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Given a fitting model, such as the Kohlrausch—Williams—W4&K8VW)/stretched-exponential
response, three plausible approaches to fitting small-signal frequency or time-response data are
described and compared. Fitting can be carried out with either of two conductive-system formalisms
or with a dielectric-system one. Methods are discussed and illustrated for deciding which of the
three approaches is most pertinent for a given data set. Limiting low- and high-frequency log—log
slopes for each of the four immittance levels are presented for several common models; cutoff
effects are considered; and an anomaly in the approach to a single-relaxation-time Debye response
for one of the conductive-system approaches is identified and explained. It is found that the temporal
response function for the most appropriate conductive-system dispe(€iSD) approach,
designated the CSD1, one long used in approximate form for frequency-response data analysis, does
not lead to stretched-exponential transient behavior when a KWW response model is considered.
Frequency-domain fitting methods and approaches are illustrated and discriminated using 321 and
380 K NgO-3SiQ data sets. The CSD1 approach using a KWW model is found to be most
appropriate for fitting these data exceedingly closely with a complex nonlinear least-squares
procedure available in the free computer progtavm. Detailed examination and simulation of the
approximate, long-used CSD1 modulus fitting formalism shows the unfortunate results of its failure
to include separately the effects of the always present high-frequency-limiting dielectric constant,
€p« - The stretched-exponential exponefitassociated with this fitting approach has always been
misidentified in the past, and even after its reinterpretation, the result is likely to be sufficiently
approximate that most physical conclusions derived from such fitting will need reevaluation.
© 1997 American Institute of Physids$0021-897@07)00620-§

|. INTRODUCTION AND BACKGROUND lead to the physical insight and understanding that is the
primary goal of experimentation.

There are three different approaches to fitting and ana- The two different CSD approaches, ones with which we
lyzing small-signal frequency and transient-response data fashall be most concerned here, are labeled CSDO and CSD1.
solid and liquid materials=® These involve fitting the data The CSD1 formalism is, from physical grounts® particu-
with either a complex dielectric constant,or susceptibility larly appropriate for thermally activated systems, but both
response model, appropriate for dielectric system dispersiowill be considered and their responses compared here. Where
(DSD), or with one of two different conductive-system- needed, let us use a subsciipto denote DSD-related quan-
dispersion(CSD) approaches: CSDO and CSD1, ones wherdities andC, 0, or 1 for the CSD ones. Thus, the DSD and
the fitting model is defined at the complex resistivigy,or ~ CSD relaxation-time distributions may be designate®as
impedanceZ, level. For such CSD situations, the limiting Go, @nd Gy, respectively. Now, define an un-normalized
low-frequency conductivity or resistivity is an intrinsic part freduency response quantity &, wheren is D, 0, or 1.
of the dispersive response model, not the case for the DSBhUS' for examplepl m!ght be a complex reS'St'V't,y .and
situation. It is often convenient to express the models ingD a complex dlglectrlc constant. Then, on d_eflnmg
terms of a distribution of relaxation timé®RT) or activa- :T/TO”.’ ;‘,’Qere Ton IS @ characteristic relaxation time, one
tion energies, but doing so, while mathematically useful,may writ
need not imply that _sugh relaxation times, gither conti_nu- U (@)= U () = G(x)dX
ously or discretely distributed, are necessarily of physical Wzln ® =f
significance. n n
ted 'i‘gy d?t);)razirgea?;dg ?k:eretshprzgszgzrc?;gge?agegiriftlate ere, theG,, quantitie'_s are taker_w n_ormalized, so the normal-

. o . _iZzed response gquantity,(w) satisfiesl,(0)=1 and|,(°)
above. A crucial part of adequate fitting is to determine

which of the three is most appropriate for a given set of It is worth emphasizing that although thg response

experimental data and which available model best represeni,, pe gefined in terms of a distribution of dielectric-system
the data. Only then can the model and its parameter estimalgs|ectric relaxation timegMaxwell connectivity) and the
I response in terms of a distribution of conductive-system
dElectronic mail: macd@gibbs.oit.unc.edu resistivity relaxation timeg§Voigt connectivity), their actual
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3962 J. Appl. Phys. 82 (8), 15 October 1997 0021-8979/97/82(8)/3962/10/$10.00 © 1997 American Institute of Physics

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



frequency response can be fitted, for better or worse, by Equationg4) and(5) were derived using th&,’s of Eq.
transformation of the data and model to any of the four im-(1) and, in fact® G, is proportional tor (or x) times G,.
mittance levels: complex dielectric constagtcomplex con-  Note, however, that when an expression fgfw) is avail-
ductivity, o; complex resistivity,p; and complex modulus, able,l;(w) is readily obtained from Eq4) without the need
M. In terms of the normalized relaxation-time variabke,  for usingG;, in Eq. (1), provided an expression f¢x 1), is
the moments of the distributions may be expresséd as available, as it is for the important and much used
. Kohlrausch—Williams—Watt$KWW)'°> model. Conversely,
<Xm>nEJ XMG,(x)dXx, (2)  when an analytic expression f@; is known but not one for
0 I,(w), Eq.(1) may be used to obtain the latter. Further, the

where the(x™), clearly depend on the shape of the distribu-”ormalized temporal relaxation functiom,(t), is given

,16,17
tion but not directly onry,. For simplicity, definepj(0) by?
=pggandp;(0)=pp:. We shall usually omit this distinction o
and use juspo=1/o instead. dn(t)= fo Gn(m)exp( —t/r)dr=exq — (t/7on)n],
A typical |,(w) response function is that of Havriliak
and Negamf, 0<B,=<1, (6)
lynn(@)=[1+ (iw7ey) ] P, 0<ap <1, 0<B,<1, where the right-hand side is the stretched-exponef##)

3 response and only the=D or 0 choice is applicable for it,

as demonstrated in the next section. WheaD, ¢p(t)
gives the time dependence of the normalized charge mea-
sured on discharge of a completely charged purely dielectric
material when its electrodes are shorted together. The inter-
etation of ¢,(t) for n#D is more complicated, but the

an expression which reduces to the Cole—Edalilectric
response when n=D and pBp=1, and to the
Cole—Davidsotf dielectric response whemp=1. It has
been showh that any specifid, response function can be

used at the CSD level with its parameters then designated b?}{nct'on is still useful and has been termed the correlation
the subscriptC rather thanD. Such changes are necessary lon IS stit useiul a . !
Euncuon by Ngai and Rizd$ in such cases.

since, although the form is the same, as one might expec Although I () may be calculated numerically from a
fitting of a given data set will not yield the same parameter, nown KVQ\]/WH w(t) e{( ressiod 561617 o closeyd-form
estimates using the DSD fitting as those obtained with th .d’” P ' .

