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The Ngai coupling model of relaxation: Generalizations, alternatives,
and their use in the analysis of non-Arrhenius conductivity in glassy,
fast-ionic materials

J. Ross Macdonald
Department of Physics and Astronomy, University of North Carolina, Chapel Hill,
North Carolina 27599-3255
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The ionic conductivity of glassy, fast-ion-conducting materials can show non-Arrhenius behavior
and approach saturation at sufficiently high temperatures@J. Kincs and S. W. Martin, Phys. Rev.
Lett. 76, 20 ~1996!#. The Ngai coupling model was soon applied to explain some of these
observations@K. L. Ngai and A. K. Rizos, Phys. Rev. Lett.76, 1296 ~1996!#, but detailed
examination and generalization of the coupling model suggested the consideration of a related, yet
different, approach, the cutoff model. Although both the coupling and cutoff models involve a
shortest nonzero response time,tc , and lead to single-relaxation-time Debye response at limiting
short times and high frequencies, they involve different physical interpretations of their low- and
high-frequency response functions. These differences are discussed; the predictions of both models
in the frequency and time domains are compared; and the utility of both models is evaluated for
explaining the non-Arrhenius conductivity behavior associated with the dispersed frequency
response ofzAgI1(12z)@0.525Ag2S10.475B2S3:SiS2# glass for z50 and 0.4. The cutoff
approach, using simulation rather than direct data fitting, yielded semiquantitative agreement with
the data, but similar analysis using the coupling model led to poor results. The coupling model leads
to an appreciable slope discontinuity at thetc transition point between its two separate response
parts, while the cutoff model shows no such discontinuity because it involves only a single response
equation with a smooth transition attc to limiting single-relaxation-time response. The greater
simplicity, utility, and generality of the cutoff model suggest that it should be the favored choice for
analyzing high-conductivity data exhibiting non-Arrhenius behavior. ©1998 American Institute of
Physics.@S0021-8979~98!06714-0#
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I. INTRODUCTION AND BACKGROUND

A. General

In 1996, Kincs and Martin~KM ! published an importan
paper demonstrating very high room-temperature dc cond
tivity in a series of chemically stable, conductivity
optimized, ion-conducting glasses.1 Such high conductivity
is very desirable for device applications, but, unfortunate
the full potential of these optimized materials was not re
ized because of progressive deviation from their lo
temperature Arrhenius behavior toward conductivity satu
tion, beginning well below theirTg values. Thus, for
example, instead of reaching the room-temperature extra
lated value of 0.04 (V cm)21, one of their AgI-doped mate
rials only yielded a value of 0.006 (V cm)21 at that tem-
perature. Kincs and Martin also suggested that the trans
to such non-Arrhenius behavior at higher temperature
ubiquitous in all superionic fast-ion-conductive glasses.

It thus seems as though Nature somehow acts to res
the maximum conductivity reachable in the saturated reg
In fact, as the present work shows, that conductivity seem
depend only slightly on the degree of doping. Although K
suggested a mobility-oriented qualitative explanation for
approach to saturation, Ngai and Rizos2 ~NR! soon proposed
an alternate and more satisfactory explanation for the de
8120021-8979/98/84(2)/812/16/$15.00
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tions from Arrhenius behavior, one based on the coupl
model ~CM! of Ngai and his co-workers.3–38 Their results
were particularly remarkable because they creatively
plained the non-Arrhenius behavior of the dc conductivity
means of a model that involved deviation from a low
frequency dispersed response only at frequencies of the o
of 1012 Hz and above. What an extrapolation!

These works led me to take a closer look at the CM a
the basic physics involved in it, with the hope that such
examination might shed further light on those factors lead
to saturation in fast ion conductors or, indeed, in any c
ducting material with a physically necessary crossover
very high frequencies. Identification of the controlling fa
tors might then allow one to optimize such a conductor
order to either entirely avoid saturation or at least to push
onset to higher temperatures.

In the course of my examination of the published wo
on the CM, I found some limitations in the CM approac
which, in turn, led me to examine a closely related but si
pler alternative to the CM, the cutoff model~COM!. In the
present work, the CM is corrected and generalized wh
appropriate; the two models are described in detail; their p
dictions are compared, in general; and their success in
plaining the KM results is evaluated. It should be emph
© 1998 American Institute of Physics
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sized that although the results of the application of the N
coupling model to the KM data are compared with those
the COM in Sec. II, and although some of the changes in
Ngai CM made by Ngai and his associates over the years
summarized in Sec. I C, the present changes and genera
tions of the CM render it different from the current or earli
versions of the Ngai CM. Thus, in order to maintain t
distinction, I shall use, where appropriate, NgCM to den
the Ngai CM and just CM for the current extensions of t
original coupling model or for referring to common featur
of both approaches.

The coupling model of relaxation was proposed by N
in 1979;3–5 it has been applied to a wide range of physic
phenomena since its inception; and it has been derived
several alternate approaches. Over the years there have
ably been well over a thousand pages, published in scien
journals and in the reports of conferences and meetings,
have been devoted to explicating and applying the mo
References 2–38 are representative. It is not, however,
large number of published pages devoted to the NgCM
make it worthy of further consideration, but instead t
claims that it can explain a very wide variety of linea
response, relaxation-related experimental results. For
ample, Ngai33 has said, ‘‘The usage of these coupled re
tions in enhancing the understanding of relaxations in sev
classes of correlated systems have@sic# been amply demon
strated in the past. Examples of these remarkably succe
applications will be given later in the present review. It
worthwhile to emphasize that these coupled relations w
derived ... long before they were applied to experiments
subsequently verified by the data.’’

Most of the great body of work on the NgCM has d
rectly involved Ngai and his various coauthors, and only
relatively small amount of independent discussion of the
proach has appeared in the literature. It is worth mention
however, that Ngai rebuts some criticisms of the model at
end of Ref. 15, and replies to comments and questions
cerning it in the discussion section appearing at the end
Ref. 23. The discussions in Refs. 19 and 39 are also rele
to the application of the NgCM to the analysis of the tim
decay of remanent magnetization. The characteristics of
NgCM are compared to those of some other relaxation m
els in Refs. 15 and 22.

As demonstrated below, because of the developmen
the LEVM computer program for accurate and rapid d
analysis appropriate for comparing a fitting model with e
perimental data,40–42 it is now pertinent and possible to ex
amine the content of the NgCM, the methods used in the
to verify it, and finally to evaluate its applicability mor
quantitatively and accurately than has been possible pr
ously. We begin with a brief summary of the main featur
of the NgCM, provide a needed generalization of it, and n
its connection to the more general COM, one applicable
any relaxation situation. Then the utility of the two models
explaining non-Arrhenius conductivity behavior in glas
fast-ionic conductors is examined. Finally, time and f
quency domain responses of the two approaches are c
pared in detail and discussed. Although the NgCM has b
applied to a wide variety of relaxation processes,2–38 includ-
Downloaded 14 Aug 2005 to 152.2.181.221. Redistribution subject to AIP
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ing electrical and mechanical relaxation in disordered ma
rials, for simplicity the present work will be restricted to th
small-signal electric response of such materials in the t
and frequency domains, the area considered in the orig
derivation of the NgCM.3–5

B. Types of response

It has recently been shown42–45that in the discussion and
analysis of electrical relaxation data it is important to dist
guish between dielectric-system dispersive response~DSD!
and conductive-system dispersive response~CSD!, even
though such a distinction is somewhat idealized and fails
capture the full complexity of all but the simplest process
For DSD, the dispersion is taken to involve such dielect
quantities as rotating or induced dipoles, and the princi
dispersion process thus leads to no dc conductivity. It is t
most appropriate to describe the data in terms of a mo
defined at the complex dielectric constant, or susceptibil
level. In contrast, CSD involves mobile charges that are a
to contribute to a dc conductivity,s8(0), which is an intrin-
sic part of the dispersive process. Then, a model for suc
response is best developed and applied at the complex r
tivity or impedance level. Finally, as discussed below, it
important to distinguish between two types of CSD behav
denoted CSD0 and CSD1. Incidentally, when a DSD sit
tion includes an unrelated, nondispersed dc conductivity
has been found that its frequency response may be very
fit by either a CSD0 or CSD1 model46 ~andvice versa!, and
the limiting log–log slopes~termed just slopes hereafter! of
DSD and CSD responses are then equal.47 A choice of the
most appropriate model to fit such data is greatly aided w
data are available over a range of temperatures.

In terms of a distribution of relaxation times~DRT!, t,
DSD can be represented by a Maxwell circuit,48 one involv-
ing a parallel set of dielectric-entity relaxors, each of whi
may be formally represented by a resistor and a capacito
series, in either discrete or differential~continuous! form.
These circuit elements model energy dissipation and sto
processes. Similarly, the DRT for CSD response can be m
eled with a Voigt circuit,48 one that involves a series set o
resistivity-level relaxors, each of which may be represen
by a resistor and capacitor in parallel, in either discrete
differential form. Note that the use of a DRT~or a distribu-
tion of activation energies! associated with given temporal o
frequency response does not necessarily imply that the t
retical or experimental response is best interpreted physic
in terms of such a distribution. But since techniques for d
tinguishing between discrete and continuous distributions
now available,41,46 if one finds that experimental response
best described by one or only a few discrete Debye re
ation times, this will certainly be the appropriate model
describe the physical processes that contribute to the re
ation response.

Let us use the subscriptn, with n5D, 0, or 1, to desig-
nate DSD, CSD0, or CSD1 behavior, respectively. DefineUn

as an unnormalized measured or model quantity of inter
It is mathematically convenient to express the normaliz
form of Un , I n , in terms of a DRT, saygn(t). Let x
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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[t/tk , wheretk is a characteristic response time, and defi
y[ ln(x). We may then write42–45

I n~V![
Un~V!2Un~`!

