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Given a fitting model, such as the Kohlrausch–Williams–Watts~KWW!/stretched-exponential
response, three plausible approaches to fitting small-signal frequency or time-response data are
described and compared. Fitting can be carried out with either of two conductive-system formalisms
or with a dielectric-system one. Methods are discussed and illustrated for deciding which of the
three approaches is most pertinent for a given data set. Limiting low- and high-frequency log–log
slopes for each of the four immittance levels are presented for several common models; cutoff
effects are considered; and an anomaly in the approach to a single-relaxation-time Debye response
for one of the conductive-system approaches is identified and explained. It is found that the temporal
response function for the most appropriate conductive-system dispersion~CSD! approach,
designated the CSD1, one long used in approximate form for frequency-response data analysis, does
not lead to stretched-exponential transient behavior when a KWW response model is considered.
Frequency-domain fitting methods and approaches are illustrated and discriminated using 321 and
380 K Na2O–3SiO2 data sets. The CSD1 approach using a KWW model is found to be most
appropriate for fitting these data exceedingly closely with a complex nonlinear least-squares
procedure available in the free computer programLEVM. Detailed examination and simulation of the
approximate, long-used CSD1 modulus fitting formalism shows the unfortunate results of its failure
to include separately the effects of the always present high-frequency-limiting dielectric constant,
eD` . The stretched-exponential exponent,b, associated with this fitting approach has always been
misidentified in the past, and even after its reinterpretation, the result is likely to be sufficiently
approximate that most physical conclusions derived from such fitting will need reevaluation.
© 1997 American Institute of Physics.@S0021-8979~97!00620-8#
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I. INTRODUCTION AND BACKGROUND

There are three different approaches to fitting and a
lyzing small-signal frequency and transient-response data
solid and liquid materials.1–5 These involve fitting the data
with either a complex dielectric constant,e, or susceptibility
response model, appropriate for dielectric system disper
~DSD!, or with one of two different conductive-system
dispersion~CSD! approaches: CSD0 and CSD1, ones wh
the fitting model is defined at the complex resistivity,r, or
impedance,Z, level. For such CSD situations, the limitin
low-frequency conductivity or resistivity is an intrinsic pa
of the dispersive response model, not the case for the D
situation. It is often convenient to express the models
terms of a distribution of relaxation times~DRT! or activa-
tion energies, but doing so, while mathematically use
need not imply that such relaxation times, either contin
ously or discretely distributed, are necessarily of physi
significance.

Any appropriate model or response function may be
ted to data using any of the three approaches descr
above. A crucial part of adequate fitting is to determi
which of the three is most appropriate for a given set
experimental data and which available model best repres
the data. Only then can the model and its parameter estim

a!Electronic mail: macd@gibbs.oit.unc.edu
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lead to the physical insight and understanding that is
primary goal of experimentation.

The two different CSD approaches, ones with which
shall be most concerned here, are labeled CSD0 and CS
The CSD1 formalism is, from physical grounds,3,5,6 particu-
larly appropriate for thermally activated systems, but bo
will be considered and their responses compared here. W
needed, let us use a subscriptD to denote DSD-related quan
tities andC, 0, or 1 for the CSD ones. Thus, the DSD a
CSD relaxation-time distributions may be designated asGD ,
G0 , and G1 , respectively. Now, define an un-normalize
frequency response quantity asUn , wheren is D, 0, or 1.
Thus, for example,U1 might be a complex resistivity and
UD a complex dielectric constant. Then, on definingx
[t/t0n , wheret0n is a characteristic relaxation time, on
may write3,5

Un~v!2Un~`!

Un~0!2Un~`!
[I n~v!5E

0

` Gn~x!dx

@11 i ~vt0n!x#
. ~1!

Here, theGn quantities are taken normalized, so the norm
ized response quantityI n(v) satisfiesI n(0)51 and I n(`)
50.

It is worth emphasizing that although theI D response
may be defined in terms of a distribution of dielectric-syste
dielectric relaxation times~Maxwell connectivity7! and the
I C response in terms of a distribution of conductive-syst
resistivity relaxation times~Voigt connectivity7!, their actual
/82(8)/3962/10/$10.00 © 1997 American Institute of Physics
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frequency response can be fitted, for better or worse,
transformation of the data and model to any of the four i
mittance levels: complex dielectric constant,e; complex con-
ductivity, s; complex resistivity,r; and complex modulus
M . In terms of the normalized relaxation-time variable,x,
the moments of the distributions may be expressed as3,5

^xm&n[E
0

`

xmGn~x!dx, ~2!

where thê xm&n clearly depend on the shape of the distrib
tion but not directly ont0n . For simplicity, definer08(0)
[r00 andr18(0)[r01. We shall usually omit this distinction
and use justr051/s0 instead.

A typical I n(v) response function is that of Havrilia
and Negami,8

I HNn~v!5@11~ ivt0n!an#2bn, 0,an<1, 0,bn<1,
~3!

an expression which reduces to the Cole–Cole9 dielectric
response when n5D and bD51, and to the
Cole–Davidson10 dielectric response whenaD51. It has
been shown11 that any specificI D response function can b
used at the CSD level with its parameters then designate
the subscriptC rather thanD. Such changes are necessa
since, although the form is the same, as one might exp
fitting of a given data set will not yield the same parame
estimates using the DSD fitting as those obtained with
CSD fitting.

The transformation from a DSD or CSD0 response fu
tion to a CSD1 one is somewhat more complicated. A li
ited and incorrect form of the needed relation was first p
posed by Moynihan and co-workers;6 a correct version was
independently introduced later;11 and the matter has bee
considered in detail recently.3,5 The important and widely
used Moynihan CSD1 data-fitting approach has been ca
the ~Moynihan! modulus formalism~MMF!,5,12–14because it
was first derived and presented at the complex modu
level,6 but it may be expressed at any immittance lev
Given an expression forI 0(v), a normalized complex resis
tivity ~or impedance! quantity, the earlier work3,5 shows that
one can calculateI 1(v) by

I 1~v!5@^x21&1 / ivt01#@12I 0~v!#. ~4!