WW expressions forl (o) are available wheng,<1.

CSD fitting. Si h losed-f : B d
The transformation from a DSD or CSDO response func- ince, however, closed-form expressions 1B5(7) an

15,16 _
tion to a CSD1 one is somewhat more complicated. A Iim—Gl(T) are knowr for 5c=0.5, the left part of Eq(6)

ited and incorrect form of the needed relation was first pro-may be used 1o obtain the, (t) response for this particular

posed by Moynihan and co-workets; correct version was KWW case. Sincg the MMF fitting approach has been pri-
independently introduced latét;and the matter has been ”.‘a”'Y applied using the KWW response _model for CSD
considered in detail recenthf The important and widely situations, we shall here use the designation MMF only to

used Moynihan CSD1 data-fitting approach has been calle'(',?d'cate such fitting.
the (Moynihan modulus formalism{MMF),>*?>~#pecause it
was first derived and presented at the complex modulu¥- TEMPORAL RESPONSE FUNCTIONS

level® but it may be expressed at any immittance level.  Before discussing frequency response and fitting for
Given an expression fdip(w), a normalized complex resis- CSD and DSD situations, it is useful to consider the corre-
tivity (or impedancequantity, the earlier work® shows that  sponding transient or correlation-function response. Al-
one can calculaté, () by though the differences between the various responses could
N T be illustrated, for example, for the Cole—Davidson response
h(@) =L /toTol[1=To(w)]. @ model, it is of greater inferest to consider them for the KpWW
In the special case wherg...=pc1(*)=0, that implicitty  model, one which has been found to fit a large variety of
considered by Moynihan and co-workers, it turns out that ifexperimental frequency-response data involving electrical or
we defineM ;(w) in standard form asifeypo)!1(w), then  mechanical dispersion. Even though the present analysis
-~ deals explicitly with electrical behavior, its results apply as
Ma(@)=[1=To(@)]/(ecs)s. ®  \well to most mechanical relaxation situations.
Here, ey is the permittivity of vacuum. The quantity¥£..), Pertinent time-dependence results are presented in Fig. 1
a purely conductive-system quantity, which is defined latefor the 8,=0.5 case. The solid line shows an ordinary CSDO
in Eq. (7), was erroneously identified as one of the quiteor DSD stretched-exponential response for this valu@of
different quantitiesep., or €,,, by Moynihan and subsequent =8 . The solid line with solid circular points shows the
users of the modulus formalistrt?=141t is particularly im-  corresponding CSDXp,(t) response, calculated from the
portant to note that although a model expressionl f{fw) left-hand part of Eq.6) using the KWW expressidnfor
may originally involve a shape parameter such@&s the  Gi(7) with 8=8,;=0.5 and the value ofs=17,; shown in
corresponding3; associated with;(w) through Eq.(4) will Fig. 1. These results are expected to be accurate to one part
be unequal tg8,, a matter discussed in more detail below,in 10° or better. Such high accuracy is only important be-
because the distinction is both important and not generallgause it ensures that when the model is used to fit experi-
understood. mental data, there is no misfit contribution arising from in-
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proportional weighting, where the weighting uncertainties
are taken proportional to the data, or with unity weighting,
i.e., no weighting, a choice which determines the fit prima-
rily from the larger parts of the data. A logarithmic plot
shows that the proportional-weighting results are much
closer to the data for theés(t)<<1 region and that the unity-

....

N
% t,.=1s weighting ones are very poor in this region.

1 Bo=0.5 The proportional and unity-weighting SE fit estimates
0.4 4 B:=05 found for 75 and 8 were 2.2x10 % and 4.<10 °s, and

0.54 and 0.77, respectively. If the CSD1 response were ac-
tually of the SE form, these results would be the same and
independent of weighting. Thus, in spite of the apparently
Joooon 3 UWT it CoD1 good unity-weighting SE fit shown in Fig. 1, the CSD1 tem-
------ Exponential UWT fit CSD1 poral response associated with the KWW CSDO response is
14 =1 2 S 0 ' -8 not of SE form forB;<1, and it seems unlikely that it can be
lo g(’r /,r ) expressed exactly in useful closed form for ghyalue less
n than unity. Without such an expression, it is not possible to
_ _ directly associate a plausible value @f with the measured
FIG. 1. Time dependence of the relaxation response func#iét), for two | h h
methods of calculating conductive-system respon&®: conventional KWW CSD1 temporal response. For S.UC .response, the
stretched-exponential CSDO behavior, dhjithe exact CSD1 response de- above results also show that for the SEAit estimates, the
rived from modification of the conventional KWW distribution of relaxation relation B1=1— B, does not hold, unlike the frequency-
times. Also shown are inadequate nonlinear least-squares fits t¢bthe response situation discussed in the next section. For situa-
results using stretched- and ordinary-exponential-response models with pro- . '
tions where the DRT is known for anf, value, such as that
of the Cole—Davidson model, the value @f used in calcu-
] o lating a G; for use in Eq.(6) may be used to label the
accurate model calculation, a source of ambiguity ofteryegyitingg,(t) response so long as it is not confused with a
present in prior frequency-response fitting using the KWWSEﬂl exponent-type parameter and is properly distinguished
model. . _ from the ¢y(t) response involving3;.

