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Relations and distinctions which are relevant to small-signal electrical-relaxation behavior are re-
viewed and applied to the important problem of identifying the physical processes leading to
dispersed relaxation response. Complex-nonlinear-least-squares �tting of a response model to
frequency-response data is found not to allow one to distinguish unambiguously in most cases
between conductive-system response of Wagner-Voigt type, which may be characterized by a
distribution of conductive-system relaxation times [DCRT], and dielectric- system response of
Maxwell type, characterized by a distribution of dielectric-system relaxation times [DDRT]. In
general, one must include a parallel conductivity element, �CP , as well as a high-frequency-
limiting dielectric-system dielectric constant, in a conductive-system �tting model used to represent
dielectric-system data with non-zero dc conductivity. Contrary to earlier predictions of Gross and
Meixner, accurate numerical inversion of a set of exact frequency- response data to estimate the
distribution with which it is associated shows that no discrete line necessarily appears in a DCRT
associated with a truncated continuous DDRT. A discrete line can appear in general, however,
when �CP 6= 0 and is unaccounted for in an inversion process. The novel result is established that
a data set mathematically described in terms of a dielectric system with dc leakage and involv-
ing a Maxwell-circuit exponential distribution of relaxation times may be well represented within
usual experimental error by a Wagner-Voigt conductive system involving a form of the important
Kohlrausch-Williams-Watts response model.

I Introduction

An important problem in analyzing the small-signal

electrical frequency response of solids and liquids is to

determine whether the response arises principally from

mobile charges or from dielectric e�ects, such as rotat-

ing and/or induced dipoles. Although one sometimes

knows enough about the material being analyzed to

identify the type of electrical processes present in it,

there are usually many sources of ambiguity that may

make it di�cult to distinguish between dispersive be-

havior arising from charges which can percolate through

the entire material at low frequencies or from dispersion

associated with dielectric processes, especially for data

at only a single temperature. Given a set of isothermal

electrical frequency-response data, the present work is

concerned with the question of how best to analyze the

data to identify the dominant dispersion process and so

how to use macroscopic measurements to gain some mi-

croscopic understanding of important physico-chemical

processes present. A list of acronyms is included at the

end of the present work.

For the electrical response area one de�nes four

related immittance levels, which, expressed in terms

of speci�c quantities, are (a) the complex resistivity

level, �(!); (b) the complex modulus level, M (!) �

i!"V �(!); (c) the complex dielectric constant level,

"(!) � [M (!)]�1; and (d) the complex conductivity

level, �(!) � i!"V "(!) [1]. Here "V is the permittivity

of vacuum and "V " is the permittivity associated with a

dielectric constant ". It is important to note that while

a given response model is usually most appropriately

de�ned at a particular immittance level, its response

can be expressed at any of the four levels. Similarly,

data with small errors will yield closely similar �ts to

an appropriate model at any of the four levels, and ex-

act synthetic data may be �tted exactly at any of the

four levels by the model from which it was generated.

�
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Consider �rst frequency-response data that are ob-

tained frommeasurements on a pure dielectric material,

one with no intrinsic dc conduction but with dispersed

ac relaxation response associated with dipole rotation.

Although one can never extend measurements to such

low frequencies that the complete absence of any dc

conduction can be absolutely established, in practice

if no traces of such conduction appear in the data at

the lowest practical frequencies, it will be an adequate

approximation to ignore the possibility of dc conduc-

tion when analyzing the data. One would then con-

clude that impurity and surface-leakage conduction are

negligible and that intrinsic conduction of charged en-

tities involves so large a band gap that it too is neg-

ligibly small at measurement temperatures of interest.

We are then dealing, for all practical purposes, with

pure dielectric dispersion response, denoted herein by

dielectric-system dispersion [DSD].