In the special case whererC`[rC18 (`)50, that implicitly
considered by Moynihan and co-workers, it turns out tha
we defineM1(v) in standard form as (iveVr01)I 1(v), then

M1~v!5@12I 0~v!#/~eC`!1 . ~5!

Here,eV is the permittivity of vacuum. The quantity (eC`)1 ,
a purely conductive-system quantity, which is defined la
in Eq. ~7!, was erroneously identified as one of the qu
different quantities,eD` or e` , by Moynihan and subsequen
users of the modulus formalism.6,12–14 It is particularly im-
portant to note that although a model expression forI 0(v)
may originally involve a shape parameter such asb0 , the
correspondingb1 associated withI 1(v) through Eq.~4! will
be unequal tob0 , a matter discussed in more detail belo
because the distinction is both important and not gener
understood.
J. Appl. Phys., Vol. 82, No. 8, 15 October 1997
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Equations~4! and~5! were derived using theGn’s of Eq.
~1! and, in fact,3,5 G1 is proportional tot ~or x! times G0 .
Note, however, that when an expression forI 0(v) is avail-
able,I 1(v) is readily obtained from Eq.~4! without the need
for usingG1 in Eq. ~1!, provided an expression for^x21&1 is
available, as it is for the important and much us
Kohlrausch–Williams–Watts~KWW!15 model. Conversely,
when an analytic expression forG1 is known but not one for
I 1(v), Eq. ~1! may be used to obtain the latter. Further, t
normalized temporal relaxation function,fn(t), is given
by3,16,17

fn~ t !5E
0

`

Gn~t!exp~2t/t!dt5exp@2~ t/t0n!bn#,

0,bn<1, ~6!

where the right-hand side is the stretched-exponential~SE!
response and only then5D or 0 choice is applicable for it,
as demonstrated in the next section. Whenn5D, fD(t)
gives the time dependence of the normalized charge m
sured on discharge of a completely charged purely dielec
material when its electrodes are shorted together. The in
pretation offn(t) for nÞD is more complicated, but the
function is still useful and has been termed the correlat
function by Ngai and Rizos14 in such cases.

Although I n(v) may be calculated numerically from
known KWW fn(t) expression,3,5,6,16,17 no closed-form
KWW expressions forI n(v) are available whenbn,1.
Since, however, closed-form expressions forG0(t) and
G1(t) are known3,15,16 for bC50.5, the left part of Eq.~6!
may be used to obtain thef1(t) response for this particula
KWW case. Since the MMF fitting approach has been p
marily applied using the KWW response model for CS
situations, we shall here use the designation MMF only
indicate such fitting.

II. TEMPORAL RESPONSE FUNCTIONS

Before discussing frequency response and fitting
CSD and DSD situations, it is useful to consider the cor
sponding transient or correlation-function response.
though the differences between the various responses c
be illustrated, for example, for the Cole–Davidson respo
model, it is of greater interest to consider them for the KW
model, one which has been found to fit a large variety
experimental frequency-response data involving electrica
mechanical dispersion. Even though the present anal
deals explicitly with electrical behavior, its results apply
well to most mechanical relaxation situations.

Pertinent time-dependence results are presented in F
for theb050.5 case. The solid line shows an ordinary CS
or DSD stretched-exponential response for this value ofb0

5bD . The solid line with solid circular points shows th
corresponding CSD1f1(t) response, calculated from th
left-hand part of Eq.~6! using the KWW expression3 for
G1(t) with b5b150.5 and the value ofts[to1 shown in
Fig. 1. These results are expected to be accurate to one
in 106 or better. Such high accuracy is only important b
cause it ensures that when the model is used to fit exp
mental data, there is no misfit contribution arising from i
3963J. Ross Macdonald
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accurate model calculation, a source of ambiguity of
present in prior frequency-response fitting using the KW
model.

Note that the CSD1 curve is not of stretched-exponen
form. In previous work, not only has no theoretical CSD
temporal response been presented for any model, but us
no distinction has been made between the variousfn(t) re-
sponses.

The multiplication ofG0 by t to obtainG1 , as discussed
in the previous section, causesG1 to approach zero faste
thanG0 ast→0; it is, thus, narrower over thet range. This,
in turn, causes both the CSD1 temporal and frequency
sponses to be closer to those for the single-relaxation-t
Debye response. Figure 2 shows such an approach in
frequency domain by means of complex-plane plots
CSD0, CSD1, and DebyeI n(v) responses. Figure 1 include
the results of three weighted nonlinear least-squares fit
the CSD1 synthetic temporal data using theLEVM fitting
program.3,6,18The first two fits used the SE model with eith

FIG. 1. Time dependence of the relaxation response function,f(t), for two
methods of calculating conductive-system response:~a! conventional
stretched-exponential CSD0 behavior, and~b! the exact CSD1 response de
rived from modification of the conventional KWW distribution of relaxatio
times. Also shown are inadequate nonlinear least-squares fits to th~b!
results using stretched- and ordinary-exponential-response models with
portional weighting~PWT! and unity weighting~UWT!. Herets5ton.

FIG. 2. Complex-plane comparisons of KWW DSD~n5D, bD50.5!,
CSD0~n50, b050.5!, CSD1~n51, b150.5!, and Debye (b51) normal-
ized I n(v), responses. The solid dots show the positions wherevton51,
and the arrow indicates the direction of increasing frequency for all
curves.
3964 J. Appl. Phys., Vol. 82, No. 8, 15 October 1997
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proportional weighting, where the weighting uncertainti
are taken proportional to the data, or with unity weightin
i.e., no weighting, a choice which determines the fit prim
rily from the larger parts of the data. A logarithmic plo
shows that the proportional-weighting results are mu
closer to the data for thef(t)!1 region and that the unity
weighting ones are very poor in this region.