Note that the CSD1 curve is not of stretched-exponential 1 is worth mentioning that even for the KWW model
form. In previous work, not only has no theoretical CSD1,yhare no expression f@, is available for arbitrang, , but
temp_or_al response been presented for any moqlel, but usualyre can numerically calculath(w) accurately, as in the
no distinction has been made between the varigh®) re-  present work usingevm, one can calculate the correspond-
sponses. _ , ing ¢+(t) by Fourier sine or cosine transformation of the real
. The mu_lnphcauon ofG, by 7 to obtainG,, as discussed . imaginary part of ;(w)/ . For the KWW situation, we
in the previous section, caus€h to approach zero faster oy nect4. (1) to approach the single-exponential response as
FhanGo as7—0; it 'T]’ tEus, narrower overltherar]:ge. This, B1— 1, but the calculation method outlined here, one which
in turn, causes both the CSD1 temporal and frequency r€g"one to error, might nevertheless be worthwhile in order
sponses to be closer to those for the single-relaxation-timg, investigate the non-SE CSD1 response expected, particu-
Debye response. Figure 2 shows such an approach in trfgrly that for the3,<0.5 region
frequency domain by means of comple_x-plane_ plots of "ot empirical response functions, such as the
CSDO, CSD1, and Debyle,(w) responses. Figure 1 mclud_es Havriliak—Negami one, and many theoretical ones as well,
the results of three weighted nonlinear least-squares fits t8re nonphysical® In the frequency domain, the Cole—Cole
the CSD&-, lgynthe.tlc temporal data using tre/m 1_‘|tt|ng response is nonphysical in both its low- and high-frequency
program:>>-°The first two fits used the SE model with either limits, while the Cole—Davidson and KWW responses are
nonphysical only in the high-frequency limit, where they
predict a continuously increasing real-part conductivity. A

~—— CSDO: exact SE
1 =+ CSD1: exact
asasa SE PWT fit CSD1

portional weighting(PWT) and unity weightingUWT). Here 7= 7,

0.4 1 Debye reasonable way to restore physical realizability is to cut off
- the associated DRT at its enti&?° only cutoff in the
- small-r region, say atr=r7.,, IS needed for the Cole—
0.2 1 Bo=B0=0.5 Davidson and KWW response models. Such cutoffs are con-
sistent with the requirement that any physically realizable
0.0 process must have both a shortest nonzero response time and
0.0 02 04 06 08 1.0 a longest noninfinite one as wéfl.
I’ For 7s below cutoff, the response is dominated by the

nonzero part of the DRT just before cutoff. The resulting
FIG. 2. Complex-plane comparisons of KWW DSB=D, B,=0.5,  response, either short-time temporal or high frequency, then
CSDO(n=0, Bp=0.9, CSD1(n=1, 5,=0.5, and Debye f=1) nomal- 5, 04ches that of the response associated with a single
ized | ,(w), responses. The solid dots show the positions wherg,=1, L. . . . .
and the arrow indicates the direction of increasing frequency for all the(mm'mum) limiting relaxation time. For the KWW transient

curves. response, it follows tha#,(t) must approach simple expo-
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TABLE |. Limiting log—log slopes for CSD1, CSDO, and DSD situations. Results are applicable for either
€p.=0 or ep,.#0, except where thep,.=0 ones(enclosed in square brackp@re included. For the CSD
results,pc..=0. LF and HF denote low- and high-frequency limits.

Complex data/fit levels: p M € o
CsD1 LF REAL 0 2 0 0
IMAG 1 1 -1 1
HF REAL —(1+81) 0 0 (1-8y)
IMAG -1 -B1 -B1 1
CSDO LF REAL 0 2 0 0
IMAG 1 1 -1 1
HF REAL —(2-Bo) 0 0 Bo
[~ 8ol [1- 8] [—(1-80)] [Bo]
IMAG -1 —(1-80) —(1- o) 1
[~ 8ol [1- 8] [—(1-80)] [Bo]
DSD LF REAL 0 0 0 2
(09=0) IMAG -1 1 1 1
HF REAL —(1+Bp) 0 0 1-8p
[—(1-Bo)] [Bol [~ Bp] [1- 8ol
IMAG -1 - Bo - Bb 1
[—(1-8p)] [Bol [~ 8ol [1- 8ol
DSD LF REAL 0 2 0 0
(09#0) IMAG 1 1 -1 1
HF REAL —(1+Bp) 0 0 1-Bp
[—(1-80)] [Bo] [~ Bol [1- o]
IMAG -1 -Bo -Bo 1
[—(1-Bo)] [Bo] [~ Bol [1- o]

nential behavior as becomes smaller than,,, a conclusion ~able, but now a KWW addition taevm is available, one
reached independently long ago by Ngafor the ¢(t)  Which yields accuracy of one part in &0r better:
case. The results in Fig. 1 show that if such transformation  Note that the3 values in Table | repesent those of any of
happened for the present CSD1 response witlh the above models, with the of Eq. (3) here taken ag for
=10 *?s, it would be very difficult to distinguish it from an the Cole—Cole response and as 1 for the Cole—Davidson
ordinary ¢,(t) response without cutoff, although identifica- model. Althoughep,., is >1 for any real material, results are
tion of cutoff effects is likely to be better in the frequency shown in Table | forep., =0 as well, in order to illustrate the
domain, as illustrated by the results shown in Ref. 22. yemendous differences in slopes between the two cases for
some situations. These differences are worth emphasizing
IIl. LIMITING LOG—LOG SLOPES IN THE FREQUENCY because the standa.rd way of fitting data at the CSD1 level to
DOMAIN the KWW model using the MMF takes no separate account
of ep, . For the CSD resultyc.. is taken as zero. For the
DSD situations, where conductive-system dispersion is as-
It proves to be instructive to compare the low- and high-sumed absent, results are presented for lagts o’ (0)=0
frequency limiting log—log slopes of the frequency responsgpure dielectric responsand foroy# 0 (leaky dielectric re-
of a single dispersive process at all four immittance levelssponsg The latter choice is necessary for a direct fitting
For simplicity, log—log slopes will be referred to hereaﬁercomparison with the CSD response.
just as slopes. In Table I, slope results are shown for re-  ope might wonder why, since both the CSDO and CSD1
sponse models, such as the Cole-Davidson, KWW, anghq,,nse possibilities are considered in Table I, only DSD,
COle._COIG (with 'Iong-q-. cutoff),' which are '”.“'T‘S'Cf"‘"y rather than DSDO and DSD1, behavior is included here. In
physically unrealizable in the high-frequency limit without terms of previous definitions, DSD is the same as DSDO, but

any cutoff at a smal-value. We, thus, are able to show what . ) o
. o . o a DSD1 formalism would only be appropritéor situations
these high-frequency limiting slopes are, and, in addition, as )
here bothAep=epg— ep.. and r,p were thermally acti-

discussed below, their values with cutoff present may be" ] Co -
directly obtained as well. For the exponential distribution ofVated with the same or comparable activation energies, not
relaxation model with cutoff at both frequency extremes,the usual situation.