Un~0!2Un~`!

5E
0

` Gn~x!dx

~11 iVx!
5E

2`

` Fn~y!dy

@11 iV exp~y!#
, ~1!

whereGn(x)[tkgn(t), Fn(y)[xGn(x), V[vtk , and the
Fn form, which may be simply related to a distribution
activation energies,49 is particularly appropriate for numeri
cal quadrature. Here the DRTs are normalized, soI n(0)51
and I n(`)50, as indicated above.

Consider now some possible connections between
DSD and CSDI n quantities and their associated DRTs. Su
pose that the specific form of a DRT, sayGD(x), is known
for the DSD situation. Then, it has been shown49 that this
same form may be used in Eq.~1! with n5D or 0 to define
either the DSD or CSD0 response, respectively. Here,
shall be primarily concerned with CSD situations, but no
that every CSD0 model implies the existence of a DSD o
with the same formal DRT. An important quantity commo
to both CSD and DSD situations iseD` , the high-frequency-
limiting dielectric constant associated with pure dielect
processes.

Long ago, Macedo, Moynihan, and co-workers50 pro-
posed that conductive-system relaxation response coul
appropriately expressed at the complex modulus,M (v),
level in terms oftg0(t), or, equivalently,xG0(x), thus de-
fining what is here designated as the CSD1 response, a r
obtained independently somewhat later.49 This later work in-
dicated that CSD1 analysis is more appropriate
conductive-system dispersive situations in which the cond
tivity is thermally activated than is the CSD0 approach.

The normalized moments of a normalized CSD0
CSD1 distribution may be expressed as42

^xm&n[E
0

`

xmGn~x!dx, ~2!

where42–45 G1(x)[(x/^x&0)G0(x); and so it follows in this
situation that^x21&151/̂ x&0 . The connection between th
CSD0 and CSD1 response need not be made at the mod
level. It may alternatively be written as42–45

I 1~V!5~^x21&1 / iV!@12I 0~V!#. ~3!

It is crucial to recognize that when Eq.~3! is used to fit data,
any parameters involved inI 0(V), such as a fractional ex
ponent, ones that would ordinarily involve a 0 subscript,
must be interpreted as CSD1 quantities and must involve
n51 subscript. Further, although Eq.~3! shows that an ex-
pression forI 1(V) may be obtained when one forI 0(V) is
available without explicit knowledge ofG0(x) or G1(x) if
^x&0 is known, this is not the case for the transient respon
Then,G0(x) is needed to formG1(x) for use in the tempora
analog of Eq.~1!, that where the quantity 1/(11 iVx) is
replaced by42 exp@2(t/tk)/x#.
Downloaded 14 Aug 2005 to 152.2.181.221. Redistribution subject to AIP
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C. The coupling model

The NgCM was originally developed for dielectric po
larization involving permanent dipoles or nonpercolati
charged particles3,5 and thus applied to DSD situations.
has, however, later been used for the analysis of the C
response as well.2,9,10,14,21,27,30,38The CM involves two sepa-
rate, coupled response equations; one applying at very s
times and high frequencies and the other for long times
low frequencies. A crucial assumption of the CM is th
there exists a temperature-independent microscopic timetc ,
before which the entities that contribute to the relaxat
process are uncorrelated, so that interactions do not affec
dynamical relaxation process for shorter times.3–6 Let us
write tc[tc[1/vc , wheretc has been stated to fall in th
range of 1029– 10212 s, with the latter the currently favore
value.2,33,34,51For t.tc , however, the relaxing units begin t
become correlated. It is this transition to coupling to a co
plex environment that has given the CM its name. In t
original NgCM, the complexity of the system is represent
by low-lying, correlated-states excitations with a distributi
of energy spacings.5,6

No particular value of the quantitytc is predicted by the
Ngai theory; instead the presence oftc there follows from
the assumption of the existence of a cutoff energy of
distribution of low-energy states posited to be present in
material. Similarly, the fractional exponent-type coupling p
rameter,n[12b, of the theory arises from the assumptio
that the density of excitation states at energyE is propor-
tional to E and thatn,1.5,6 Although Ngai17 has stated tha
the NgCM ‘‘does not address the microscopic significance
the parametern, ’’ in later work33 he has stated that his Eq
~4.2! of that work, which relatesn to an anomalous diffusion
coefficient without a detailed analysis, is ‘‘the central res
of the coupling model.’’

Like most present-day relaxation theories that do not
volve microscopic interactive many-body analysis, the N
approach does not predict explicit temperature depende
for n or b. Although both the CM and the COM involve b
hypothesis the same limiting quantity,tc , its interpretation
is somewhat different for the latter model, as discussed la
The NgCM approach has the virtue that its underlying the
is very general, yielding the possibility of widespread app
cability, but the concomitant defect that such generality d
not include a detailed description and analysis of spec
processes and quantities involved in the actual respons
the system. Much the same strengths and weakness ar
herent in the COM as well, although it requires fewer a
sumptions and is more generally applicable than is the
since it applies to any response model, rather than only to
single specific model of the NgCM. Here we shall omit
further discussion and critique of the physical bases of
CM, already exhaustively covered in the present NgCM r
erences, and we shall be more concerned with the co
quences and structure of the theory than with its metem
ics.

As one might expect, there have been some change
the NgCM during its 20 years of existence.52 Because the
changes are instructive and relevant to the present work,
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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because Ngai does not generally relate his changes or
rections to his earlier work, I shall attempt to illumina
some parts of the historical development of the NgCM a
then discuss present extensions to the model.

The NgCM, as it existed in the 1980s,52 was usually
defined by the following three time-domain equations:5,6,21

fe~ t !5exp~2t/te!, t!tc , ~4!

the simple exponential response involving the ‘‘primitive
relaxation timetk5te ~termedt0 by Ngai!;

fs~ t !5exp@2~ t/ts!
b#, t@tc , ~5!

the stretched-exponential@Kohlrausch–Williams–Watts53

~KWW!# response for 0,b,1, with a characteristic relax
ation time tk5ts ; and, finally, an important relation be
tween thet’s that can be most simply expressed as

te /tc5~ts /tc!
bQ, ~6!

where, in turn, it is convenient to define

Q[b21 exp@2~12b!gx#, ~7!

with Q5QNg when gx has the value appearing in th
NgCM. This value was originally4 given as 0.57; later5,6 it
was defined as 0.5722; and it was finally9 identified asg
.0.577, the Euler constant, about 0.577 22, the quantity
tually involved in the theory.5,6

The constantgx , not necessarily equal tog, is intro-
duced in Eq.~7! to allow Q to vary from its originalgx5g
theoretical value, which, forb50.5, isQNg.1.5. This gen-
eralization turns out to be desirable, both because the co
tions defining the NgCM have not remained completely c
stant since its genesis and because, as demonstrated lat
the COM,Q is not temperature independent, even whenb is.
The f(t) quantities above are termed relaxation functio
for DSD and correlation functions for CSD situations a
may also stand for the stress relaxation function for mech
cal measurements, etc.13,15,25Although the above expressio
for QNg appeared in inverse form in the early papers on
NgCM, for several years after 1984, Eq.~7! was simplified16

to Q51/b51/(12n). This change may be interpreted as
rescaling17 of vc , but this was not usually noted, often ma
ing the actual definition ofvc uncertain, as well as makin
vc itself potentially temperature dependent. Finally, t
! and@ conditions appearing in Eqs.~4! and~5! have often
been replaced, without explanation, by, and . since
1986.2,23,27,29–34

In most of the Ngai work,b is replaced by 12n. When
the NgCM has been applied to CSD0 or DSD situationsb
has been identified as that associated with stretch
exponential behavior, here denoted KWW0 withb0 or
KWWD with bD . For CSD1 analysis, however,b5b1 , not
a pure stretched-exponential parameter, as demonstrat
the next section, although it has usually been so identified
this case, the relevant KWW response model will be deno
KWW1 with a parameterb1 ; Eq. ~5! is inapplicable, but a
modified CM can still be defined, as discussed later.

Note that when Eq.~7! applies, any temperature depe
dence ofb will induce some inQ. In the present work,
however, I shall just takeQ as a proportionality constan
Downloaded 14 Aug 2005 to 152.2.181.221. Redistribution subject to AIP
or-

d

c-

di-
-
for

s

i-

e

d-

in
In
d

whose value is determined by those of the other quantitie
Eq. ~6!. In the modern version of the NgCM,52 applying
since the early 1990’s, however,Q is given the value of
unity, one that follows from settingfe(tc)5fs(tc). Devia-
tions from this value are a measure of the appropriatenes
this choice. In particular, for a KWW1 CM or COM re
sponse, since Eq.~5! does not apply,QÞ1.

In the present work, we shall be primarily concern
with KWW0 and KWW1 temporal and frequency respon
for three situations: no cutoff~NCO!, the COM, and the CM.
Since the NgCM deals only with the KWW0~or KWWD!
temporal response of Eq.~5!, the scope of the present anal
sis and results is far greater than that of that approach.
distinction betweenb0 andb1 is considered in more detail in
Refs. 45 and 46, and in Ref. 45 it is also shown that
neglect of the DSD quantityeD` in the usual Moynihan
modulus fitting approach50 can render the resulting estimate
of b quite inaccurate and misleading.

The@ restriction of Eq.~5! appears in the original work
on the NgCM4–6 and is necessary to indicate that the KWW
related expression found in the analysis is only asympto
Furthermore, although in most of the published work on
NgCM, the fractional-exponential Eq.~5! expression is taken
as the first,33 or first ‘‘universal’’ relation16 of the NgCM, the
full analysis actually yielded5,6 an expression only for
df(t)/dt in the regiont@tc . If that expression is compare
with the derivative of Eq.~5!, one finds that, except for a
scale factor involving the dielectric polarization strength,
additional (ts /tc)

12b term is present in the original, a term
that should then presumably multiply Eq.~5! in order to
make it consistent with the original NgCM theory. Unfortu
nately, the calculation off(t) itself from the original analy-
sis over the entire time range of interest would requ
double numerical integrations of an exponential of a cosi
integral function, sufficiently complex and prone to error th
no such results have been published.