The proportional and unity-weighting SE fit estimat
found for ts and b were 2.1310210 and 4.7310210 s, and
0.54 and 0.77, respectively. If the CSD1 response were
tually of the SE form, these results would be the same
independent of weighting. Thus, in spite of the apparen
good unity-weighting SE fit shown in Fig. 1, the CSD1 tem
poral response associated with the KWW CSD0 respons
not of SE form forb1,1, and it seems unlikely that it can b
expressed exactly in useful closed form for anyb value less
than unity. Without such an expression, it is not possible
directly associate a plausible value ofb1 with the measured
KWW CSD1 temporal response. For such response,
above results also show that for the SE-fitb1 estimates, the
relation b1.12b0 does not hold, unlike the frequency
response situation discussed in the next section. For s
tions where the DRT is known for anyb0 value, such as tha
of the Cole–Davidson model, the value ofb0 used in calcu-
lating a G1 for use in Eq.~6! may be used to label the
resultingf1(t) response so long as it is not confused with
SEb1 exponent-type parameter and is properly distinguish
from thef0(t) response involvingb0 .

It is worth mentioning that even for the KWW mode
where no expression forG1 is available for arbitraryb1 , but
one can numerically calculateI 1(v) accurately, as in the
present work usingLEVM, one can calculate the correspon
ing f1(t) by Fourier sine or cosine transformation of the re
or imaginary part ofI 1(v)/v.16 For the KWW situation, we
expectf1(t) to approach the single-exponential response
b1→1, but the calculation method outlined here, one wh
is prone to error, might nevertheless be worthwhile in ord
to investigate the non-SE CSD1 response expected, par
larly that for theb1,0.5 region.

Most empirical response functions, such as t
Havriliak–Negami one, and many theoretical ones as w
are nonphysical.19 In the frequency domain, the Cole–Co
response is nonphysical in both its low- and high-frequen
limits, while the Cole–Davidson and KWW responses a
nonphysical only in the high-frequency limit, where the
predict a continuously increasing real-part conductivity.
reasonable way to restore physical realizability is to cut
the associated DRT at its ends;3,19,20 only cutoff in the
small-t region, say att5tco, is needed for the Cole–
Davidson and KWW response models. Such cutoffs are c
sistent with the requirement that any physically realiza
process must have both a shortest nonzero response tim
a longest noninfinite one as well.19

For t’s below cutoff, the response is dominated by t
nonzero part of the DRT just before cutoff. The resulti
response, either short-time temporal or high frequency, t
approaches that of the response associated with a s
~minimum! limiting relaxation time. For the KWW transien
response, it follows thatfn(t) must approach simple expo
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TABLE I. Limiting log–log slopes for CSD1, CSD0, and DSD situations. Results are applicable for e
eD`50 or eD`Þ0, except where theeD`50 ones~enclosed in square brackets! are included. For the CSD
results,rC`50. LF and HF denote low- and high-frequency limits.

Complex data/fit levels: r M e s

CSD1 LF REAL 0 2 0 0
IMAG 1 1 21 1

HF REAL 2(11b1) 0 0 (12b1)
IMAG 21 2b1 2b1 1

CSD0 LF REAL 0 2 0 0
IMAG 1 1 21 1

HF REAL 2(22b0) 0 0 b0

@2b0# @12b0# @2(12b0)# @b0#
IMAG 21 2(12b0) 2(12b0) 1

@2b0# @12b0# @2(12b0)# @b0#

DSD LF REAL 0 0 0 2
(s050) IMAG 21 1 1 1

HF REAL 2(11bD) 0 0 12bD

@2(12bD)# @bD# @2bD# @12bD#
IMAG 21 2bD 2bD 1

@2(12bD)# @bD# @2bD# @12bD#

DSD LF REAL 0 2 0 0
(s0Þ0) IMAG 1 1 21 1

HF REAL 2(11bD) 0 0 12bD

@2(12bD)# @bD# @2bD# @12bD#
IMAG 21 2bD 2bD 1

@2(12bD)# @bD# @2bD# @12bD#
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nential behavior ast becomes smaller thantco, a conclusion
reached independently long ago by Ngai21 for the fD(t)
case. The results in Fig. 1 show that if such transforma
happened for the present CSD1 response withtco

510212 s, it would be very difficult to distinguish it from an
ordinaryf1(t) response without cutoff, although identifica
tion of cutoff effects is likely to be better in the frequenc
domain, as illustrated by the results shown in Ref. 22.

III. LIMITING LOG–LOG SLOPES IN THE FREQUENCY
DOMAIN

A. General slope results

It proves to be instructive to compare the low- and hig
frequency limiting log–log slopes of the frequency respon
of a single dispersive process at all four immittance leve
For simplicity, log–log slopes will be referred to hereaft
just as slopes. In Table I, slope results are shown for
sponse models, such as the Cole–Davidson, KWW,
Cole–Cole ~with long-t cutoff!, which are intrinsically
physically unrealizable in the high-frequency limit witho
any cutoff at a smallt value. We, thus, are able to show wh
these high-frequency limiting slopes are, and, in addition
discussed below, their values with cutoff present may
directly obtained as well. For the exponential distribution
relaxation model with cutoff at both frequency extreme
some idealized graphical slope results appear in Ref. 23.
Table I results were verified by complex nonlinear lea
squares~CNLS! fitting using theLEVM program.18 Until re-
cently, accurate and rapid calculation of the KWW CSD
and CSD1 frequency response for data fitting was unav
82, No. 8, 15 October 1997
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able, but now a KWW addition toLEVM is available, one
which yields accuracy of one part in 106 or better.5

Note that theb values in Table I repesent those of any
the above models, with thea of Eq. ~3! here taken asb for
the Cole–Cole response and as 1 for the Cole–David
model. AlthougheD` is .1 for any real material, results ar
shown in Table I foreD`50 as well, in order to illustrate the
tremendous differences in slopes between the two case
some situations. These differences are worth emphasi
because the standard way of fitting data at the CSD1 leve
the KWW model using the MMF takes no separate acco
of eD` . For the CSD results,rC` is taken as zero. For the
DSD situations, where conductive-system dispersion is
sumed absent, results are presented for boths0[s8(0)50
~pure dielectric response! and fors0Þ0 ~leaky dielectric re-
sponse!. The latter choice is necessary for a direct fittin
comparison with the CSD response.