some idealized graphical slope results appear in Ref. 23. The It is important to emphasize that the slopes presented in
Table | results were verified by complex nonlinear least-Table I in terms of thed parameters of a fitting model in-
squaregCNLS) fitting using theLEvMm programt® Until re-  volve the specifig8’'s of a given model. Thus, if, for a spe-
cently, accurate and rapid calculation of the KWW CSDOcific model, a set of exact simulated CSD1 data was calcu-
and CSD1 frequency response for data fitting was unavaillated with a particular value oB, say 8,, and then fitted

A. General slope results
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using the CSDO form of the model, the resulting estimate of  Suppose we consider a value 8&1— 6§, with §—0.
B would be designate@,, not 8, . This procedure has been The ¢ column in Table | shows that one expects a limiting
followed here, and Table | shows that, as far as limitingslope of § for CSD1 and t § for CSDO. These results are
slopes are concerned, whep., is >0, B8,=1— B, (but see indeed found, but the smalle¥, the higher the frequency
the By— 1 discussion beloy For actual data, fits over the required for the transition from the zero low-frequency slope
principal response range should not be expected to agrde the limiting high-frequency slope to occur, and the final
perfectly with this relation, even when both CSD0 and CSD1limiting CSDO slope of unity only appears at infinite fre-
fits are excellent, but one should expect it to be a good apquency. For example, for the KWWO model g increases
proximation provided the data range is adequate. Some sudftom 0.99 to 0.999 to 0.9999, the corresponding values of
results are presented in the next section. (wy7o0), the normalized frequency at which the actual

There is a lot of information in Table I. Note that when ¢'(w) slope has increased from zero to 8,5 increases
the low-frequency and high-frequency imaginary-part slopegrom approximately 64 to 640 to 6400.
are of opposite sign, there will be a peaked response between These results suggest that one should be careful in inter-
these regions. For they,,#0 situation, there are two such preting the limiting high-frequency CSDO response in the
response possibilities for each CSD or DSD set, with one ofieighborhood ofB,=1. But the above anomaly actually
them always involvingV”. Further, note the equivalence at never arises because in real systems foeutoff is always
each immittance level, wheey,.#0 andBp= 81, between present and leads to a limiting Debye response at a finite
the CSD1 slopes and those for DSD wheg+ 0. Finally,  high frequency, independent of the value®fTherefore, the
compare the CSDO results wit,.=0, with the DSD ones actual high-frequency limiting slopes for all experimental
having bothep,.=0 andoy=0, after the following shifts of data are those obtained on settjg or 3, to unity andg,
the immittance levet! p— e, andM . There is, then, full  to zero in Table I. Thus, cutoff induces a transition from the
equivalence if one set¥3p=p,. Note that the high- CSDO slope value 0B, to a plateau with zero slope.
frequency CSDOo’'(w) slope of By in Table | implies a
response of the forme{7,)?0 when (w7,0)>1.

A few results in Table | have been presented earlier foﬂt\)/l'sléillzﬁlﬁi’_\ll_%YNRESPONSE’ FITTING, AND MODEL
the KWW conductivity relaxation situation but with incom-
plete identificatiort* These are the CSDO low- and high- A. CNLS fitting results

frequencyo’(w) and () values appropriate whegl, is In recent worlC it has been found that for N@—3SiGQ

taken as .the SE value ﬁ“ inztrllfzzight side of Eq(6), and frequency response dataextending over the temperature
such ag, is frequently writte™**%as 1—n or 5. Reference ange from 303 to 398.5 K, the newly available accurate

24 was published before the distinction between the CSD WW computational models inevm indicate that the data

and CSD1 approaches was fully recognized, and it actuall)ére best fitted with the CSD1 approach. Let us designate such

deals with the MMF CSD1 frequency response, a response gy KWW fitting by KWW.. that usina CSDO as KWWO
involving the CSD1, not CSDO, slopes listed in Table I. tung by ! using S '

. AT . o . and DSD KWW fitting as KWWD. Here, further KWW fit-
The various similarities and equivalencies illustrated in

- _ - ting of the 321 K data set will first be presented to illustrate
Table | indicate that whelp..#0 one might be able to fit g b

L ) X how one might discriminate between CSD1, CSDO, and
CSD1 data with either C.SDO or DSD\nth_ oo#0) or vice DSD fitting when data at only a single temperature are avail-

i : e . Qable, and to compare such fitting results with those obtained
QeC|de yvhlch typ_e of f|t_t|ngl is the more appropriate. See theby the MMF approach,
llustration and discussion in Sec. IV. For simplicity, the data set was initially modified to
eliminate, insofar as possible, electrode polarization effects.
As demonstrated earlién,evm is first used to fit the data to
a composite model, which includes both KWW1 and the
A stretched-exponential response, as in the right-hanelectrode-response parts. ThamyM is used to eliminate
side of Eq.(6) for B,=B, or Bp, leads to a simple- from the data the full effects of the fit estimate of the elec-
exponential response when these exponent quantities atmede contribution. Subsequent fitting of the pruned data set
unity. It is, thus, reasonable to expect that in this limit thewith the KWW21 model alone, then yields very nearly as
associated frequency response should degenerate to a singy@od a fit as the original one, as well as essentially the same
time-constant, nondispersed Debye response. In spite of tedmmon parameter estimates. Here, only such modified data
failure of the KWW1 temporal response to be of SE form forsets are considered, but one should always investigate the
B1<1, as discussed in Sec. Il, the Debye frequency respongeossibility that electrode polarization effects are non-
does indeed appear for all three cases when the rel@/ant negligible when fitting experimental CSD data.
unity. But there is an apparent anomaly for the CSDO situa- It is usually clear whether to use CSD or DSD fitting of
tion. A characteristic of the pure conductive-system Debyelata when data sets at several temperatures are available. If
response is that the' slope is zero at all frequencies, ap- no evidence of @, is found, and the dispersed response is
parently in direct contradiction to the’ high-frequency not thermally activated, then one is most likely dealing with
slope of By listed in Table | for CSDO behavior whei,  a DSD situation. But if gy appears to exist, and it ang
=1, and inconsistent as well with the relatighy=1—8,;  are thermally activated with at least approximately the same
when g,=1. activation energies, then it is most likely that CSD is present,

B. The transition to Debye response
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TABLE II. Fitting results for(a) 321 K NgO—-3SiG data and(b) synthetic data generated from CSD1-a fit parameters. Top five rows are CNLS fits at
complexM level; bottom five rows aréa)-type M” fits. All fits involved proportional weightindPWT or P except those marked U for unity weighting
(UWT). ep.. is a free fitting parameter for all fits except the last three, whknedicates that no such parameter is present. For GgB e, and for DSD,
ex=Aep . St is the standard deviation of the fit relative residuals.