Although the important Equation~6! follows from the
df(t)/dt expression in the original Ngai analysis~when
Q5QNg) and was termed the second universality12,16 of the
NgCM, if one setsfe(tc)5fs(tc), the result is just Eq.~6!
with Q51, not the originalQNg value. To obtain this result
it is necessary that the! and @ conditions of Eqs.~4! and
~5! be replaced by< and>. Ngai and Rizos have implicitly
done so in the work of Ref. 2, where they presentf(t)
curves for the full range oft, including the crossover poin
t5tc . But the choiceQ51 is inconsistent with the origina
theory in the asymptotic limit, and it is unlikely that tha
theory would lead toQ51 for b,1 at the crossover poin
were it practical to calculate its predictions there.

Rendell and Ngai16 have stated, ‘‘The first and secon
universalities together address many physical questions
cerning the meaning of relaxation and its relation to the m
terial structure,’’ and ‘‘a true activated process is not r
quired for the second universality,’’ but, of course, th
NgCM has been often applied to thermally activated C
situations. Finally, Ngai and Rendell25 have stated, ‘‘Al-
thoughn may be a function of temperature, the relation b
tween the effective KWW relaxation timets and the micro-
scopic te @here Eq. ~6!# continues to hold at all
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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816 J. Appl. Phys., Vol. 84, No. 2, 15 July 1998 J. Ross Macdonald
temperatures.’’ In fact, as shown herein, even for
temperature-independent value ofn, Eq. ~6! only holds for
the COM approach~or a CM fit to it! if Q is allowed to be
strongly temperature dependent at high temperatures, in
sistent with the original NgCM second-universality relatio

For completeness, it is worth mentioning that Ngai a
his collaborators27,33 have presented a simplified version
the NgCM theory, which involves a constant reaction rate
te

21 for t,tc and a time-dependent, inverse-power-law,
action rate involvingn for t.tc . Integration then leads to
Eq. ~4! with , instead of!, Eq. ~5! with . instead of@,
and Eq.~6! with Q51/b, inconsistent with matching att
5tc , but characterized as a minor inconsistency by Nga52

one that could be overtly eliminated by the renormalizat
of tc . Incidentally, in this piecewise approach, the prese
of te in Eq. ~6! arises because of the assumption that
time-varying reaction rate is proportional tote

21. Ngai and
Rendell25 have stated that the basic physics of the NgCM l
in the relaxation-rate equations rather than in the KW
function. Finally, it is worth noting that in Ref. 34, publishe
in 1995, it was stated that the three coupled equations of
NgCM ~written there with noQ term present, equivalent t
Q51), ‘‘were first proposed more than 14 years ago a
have remained unmodified.’’

Suppose that one continued to require that Eq.~6! should
hold and maintained continuity att5tc , even forQ unequal
to unity? On multiplying Eq.~5! by a consistency factorA
and setting the equations equal att5tc , one then finds tha
Eq. ~5! should be replaced by

fs~ t !5exp@~Q21!/~te /tc!#exp@2~ t/ts!
b#

5exp$@~tc /ts!
b2~ t/ts!

b#2~tc /te!%, t>tc ,

~8!

and Eq.~4! by

fe~ t !5exp~2t/te!, t<tc . ~9!

Clearly the prefactor in Eq.~8! is quite different from
(ts /tc)

12b, and it reduces to unity whenQ51. Further, it
approaches unity at low temperatures aste /tc increases. In
the absence of analytical or numerical results from the or
nal Ngai analysis in the neighborhood oft>tc , Eqs.~6!, ~8!,
and ~9! represent a consistent KWWD or KWW0 couplin
model, although one not in full agreement with the origin
NgCM analysis.4–6 Although Eqs.~8! and ~9! lead to the
same result att5tc , it is clear that there will be a disconti
nuity in slope at this point. As Ngai, Rajagopal, and Teitle20

have pointed out, the discontinuity in the NgCM is an artifa
of the piecewise construction of the relaxation function a
‘‘a completely satisfactory treatment would presumably
continuous in all derivatives.’’ The cutoff model, which do
lead to the response that is continuous for all derivatives,
to Eq. ~6! for both temporal and frequency response, will
discussed in the next section.

Both the CM and the COM lead to an important res
for thermally activated systems that involve relaxation-tim
Arrhenius behavior. Suppose thatts(T)5ts` exp(Es/kT),
wherets`

21 is an attempt frequency andEs is, as usual, also
taken to be temperature independent. Then writete(T)
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5te` exp(Ee(T)/kT) and substitute these results into Eq.~6!
with tc andte` , taken independent of temperature. The
sult may be put in the form

Ee~T!5Ee01kT ln@Q~T!/Q~0!#, ~10!

whereEe0 andQ(0) are low-temperature-limiting values fo
the relaxation process considered, andEe0[bEs . From the
analysis of a fast-ion conductor presented in Secs. II and
one finds thatQ remains close toQ(0) over an appreciable
temperature range, and in this low-temperature range
original NgCM result,9 Ee5Ee05bEs , with Ee assumed to
be temperature independent, will be a good approximat
But unlessQ(T)51 for all temperatures, the modern form o
the NgCM is not applicable.

Ngai identifies the observed macroscopic activation
ergy,Es , as not fundamental but derivative and instead ta
Ee0 as the basic microscopic activation energy.5,9,16 Inciden-
tally, since it is rare for a DSD,tk[tD , to exhibit Arrhenius
behavior over a wide temperature range,54 and the CSD1
approach is much more appropriate for thermally activa
conductive-system situations than is the CSD0 one, Eq.~10!
should apply primarily for CSD1 situations. Although Raj
gopal and Ngai15 have stated that most relaxation theorie
including DRT ones, do not lead to the second universa
relation of the NgCM, Eq.~6!, with Q5QNg ~or currently,
Q51), the present more general Eq.~6! with temperature-
dependentQ is likely to be applicable for any physically
realizable relaxation model with power-law behavior at hi
frequencies before cutoff effects dominate.

Excellent agreement with theEe05bEs relation has
been found by Ngai and his collaborators9,27,28using nuclear
spin lattice relaxation results to obtainEe estimates and em
ploying conductivity relaxation results to obtain estimates
b andEs . There are, however, some potential problems w
these results. First, as already mentioned, there are likel
be appreciable inaccuracies in estimates ofb obtained with
the common conductivity-relaxation-analysis approach u
in the past, the Moynihan modulus formalism,50 as discussed
recently.42,45,47 Second, when a KWW0 response model
used for the CSD0 response, the related CSD1 transien
sponse isnot of the Eq.~5! stretched exponential form, and
concomitantly, the CSD1 KWW1 frequency response is
the same as the CSD0 KWW0 frequency response, as
cussed later herein. It is worthwhile to demonstrate the
parture from stretched exponential behavior for both
KWW0 and KWW1 response models, and such results
pear in the next section. The above possible problems s
gest that further tests of the present activation-energy r
tions might prove useful, although it is shown herein that
Ee05bEs relation applies well for the KM COM analysi
situation below temperatures where appreciable conducti
saturation occurs.

Because the KWW1 temporal response is not of
stretched-exponential character of Eqs.~5! or ~8!, it should
be clear that the NgCM, defined in the time domain, is o
fully applicable for the KWWD and KWW0 temporal re
sponse. If we match exponential and KWW1 time respo
or Debye and KWW1 frequency response att5tc or v
5vc , we expect that although such equations as~6!, ~7!, and
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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~10! should still apply, they will involve differentQ values
than those appropriate for KWWD and KWW0 situation
Unfortunately, these distinctions have not usually been r
ognized in the past when applying the NgCM to CSD situ
tions, and KWW0 analysis has been used for situati
where the KWW1 approach seems to be more appropria

D. The cutoff model

Although many empirical or semiempirical frequenc
response models that are associated with a continuous D
such as those of Davidson and Cole55 and the stretched
exponential,53 involve a physically realizable low-frequenc
response, their high-frequency behavior is not necessa
limited by a smallest nonzero response time. For exam
both the Davidson and Cole and KWW models lead to
high-frequency-limiting power-law frequency response
volving s8}vj, where 0,j,1. Thus, thev→` limit of
the corresponding conductivities is infinite. Physical rea
ability requires, however, that any response must involv
shortest nonzero response time, here defined astc , and a
longest noninfinite one.56 A hierarchy of processes is prese
in any given real material, and each process will invo
such limits. Here we consider only those limiting respon
times appropriate for small-signal electrical relaxatio
dispersion and omit such contributors to the response
phonons.51

The problem of the nonphysical limiting high-frequen
or short-time response is sidestepped in the CM by its
sumption of an abrupt transition from KWW behavior to t
simple exponential response att<tc . The COM achieves
the same result in a smoother and simpler fashion by cut
off a DRT ~or distribution of activation energies! at some
nonzero small value oft, tmin , which is here equated totc .
Such a cutoff yields a smooth transition from the dispers
response, say that of a KWW form, to nondispersive limiti
Debye relaxation in the frequency domain or to a sim
exponential response in the time domain. Cutoff is by
means a new approach, and it much antedates the in
NgCM work. In fact, cutoff DRTs have been used since, a
before, Frochlich’s57 1949 discussion of the non-Debye d
electric response associated with a rectangular box distr
tion. A modern application, involving an effective-mediu
approach with cutoffs of an initial activation-energy box d
tribution, appears in Ref. 58.