One might wonder why, since both the CSD0 and CS
response possibilities are considered in Table I, only DS
rather than DSD0 and DSD1, behavior is included here
terms of previous definitions, DSD is the same as DSD0,
a DSD1 formalism would only be appropriate11 for situations
where bothDeD[eD02eD` and toD were thermally acti-
vated with the same or comparable activation energies,
the usual situation.

It is important to emphasize that the slopes presente
Table I in terms of theb parameters of a fitting model in
volve the specificb’s of a given model. Thus, if, for a spe
cific model, a set of exact simulated CSD1 data was ca
lated with a particular value ofb, say b1 , and then fitted
3965J. Ross Macdonald
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using the CSD0 form of the model, the resulting estimate
b would be designatedb0 , not b1 . This procedure has bee
followed here, and Table I shows that, as far as limiti
slopes are concerned, wheneD` is .0, b0512b1 ~but see
the b0→1 discussion below!. For actual data, fits over th
principal response range should not be expected to a
perfectly with this relation, even when both CSD0 and CS
fits are excellent, but one should expect it to be a good
proximation provided the data range is adequate. Some
results are presented in the next section.

There is a lot of information in Table I. Note that whe
the low-frequency and high-frequency imaginary-part slo
are of opposite sign, there will be a peaked response betw
these regions. For theeD`Þ0 situation, there are two suc
response possibilities for each CSD or DSD set, with one
them always involvingM 9. Further, note the equivalence
each immittance level, wheneD`Þ0 andbD5b1 , between
the CSD1 slopes and those for DSD whens0Þ0. Finally,
compare the CSD0 results witheD`50, with the DSD ones
having botheD`50 ands050, after the following shifts of
the immittance level.11 r↔e, andM↔s. There is, then, full
equivalence if one setsbD5b0 . Note that the high-
frequency CSD0s8(v) slope of b0 in Table I implies a
response of the form (vto0)b0 when (vto0)@1.

A few results in Table I have been presented earlier
the KWW conductivity relaxation situation but with incom
plete identification.24 These are the CSD0 low- and high
frequencys8(v) and e9(v) values appropriate whenb0 is
taken as the SE value ofbn in the right side of Eq.~6!, and
such ab0 is frequently written12,14,24as 12n or b. Reference
24 was published before the distinction between the CS
and CSD1 approaches was fully recognized, and it actu
deals with the MMF CSD1 frequency response, a respo
involving the CSD1, not CSD0, slopes listed in Table I.

The various similarities and equivalencies illustrated
Table I indicate that wheneD`Þ0 one might be able to fi
CSD1 data with either CSD0 or DSD~with s0Þ0! or vice
versa. This suggests that in some cases, it may be difficul
decide which type of fitting is the more appropriate. See
illustration and discussion in Sec. IV.

B. The transition to Debye response

A stretched-exponential response, as in the right-h
side of Eq. ~6! for bn5b0 or bD , leads to a simple-
exponential response when these exponent quantities
unity. It is, thus, reasonable to expect that in this limit t
associated frequency response should degenerate to a s
time-constant, nondispersed Debye response. In spite o
failure of the KWW1 temporal response to be of SE form
b1,1, as discussed in Sec. II, the Debye frequency respo
does indeed appear for all three cases when the relevantb is
unity. But there is an apparent anomaly for the CSD0 sit
tion. A characteristic of the pure conductive-system Deb
response is that thes8 slope is zero at all frequencies, a
parently in direct contradiction to thes8 high-frequency
slope of b0 listed in Table I for CSD0 behavior whenb0

51, and inconsistent as well with the relationb0512b1

whenb151.
3966 J. Appl. Phys., Vol. 82, No. 8, 15 October 1997
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Suppose we consider a value ofb512d, with d→0.
The s column in Table I shows that one expects a limitin
slope ofd for CSD1 and 12d for CSD0. These results ar
indeed found, but the smallerd, the higher the frequency
required for the transition from the zero low-frequency slo
to the limiting high-frequency slope to occur, and the fin
limiting CSD0 slope of unity only appears at infinite fre
quency. For example, for the KWW0 model asb0 increases
from 0.99 to 0.999 to 0.9999, the corresponding values
(vHto0), the normalized frequency at which the actu
s8(v) slope has increased from zero to 0.5b0 , increases
from approximately 64 to 640 to 6400.

These results suggest that one should be careful in in
preting the limiting high-frequency CSD0 response in t
neighborhood ofb051. But the above anomaly actuall
never arises because in real systems low-t cutoff is always
present and leads to a limiting Debye response at a fi
high frequency, independent of the value ofb. Therefore, the
actual high-frequency limiting slopes for all experimen
data are those obtained on settingbD or b1 to unity andb0

to zero in Table I. Thus, cutoff induces a transition from t
CSD0 slope value ofb0 to a plateau with zero slope.