Type: 1008: Bn 10 %pon 1047,y 10%( 7o) €0 €cor ex €0 €
CSD1-a 0.272 0.425 1.441 2.396 3.111 4.83 5.34 24.38 10.17 29.20
CSDO-a 0.570 0.543 1.439 13.32 2.314 10.21 0 18.17 10.21 28.37
CSDO0-b 0.554 0.542 1.438 13.30 2.314 10.21 0 18.18 10.21 28.39
DSD-a 0.646 0.464 1.451 33.37 7.728 1021 - 21.36 10.21 31.57
DSD-b 0.535 0.463 1.456 37.86 8.839 1021 - 22.37 10.21 32.57
CSD1-P 0.352 0.426 1.448 2.474 3.151 4.73 5.44 24.58 10.17 29.30
CSD1-U 0.378 0.424 1.450 2.426 3.153 4.78 5.37 24.55 10.15 29.34
CSD1-PN 3.51 0.482 1.565 6.920 4.659 10.26 33.62 10.26 33.62
CSD1-UN 5.60 0.496 1.557 6.990 4.334 10.29 31.44 10.29 31.44
CSDO0-UN 50.1 0.943 0.893 12.66 1.300 0 16.44 0 16.44

since any leakagg, apparent for a DSD situation is unlikely that KWW?1 fitting is most appropriate for these data. To
to be related to the dielectric dispersion process and, thus, éxplore this possibility further, the fitting parameters of the
will not have the same or similar activation energy as thdine-1 fit were used to generate exact KWW1 model data at
latter. But when data for only a single temperature are availthe same frequencies as those of the original experimental
able, comparison of the CSD1 response with that for DSDdata. The results of fitting this data set by the CSDO and
(with ep.#0 andoy#0) in Table | shows that they involve DSD approaches are shown in lines 3 and 5. Comparison
identical limiting behavior wheBp=8,. Then, a more de- with the results of lines 2 and 4 shows that the and pa-
tailed fitting comparison is required in order to discriminaterameter values are very little changed for the CSDO case and

properly between the two cases. only slightly more modified for the DSD one. These results
A variety of LEvM fitting results for the 321 K data are thus indicate that the main differences between the estimates
presented in Table Il. Herepon=po/py, Where pq  oflines 1, 2, and 4 are systematic, not random, and thus, they

=1Q cm, andr, =7,/ 79 With 74=1s. As defined earlier, are associated with the use of the less appropriate, for these
po=p;(0) andn=0, 1, orD. Fitting was carried out at the data, CSD0 and DSD fitting approaches.

complexM level using Eqs(1) and(4) along with a contri- For simplicity, the relative standard deviations of the
bution from the fitting parametesp.. when it was taken as fitting parameters themselves have been omitted from Table
nonzero and free to vary. The parameper. was found to  Il, but they are very small for the line-1 KWW1 fitand they

make no contribution to the fits and so was not included inincrease with increasing: . Further information about the
the fittings. Although the KWW1-fit quantity;(w) is here  KWW1, KWWO0, and KWWD M-level fits is provided by
calculated using théy(w) of Eq. (4), the original By of the  the curves presented in Fig. 3 for the relative residuals of the
latter is renamed and reinterpreted@sfor the KWW1 fits.  imaginary(3-a and real(3-b) parts. These results also apply
Finally, note that all full CNLS CSD fit results shown in to p-level fitting if the r” andr’ labels are reversed. The
Table Il, which involve proportional weighting, yield the increases in the residuals at the frequency extremes probably
same results whether the fitting is carried out at the complearise from inexact estimation of the electrode-polarization
p or complexM level3~ CNLS proportional-weighting fit-  effects, errors which are magnified on subtraction. Measure-
ting at the complexe or complex o levels yielded results ments over a wider response range would allow better iden-
close to those for the or M level. The DRT momentx~ ), tification of the electrode effects and, thus, more accurate
needed in the KWW1 fits is given By[((x)o);]~ %, where  subtraction.

this notation indicates that the CSBOr DSD) form of the Note especially the similarity between the residuals aris-
average, the one which involves the SE exponent and iteng from the KWWD fit of the experimental data and the
associated DRT for KWW situations, is to be used but withKWWD fit of the exact CSD1 model data. If one uses the
Bo changed toB;. It follows that for the KWW1 model residuals for the line-1 KWW1 data fit to correct those of the
(x"1,=B1IT(1/8,), wherel is the gamma function. Note line-4 KWWND data fit, the results are very close to those for
that for the 8 estimates of lines 1 and 3,=1—8,, as the line-5 DSD fit to the KWW1 model data. In spite of the
expected. A few KWW!1 fits were carried out using E§),  excellence of the line-1 KWW1 fit, the associated residuals
with (ec.,)1 a free parameter rather than Whenep.,, was  show some small remaining serial correlation, nonrandomic-
also included as a free parameter, exactly the same results g arising either from the measurement procedure or from a
those shown in line 1 of Table Il were then obtained, assmall systematic deviation in the KWW1-fit model from the
expected. actual experimental response.

The results for the standard deviation of the relative re-  The results in columns 2—-7 of Table Il are direct CNLS
siduals of the fit,Sg, show that this quantity is appreciably fitting estimates. Although the estimates markgd are ac-
smaller for the KWW.L1 fit of line 1 than that for the KWWO tual ep., ones for the CSD1 and DSD fits, they are forced to
fit of line 2, or the KWWD fit of line 4. This, and the excep- be estimates ok, for the KWWO fits of lines 2 and 3.
tionally small value of the line-B¢, is a strong indication Further, note the large differences between the 0428s-
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For the last four columns in Table Il, all quantities ex-
cept theex=Aep DSD estimates are calculated from the
direct fitting results. For examples,.=(€c.)1+ €pw, and
€p= €x+ €p,. The CSD1 quantities are given in general and
for the KWW response by

oeeeo CSD1 fit
aaxaas CSDO fit
66609 DSD fit
DSD fit to exact CSD1

o
(@]
R

(€c)1=T01({X)0) 1/ €ypo= To1l (1/B1)/ B1€vpo, (7)

and

o
o

(€co)1=Tox{X)1/eypo=(7)1/€ypo, (8)

wheré (x);=((x?)0)1/({x)o)1. For the KWW response, it
follows that® (x),=T"(2/8,)/T'(1/B,). For comparison with
Eqg. (7), the modern form of the CSD1 Moynihan modulus
formalism expression 7g-3:14:26

€= 7ol (1/Bo)/ Bo€vpo- 9

Notice that not only does this result involwe, (which is
never a pure CSD quantjtynstead of €c..);, but it also
involves B, (written in the past ag3 because the3;, B
distinction has only recently been explicitly recogni2ed
rather thanB, as in Eq.(7). As the results of Table | show,
these quantities are quite different except when they are both
0.5. Equation (7) indicates that éc..)1/({X)o); and
(eco)1/{x), must both be temperature independent in order
for 79, andpg to have exactly the same activation energy.