It is worth emphasizing that it is unnecessary, althou
often convenient, to define cutoff in terms of a DRT. An
physically realizable response model, such as the correl
hopping~jump! model of Funke,59 must show cutoff effects
because of the above restrictions on the range of poss
response of a given relaxation process. In the frequency
main, these effects lead, in a complex plane plot of, say,
complex resistivity, to vertical approaches of the imagina
part of the resistivity to the real resistivity axis at the e
tremes of frequency and to a high-frequency plateau in
real part of the conductivity. Funke, Cramer, and th
associates51 have recently measured the frequency respo
of an ion-conducting glass up to about 50 THz and find, a
vibrational effects are removed, that the hopping conduc
Downloaded 14 Aug 2005 to 152.2.181.221. Redistribution subject to AIP
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ity indeed reaches a plateau at a roughly temperat
independent frequency of about 1 THz, consistent with
choicetc510212 s.

In Ref. 59, Funke compares the original NgCM to h
jump relaxation model and finds both similarities and diffe
ences. Although the jump relaxation model also exhib
crossover between types of response below and abovetc , it
avoids the slope discontinuities present in the CM. The
teresting question remains as to whether the COM can
only simulate jump-relaxation response accurately but can
it in a simpler way for a wider range of experimental r
sponse than possible with the more specific and much m
complicated jump approach.

If one has available aG(x) expression defined over th
full range ofx5t/tk , the present type of cutoff is achieve
by replacing one or more of the integration limits of Eq.~1!
by finite, nonzero values. Because the temporal and
quency response then follow through integration, a kind
averaging process, such sharp cutoffs of the distribution
not produce the slope discontinuities inherent in the CM. F
numerical work, it is unnecessary to use an infinite or e
ceedingly large value for the upper integration limit becau
of the large-t cutoffs inherent in the form of the KWW and
Davidson–Cole models. In terms of they variable, it has
been found adequate to use a maximum upper limit oy
5ymax>15 or so. The lower limit of the rightmost integral o
Eq. ~1! with cutoff becomes justymin[yc[ln(tc /tk)[ln(xc),
with tk5ts for the KWW response. Note that except at hig
temperaturesyc will usually be negative. Further, a value o
260 or less foryc yields no cutoff effects in any measurab
frequency range. At a sufficiently high temperature, ho
ever,yc will approach the upper limit of the integral, yield
ing a very nearly single-relaxation-time response over
full time or frequency domain. Incidentally, the effects
different cutoff values for an exponential distribution of r
laxation times have been illustrated long ago for both
time60 and frequency domains.49

In the present work, we shall illustrate the COM r
sponse for various KWW situations. To do so, one need
be able to calculateGn(x) or, equivalently,Fn(y), with and
without cutoff. For the KWW0 situation withb050.5, the
latter quantity, without cutoff, is given by42

F0~y!5~1/2Ap!exp@0.5y2exp~y!/4#. ~11!

No general expression forF0(y) is known for arbitraryb0 ,
making it difficult but not impossible to calculate the KWW
and KWW1 frequency response accurately for an arbitrarb
value.40,42,45In fact, the current V. 7.01 of theLEVM fitting
program allows such a frequency response to be calcul
extremely accurately and used for fitting when cutoff pla
no role.40 In addition, the soon-forthcoming version ofLEVM,
V. 7.1, includes an algorithm for the accurate calculation
the KWW temporal or frequency response with an arbitra
amount of cutoff and arbitraryb, needed to allow fitting the
COM to appropriate data. The present work, however, de
principally with theb50.5 choice since closed-form expre
sions forG0(x) and its moments forb050.5 are available
and have been presented previously for arbitraryxc cutoff
values.42
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Some characteristic temporal responses are illustrate
Fig. 1. These essentially exact results have been calcu
using the appropriate expressions forFn(y). Here we con-
trast KWW1 and KWW0 responses, each with cutoff, th
yielding COM behavior, and response without it. The a
scissa is taken proportional tot1/2 in order to immediately
show similarities and differences from an ordinary stretch
exponential response withb050.5. The vertical dashed lin
indicates the position oftc . The value ofts used here is tha
following from the analysis of the next section forT
5400 K. In addition, that analysis yielded a value of t
cutoff parameteryc of 2.032 for this relatively high tempera
ture. All these values are used for both the KWW1 a
KWW0 responses.

Figure 1 shows that the KWW0 response without cut
is just stretched exponential behavior, as required from
present definitions. But the figure also demonstrates that
for t@tc do the other curves appear to approach
stretched-exponential response. Note that the limiting slo
of the two cutoff lines are the same, as are those with
cutoff. At the present temperature, we see that the KW
curve is not of the stretched-exponential form over its f
range, even in the absence of cutoff. But the present typ
presentation is not very sensitive to departures from
stretched-exponential response, and the more detailed a
sis presented in Sec. III B indicates that true stretch
exponential behavior only appears for the KWW0 witho
cutoff; all other situations lead to the stretched-exponen
response with time-dependentb, indicating that Eq.~5! is
then not appropriate, except perhaps over a very limited t
poral range.

Although one does not need to knowte in order to cal-
culate the COM temporal response, its value may be e
mated by fitting the response over a time range where sim
exponential behavior, arising from cutoff, is dominant. F
the present value oftc , such a fitting has been carried o

FIG. 1. Some temporal-response relaxation curves for KWW1 and KW
models with~CO! and without~NCO! small-t DRT cutoff att5tc . Here
b15b050.5, tc510212 s, andtN51 s here and hereafter. Thex axis in-
volves t0.5 in order to show the approach to stretched-exponential beha
The ts value is that appropriate for theT5400 K, z50 ionic-conductor
material analyzed in Sec. II.
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over the range 10216<t<10214 s. Similarly, when
frequency-response data are available, one can fit the De
range of 1014<v<1016 r/s in order to estimatete . For cut-
off time and frequency response data calculated as descr
above, one obtains forT5400 K the followingte /tc esti-
mates for frequency and time, respectively, KWW1: 1.3
1.46, and KWW0: 1.28, 1.35. These values lead, using
~6!, to Q estimates of the order of 4, very different from
There is, of course, no single-relaxation-time response reg
for the NCO KWW0 temporal data, but fitting of the NCO
KWW1 response with the stretched-exponential model o
the above small-t range yields te /tc50.373 and b0

50.948, not the simple-exponential response but close t
More Q results are presented in Sec. III.

It is worth emphasizing that for real data of a sufficie
range,LEVM fitting with a response model such as that
Davidson and Cole, for whichG(x) is known ~or can be
rapidly and accurately calculated numerically, e.g.,
KWW! for all values of its power-law exponent,b, leads not
only to estimates ofts andb but to one ofyc as well, yield-
ing an estimate oftc . As shown in the present work, becau
of the saturation effect associated with a nonzero value
tc , one need not measure the frequency response up to
quencies of the order ofvc[tc

21; instead, it is only neces
sary to have data available over a limited frequency rang
a temperature where sometc-related deviation from dc-
conductivity Arrhenius behavior is present.

II. EXPLANATION OF NON-ARRHENIUS BEHAVIOR IN
FAST IONIC CONDUCTORS

As mentioned in the Introduction, Ngai and Rizos2 have
recently claimed that the NgCM can quantitatively expla
the non-Arrhenius conductivity of glassy, fast-ionic condu
tors, and they have demonstrated their approach using tz
50 results of Kincs and Martin1 for the zAg I1(12z)
3(0.525 Ag2S10.475B2S3:SiS2) glass, data that NR ‘‘chose
to model as closely as possible.’’ Although the pioneeri
NR work is a simulation/modeling of the situation and do
not involve direct fitting of the actual KMz50 data, NR
make the remarkable statements that, ‘‘The non-Arrhen
temperature dependence of the experimental data of KM
reproduced in its entirety by the calculations using the c
pling model without any unknown or indeterminable para
eter,’’ and, ‘‘...the coupling scheme can reproduce this n
Arrhenius temperature dependence quantitatively without
introduction of any unknown or indeterminable paramete
Here, it will be shown that, even though the NR results p
dict an approach to conductivity saturation at high tempe
tures, they are not in adequate qualitative agreement with
data of KM, and it will be demonstrated how the COM a
proach may be used to achieve semi-quantitative agreem
as well as an additional physical insight into the phenom
present.

First, let us list the actual parameters and their valu
used in the NR analysis and then demonstrate how
analysis may be modified and corrected. Note that in a sim
lation, no model parameter values are determined by di
fitting of the model to the data, and it is thus necessary

0

r.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp



an
fo
m

s
R
th

iv

ct
y

th
r

D
b

n

ffi

se

ce
ly
ifi
d
r
a
re

T
th
pl

n

l

to

l d

h

e
only
t

pec-

lier

ly

ex-
hat

up-

he

al-

ent

in-
f a
of

,
ce
fit-

,
i-

s-

re-

loy
h-
cies
-
for
ion

en

819J. Appl. Phys., Vol. 84, No. 2, 15 July 1998 J. Ross Macdonald
rely on other information to obtain what one hopes will be
appropriate set. But NR claim that the NgCM they use
their analysis is ‘‘parameterless,’’ suggesting that no para
eters are present and thus no values are needed. This i
the case. The following values were actually used by N
apparently based on guesses and/or values found in o
experiments for other materials:b050.4, tc510212 s, and
e`515. In addition, NR used thez50 KM low-temperature-
limiting activation energy estimate,Es , of 0.33 eV and the
KM T5298 K low-temperature-extrapolated dc conduct
ity, sdc[1/rs50.0014 (V cm)21. Finally, the glassy fast-
ionic material analyzed here and by NR is a thermally a
vated conductive system, and so should be analyzed b
CSD1 approach, as done using the KWW1 below. But in
work of Ref. 2, NR show only the KWW0 results and appa
ently did not recognize that their use of the Moynihan CS
formalism should require that the stretched-exponential
havior of their Eq.~3! @the present Eq.~5! with t>tc# should
be replaced by the KWW1 temporal response, the respo
not fully of stretched-exponential character.