Much experimental data of DSD type do show, how-

ever, some apparent dc conduction e�ects in the avail-

able frequency range. If such conduction is not itself

dispersed and does not exhibit the same type of tem-

perature dependence as does the peak dielectric loss

frequency, it is unlikely to arise from the same pro-

cesses as the DSD part of the response. Such combined

response may be de�ned as full DSD.

There is, however, another important possibility.

Suppose that, alternatively, there is no DSD present,

but only a high-frequency-limiting dielectric constant,

"D1, frequency-independent over the measurement

range. The material can still, nevertheless, involve dc

conduction and show dispersion arising from the hin-

dered motion of mobile, charged monopoles, such as

ions. In this case, it is reasonable to expect that the

dc conductivity is an intrinsic part of the full disper-

sive response, so that the dc conductivity and the peak

loss frequency of the imaginary part of the complex

resistivity show the same or nearly the same, possi-

bly thermally activated, thermal response [2,3]. We

may de�ne such behavior, exclusive of "D1 as pure

conductive-system dispersion [CSD], and that with the

always present "D1 > 1 as full CSD.

Although a material involving only pure DSD will

approach zero conductivity at limiting low frequencies

[2,3], interestingly, in this dielectric case a non-zero low-

frequency limiting resistivity is present and is consis-

tent with zero limiting conductivity: i.e., no dc con-

duction [4]. In the most di�cult discrimination situa-

tions, one might wish to distinguish between a dispersed

conductive system with completely blocking electrodes

and a dispersed dielectric system without dc leakage, or

between a CSD situation without completely blocking

electrodes and a pure dielectric system with dc leak-

age resistance. In the present work, the second of these

possibilities, one which often arises in practice, will be

emphasized.

We shall deal both with the frequency re-

sponse directly and with the distributions of

relaxation/retardation times [DRT] associated with

CSD and DSD behavior. Although the distinction be-

tween relaxation and retardation times is useful for

mechanical systems [5-9], it is of lesser importance for

dielectric systems [10], and here we shall often denote

either a distribution of conductive-system relaxation

times [DCRT] or a distribution of dielectric-system

relaxation imes [DDRT] by DRT. Then, just as it is

important to de�ne in the mechanical response area

distributions of retardation times and distributions of

relaxation times, and their inter-relationships, a subject

pioneered by Bernhard Gross [5-9], it is appropriate in

the electrical response area to consider both a DCRT

and a DDRT and their interrelations.

But here a crucial distinction needs to be empha-

sized. Given a set of electrical frequency-response data,

whether arising from CSD or from DSD, it is often pos-

sible to derive signi�cant estimates of both a DCRT and

a DDRT from the data. In such cases, further informa-

tion is required to decide whether the data involve CSD

or DSD. Nevertheless, estimating both a DCRT and a

DDRT from a data set can often help one throw useful

light on the discrimination problem mentioned above,

especially since it is now possible to derive good esti-

mates of the DRTs associated with a given temporal- or

frequency-response data set. Although such estimation

is generally an ill-posed inversion process, recent work

shows how high-resolution results may be obtained from

data which involve small or zero errors [2,4,11].

In the past there has been considerable discussion

about whether measured electrical response should be

analyzed in terms of parallel processes (Maxwell sys-

tems) or series (serial) ones (termed Voigt or Wagner

systems) [e.g., 1,12-15]. The present work addresses

this question both implicitly and explicitly. At least

formally, all such processes may be expressed in terms

of DRTs, either discrete or continuous. Elemental

Maxwell response, best de�ned at the dielectric con-

stant level, involves M combinations of a resistor and

capacitor in series (representing energy dissipation and

storage, with each series combination de�ning a relax-

ation time) all in parallel [9]. When M!1 and di�er-

ential elements are used, the resulting discrete DDRT

becomes continuous. Such elemental Maxwell response

leads to no dc conduction. In contrast, an elemental

Wagner-Voigt system is the dual of the Maxwell one

and involvesM combinations of a resistor and capacitor
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in parallel, all in series, thus leading to a DCRT and to

non-zero dc conduction. It is often called a Voigt circuit

and is most sensibly de�ned at the complex resistivity

level. One can also describe dispersed relaxation re-

sponse in terms ofM hierarchical RC elements (equiv-

alently: ladder networks, transmission lines, or discrete

continued-fraction expressions). These responses may

involve a transmission line with either zero or non-zero

dc conduction [9,13].