Relative residuals

o
o
o

|
©
o

0.02 -

0.01 1

Relative residuals

B. M" fitting results and the Moynihan modulus
formalism

—0.01 4

The last five rows in Table Il involve nonlinear least-
squares fitting of the imaginary-paiM”(w) experimental
data to a KWW model in order to obtain results for compari-
son with those found using the MMF, a formalism which
does not use CNLS fitting. The CSD1-P and CSD1-U results
are both comparable to the CNLS ones of line 1. If the model
is appropriate for the data, not only should the fits with the
same weighting be closely comparable, as they are, but also
the fit estimates should be very nearly independent of the
weighting, just as we see here. These fits, thus, further
strongly support the previous conclusion that the KWW1 fit

FIG. 3. Relative residuals for KWW CSD1, CSDO, and DSD complex non-
linear least-squares fits with proportional weighting to,®a3SiQ fre-
quency response data at 321(Bee Table ). For M (w) fitting, the residu-
als are those associated with’ (w)(3—b) and M”"(w)(3—a) as shown,
but the identifications are reversed for fitting at thi@) level. Here and
hereafterr, = 1 s.

timate of line 1 and the KWW, estimates of lines 2 and 3.
If we repeat the line-1 fit without any fres,., parameter, the
resulting 8, estimate is 0.495, much closer to t8g ones, model is the most appropriate one for these data.

but S is ten times larger. Further synthetic KWW1 data The last three rows of Table Il involve fits without any
studies withep., ranging from 5 to 45 indicated that for fitting parameter included to estimatg.., since the MMF
KWWO fits including a freeep., parameter as in line 3, the takes no separate account of this quantity. The omission of
B, estimates an®& values found were virtually independent this parameter clearly leads to far worse fits of Mé(w)

of ep. over this range, but not includingy.,=0. On the
other hand, KWW1 fits without any¥p., led, as theep..

data than those obtained when it is included. Figure 4 pre-
sents theM”(w) plots for these last three fits. Since the

values in the data were increased, to larger and larger valudige-1 fit results are indistinguishable from the data points on

of Sg and to largelB; estimates, with thg, estimate reach-

a plot of this kind, they are omitted to reduce clutter in the

ing 0.6 by ep.,=45. These important findings are further graph. Figure 4 makes it clear why the CSDO fit involves a

explored in the context of conventional MMF fitting in the Sg value nearly 200 times larger than the line-1 one. Clearly,

next section. even though full KWWO fitting with proportional weighting,
For the DSD results, the model does not, of course, inas in line 2, can yield a good fit, the result for tM'( w)

clude an €c..); CSD contribution, so DSD fitting is unable fitting when unity weighting is used aneh.. is omitted, is

to discriminate between thg,., and (ec..)1 contributions to  completely unacceptable.

€, involved in actual CSD1-type data, and so lumps them  The MMF approach®®'2used an approximate inversion

together. The present important results again underline thmethod to estimate discrete values®@§ (denoted ‘g” in

appropriateness of fitting thermally activated CSD-type datdhat work and employed the results to calculate template

with the CSD1 approach, not with either the CSDO or thecurves ofl o(w) and{1—Iy(w)} for a variety of 8 (here )

DSD one. values. Equatiort5) shows thaf1—1y(w)} is a normalized
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analysis, the actuaB's, derived directly from CSD1 fre-
KWW DATA quency response fits, should b_e identified wﬁb. Let us
0.03 1 por peasa CSDILPWT designate them a@,uve. a different quantity than the
! wwwxs CSDO,UWT KWW1-fit estimates ofB;, which take proper account of
€p- - When the relation3;=1- B, holds andB,;=0.5, as
above for the CSD1-UN' =321 K data fit, the8's are nu-
merically identical, blurring the distinction between them.
Now, it luckily turns out that the present Ma—3SiQ data
sets were fitted by the MMF approach at the Naval Research
Laboratory, and the results are listed in Ref. 25. Bagme
and 7y, values quoted there are, for example, 0.50 and 0.53
and 8.0<10 % s and 1.&< 10 ° s for the 321 and 380 K data
Na,0-3Si0, T=321K fits, respectively.
0.00 - . T T l X Because of the ambiguity of th@,; y»e=0.5 value, it is
2 3 4 S 6 worthwhile to include here the results of data fits at another
Iog(w‘rn) temperature wherg, uve# 0.5. Although the 380 K data do
not extend to high enough frequencies to yield much of the
FIG. 4. Results of nonlinegr Ieast—sguares KWW fitting of the 32:'L K, high-frequency part of thél”(w) curve beyond its peak,
N2O-3SiG M'(w) data without taking separate account of the high- enough is present to yield adequate KWW!1 fits. Similarly to
frequency limiting dielectric constary,., (see the last three lines in Table L
II). The results of the CSD1 fit with unity weighting are most appropriate for the 321 K data, electrode polarization effects were subtracted
comparison with the results of a conventional modulus-formalism fit of thefrom the data before the present fits were carried out. The
same data. following 3, estimates were obtainets) CNLS M (w) fit-
ting including ep., and with noep.. [ ]: CSD1-P, 0.36,
[0.53]; and CSD1-U, 0.37,[0.54]. (b) M"(w) fitting:
CSD1-P, 0.41]0.53]; and CSD1-U, 0.40,0.53]. Again, the
large effect of including or omittingp.. is evident both for
CNLS and for NLS fitting. In addition, the relatiof;=1
— Bo holds less well, as expected, for these higher tempera-
ture results than for the 321 K ones.
The above 321 and 380 K unity-weighting fit results