Since Arrhenius behavior was observed by KM at su
ciently low temperatures, the abovesdc value may be used to
obtain the temperature dependence of the dc resistivity,rs ,
in the low-temperature region only,

rs~T!5rs` exp~Es /kT!

50.001 874 8 exp~0.33 eV/kT! ~V cm!, ~12!

in agreement with the NR result. Ngai and Rizos then u
the electric modulus formalism50 in order to obtain an ex-
pression for the temperature dependence of thets of Eq. ~5!.
Although NR characterized this approach as ‘‘formal,’’ sin
the actual DRT introduced in this formalism may be of on
mathematical use and not necessarily of physical sign
cance, it is interesting that in earlier work Ngai an
coauthors61 invoked the fundamental Paley–Wiener Fourie
transform criterion to show that simple exponential dec
~and thus a continuous or discrete distribution of single
laxation times such as that considered here! is not a viable
description of relaxation phenomena. Luckily for DR
analysis and for the CM, it has recently been shown that
Paley–Wiener criterion does not, in fact, preclude sim
exponential relaxation response.62

The pertinent equation following from the Moyniha
modulus formalism may be written as50

sdc~T!5eVe` /^t&0[eVe` /@ts~T!^x&0#, ~13!

whereeV is the permittivity of vacuum, and in the origina
work eD` appeared in place ofe` . In spite of the widespread
usage of Eq.~13! since 1973, it has recently been shown
be incorrect.42,45,47

For CSD situations, in addition to the ubiquitouseD` ,
there is an additional frequency-dependent effective rea
electric constant present,42 eC(v). Its low- and high-
frequency-limiting values are denoted aseC0 and eC` and
are purely conductive-system quantities. The full hig
frequency-limiting dielectric constant is thuse`5eC`

1eD` . In many cases of interest,eC`(,eC0) is not negli-
gible in size compared toeD` . Unfortunately, the distinction
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betweeneC` and e` has usually gone unrecognized in th
past, and fitting measurements have yielded an estimate
of e` , rather than of botheC` andeD` separately. A recen
LEVM analysis of Na2O–SiO2 at 321 K yielded,47 however,
estimates of these quantities of about 5.3 and 4.8, res
tively, consistent with thee` value of the order of 10 often
quoted for such glassy materials. Further, an ear
analysis44 of CaTiO3:30% Al31 suggested thateC0 was
about 60 at 422 K, certainly quite different from any like
eD` value.

With all possible temperature dependencies shown
plicitly, the correct equation for the CSD1 response, one t
replaces Eq.~13!, is42,45

rs~T!5ts~T!/@eVeC`~T!^$x~T!%21&1#, ~14!

which can be rewritten with temperature dependence s
pressed as

rs5ts^x&0 /~eVeC`!. ~15!

Note that even wheneC` is less than unity, as it is for the
present KM data, it plays a crucial role in determining t
ratio rs /ts .

Here, Eq. ~15!, unlike Eq. ~13!, involves only
conductive-system quantities, as it should. Note that
though^x21&1 , and thuŝ x&0 , do not involvets(T) directly,
they will, in general, involve possibly temperature-depend
shape parameters, such as theb of Eq. ~5!, and they may be
strongly affected by the presence of cutoff of the DRT
volved in a fitting model. Further, as already mentioned, i
KWW1 fit of frequency-response data yields an estimate
b, it should be designatedb1 , then used in̂ x21&1 or ^x&0 ,
and distinguished from the different quantityb0 , which is
approximately given by45–4712b1 . For real data situations
ones whereeD`.1, it should also be emphasized that sin
the standard methods of Moynihan modulus-formalism
ting do not take separate account of the effect ofeD` , a
quantity always present, theb obtained from such a fitting
not distinguished fromb0 in the past, is usually a poor est
mate ofb1 .

For a KWWD or KWW0 response, the general expre
sion for ^x&0 is42,50

^x&05G~1/b!/b, ~16!

whereG is the ordinary gamma function, andb is b0 or bD ,
respectively. But, as discussed above, for the CSD1
sponse, it isb1 . Equation~16! only applies exactly in the
absence of cutoff. Therefore, it is not appropriate to emp
it, except in the low-temperature region, where the hig
frequency simple-Debye part of the response at frequen
in the neighborhood ofvc and larger is a completely negli
gible part of the full response. At higher temperatures,
both the CM and the COM one should use the cutoff vers
of Eq. ~16! for the KWW0 response. As shown earlier,42 the
appropriate expression forb50.5 is

^x&054G~ 3
2,xc/4!/G~ 1

2,xc/4!, ~17!

where G(a,z) is the incomplete gamma function.^x&0 de-
creases asxc decreases and reaches a value of 2 wh
xc50, as does Eq.~16! for b50.5.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Ngai and Rizos did not use Eq.~17! in their work. But,
recognizing that Eq.~16! was inappropriate, they obtaine
approximate values of̂x&0 at several temperatures abo
275 K by using Eq.~2! with approximate estimates o
G0(x). The latter quantities were themselves obtained b
Tikhonov inversion of the full NgCM temporal response, t
combination of Eqs.~8!, with Q51, and~9!. Because of the
poor resolution of such an inversion, required by this meth
to tame the ill-posed character of inversion calculations
volving continuous distributions, their results did not yie
an isolated discrete line for thefe(t) part of the response bu
instead led to an appreciably broadened continuous DR
place of it. TheLEVM program includes an inversion algo
rithm with much higher resolution, one that allows one
obtain single lines for discrete distributions and to dist
guish continuous and discrete parts of a compl
distribution.40,41,46

Note that whents exhibits Arrhenius behavior, the usu
CSD1 situation, the cutoff quantityyc becomes

yc52~kT!21@Es1kT ln~ts` /tc!#, ~18!

somewhat reminiscent of Eq.~10!. Sincets` will usually be
appreciably less thantc , it is possible foryc to become
positive at a sufficiently high temperature.

To obtain an expression with which to calculatets(T),
Ngai and Rizos combined Eqs.~12!, ~13!, and~16!, using the
guessed valuesb050.4 ande`515. They gave the result

ts~T!510214.6 exp~0.33 eV/kT! s, ~19!

where the sign of the exponent of their pre-exponential fac
has been corrected. In contrast, direct calculation usinb
5b150.6 yields ts(T).10214.78 exp(0.33 eV/kT) s. But,
as we shall see, neither result is adequate.

Consider now a much more appropriate calculation
ts(T) using the cutoff model. Althoughb1 is often found to
be temperature dependent, in the absence of further infor
tion we shall take it independent of temperature, as did
for b0 . Further, we take its value as 0.5, consonant with
KWW0 DRT expression of Eq.~11!.

Kincs and Martin1 listed twoz50 sdc values at 298 K:
a value extrapolated from low-temperature results,sdce

50.0014 (V cm)21, and the smaller actual value at th
temperature,sdca50.0010 (V cm)21. Only sdce was used
by NR, but the use of both quantities allows one to avoid
need to make any arbitrary assumption about the value o
eC` quantity of Eq.~15!. From Eqs.~15!, ~16! with b50.5,
and ~17!, it follows from the cutoff model that

sdce /sdca52G~ 3
2,xc/4!/G~ 1

2,xc/4!. ~20!

Since the above ratio is 1.4 atT5298 K for thez50 mate-
rial, we need only solve Eq.~20! for xc and so obtaints ~298
K! using tc510212 s. A root-finding procedure yieldedts

53.4724310212 s. This value andEs50.33 eV then led to
ts`.9.114310218 s, much smaller than that in Eq.~19!.

We may now solve Eq.~18! for the temperature at which
yc50 andts5tc . The result is about 330 K. Finally, sinc
all quantities in Eq.~15! are now known atT5298 K out
eC` , it may be evaluated. The result found is 0.1098, v
much smaller than the NR value ofe`515. In the absence o
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additional information, which would be available from fittin
the full data, we shall takeeC` temperature independent, ju
as NR did fore` . Had the original modulus-formalism ex
pression of Eq.~13! used by NR been appropriate rather th
Eq. ~15!, an estimate ofe` smaller than unity would have
been found by the above procedure, but it would have ha
be rejected on physical grounds. On the other hand, s
eC` is essentially just a conductive-system proportiona
constant, as shown by Eq.~15!, it may be either much
smaller or even much larger than unity.

Now that an appropriate expression forts(T) is avail-
able over the full temperature range, we can use the com
nation of Eqs.~15! and ~17! to calculatesdc(T)51/rs(T)
andts(T) ‘‘data’’ as functions of temperature. This has be
done at 10° intervals over the range 90<T<610 K, and the
above procedure has also been used to obtain results
z50.4 as well. Conductivity curves are presented in Fig
for both the low-temperature-extrapolated Arrhenius beh
ior and the corresponding calculated non-Arrhenius
sponse. Because of the density of calculated points, here
subsequently, only lines connecting the points are includ
without the points themselves. The actual data points sho
were obtained by scaling from an enlarged copy of the K
Fig. 2. Note that the data values shown atT215(298 K)21

were used in the calculations and so agree exactly with
corresponding calculated values. The small deviations ap
ent at the lower temperatures may arise from multi
causes: for example, the present assumption of tempera
independentb1 and eC` , errors in the graphical estimatio
by KM of the dc conductivities at each temperature, errors
the present scaling procedure, and possible small differen
between the actual activation energies forz50 and 0.4 and
those estimated by KM and used herein.