Complete electrical response involving one of the

above systems requires that a parallel leakage resis-

tor be added if needed to those systems with no dc

conductance and that a parallel capacitance, repre-

senting limiting high-frequency dielectric response al-

ways be present; the corresponding dielectric constant

is "D1. Further, for a conducting system a non-zero

high- frequency-limiting series resistor may be required

[16], as well as a separate parallel conductance when

a CSD model is used to �t leaky DRT response (see

Section III-B below).

When one converts the full discrete-element Voigt

model used for viscoelastic response [7] to an electri-

cal equivalent circuit, one �nds that it includes both a

capacitor and a resistor in series with elemental Voigt

response. Although it might be possible to �t CSD re-

sponse with such a circuit if a resistor, representing dc

conduction, were added in parallel with it, such a re-

sistor would not be an integral part of the dispersed

response model. Thus, the series capacitor is inappro-

priate for conducting systems with intrinsic non-zero dc

conductivity and so must be removed, and the capac-

itance associated with "D1 must be added in parallel

with the rest of the circuit. The resulting complete

Voigt electrical response model, made up of discrete or

continuous Voigt response elements with a possible re-

sistor in series with them, all in parallel with the "D1
capacitance and a possibly-present independent paral-

lel resistor, has not been previously considered. But

there is substantial evidence that such a response model

without the parallel resistor is appropriate for analyzing

CSD data [2-4].

Although general dispersive response may involve

both CSD and simultaneously present DSD [17,18], we

shall follow common usage here and consider only the

presence of dispersion of one or the other type. The

ac behavior of CSD systems has often in the past been

represented by DDRT response instead of by probably-

more-appropriate DCRT response [e.g., 12,14,15,19-22].

While it is relatively straightforward to identify ther-

mally activated CSD response (even with blocking elec-

trodes) and pure dielectric response (no dc conductiv-

ity), it is more di�cult to discriminate between conduc-

tive and dielectric dispersion for other situations where

only data at a single temperature are available.

Let us use the subscript n, with n = D to designate

DSD response and/or �tting involving a DDRT-type

model, and n = C to designate CSD response and/or

�tting involving a DCRT model. It proves convenient

to further de�ne two types of DCRT models (with n =

C0 or C1, or just n = 0 or 1 in the following), whose

responses we shall denote by CSD0 or CSD1. The im-

portant distinction between these two response types is

discussed below.

II Some general response rela-

tions

De�ne Un as an unnormalizedmeasured or model quan-

tity of interest, such as a complex resistivity or complex

dielectric constant. It is mathematically convenient to

express the normalized form of Un, In in terms of a

DRT, say gn(� ). Let x � �=�on, where �on is a charac-

teristic response time of the �tting model, and de�ne

y � ln(x). We may now write [1,2,4,23]

c

In(!) �
Un(!) � Un(1)

Un(0)� Un(1)
=

Z
1

0

Gn(x)dx

[1 + i!�onx]
=

Z
1

�1

Fn(y)dy

[1 + i!�on exp(y)]
; (1)

where

d

Un(!) = U 0

n(!) + i�nU
00

n (!); (2)

and thus

In(!) = I 0n(!) + i�nI
00

n(!); (3)

It is important to emphasize that the choice n = D

speci�es that the UD response of Eq. (1) is that of

the complex dielectric constant "(!) (or correspond-

ing complex capacitance) and involves a distribution

of dielectric-system relaxation times, a DDRT. On the
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other hand, the choices n = 0 and n = 1 specify re-

sponse at the complex resistivity �(!) (or impedance)

level and thus involve, throughG0 andG1, distributions

of conductive-system relaxation times, DCRTs. We fol-

low the usual sign conventions and set the quantities �0

and �1 in Eqs. (2) and (3) equal to 1 and �D equal to

�1.