0.01 1

form of M ;(w), so in this and subsequent MMF fitting work,
plots of the imaginary pafand sometimes the real pgftof
{1-1y(w)} were constructed and usually compared to
M"”(w) data in order to estimate values &f.. (or €..), B,
and 7 (here denoted,). Note that this procedure ignores
the effect of a separate,,, parameter and emphasizes the
large parts ofM”(w) at the expense of the smaller tail re- . ) 20
gions. This is just what the CSD1-UN fit in Table Il does, soWIth no separate account g, are consistent in yielding

we may expect that it should yield results comparable to[.g 1=0.50 an 0'33’ Lespectlyely, qu'tf d_lffelredntdfrogn thi es-
those obtained with the MME. timates obtained wherp., is properly included, but the

The CSD1-PN and CSD1-UN lines in Table Il shegy same as those found in the Naval Research Laboratory MMF

estimates that are much larger than that of the best-fit resufttS: F_urther, ﬂ;e Eres%fgjay-wei%h;in%fggivgithmf_:;m led

of line 1. The CSD1-UN fit involves a rounded value of 0.50, 1© eStimates of about 7: sand 1.5 S, close to
Further, a CSD1-UN fit using Eq5) instead of Eq.(4) the Naval Research Laboratory one _for_321 K and very close
yields exactly the same results, confirming that the correctelP the 380 K one..Suc'h agreemgqt m@catgs that the present
MMF approach can yield results consistent with the usua/Method of approximating MMF fitting is quite adequate.
KWW?1 one generally employed here. It has been stited These results |n(_j|c_:ate that CNLS fltt_m_g is more appro-
that “large electrode capacitances... need not interfere witR"iate than the NLS fitting, that the CSD fitting should not be

the analysis of relaxation phenomena when the data are ang@"11€d out without including thep., effects, and, most im-
lyzed using the electrical modulus formalism...” Earlier POrtant, that all previous MMF-fit estimates g, which
work®=® has shown, however, that electrode-polarization ef\Vere identified with3, but here are designated A$wwr ,
fects should not be neglected. Further, comparison of th&hould be recalculated as-18;yyr and then identified as
CSD1-P and CSD1-U results in Table II, ones that include2PProximates; values. _

the presence ofp.., whose capacitance effects are generally ~ 1he above renaming and reevaluation should usually al-
much smaller than electrode ones, with the CSD1-PN anéPW Previously published MM values to be brought closer
CSD1-UN ones, shows that neglectirg.. for these last to those actually appropriate for CSD data, but, as shown by
two fits has strongly deleterious consequences both for thi€ present results, such changes only go part way toward

goodness of fit of the data and for the parameter estimatédPtaining proper KWW1 estimates. In previous work,
themselves. compared CNLS KWW?1 proportional-weighting-fit esti-

mates, includingep.., of B(=B41) with those obtained by
the Naval Research Laboratory MMF fits and showed that
the latter exhibited armppositetemperature response over
the range from 303 to 398.5 K to that of the KWW1 fits.

It should now be clear that although all published MMF Unfortunately, at that time | did not know enough to properly
CSD1 fits erroneously identified thefrestimates with those identify the Naval Research Laboratory estimates as done
of the corresponding SE temporal resporggin the present above. The bottom curve in Fig. 6 of Ref. 5 is one #®y

C. Temperature dependence of B's and their proper
identification
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versus 1000/T, and the top Naval Research Laboratory B1 even though the adequacy of the approximation de-

curve, when replaced by-181uue~ 81, IS closer to the pends on the size ofp., .

bottom curve, no longer shows opposite temperature depeitd) CSD1 CNLS frequency-response data fitttfigysing

dence, but still lies appreciably above the bottom one. Eqg. (4) or (5) and including the effect oép.., should
There is not a large amount of CSD KWW versus be employed hereafter in place of the MMF approach,

temperature data available in the literature, nor plausible and the incorrect Eq9) should be replaced by E7).
theory available for interpreting its temperature dependence.  Previous results obtained using the MMF should be
The available results generally indicate thfats either con- reinterpreted, and even then most of them are likely to
stant over a limited temperature range or often shows a gen- e sufficiently approximate that important conclusions
eral tendency to increase, probably toward unity and a Debye should not be based on them.

response, as the temperature incred3&sbut the behavior _ L _

can be more complicated near the glass transition, and a 1he first step in gaining insight into the physical pro-
decrease ifB with increasing temperature has been found inC€SSes involved in th.e dlsperswe response of a material is
the liquid region of a glass-forming molten s&ltAn in- obtamm_g We_II-_determlned_ estlm_ates 01_‘ the parameters of an
crease ofB, with increasing temperature implies that the aPpropriate fitting model, including their temperature depen-
proper CSD14; will decrease with temperature incredse. dences. Such results should be the foundation of the ap-
Finally, Angelf® has drawn attention to results where theProach to understanding. But inadequate fitting results, espe-
temperature dependence Bffrom electrical measurements Cially when their inadequacy is unrecognized, can lead to the
on a material was opposite to that obtained for shear relaxconstruction of a house of cards, which only supports mis-

ation processes. It is worth considering whether any suclgading conclusions. .
discrepancies can be explained by the improper us@ of Even when a best choice of the DSD, CSDO, and CSD1

= B1wwvr (identified asBy) rather thans; . fitting approaches has been made, one still needs to find and
use the best available specific fitting model by comparing fit
V. SUMMARY AND CONCLUSIONS results with different models. Full complex nonlinear least-

The differences between the three approaches to smalquares fitting should be used, with the inclusion in the com-
signal time- and frequency-response data analysis, desiglete model of electrode polarization effects when needed.
nated DSD, CSDO, and CSD1 here, have been discussed afitie CSD1 approach is the appropriate choice for thermally
methods described for identifying which one is most appro-activated dispersion associated with mobile charges, which
priate for a given data set and fitting model. A useful table ofcan lead to nonzero dc conduction. Although the data for
the limiting low- and high-frequency log—log slopes of re- only a few different CSD materials have been analyzed since
sponse models for all four immittance levels is presentedihe recent availability in theEvm computer program of a
and an apparent anomaly in the high-frequentyw) log— KWW algorithm for quick and accurate fittinty? their re-
log slope for the CSDO approach is identified and explainedsults and those herein indicate that the KWW1 model leads
It is shown that the CSD1 temporal relaxation function re-to appreciably better fits than others used. Note that the
sponse is, unlike that for DSD and CSDO situations, not ofminimum-parameter-number full KWW1 model involves
the stretched-exponential form when a KWW fitting modelisp,, . 7,,, B;, andep...
employed. Since no dispersion model available so far is based on