Incidentally, for z50.4 whereEs50.25 eV, eC` was
found to be about 0.0919, surprisingly close to the abo

FIG. 2. Log plots of calculatedsdc(T) curves versus 1/T for zAgI
1(12z)x (0.525 Ag2S10.475 B2S3:SiS2) glass withz50 and 0.4. All re-
sults were calculated by the present COM approach withb150.5. Glass
transition temperatures are indicated by the vertical dashed lines. The
COM curve involves aneC` value of 15, rather than its far smaller prope
value, in order to illustrate some of the effects of the Ngai and Rizos ch
of e`515. Here and hereafter,sN51 (V cm)21.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp



M
-

Fo
d
s.
th
t
b

. 3
2
th

p
rv
o
-
es
n

ed
iv
ho
he
,

-

t
a
o
-
e

al.

nti-

ties
re

e

th
ent.
e
ely

p-
tion.
ary
re,
uc-
t
b-
the

h a
all
ull
it-

an-
tion

ility
toff
ura-
in
a

.
in

er
er

Ng-
le
t

ra-

t.
a

dily
e
M
rst
oci-

tu
its

ha
es

821J. Appl. Phys., Vol. 84, No. 2, 15 July 1998 J. Ross Macdonald
z50 value. Figure 2 also includes a curve marked NgCO
the outcome of az50 calculation of the present cutoff
model type using a constant value ofeC`515, in order to
illustrate the deleterious effect of such a large value.
completeness, all the curves have been extended beyon
T5Tg points, ones designated by the vertical dotted line

Numerical differentiation has been used to calculate
apparent activation energy,Esap, curves from the presen
sdc(T) calculated curves, and the results are illustrated
the solid and long-dashed lines in Fig. 3. In addition, Fig
includes curves derived from the NgCOM results of Fig.
and a smoothed curve, designated NgCM, the result of
NR coupling model calculation.2 It is not clear why the
NgCM curve approaches 0.31 eV rather than the pro
value of 0.33 eV at low temperatures. Further, this cu
reaches an implausible high-temperature limiting value
Esb050.3330.450.132 eV, rather than continuing to de
crease smoothly toward zero as the temperature increas

Also shown in Fig. 3 are a few apparent activation e
ergy points~large open squares! scaled from Fig. 3 of Kincs
and Martin.1 Although the present solid-line and long-dash
COM curves and these KM points are in semiquantitat
agreement, there are several reasons, in addition to t
listed above in connection with the Fig. 2 results, for t
remaining discrepancies:~a! the present work is a simulation
not a fit of extensive data;~b! differentiation magnifies er-
rors; the 0.5 value ofb1 used here is unlikely to be fully
appropriate, especially sinceb1 may be temperature depen
dent; and~c!, in obtaining their values ofsdc, KM appar-
ently took no account of possible electrode effects.42,45 Most
of these same limitations, or their CM equivalents, apply
the NR analysis as well. Thus, although it seems an ex
geration to claim, as NR have done, that their application
the CM to the presentz50 data reproduces the non
Arrhenius temperature dependence of the KM data in its

FIG. 3. Temperature variation of the apparentEs activation energy forz
50 and 0.4, solid and long-dashed lines, respectively. Also, tempera
variation of thez50 apparentEe Debye-response activation energy, and
actual behavior calculated using Eq.~10!. The NgCOM curve is derived
from that of Fig. 2, and the NgCM curve is a smoothed version of t
presented by Ngai and Rizos~Ref. 2!. The large open squares show valu
estimated by Kincs and Martin from their data. Hereb150.5 for the COM
curves andb050.4 for the NgCM results.
Downloaded 14 Aug 2005 to 152.2.181.221. Redistribution subject to AIP
,

r
the

e

y

,
e

er
e
f

.
-

e
se

o
g-
f

n-

tirety, their work on the problem was nevertheless semin
Figure 3 also includes a dotted curve ofEeap, the com-

mon apparent activation energy of the Debye-region qua
ties re and te , which are connected by Eq.~15! with ^x&0

51 and the ‘‘s’’ subscripts changed to ‘‘e. ’’ See the next
section for a discussion of the calculation of these quanti
with the CM or COM. As expected, the low-temperatu
asymptotic limit of theEeap curve for thez50 case is 0.33
30.550.165 eV5Ee0 . Finally, Fig. 3 also includes a curv
of the Ee(T) activation energy, calculated using Eq.~10!.
Unlike the apparentEs curve, we see that it increases wi
temperature rather than remaining temperature independ
This is, of course, an indication of the unsuitability of th
Arrhenius equation at high temperatures and is intimat
linked with the approach to saturation ofsdc(T) at high tem-
peratures.

It is important to emphasize the distinction between a
parent and actual activation energies for the present situa
If there were no cutoff effects present, it would be necess
for Es to increase,not decrease, with increasing temperatu
in order to explain the approach to saturation of the cond
tivity. For thez50 situation,Es would then have to be abou
0.40 eV at 400 K and 0.56 eV at 590 K to explain the o
served saturation. Kincs and Martin have suggested that
saturation effects in their data might be associated wit
temperature-dependent ionic mobility in the region where
available mobile ions are fully dissociated. But such a f
dissociation, in the absence of cutoff, would lead to a lim
ing conductivity of more than 530 (V cm)21, as shown by
the high-temperature limit of Eq.~12!.

While some temperature-dependent mobility effects c
not be ruled out by the present analysis, its good predic
of the approach to saturation, based entirely on cutoff attc ,
an effect unconnected with temperature-dependent mob
or Es activation energy changes, strongly suggests that cu
is likely to be the cause of the observed approach to sat
tion. If so, it appears that the only practical way to obta
higher high-temperature conductivity is to find or create
material with a smaller value oftc , clearly not an easy task

A comparison of the saturated conductivities shown
Fig. 2 for thez50 and 0.4 values indicates that the low
value of Es of the latter material does not lead to high
limiting conductivity, although ifeC` were larger, a higher
saturation value would be achieved, as shown by the
COM curve of Fig. 2. ButeC` is not a separately disposab
quantity, as confirmed by Eq.~15!, which demonstrates tha
at low temperatureseC` is determined by thers /ts ratio for
a given value ofb. Although it might appear from Eq.~15!
that to obtain maximum dc conductivity at a given tempe
ture ts should be as small as possible, decreasingts in-
creasesyc and thuŝ x&0 , resulting in a compensating effec
It thus seems that higher conductivity requires either
smaller temperature-independent value oftc or a tc that de-
creases with increasing temperature, neither choice a rea
controllable possibility. Even though their application of th
NgCM to explain the non-Arrhenius effects observed by K
is imperfect, Ngai and Rizos deserve great credit for fi
suggesting that the effect in fast ionic conductors is ass
ated with the influence of a nonzerotc .
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III. COMPARISON OF CUTOFF AND COUPLING
MODEL PREDICTIONS

A. General

Most of the comparisons in this section deal with fr
quency rather than with the temporal response, and the
involve the results of thez50 calculations of the last sec
tion. Until now, the CM has only been defined at the temp
ral level; thus, it is appropriate to consider how it might
defined in the frequency domain. Although COM time d
pendence has already been illustrated in Fig. 1 for KWW
and KWW1 models with and without cutoff, some compa
son in the time domain between COM and CM dependen
is worthwhile and will be presented first. Because of the h
frequencies or short times involved in the Debye part of
CM or COM response, there has, so far, been little or
detailed fitting of data with either of these models in t
range nearvc or tc . This is one reason why the results in th
preceding section are important: they explain an interes
and relatively common observed effect using the COM
proach without the need for data actually extending up tovc

or down totc .
The range of expressions for and values ofQ that have

appeared implicitly or explicitly in previous NgCM wor
might be thought to make its actual application ambiguou
situations wherete is not determined directly from data fit
ting, i.e., in most previous NgCM studies. For example, E
~6! shows that without knowledge ofQ, te cannot be deter-
mined, orvice versa. NR have avoided this problem in th
work of Ref. 2 by using the modern52 version of the NgCM,
one where in Eq.~6!, Q51 by hypothesis.36 It should be
recalled that this choice ofQ only applies for the KWW0~or
KWWD! response, not for the KWW1 time or frequenc
response; see Sec. III C and Table I for details.

Ngai and Rizos have presented a form of Eq.~13! for
te<tc , with the equation rewritten forte rather than forts

and with^x&051. Although these choices are appropriate
the exponential response region, there remain several p
lems with this approach: the use ofe` instead ofeC` ; the
implicit identification ofre with rs[sdc

21; and the condition

TABLE I. Calculated and fitting frequency–domain results forz50, T
5200 K, KWW situations withb50.5 andtc510212 s. Here and else-
where,rN51 V cm andtN51 s. n51: KWW1; n50: KWW0.

A B
Type,n

C
COM

D
CM

E
COM fit of CM

rs /rN 0,1 3.9283105 3.9283105 3.9253105

ts /tN 0,1 1.88531029 1.88531029 1.87531029

yc 1 27.542 260 27.756
0 27.542 260 28.708

^x21&1 1 0.4935 0.4935 0.4942
^x&0 0 2.026 2.000 2.015

re /rN 1 (7.9743103) 7.1443103
¯

0 (1.4903104) 1.1143104
¯

te /tN 1 (7.752310211) 6.955310211
¯

0 (7.940310212) 9.819310213
¯

Q 1 1.786 1.602 ¯

0 0.0677 0.0226 ¯

gx 1 0.2268 0.4438 ¯

0 6.771 8.965 ¯
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te<tc itself. In the calculation ofte(T) for the z50 situa-
tion of the previous section, it was found thatte approaches
tc asymptotically as the temperature increases, and it is 3
larger thantc at T5400 K and is still 2% larger at 500 K
This behavior is physically plausible. Iftc is the primitive
~NgCM! or limiting ~COM! response time of the system
there should be no smaller response time for the overall
laxation process considered.

