1 case,

= [In{1+x2 " Ydx (= In(1+x%)dx
le 1+x2 _fo 1+x2 ’ 6) po(e):TS/[1+(TSE)2]1 (7
where € is the energy(in #=1 unit9. In the conventional

DAE case, by contrasipq(€) = 6(e— €y), where g is the
gnergy associated with thermal activationrgt

The actual value of this integral is just|In{Ay(1)%
=mn(2) (Ref. 15, p. 41), showing that the criterion is in-
deed satisfied for simple exponential decay. These resul
indicate, contrary to the conclusion of Ngatial. that linear ) _ _ _
exponential decay is a valid relaxation function, and by ex- gé Léo'\;%?i 9A8-3K- Rajagopal, R. W. Rendell, and S. Teitler, Phys. Rev. B
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