Detailed fitting results are presented for a3SiQ  mjcroscopic many-body theory, one must use semiempirical
data at 321 and 380 K in order to illustrate the above differmodels such as the KWW. Although the KWW temporal
ences, justify the choice of a fitting model, and provide mayesponse has been derived using a wide variety of physical
terial for comparison with the Moynihan modulus formalism assymptions, none of such derivations leads to a quantitative
fiting approach. . . understanding of even the temperature dependence of such

The subtleties in the erroneous interpretations of theparameters as the KWW, and ;. NgaP! has qualitatively
widely employed MMF frequency-response data fitting ap-characterized his KWW coupling parametee1— 3, as a
proach have finally been explained after 25 years of use. Thgeasure of the size of “cooperatively rearranging regions”
mattc_ar is comphca_ted be_cause of partly compensating effect$s e sample: the largat and, thus, the larger the size of
and is presented in outline form below. such entities, the stronger the nonexponential character of the
(@ The MMF is a CSD1 fitting procedure, which not only temporal relaxation.

involves €., instead of €c..);, but takes no separate Roland and Ngéf and Hodgé® have also related (or

account of the high-frequency-limiting dielectric con- Bo) to the fragility of glass-forming liquids, ones which

stantep., and, thus, leads to incorregtestimates, ones show broader relaxation spectra the greater their fragility.

designated3; e herein. Thus, for decreasing temperature one would expect fgat
(b)  Bimwe has been incorrectly identified in the literature would decrease and increase. Although is intrinsically

as By, the SE parameter involved in the CSDO fitting associated with a temporal response involvigig and 8;

approach. The proper CSD1 fit estimate includingcan, in general, only be obtained, thus far, from the KWW1

€pw, B1, satisfiesB;=1— B, for data well fitted by frequency-response fitting, to the degree Bat1— By, B

the KWW model. andn are comparable. Finally, notice that, in the absence of
(c) Since Byuve Values are often found to approximate temperature-dependent cutoff effects, while the width of a

corresponding3, ones, - B, yue should approximate —pj(w) peak region increases as the temperature increases
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and B, decreases, the p{(w) width of a KWWO fit de-
creases a@, increases. It follows that a relation between
fragility and the frequency-response spectrum width shoul
most properly involves; .

1J. R. Macdonald and J. C. Wang, Solid State 16®.319(1993.

2J. R. Macdonald, J. Appl. PhyZ5, 1059(1994.

3J. R. Macdonald, J. Non-Cryst. Solid97, 83 (1996; 204, 309 (1996;
andGp in Eq. (A2) should beGcp, the presenG; quantity.

4J. R. Macdonald, J. Non-Cryst. Soli@40, 70 (1997.

5J. R. Macdonald, J. Non-Cryst. Soli@42, 95 (1997.

6p. B. Macedo, C. T. Moynihan, and R. Bose, Phys. Chem. Gldd¥1
(1972; C. T. Moynihan, L. P. Boesch, and N. L. Laberge, Phys. Chem.
Glassesl4, 122(1973.

“Impedance Spectroscopy—Emphasizing Solid Materials and Systems
ited by J. R. Macdonal@Wwiley-Interscience, New York, 1987p. 96.
8S. Havriliak and S. Negami, J. Polym. S€i14, 99 (1966.

9K. S. Cole and R. H. Cole, J. Chem. Phels.341(1941).

10D, W. Davidson and R. H. Cole, J. Chem. Phy8, 1484(1952).

113. R. Macdonald, J. Appl. Phy§8, 1955(1985.

124, K. Patel and S. W. Martin, Phys. Rev.45, 10 292(1992.

134, Jain and C. H. Hsieh, J. Non-Cryst. Solitig2-174 1408(1994.

14K, L. Ngai and A. K. Rizos, Phys. Rev. Leff6, 1296(1996.

15R. Kohlrausch, Pogg. Ann. Phys. Che®d, 179(1854; G. Williams and
D. C. Watts, Trans. Faraday S@&s, 80(1970; G. Williams, D. C. Watts,
S. B. Dev, and A. M. Northibid. 67, 1323(1971).

16C. P. Lindsey and G. D. Patterson, J. Chem. PHg. 3348 (1980.
The p(7) function in this work is equivalent to the prese®t(7) DRT
function.

J. Appl. Phys., Vol. 82, No. 8, 15 October 1997

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP

173, R. Macdonald and M. K. Brachman, Rev. Mod. P38;.422 (1956

183, R. Macdonald and L. D. Potter, Jr., Solid State 28.61(1987. The

d new version of the extensivesvm fitting program, V. 7.01, may be ob-
tained at no cost from Solartron Instruments, Victoria Road, Farnborough,
Hampshire, GU147PW, England; electronic mail, attention Mary Cutler,
lab_info@solartron.com. More details about the program and how to get
it appear in http://www.physics.unc.eduhacd/

193, R. Macdonald, Solid State 1085, 271 (1987.

203, R. Macdonald, J. Appl. Phy84, 538(1963.

21K. L. Ngai, Solid State Phys, 127 (1979.

22R. Syed, D. L. Gavin, and C. T. Moynihan, J. Am. Ceram. $# C-118
(1982).

2B, A. Boukamp and J. R. Macdonald, Solid State 134, 85 (1994.

24K. L. Ngai and O. Kanert, Solid State 1063-56 936 (1992.

A, S. Nowick and B. S. Lim, J. Non-Cryst. Solid§2-174 1389(1994.
I much appreciate the transmittal of these data to me by Professor Nowick.

2C. T. Moynihan, J. Non-Cryst. Solid$72-174 1395 (1994; 203 359
(1996.

27|, M. Hodge and C. A. Angell, J. Chem. Phy&7, 1647(1977.

28K. L. Ngai and U. Strom, Phys. Rev. B7, 6031(1983.

2F. S. Howell, R. A. Bose, P. B. Macedo, and C. T. Moynihan, J. Phys.
Chem.78, 639(1974.

30C. A. Angell, in Relaxation in Complex Systeneslited by K. L. Ngai and
G. B. Wright (U.S. Government Printing Office, Washington, DC, 1985
p. 203.

31K, L. Ngai, J. Non-Cryst. Solid431-133 80 (1993.

32C. M. Roland and K. L. Ngai, J. Non-Cryst. Soli@42, 74 (1997.

33, M. Hodge, J. Non-Cryst. Solid®12, 77 (1997).

J. Ross Macdonald 3971

license or copyright, see http://jap.aip.org/jap/copyright.jsp