IV. FREQUENCY RESPONSE, FITTING, AND MODEL
DISCRIMINATION

A. CNLS fitting results

In recent work,5 it has been found that for Na2O–3SiO2

frequency response data25 extending over the temperatur
range from 303 to 398.5 K, the newly available accur
KWW computational models inLEVM indicate that the data
are best fitted with the CSD1 approach. Let us designate s
CSD1 KWW fitting by KWW1, that using CSD0 as KWW0
and DSD KWW fitting as KWWD. Here, further KWW fit-
ting of the 321 K data set will first be presented to illustra
how one might discriminate between CSD1, CSD0, a
DSD fitting when data at only a single temperature are av
able, and to compare such fitting results with those obtai
by the MMF approach.

For simplicity, the data set was initially modified t
eliminate, insofar as possible, electrode polarization effe
As demonstrated earlier,5 LEVM is first used to fit the data to
a composite model, which includes both KWW1 and t
electrode-response parts. Then,LEVM is used to eliminate
from the data the full effects of the fit estimate of the ele
trode contribution. Subsequent fitting of the pruned data
with the KWW1 model alone, then yields very nearly
good a fit as the original one, as well as essentially the sa
common parameter estimates. Here, only such modified
sets are considered, but one should always investigate
possibility that electrode polarization effects are no
negligible when fitting experimental CSD data.

It is usually clear whether to use CSD or DSD fitting
data when data sets at several temperatures are availab
no evidence of ar0 is found, and the dispersed response
not thermally activated, then one is most likely dealing w
a DSD situation. But if ar0 appears to exist, and it andt0

are thermally activated with at least approximately the sa
activation energies, then it is most likely that CSD is prese
J. Ross Macdonald
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TABLE II. Fitting results for ~a! 321 K Na2O–3SiO2 data and~b! synthetic data generated from CSD1-a fit parameters. Top five rows are CNLS fi
complex-M level; bottom five rows are~a!-type M 9 fits. All fits involved proportional weighting~PWT or P! except those marked U for unity weightin
~UWT!. eD` is a free fitting parameter for all fits except the last three, whereN indicates that no such parameter is present. For CSD,eX5eC0 , and for DSD,
eX5DeD . SF is the standard deviation of the fit relative residuals.

Type: 100SF bn 1029r0N 104tnN 103^tnN& eD` eC` eX e` e0

CSD1-a 0.272 0.425 1.441 2.396 3.111 4.83 5.34 24.38 10.17 29.2
CSD0-a 0.570 0.543 1.439 13.32 2.314 10.21 0 18.17 10.21 28.3
CSD0-b 0.554 0.542 1.438 13.30 2.314 10.21 0 18.18 10.21 28.3
DSD-a 0.646 0.464 1.451 33.37 7.728 10.21 ••• 21.36 10.21 31.57
DSD-b 0.535 0.463 1.456 37.86 8.839 10.21 ••• 22.37 10.21 32.57
CSD1-P 0.352 0.426 1.448 2.474 3.151 4.73 5.44 24.58 10.17 29.3
CSD1-U 0.378 0.424 1.450 2.426 3.153 4.78 5.37 24.55 10.15 29.3
CSD1-PN 3.51 0.482 1.565 6.920 4.659 ••• 10.26 33.62 10.26 33.62
CSD1-UN 5.60 0.496 1.557 6.990 4.334 ••• 10.29 31.44 10.29 31.44
CSD0-UN 50.1 0.943 0.893 12.66 1.300 ••• 0 16.44 0 16.44
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since any leakager0 apparent for a DSD situation is unlikel
to be related to the dielectric dispersion process and, thu
will not have the same or similar activation energy as
latter. But when data for only a single temperature are av
able, comparison of the CSD1 response with that for D
~with eD`Þ0 ands0Þ0! in Table I shows that they involve
identical limiting behavior whenbD5b1 . Then, a more de-
tailed fitting comparison is required in order to discrimina
properly between the two cases.

A variety of LEVM fitting results for the 321 K data ar
presented in Table II. Here,r0N[r0 /rd , where rd

51 V cm, andtnN[tn /td with td51s. As defined earlier,
r0[rn8(0) andn50, 1, orD. Fitting was carried out at the
complexM level using Eqs.~1! and~4! along with a contri-
bution from the fitting parametereD` when it was taken as
nonzero and free to vary. The parameterrC` was found to
make no contribution to the fits and so was not included
the fittings. Although the KWW1-fit quantityI 1(v) is here
calculated using theI 0(v) of Eq. ~4!, the originalb0 of the
latter is renamed and reinterpreted asb1 for the KWW1 fits.
Finally, note that all full CNLS CSD fit results shown i
Table II, which involve proportional weighting, yield th
same results whether the fitting is carried out at the comp
r or complexM level.3–5 CNLS proportional-weighting fit-
ting at the complexe or complexs levels yielded results
close to those for ther or M level. The DRT moment̂x21&1

needed in the KWW1 fits is given by3,5 @(^x&0)1#21, where
this notation indicates that the CSD0~or DSD! form of the
average, the one which involves the SE exponent and
associated DRT for KWW situations, is to be used but w
b0 changed tob1 . It follows that for the KWW1 model
^x21&15b1 /G(1/b1), whereG is the gamma function. Note
that for theb estimates of lines 1 and 2,b1.12b0 , as
expected. A few KWW1 fits were carried out using Eq.~5!,
with (eC`)1 a free parameter rather thanr. WheneD` was
also included as a free parameter, exactly the same resu
those shown in line 1 of Table II were then obtained,
expected.

The results for the standard deviation of the relative
siduals of the fit,SF , show that this quantity is appreciab
smaller for the KWW1 fit of line 1 than that for the KWW
fit of line 2, or the KWWD fit of line 4. This, and the excep
tionally small value of the line-1SF , is a strong indication
J. Appl. Phys., Vol. 82, No. 8, 15 October 1997
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that KWW1 fitting is most appropriate for these data. T
explore this possibility further, the fitting parameters of t
line-1 fit were used to generate exact KWW1 model data
the same frequencies as those of the original experime
data. The results of fitting this data set by the CSD0 a
DSD approaches are shown in lines 3 and 5. Compari
with the results of lines 2 and 4 shows that theSF and pa-
rameter values are very little changed for the CSD0 case
only slightly more modified for the DSD one. These resu
thus indicate that the main differences between the estim
of lines 1, 2, and 4 are systematic, not random, and thus,
are associated with the use of the less appropriate, for th
data, CSD0 and DSD fitting approaches.