Conservation of probability leads to the relations

Gn(x) � �ongn(� ) and Fn(y) � xGn(x). The Fn form,

which may be simply related to a distribution of acti-

vation energies [24], is particularly appropriate for nu-

merical quadrature. Here the DRTs are normalized,

so In(0) = 1 and In(1) = 0, as indicated above.

Sometimes, one needs to deal with a cut-o� distribu-

tion [2,25]. Then the limits of the integrals above may

be changed from 0 to 1 to xmin to xmax, and from -

�1 to 1 to ymin to ymax:

The dimensionless moments of a general normalized

DRT, Gn(x), may be expressed as

< xm >n�

Z
1

0

xmGn(x)dx; (4)

with m an integer. Then, for example, the average re-

laxation time for the distribution is < � >n= �on <

x >n :

For CSD response, we set Un(!) = �Cn(!) with n

= 0 or 1, and de�ne ��Cn � �Cn(0)� �Cn(1): Herein

�C1 � �Cn(1) will be taken zero since it usually can-

not be distinguished from zero when �tting CSD data

[2-4,23]. Also de�ne �Con � �Cn(0): Recent work [2,23]

has shown that for CSD response associated with a sin-

gle DRT, e.g., Gn(x), limiting dielectric constant con-

tributions arising solely from CSD are

"C1n � "�n= < x�1 >n (5)

and

"Con � "�n < x >n (6)

where in the general case

"�n � �on��Cn=["v(�Con)
2]: (7)

For n = 1 with �C1 = 0, we obtain

"C11 � �o1=("v�C01 < x�1 >1): (8)

The temporal relaxation function, �n(t), corresponding

to the frequency response of Eq. (1) may be expressed

as [2]

c

�n(t) =

Z
1

0

Gn(x) exp(�t=�onx)dx =

Z
1

�1

Fn(y) expf�(t=�on)e
�ygdy: (9)

d

The Kohlrausch-Williams-Watts [KWWl response

model [26], one which has been derived from various

physical assumptions and found to represent a large

body of data quite well [2,3,13,23], involves fractional

exponential time behavior for n = 0 or D (but not for

n = 1 [25]) and may be written as

�n(t) = exp[�(t=��non )]; 0 < �n � 1: (10)

Although there is no closed-form expression available

for KWW frequency response with arbitrary �n, such

response can be calculated numerically with very high

accuracy and is available in �tting models incorporated

in the free LEVM complex-nonlinear-least-squares com-

puter program [11,27] for all three values of n. These

KWW models will be designated by KWWn.

For full CSD response (n = 0 or 1) involving the

Voigt circuit, and therefore associated with a DCRT,

Eq. (1) may be rewritten at the complex resistivity

level as

�Cn(!) = �C1 +��CnIn(!); (11)

not including the e�ect of a necessary "D1 contribu-

tion. For DSD response (n = D) involving the full

Maxwell circuit, and therefore associated with a DDRT,

we set UD(!) = "D(!), the complex dielectric constant,

and obtain

"D(!) = "D1 +�"DID(!) + (�D0=i!"V ); (12)

where �"D = "D(0)� "D(1); "D1 � "D(1); and �Do
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is a possibly-present dc leakage conductivity, also des-

ignated as �0.

What is the di�erence between CSD0 and CSD1 be-

havior? Suppose that we are dealing with a particular

form of the DRT Go(x), perhaps that associated with

KWW0 response and often of the same form as GD(x).

