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The conclusion@K. L. Ngai, A. K. Rajagopal, R. W. Rendell, and S. Teitler, Phys. Rev. B28, 6073
~1983!# that simple exponential decay is a nonviable model for electrical relaxation, because it fails
to satisfy the fundamental Paley–Wiener Fourier transform criterion, is shown by direct analysis to
be inapplicable to small-signal electrical relaxation situations. Thus, not only is exponential decay
and its associated single-relaxation-time Debye frequency response a valid model for relaxation,
but, by extension, all distributions of relaxations times and energies which use a superposition of
simple exponentials or Debye functions are also acceptable descriptions of relaxation phenomena.
Reasons why the earlier conclusion is nonviable in the present context are discussed. ©1997
American Institute of Physics.@S0021-8979~97!05115-3#
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I. INTRODUCTION

In 1983, Ngaiet al.1 published a paper with the abov
title in which it was shown that the Paley–Wiener criterio
a necessary and sufficient requirement for the existence
Fourier transform of a given function, predicted that a rela
ation function involving linear exponential decay was n
acceptable. As these authors pointed out, this conclusion
far-reaching consequences. If a simple exponential relaxa
function is invalid, then the superposition of such functio
to produce a discrete2 or continuous3 distribution of relax-
ation times~DRT! cannot be ‘‘a viable description of relax
ation phenomena.’’ Note that for a thermally activated p
cess, a DRT can be readily cast in the form of a distribut
of activation energies~DAE!;4–6 so these possibilities ar
also ruled out. The purpose of the present work is to dem
strate that the Paley–Wiener criterion does not, in fact, p
hibit the existence of a simple exponential relaxation fu
tion as a viable model for small-signal relaxation.

Let us define the important stretched-exponen
@Kohlrausch–Williams–Watts~KWW!# temporal relaxation
response in conventional form7,8 as

fs~ t/ts!5exp@2~ t/ts!
b#, ~1!

wherets is a characteristic relaxation time and the expon
satisfies 0,b<1. For b51, simple linear exponential re
sponse is obtained; for this case replacets by t0 andfs by
f0 . In contrast to theb51 situation, Ngaiet al.1 found that
for b,1 the Paley–Wiener criterion was not violated.

Hundreds of papers are published each year which m
use of a DRT or DAE, and many of them either direc
involve a discrete or continuous~differential! superposition
of simple exponentials, equivalent in the frequency dom
to a superposition of simple one-relaxation-time Debye
sponse functions~e.g., Refs. 2, 3, 6, and 9! or can be ex-

a!Electronic mail: macd@gibbs.oit.unc.edu
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pressed in terms of such DRTs.5,6,8,9If the Ngaiet al. results1

are indeed applicable, these treatments must be rejecte
principle, although in practice, it will usually be impossib
to discriminate adequately between sayb51 and b
50.9999 situations.

Although there have been many theoretical treatme
which indicate that simple exponential decay is an appro
mation ~e.g., Refs. 10 and 11!, the deviations from such a
response may be vanishingly small in many cases of inter
the conclusion may not be applicable to the present situat
and, in addition, such theoretical analysis is itself idealiz
and approximate and cannot capture the full complexity
nature. Thus, although these considerations should no
sufficient to preclude the use of linear exponential decay
both theoretical and experimental treatments, it would
much more serious if the Paley–Wiener criterion indeed
jected the possibility of such a response. Since Ngai
associates1 have used this criterion as the ‘‘touchstone’’
their demonstration thatf0(t/t0) is not a valid relaxation
function, it is worthwhile to examine the matter more car
fully.

II. PALEY–WIENER ANALYSIS

Consider the standard form of the relationship betwe
the normalized linear-system relaxation function,f(t) @a
causal function sincef(t)50 for t,0# and the associated
complex system function,I (v). Written as a Fourier trans
form, it is may be expressed as6–9,12

I ~v!5E
2`

1`

exp~2 ivt !@2df~ t !/dt#dt. ~2!

For the dielectric response situation,I (v)[@e(v)
2e(`)#/@e(0)2e(`)# and 2df(t)/dt is the normalized
transient current present when a fully charged relaxing s
tem is short circuited att50. Thus,f(t) is a step-function
response function.8,12We take it to be nonnegative, nonzer
/82(3)/1476/3/$10.00 © 1997 American Institute of Physics
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and square integrable. Although here we shall assume th
is nonzero over the entire range 0<t,`, it may alterna-
tively be time limited and thus be zero above a particu
value of t.