For simplicity, the relative standard deviations of th
fitting parameters themselves have been omitted from Ta
II, but they are very small for the line-1 KWW1 fit,5 and they
increase with increasingSF . Further information about the
KWW1, KWW0, and KWWD M -level fits is provided by
the curves presented in Fig. 3 for the relative residuals of
imaginary~3-a! and real~3-b! parts. These results also app
to r-level fitting if the r 9 and r 8 labels are reversed. Th
increases in the residuals at the frequency extremes prob
arise from inexact estimation of the electrode-polarizat
effects, errors which are magnified on subtraction. Measu
ments over a wider response range would allow better id
tification of the electrode effects and, thus, more accur
subtraction.

Note especially the similarity between the residuals a
ing from the KWWD fit of the experimental data and th
KWWD fit of the exact CSD1 model data. If one uses t
residuals for the line-1 KWW1 data fit to correct those of t
line-4 KWWD data fit, the results are very close to those
the line-5 DSD fit to the KWW1 model data. In spite of th
excellence of the line-1 KWW1 fit, the associated residu
show some small remaining serial correlation, nonrandom
ity arising either from the measurement procedure or from
small systematic deviation in the KWW1-fit model from th
actual experimental response.

The results in columns 2–7 of Table II are direct CNL
fitting estimates. Although the estimates markedeD` are ac-
tual eD` ones for the CSD1 and DSD fits, they are forced
be estimates ofe` for the KWW0 fits of lines 2 and 3.
Further, note the large differences between the 0.425b1 es-
3967J. Ross Macdonald
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timate of line 1 and the KWW0b0 estimates of lines 2 and 3
If we repeat the line-1 fit without any freeeD` parameter, the
resultingb1 estimate is 0.495, much closer to theb0 ones,
but SF is ten times larger. Further synthetic KWW1 da
studies witheD` ranging from 5 to 45 indicated that fo
KWW0 fits including a freeeD` parameter as in line 3, th
b0 estimates andSF values found were virtually independe
of eD` over this range, but not includingeD`50. On the
other hand, KWW1 fits without anyeD` led, as theeD`

values in the data were increased, to larger and larger va
of SF and to largerb1 estimates, with theb1 estimate reach-
ing 0.6 by eD`545. These important findings are furth
explored in the context of conventional MMF fitting in th
next section.

For the DSD results, the model does not, of course,
clude an (eC`)1 CSD contribution, so DSD fitting is unabl
to discriminate between theeD` and (eC`)1 contributions to
e` involved in actual CSD1-type data, and so lumps th
together. The present important results again underline
appropriateness of fitting thermally activated CSD-type d
with the CSD1 approach, not with either the CSD0 or t
DSD one.

FIG. 3. Relative residuals for KWW CSD1, CSD0, and DSD complex n
linear least-squares fits with proportional weighting to Na2O–3SiO2 fre-
quency response data at 321 K~See Table II!. For M (v) fitting, the residu-
als are those associated withM 8(v)(32b) and M 9(v)(32a) as shown,
but the identifications are reversed for fitting at ther~v! level. Here and
hereaftertn 5 1 s.
3968 J. Appl. Phys., Vol. 82, No. 8, 15 October 1997
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For the last four columns in Table II, all quantities e
cept theeX5DeD DSD estimates are calculated from th
direct fitting results. For example,e`5(eC`)11eD` , and
e05eX1eD` . The CSD1 quantities are given in general a
for the KWW response by3,5

~eC`!15t01~^x&0!1 /eVr05t01G~1/b1!/b1eVr0 , ~7!

and

~eC0!15t01̂ x&1 /eVr0[^t&1 /eVr0 , ~8!

where3 ^x&15(^x2&0)1 /(^x&0)1 . For the KWW response, i
follows that16 ^x&15G(2/b1)/G(1/b1). For comparison with
Eq. ~7!, the modern form of the CSD1 Moynihan modulu
formalism expression is5,13,14,26

e`5t01G~1/b0!/b0eVr0 . ~9!

Notice that not only does this result involvee` ~which is
never a pure CSD quantity! instead of (eC`)1 , but it also
involves b0 ~written in the past asb because theb1 , b0

distinction has only recently been explicitly recognized5!
rather thanb1 as in Eq.~7!. As the results of Table I show
these quantities are quite different except when they are b
0.5. Equation ~7! indicates that (eC`)1 /(^x&0)1 and
(eC0)1 /^x&1 must both be temperature independent in or
for t01 andr0 to have exactly the same activation energy

B. M9 fitting results and the Moynihan modulus
formalism

The last five rows in Table II involve nonlinear leas
squares fitting of the imaginary-partM 9(v) experimental
data to a KWW model in order to obtain results for compa
son with those found using the MMF, a formalism whic
does not use CNLS fitting. The CSD1-P and CSD1-U res
are both comparable to the CNLS ones of line 1. If the mo
is appropriate for the data, not only should the fits with t
same weighting be closely comparable, as they are, but
the fit estimates should be very nearly independent of
weighting, just as we see here. These fits, thus, furt
strongly support the previous conclusion that the KWW1
model is the most appropriate one for these data.

The last three rows of Table II involve fits without an
fitting parameter included to estimateeD` , since the MMF
takes no separate account of this quantity. The omissio
this parameter clearly leads to far worse fits of theM 9(v)
data than those obtained when it is included. Figure 4 p
sents theM 9(v) plots for these last three fits. Since th
line-1 fit results are indistinguishable from the data points
a plot of this kind, they are omitted to reduce clutter in t
graph. Figure 4 makes it clear why the CSD0 fit involves
SF value nearly 200 times larger than the line-1 one. Clea
even though full KWW0 fitting with proportional weighting
as in line 2, can yield a good fit, the result for theM 9(v)
fitting when unity weighting is used andeD` is omitted, is
completely unacceptable.