The above behavior ofte(T), which applies for either
the temporal or frequency-domain response, as discusse
low, means thatte(T), like rs(T), can only exhibit an
Arrhenius response with a temperature-independentte` and
Ee at low temperatures. By contrast, the conventional NgC
treatment involves Arrhenius behavior ofte(T) over the full
temperature range. The derivation of Eq.~10! assumes tha
the deviation from Arrhenius behavior involves changes
Ee , but, alternatively, one could takeEe temperature inde-
pendent and thete` variable if one insisted on using th
Arrhenius equation at all at high temperatures. Incidenta
althoughre indeed approachesrs asymptotically, it is al-
ways smaller thanrs , about 8% smaller atT5400 K for the
z50 calculations. More details are provided later.

B. Time-domain response

In the temporal domain, there are several ways to ob
neededQ or te values at each temperature of interest wh
the Q51 choice is not appropriate. First, one could fit t
KWW0 or KWW1 COM response directly to actual temp
ral or frequency response data. If the data allowedtc to be
adequately estimated or if it were known independently, s
an analysis would usually be sufficient. Although knowled
of te is not needed for COM fitting, it could be obtained b
separate fitting of the short-time or high-frequency respo
region, as already discussed. With such a value availab
corresponding CM response could be calculated using E
~8! and ~9! for the KWW0 temporal-response situation. T
obtain the KWW1 CM response, one would use Eq.~9! and
match its value att5tc with the calculated KWW1 respons
without a cutoff. In the present work, the exact KWWn
COM time response is calculated using the appropriateGn

DRT.
Some time domain,b05 1

3, COM and CM results at
T5340 K for KWW0 and KWW1 are compared in Fig. 4
Here, as usual,tc510212 s. Figure 4~a! is plotted so that the
exponential response yields a straight line, and its rang
limited to the region 0<t/tc<2 in order to show the CM
transition clearly. For both KWW0 and KWW1,yc.0.343;
and te and Q are about 1.051310211 s and 12.48 for
KWW0, and 3.186310212 s and 3.186 for KWW1, respec
tively. For comparison, the KWW1Q value in the frequency
domain is about 2.531 at this temperature. The present
sults, besides illustrating the large differences inte between
KWW0 and KWW1 situations, clearly show the muc
greater CM discontinuity in slope att5tc for KWW0 as
compared to KWW1; thus, KWW1 analysis characteris
cally leads to much closer agreement between the COM
CM approaches than does KWW0.
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When the present KWW0 and KWW1 COM results a
plotted versus (t/tN)1/3; curves similar in shape to the co
responding ones of Fig. 1 are obtained. But since they do
yield precise information on how closelyf(t) conforms with
stretched-exponential behavior, some of the results of a
ferent analysis are presented in Fig. 4~b!. Let us define

h[dlog$2 ln@f~ t !#%/dlog~ t/tN!. ~21!

If f(t) is given by the stretched exponential of Eq.~5!, then
h5b, a result that is indeed obtained over the full tim
range for the KWW0 response without cutoff.

Figure 4~b! showsh behavior for the usual four choices
First, note thath is not independent of time for the top thre
responses shown in the figure, demonstrating that
stretched-exponential form is inapplicable for these three
sponse possibilities. Second, note that if we seth5b1 for
the KWW1 situations,b1 is not close to the value23, which

FIG. 4. ~a! A comparison of COM and CM temporal response curves
KWW0 and KWW1 situations, showing response near the CM transitio
t5tc510212 s. ~b! A longer-time comparison of KWW0 and KWW1 slop
response with~CO! and without ~NCO! cutoff. The curves marked CO
involve a COM response. The approach to the KWW0/NCO stretch
exponential behavior~whereh5b0) is relatively slow for the other curves
Here and hereafter,z50, and a vertical dashed line indicates the position

tc or vc . The horizontal dashed line in this figure is plotted ath5
2
3.
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might be expected ifh were a proper KWW or power-law
exponent.45,46 Next, one sees that the presence or absenc
cutoff makes little difference in the KWW1 response f
t/tc@1. Incidentally, a nonlinear-least-squares, stretch
exponential fit of the KWW1 COM data over the rang
10213<t/tN<10211 yielded quite a good fit, with estimate
of t andb of about 2.1310211 s and 0.79, respectively, with
one to two percent estimated uncertainties, showing that
results of such a fitting may be strongly misleading.

Although both the KWW0 response with cutoff and th
KWW1 response approachb0 asymptotically, the former
does it appreciably faster. For the present temperature,
cutoff KWW0 situation yieldsf(t) values of about 3
31025 and 8310211 at t51029 and 1028 s, respectively,
while the KWW1 values are about 1023 and 1028, respec-
tively. It is thus clear that ordinary temporal measuremen
which usually do not extend to very small values off(t),
will not allow one to reach values ofh close tob0 for either
type of response. But only whenh5b0 does one have true
stretched-exponential behavior.

C. Frequency-domain response

Coupling may be achieved in the frequency domain
setting a frequency response function, evaluated atvc , equal
to the Debye response at this frequency. Such coupling
not been considered previously for the CM. Both real a
imaginary parts must be matched at the transition point
we make the usual42,45–47 assumption thatrn(`)50, and
consider only the KWW response, an unnecessary limitat
but one consistent with the time-domain NgCM, then w
rn(0)[rsn , frequency–response coupling is achieved if

rn~vc!5rsnI n~vc!5re /~11 ivcte!, ~22!

a relation sufficient to allow values of bothre andte to be
obtained when the complex quantityI n(vc) is known. Al-
though rapid and accurate calculation of the KKWn response
in the frequency domain has not been possible in the pas
arbitrarybn , a procedure to do so has recently been adde
the latest version of theLEVM complex nonlinear-least
squares fitting program,40 as well as one to implement Eq
~22! for the noncutoff KWW response atv<vc . Thus,
given values ofrsn , tsn , tc , andbn , one can readily cal-
culate the correspondingre , te , Q @from Eq. ~6!#, andgx

values and then, if desired, use the results to model the
response. For the presentz50 situation, one finds thatte`

55.350 93310215 s, and for sufficiently small tempera
tures,

re~T!5re` exp~Ee0 /kT!

50.550 358 exp~0.165 eV/kT! ~V cm!. ~23!

The CM matching defined by Eq.~22! leads to a discon-
tinuity in slope atv5vc , but matters differ between CSD
~or DSD! and CSD1 situations. With matching between t
dispersed CSD0 response and the Debye response, bot
real and imaginary parts of the complex resistivity respo
show slope discontinuities when no separate account is ta
of eD` , as in Eq.~22!. On the other hand, for the mor
reasonable CSD1 situation, it turns out that only the real p
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shows such a discontinuity, whether or not the effect ofeD`

is included in the response at the match point. This fortun
result follows because the high-frequency CSD1 imagin
response without cutoff already involves45,47 the proper
physically required limiting slope of21. In order to imple-
ment Eq.~22!-matching properly for actual data, one shou
first fit the data in the regionv!vc , taking proper accoun
of eD` . This would then allow the quantitiesrsn and I n(v)
to be obtained, and Eq.~22! could then be applied ifvc were
known independently or if it could be determined from t
data. Note that althoughts can be smaller thantc at frequen-
cies abovevc , the CM or COM response in this region
dominated by Debye behavior.

The above procedure is unnecessary for the COM.
this approach, the amount of cutoff is determined by
ts /tc ratio, as discussed in the last section, with no cut
effects apparent whents /tc@1000 and with a transition to
the situation where the full response approaches single-t
constant Debye behavior forts /tc!1. In fitting actual data,
one would use an appropriate expression forI n(v) associ-
ated with a known DRT and calculated employing Eq.~1!.
By allowing the DRT cutoff parameter to be one of the fr
parameters of the fit, one could then obtain an estimate o
appropriatetc value, provided the experimental frequen
range was adequate.

As an example, consider thez50, T5200 K frequency–
response situation with the usual choice oftc510212 s. The
KWW1 and KWW0 cutoff-model parameter values for the
choices are presented in column C of Table I. Theyc value
of about27.5 leads here to a limiting Debye response
b.vc , without the need for grafting on any separate Deb
response as in the CM. Since the COM transition to ex
Debye behavior is gradual rather than abrupt, the cutoff d
were fitted, usingLEVM, to the Debye model over the fre
quency region from 1014 to 1016 Hz, yielding a virtually per-
fect fit that led to the parenthesizedre andte values shown
in column C. Incidentally, these quantities led, through
analog of Eq.~15! for a Debye response, to the sameeC`

value as that involved in the low-frequency response, sh
ing, as expected, that the response beyond the cutoff
quency is still an integral part of the total KWW1 behavio

Coupling-model results are shown in column D of Tab
I. The largeyc5260 value ensures that calculated KWWn
response data up tov51012 Hz involves no cutoff effects,
and the subsequent matched Debye response leads, th
Eq. ~22!, to the re and te values shown, ones reasonab
close to those for the COM, except for the KWW0te value.
In contrast, the column E values are those obtained fro
LEVM fitting of the COM to the CM data associated wi
column D. We see that all the parameter values agree clo
with those of column C, exceptyc . This substantial agree
ment indicates that there are only minor differences betw
the COM and CM responses, except near the coupling t
sition point. Note that although the bottom lines of colum
C and D show KWW1Q andgx values that are not greatl
different fromQNg andg, the KWW0 ones are very differ
ent, indicating that CM slope discontinuities will be appr
ciably smaller for the KWW1 than for the KWW0 situation

Figure 5 shows the log–log frequency response of
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KWW1 complex conductivity defined by the CM paramete
in column D of Table I. Notice that although there is a
abrupt change in the slope ofr8(v) from45–47 2(11b1)
521.5 to the limiting Debye slope of22, there is no tran-
sition in the 2r9(v) slope of 21. Thus, we see that th
presence or absence of coupling to the final Debye respo
makes a negligible difference in a KWW12r9(v) curve for
frequencies appreciably beyond its peak response.