In order to deal with dimensionless quantities, letx
[vt0 , wheret0 is a nonzero characteristic relaxation tim
or scaling factor. Then, we may replacevt by xT, where
T[t/t0 . Linear exponential decay may now be expressed

f~T!5f0~T!5exp~2T!. ~3!

When one substitutes Eq.~3! into Eq. ~2!, rewritten with
dimensionless variables, and carries out the transform,
result, not surprisingly, is just

I 0~x!51/~11 ix !, ~4!

simple the one-relaxation-time Debye response. Note tha
associated distribution of relaxation times isd(t2t0) in un-
normalized form.

Consider now a generalf(T), its associatedI (x), a
complex function, and its amplitudeA(x)5uI (x)u. A(x) also
must be nonzero, nonnegative, andA(x)5A(2x). By
Parseval’s theorem, sincef(T) has been assumed squa
integrable,A(x) is also square integrable and vice vers
Now, according to the Paley–Wiener criterion,13–15a neces-
sary and sufficient condition that a givenf(T) exists is that

E
2`

1` u ln$A~x!%udx
11x2

,`. ~5!

We can now examine whether the Paley–Wiener cr
rion is satisfied for the exponential relaxation functi
f0(T) of Eq. ~3!. It follows from Eq. ~4! that A0(x)
5uI 0(x)u5@11x2#21/2. On using this result in Eq.~5!, one
obtains

E
2`

1` u ln$11x2%21/2udx
11x2

5E
0

` ln~11x2!dx

11x2
. ~6!

The actual value of this integral is justpu ln$A0(1)
2%u

5pln(2) ~Ref. 15, p. 417!, showing that the criterion is in
deed satisfied for simple exponential decay. These res
indicate, contrary to the conclusion of Ngaiet al. that linear
exponential decay is a valid relaxation function, and by
tension, a superposition of such functions to form a discr
or continuous distribution of relaxations times is also a
able description of relaxation phenomena as far as
Paley–Wiener criterion is concerned. Finally, note that a d
tribution with N,` discrete relaxation times automatical
satisfies the physically based criterion that the response
system involves a nonzero smallest relaxation time an
finite largest relaxation time.16

III. DISCUSSION

The conclusion thatb51 simple exponential response
nonviable has been used to emphasize the importanc
b,1 stretched-exponential response~e.g., Refs. 1, 17, 18!,
an integral part of the Ngai coupling response theory.17,19–22

Although stretched-exponential response is indeed impor
and has often been found to yield apparently good fits
experimental data~e.g., Refs. 18, 23–25!, only recently has it
J. Appl. Phys., Vol. 82, No. 3, 1 August 1997
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been possible to accurately compare experimental freque
response data with KWW-model predictions.25 In addition,
with the above rehabilitation of the simple exponential dec
model, it can also be used where appropriate.

Why is the negative conclusion of Ngaiet al. inappli-
cable to the usual relaxation situation defined herein?
difference arises from their use of definitions of an ene
distribution function and its Fourier transform, a compl
relaxing amplitude,c(t), which are not immediately relevan
to small-signal relaxation in conducting and dielectric sy
tems. Much of the work of Ref. 1 is based on an earl
analysis of Khalfin,26 which is most appropriate for the deca
of an almost stationary state, as in radioactive decay. Thu
should not be surprising if Paley–Wiener conclusions va
for such a system are inapplicable to the present situatio

Although the meaning and usage of thec(t) complex
function in the time domain was not fully discussed in R
1, it was later considered in some detail in Ref. 17. The
the relaxation functionf(t) was identified as the positive
time part of a functionF(t), even in the time variable and
equal to the real part of the Fourier transform of the ene
distribution function. AlthoughF(t) was taken as causal,17 it
is only its positive-time part,f(t), that is causal.

Ngai and associates1 take theiruc(t)u as theA(x) appro-
priate for use in Eq.~5!, but, following the work of Khalfin,
they define thex variable not as frequency, as is conve
tional in the electrical-relaxation field,14,15 but as time, with
the Paley–Wiener denominator term written as 11t2 and t
not dimensionless. On setting theiruc(t)u2 equal to a form of
the KWW response function of Eq.~1!, they conclude with
Khalfin that the Paley–Wiener criterion is not satisfied f
b51. A further measure of the difference between th
analysis and conventional results is their expression for t
energy distribution in theb51 case,

r0~e!5ts /@11~tse!2#, ~7!

where e is the energy~in \51 units!. In the conventional
DAE case, by contrast,r0(e)5d(e2e0), where e0 is the
energy associated with thermal activation oft0 .
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