The MMF approach3,5,6,12used an approximate inversio
method to estimate discrete values ofG0 ~denoted ‘‘g’’ in
that work! and employed the results to calculate templ
curves ofI 0(v) and$12I 0(v)% for a variety ofb ~hereb0!
values. Equation~5! shows that$12I 0(v)% is a normalized

-
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form of M1(v), so in this and subsequent MMF fitting wor
plots of the imaginary part~and sometimes the real part!12 of
$12I 0(v)% were constructed and usually compared
M 9(v) data in order to estimate values ofeD` ~or e`!, b,
and t0 ~here denotedt01!. Note that this procedure ignore
the effect of a separateeD` parameter and emphasizes t
large parts ofM 9(v) at the expense of the smaller tail r
gions. This is just what the CSD1-UN fit in Table II does,
we may expect that it should yield results comparable
those obtained with the MMF.

The CSD1-PN and CSD1-UN lines in Table II showb1

estimates that are much larger than that of the best-fit re
of line 1. The CSD1-UN fit involves a rounded value of 0.5
Further, a CSD1-UN fit using Eq.~5! instead of Eq.~4!
yields exactly the same results, confirming that the correc
MMF approach can yield results consistent with the us
KWW1 one generally employed here. It has been state27

that ‘‘large electrode capacitances... need not interfere w
the analysis of relaxation phenomena when the data are
lyzed using the electrical modulus formalism...’’ Earli
work3–5 has shown, however, that electrode-polarization
fects should not be neglected. Further, comparison of
CSD1-P and CSD1-U results in Table II, ones that inclu
the presence ofeD` , whose capacitance effects are genera
much smaller than electrode ones, with the CSD1-PN
CSD1-UN ones, shows that neglectingeD` for these last
two fits has strongly deleterious consequences both for
goodness of fit of the data and for the parameter estim
themselves.

C. Temperature dependence of b’s and their proper
identification

It should now be clear that although all published MM
CSD1 fits erroneously identified theirb estimates with those
of the corresponding SE temporal response,b0 in the present

FIG. 4. Results of nonlinear least-squares KWW fitting of the 321
Na2O–3SiO2 M 9(v) data without taking separate account of the hig
frequency limiting dielectric constanteD` ~see the last three lines in Tabl
II !. The results of the CSD1 fit with unity weighting are most appropriate
comparison with the results of a conventional modulus-formalism fit of
same data.
J. Appl. Phys., Vol. 82, No. 8, 15 October 1997
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analysis, the actualb’s, derived directly from CSD1 fre-
quency response fits, should be identified withb1 . Let us
designate them asb1MMF , a different quantity than the
KWW1-fit estimates ofb1 , which take proper account o
eD` . When the relationb1512b0 holds andb150.5, as
above for the CSD1-UNT5321 K data fit, theb’s are nu-
merically identical, blurring the distinction between them
Now, it luckily turns out that the present Na2O–3SiO2 data
sets were fitted by the MMF approach at the Naval Resea
Laboratory, and the results are listed in Ref. 25. Theb1MMF

andt01 values quoted there are, for example, 0.50 and 0
and 8.031024 s and 1.631025 s for the 321 and 380 K data
fits, respectively.

Because of the ambiguity of theb1MMF50.5 value, it is
worthwhile to include here the results of data fits at anot
temperature whereb1MMFÞ0.5. Although the 380 K data do
not extend to high enough frequencies to yield much of
high-frequency part of theM 9(v) curve beyond its peak
enough is present to yield adequate KWW1 fits. Similarly
the 321 K data, electrode polarization effects were subtrac
from the data5 before the present fits were carried out. T
following b1 estimates were obtained:~a! CNLS M (v) fit-
ting including eD` and with no eD` @ #: CSD1-P, 0.36,
@0.53#; and CSD1-U, 0.37,@0.54#. ~b! M 9(v) fitting:
CSD1-P, 0.41,@0.53#; and CSD1-U, 0.40,@0.53#. Again, the
large effect of including or omittingeD` is evident both for
CNLS and for NLS fitting. In addition, the relationb151
2b0 holds less well, as expected, for these higher temp
ture results than for the 321 K ones.

The above 321 and 380 K unity-weighting fit resu
with no separate account ofeD` are consistent in yielding
b1.0.50 and 0.53, respectively, quite different from the e
timates obtained wheneD` is properly included, but the
same as those found in the Naval Research Laboratory M
fits. Further, the present unity-weighting fits withouteD` led
to estimates of about 7.031024 s and 1.5831025 s, close to
the Naval Research Laboratory one for 321 K and very cl
to the 380 K one. Such agreement indicates that the pre
method of approximating MMF fitting is quite adequate.

These results indicate that CNLS fitting is more app
priate than the NLS fitting, that the CSD fitting should not
carried out without including theeD` effects, and, most im-
portant, that all previous MMF-fit estimates ofb1 , which
were identified withb0 but here are designated asb1MMF ,
should be recalculated as 12b1MMF and then identified as
approximateb1 values.

The above renaming and reevaluation should usually
low previously published MMFb values to be brought close
to those actually appropriate for CSD data, but, as shown
the present results, such changes only go part way tow
obtaining proper KWW1 estimates. In previous work,5 I
compared CNLS KWW1 proportional-weighting-fit est
mates, includingeD` , of b(5b1) with those obtained by
the Naval Research Laboratory MMF fits and showed t
the latter exhibited anoppositetemperature response ove
the range from 303 to 398.5 K to that of the KWW1 fit
Unfortunately, at that time I did not know enough to prope
identify the Naval Research Laboratory estimates as d
above. The bottom curve in Fig. 6 of Ref. 5 is one forb1
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versus 1000/T, and the top Naval Research Labora
curve, when replaced by 12b1MMF;b1 , is closer to the
bottom curve, no longer shows opposite temperature de
dence, but still lies appreciably above the bottom one.