Because the break in ther8 slope, present at the CM
transition point, does not show up strongly on a small lo
log plot of r8 vs v and COM and CM results are hard t
distinguish in such a plot, Fig. 6 presents the relative resi
als, r 8[(rCM8 2rCOM8 )/rCM8 and r 9[(rCM9 2rCOM9 )/rCM9 , for
the T5200 K fit and the correspondingr 8 one for 400 K.
Here, the CM subscript denotes the exact coupling-mo
data and the COM subscript indicates the compl
nonlinear-least-squares fit predictions arising from the us
the KWW1 COM fitting model, as in column E of Table I.

FIG. 5. The coupling-model frequency response for the real and imagin
parts of the complex resistivity,r5r82 ir9. Here and elsewhererN

51 V cm.

FIG. 6. Relative residuals for the real and imaginary parts of the comp
resistivity resulting from the KWW1 COM fit~column E, Table I! of the
CM response of column D of the table shown in Fig. 5.
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is clear that while there can be a large relative error pres
in the real residuals, about 21% at thev5vc peak, there is
practically negligible difference between the fit and t
model for the imaginary-part residuals. Thus, the major d
ference here between the CM and COM frequency–respo
predictions is that the real part of the CM response can s
a large abrupt change in slope in the neighborhood oftc ,
while the corresponding COM curve shows only a grad
slope change between that appropriate for the KWW1 mo
without cutoff, 2(11b) and the22 value for Debye re-
sponse. The maximumr 8 value atT5400 K is much smaller
because at this temperature,yc.2.03, quite different from
the value of27.54 atT5200 K.

Another way of illustrating the effect of the slope di
continuity in the CM response is presented in Fig. 7. H
the COM ~column E of Table I! and the CM~column D of
Table I! s8(v) responses are compared. Note that b
curves show the approach to a final plateau at high frequ
cies.

FIG. 7. Frequency response of the conductivity,s8(v)5Re@1/r(v)#, for
the CM response of column D of Table I and the COM fit to it~column E of
Table I!.

FIG. 8. Inversion results for the distributions of relaxations times associ
with theT5200 K KWW1 frequency response defined in Table I for CO
and CM situations.
Downloaded 14 Aug 2005 to 152.2.181.221. Redistribution subject to AIP
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Figure 8 shows DRT estimates obtained by usingLEVM

to invert the frequency response data of columns C and D
Table I. First, we see that since the COM points appea
different positions on the curve forN58 and forN511 total
inversion points, the distribution is continuous, n
discrete.41,42,46Second, the slope of the left, straight-line pa
of the curve is justb150.5, as it should be. Third, asN
increases, the smallest-t point approaches closer and clos
to tc and exhibits smaller and smaller strength. But no ma
how large N, no points appear fort,tc , a requirement
already mentioned.

Although the G(x) distribution found from the COM
response is clearly that for the KWW1G1 DRT with cutoff,
one should not necessarily expect that the DRT found for
CM should be of the same form in thet'tc region. We see
from the figure that in fact the results for the CM data beg
to deviate from theG1 curve ast decreases towardtc . In-
version is made difficult in this case by the discontinuity
slope atv5vc , and no more than eight significant poin
could be obtained for it. Nevertheless, unlike the NR inv
sion results,2 no points or DRT density were found fort
,tc . This is because the full CM dataset still involves
continuous distribution: the addition of a Debye response
v>vc with only a discontinuity in slope at the transitio
does not lead to a discrete response line att5tc , as it would
if there were a region of no density between the low- a
high-frequency~or short- and long-time! responses. This is
further evidence that the Ngai identification offe(t) as ba-
sic and fundamental may be inappropriate, at least in
Q51 situation considered in Ref. 2.

Another way of presenting frequency–response diff
ences is illustrated in Fig. 9. Here complex-plane plots of
resistivity responses for variousT5400 K KWW1 situations
are shown. In this high-temperature case,yc.2.032 for the
COM curve, and the curve falls quite close to that of t
single-relaxation-time Debye model. On the other hand,
yc5260 no-cutoff response is appreciably different. As e
pected, the low-frequency part of the CM curve agrees w
the no-cutoff one, and the high-frequency part lies close
the Debye curve, but the COM response is certainly m
plausible than that of the CM here.

Figure 10 shows the dependence ofQ and
(re /rN)/(rs /rN)0.5 on T21 andyc for the KWW1z50 situ-
ation. HereQ varies from its low-temperature limiting valu
of about 1.773 to about 14 atT5600 K, quite different from
the temperature-independent value of unity used by N2

The r ratio, in the limit of low temperatures, is, from Eq

d

FIG. 9. Complex-plane plots of the complex resistivity for several differe
KWW1 situations. The arrow shows the direction of increasing frequen
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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~12! and ~23!, just (re` /rN)/(rs` /rN)0.5, equal to about
12.71 for the present situation. In the high-temperature lim
te approachestc , and it has reached about 1.02310212 by
T5600 K. From the temperature-independent relation
tweenre andte , it follows that the high-temperature limit o
re is about 102.85V cm for the present data. Finally, th
frequency–response coupling of Eq.~22! leads tors5re in
the high-temperature limit since then only Debye behavio
present. At 600 K these quantities are 105.00 and 105
V cm, respectively, so ther ratio is about 10.25 at this tem
perature and reaches a high-temperature limit of about 10

Since at present no analytic expression for the DRT
sociated with the KWW response exists for arbitraryb, and
closed-form DRT expressions are available63 for only a few
specific values ofb, the COM cannot be used for fitting da
with a KWW model whenb is a free parameter of the fit, a
least until V. 7.1 of theLEVM program is issued. This limi-
tation does not apply to other response models whose D
are known, such as that of Davidson and Cole, but if fitt
with a KWW approach is desired for data where it is impo
tant to take account of cutoff effects, the present results s
that, especially for the KWW1, the CM defined here for t
frequency domain could be used to provide an approxim
tion to the full COM response.

IV. CONCLUSIONS AND IMPLICATIONS

An important limitation in the time-domain Ngai cou
pling model has been identified and removed, and the mo
has been generalized to apply directly in the frequency
main without the need for Fourier transformation. The res
ing CM frequency–response model and its COM counterp
require no knowledge of the importantQ parameter of Eq.
~6! when data fitting allows a value oftc to be estimated,
often possible with data limited to frequencies much le
than tc

21. The Ngai coupling model involves a stretche
exponential KWW0 response in the time domain, but
thermally activated, conductive-system-dispersion situatio
the more appropriate KWW1 response is not of a stretch
exponential form, except beyond the normal range of m
surement. For both the frequency and temporal respons

FIG. 10. Results showing the dependence ofQ and (re /rN)/(rs /rN)0.5 on
T21 and on the cutoff parameteryc .
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conductive systems, the KWW1 choice, which is no
readily available in theLEVM fitting program,40 is much more
appropriate than the KWW0 one for both the coupling mo
and the DRT cutoff model.

The coupling and cutoff relaxation approaches share
assumption that there exists a minimum relaxation or
sponse time,tc , but they differ in its provenance and inte
pretation. For the NgCM,tc is a basic microscopic time tha
is associated with discrete simple exponential decay, take
the fundamental relaxation process, and the dispersed
sponse experimentally observed fort>tc or v<tc

21 is
stated to be much less fundamental in this approach. Fur
this latter response is required by the NgCM to be of eit
the stretched-exponential form in the time domain or o
type of associated KWW frequency response, here term
KWWD for dielectric systems or KWW0 for conductiv
ones.

In contrast, for the COM,tc is just the physically real-
izable minimum response time inherent in the primary rel
ation process present. Although its presence also leads
single-time-constant exponential or Debye response in
limiting short-time or high-frequency region, no separate d
crete relaxation process needs to be assumed, as in the
When the full basic relaxation model is expressed in terms
a distribution of relaxation times, always mathematica
possible, and, for most current models of interest, result
in a continuous rather than a discrete distribution,tc is just
the lower limit beyond which the distribution is zero. Fu
ther, cutoff can be applied for any response model, not
the stretched-exponential KWW0 assumed in the NgC
analysis.

There seems to be good experimental evidence thatc

plays an important role in relaxation,51,52 not surprising,
since it is an always-present fundamental limiting respo
quantity. Not least of this evidence is the substantial agr
ment between the non-Arrhenius conductivity results of K
and the results of the present COM analysis, one that
cribes the departure from Arrhenius behavior observed
sufficiently high temperatures entirely to temperatu
dependent cutoff effects. Althoughtc has generally been
taken temperature independent, work needs to be don
show to what degree its value and temperature depend
may vary with different materials and thus with differe
relaxation processes, and, if possible, to derive express
for it based on different possible specific microscopic rela
ation processes. Such work would be desirable in orde
substantiate or reject the plausible NgCM assumption thatc

is associated with the dynamics of uncorrelated relaxing
ements, an assumption likely to be consistent with the CO
identification oftc as the minimum relaxation time prese
in the response. A beginning has been made for hopp
conduction by the correlated jump model,59 a partly micro-
scopic many-body approach but one that involves some
pirical elements.

Although the present comparison of the predictions
the two models in the time and frequency domains mi
suggest that the CM is only an approximate form of t
holistic COM, the philosophical underpinnings of the tw
models are sufficiently different that they should be cons
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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827J. Appl. Phys., Vol. 84, No. 2, 15 July 1998 J. Ross Macdonald
ered as separate theoretical approaches. Nevertheles
seems plausible that most if not all of the good agreemen
NgCM predictions with the experiment found by Ngai act
ally arises from intrinsic-cutoff COM behavior. Since th
COM is both simpler in concept and more general than
CM, and since it avoids the slope discontinuities of the lat
Occam’s razor suggests that the COM approach should
preferred.
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