There is not a large amount of CSD KWWb versus
temperature data available in the literature, nor plaus
theory available for interpreting its temperature dependen
The available results generally indicate thatb is either con-
stant over a limited temperature range or often shows a g
eral tendency to increase, probably toward unity and a De
response, as the temperature increases,25,28 but the behavior
can be more complicated near the glass transition, an
decrease inb with increasing temperature has been found
the liquid region of a glass-forming molten salt.29 An in-
crease ofb0 with increasing temperature implies that th
proper CSD1b1 will decrease with temperature increase5

Finally, Angell30 has drawn attention to results where t
temperature dependence ofb from electrical measurement
on a material was opposite to that obtained for shear re
ation processes. It is worth considering whether any s
discrepancies can be explained by the improper use ob
5b1MMF ~identified asb0! rather thanb1 .

V. SUMMARY AND CONCLUSIONS

The differences between the three approaches to sm
signal time- and frequency-response data analysis, de
nated DSD, CSD0, and CSD1 here, have been discussed
methods described for identifying which one is most app
priate for a given data set and fitting model. A useful table
the limiting low- and high-frequency log–log slopes of r
sponse models for all four immittance levels is present
and an apparent anomaly in the high-frequencys8(v) log–
log slope for the CSD0 approach is identified and explain
It is shown that the CSD1 temporal relaxation function
sponse is, unlike that for DSD and CSD0 situations, not
the stretched-exponential form when a KWW fitting mode
employed.

Detailed fitting results are presented for Na2O–3SiO2

data at 321 and 380 K in order to illustrate the above diff
ences, justify the choice of a fitting model, and provide m
terial for comparison with the Moynihan modulus formalis
fitting approach.

The subtleties in the erroneous interpretations of
widely employed MMF frequency-response data fitting a
proach have finally been explained after 25 years of use.
matter is complicated because of partly compensating eff
and is presented in outline form below.

~a! The MMF is a CSD1 fitting procedure, which not on
involves e` instead of (eC`)1 , but takes no separat
account of the high-frequency-limiting dielectric co
stanteD` and, thus, leads to incorrectb estimates, ones
designatedb1MMF herein.

~b! b1MMF has been incorrectly identified in the literatu
asb0 , the SE parameter involved in the CSD0 fittin
approach. The proper CSD1 fit estimate includi
eD` , b1 , satisfiesb1.12b0 for data well fitted by
the KWW model.

~c! Since b1MMF values are often found to approxima
correspondingb0 ones, 12b1MMF should approximate
3970 J. Appl. Phys., Vol. 82, No. 8, 15 October 1997
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b1 even though the adequacy of the approximation
pends on the size ofeD` .

~d! CSD1 CNLS frequency-response data fitting,18 using
Eq. ~4! or ~5! and including the effect ofeD` , should
be employed hereafter in place of the MMF approa
and the incorrect Eq.~9! should be replaced by Eq.~7!.
Previous results obtained using the MMF should
reinterpreted, and even then most of them are likely
be sufficiently approximate that important conclusio
should not be based on them.

The first step in gaining insight into the physical pr
cesses involved in the dispersive response of a materia
obtaining well-determined estimates of the parameters o
appropriate fitting model, including their temperature dep
dences. Such results should be the foundation of the
proach to understanding. But inadequate fitting results, e
cially when their inadequacy is unrecognized, can lead to
construction of a house of cards, which only supports m
leading conclusions.

Even when a best choice of the DSD, CSD0, and CS
fitting approaches has been made, one still needs to find
use the best available specific fitting model by comparing
results with different models. Full complex nonlinear lea
squares fitting should be used, with the inclusion in the co
plete model of electrode polarization effects when need
The CSD1 approach is the appropriate choice for therm
activated dispersion associated with mobile charges, wh
can lead to nonzero dc conduction. Although the data
only a few different CSD materials have been analyzed si
the recent availability in theLEVM computer program of a
KWW algorithm for quick and accurate fitting,3–5 their re-
sults and those herein indicate that the KWW1 model le
to appreciably better fits than others used. Note that
minimum-parameter-number full KWW1 model involve
r01, to1 , b1 , andeD` .

Since no dispersion model available so far is based
microscopic many-body theory, one must use semiempir
models such as the KWW. Although the KWW tempor
response has been derived using a wide variety of phys
assumptions, none of such derivations leads to a quantita
understanding of even the temperature dependence of
parameters as the KWWb0 andb1 . Ngai31 has qualitatively
characterized his KWW coupling parametern[12b0 as a
measure of the size of ‘‘cooperatively rearranging region
of the sample: the largern and, thus, the larger the size o
such entities, the stronger the nonexponential character o
temporal relaxation.

Roland and Ngai32 and Hodge33 have also relatedn ~or
b0! to the fragility of glass-forming liquids, ones whic
show broader relaxation spectra the greater their fragil
Thus, for decreasing temperature one would expect thab0

would decrease andn increase. Althoughn is intrinsically
associated with a temporal response involvingb0 , and b1

can, in general, only be obtained, thus far, from the KWW
frequency-response fitting, to the degree thatb1.12b0 , b1

andn are comparable. Finally, notice that, in the absence
temperature-dependent cutoff effects, while the width o
2r19(v) peak region increases as the temperature incre
J. Ross Macdonald
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and b1 decreases, the2r09(v) width of a KWW0 fit de-
creases asb0 increases. It follows that a relation betwee
fragility and the frequency-response spectrum width sho
most properly involveb1 .
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