Then the corresponding G1(x) to use in Eq. (1) to ob-

tain KWW1 response is de�ned as the normalized form

of xGo(x) [2,23]. It follows from Eq. (1) that

G1(x) = xGo(x)= < x >o; (13)

and one �nds that < x�1 >1= 1= < x >o, where the

same parameter values must be used in these relations.

Thus, one must use �o1 = �o0 and �1 = �0 in de�n-

ing the KWW1 response which derives from KWW0.

But note that CSD �tting of data with these separate

models will yield di�erent parameter estimates [2,3,23].

Figure 1. Complex plane plots of exact, normalized KWW
frequency response. Curves I1 and I0 illustrate direct
KWW1 and KWW0 complex resistivity response (solid
lines), and I1D and I0D show corresponding curves calcu-
lated by transforming the KWW data to the complex dielec-
tric constant level and subtracting dc conductivity e�ects
(dashed lines). The arrow shows the direction of increasing
frequency.

Figure 1 presents complex plane plots of In for n = 0

and 1, results which demonstrate some of the di�erences

between exact KWW0 and the corresponding KWW1

model response. Because of the presence of the x-

factor in G1(x), it yields response much closer to single-

relaxation-timeDebye response than does KWW0 when

�1 = �0, the present choice. Now when complex-�-

level data (calculated as in Eq. (11) with �C1 = 0

using the KWWn form of Gn(x)) are transformed to

the complex " level, one can represent the results using

Eq. (12). Then it is straightforward to use LEVM to

remove the e�ects of "D1 and �Do from the data in or-

der to obtain the e�ective ID response associated with

the original CSD data. To do so, we use the value of

��Cn = �C0n employed in generating the data, calcu-

late �D0 = 1=�C0n and set the "D1 in Eq. (12) equal

to the value of "C1n calculated using Eq. (5), when

the original �(!) data were generated with "C1 = 0: It

turns out that "C10 is zero for data involving a DCRT

without high-frequency cuto�, but not "C11. Because

the data were originally of CSD type, the resulting ID
curves are denoted by I1D and I0D. It is surprising that

although the I1 and I0 curves are so di�erent, those for

I1D and I0D are quite similar.

III Direct data �tting

A. CSD-type data

We shall start with exact synthetic CSD1 KWWl

data generated using Eq. (11), with I1(!) set equal

to the KWW1 model, and with parameter values the

same as or close to those obtained with earlier KWW1

�tting of actual 321 K Na2O-3SiO2 data with electrode

e�ects eliminated [4,23]. The resulting CSD1 param-

eters are �C01 = 1:45 � 109 
-cm, �01 = 0:001s, and

�1 = 0:425: No �1 value was initially included, and

�C1 was taken zero, in accordance with the results of

earlier �ts of the original data. The above values led

to < x�1 >1' 0:3526, < x >1' 12:91, �C01 ' 100:57,

and �C11 ' 22:09, using Eqs. (4) through (8). These

KWW1 values are summarized in row A of Table 1,

where �C0 � (�C01)�1. In this table SF is the rela-

tive standard deviation of a �t, the standard deviation

of the relative residuals. The synthetic data extended

over the range 0:01 � ! � 1010 radians/s with 10 points

per decade evenly spaced on a logarithmic scale. All

the complex-nonlinear-least-squares �ts of lines B, C,

E, and F, and the �ts discussed later, involved propor-

tional weighting and used the LEVM V. 7.1 program

[27].

Next, the complex-�-level data of line A were trans-

formed to the complex dielectric constant level, as de-

noted by the designation KWWlD in row B. The �t

results of lines B, C, E, and F were obtained using Eq.

(12). Here, all the values shown in these lines are di-

rect �t estimates with very small relative standard de-

viations (not shown). The ID(!) model function in

this equation was the KWW expression for lines B and

E, as speci�ed by the -K part of KWWlD-K and was

the exponential distribution of relaxation times [EDRT]

model for lines C and F, where -E appears. Although it
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has been conventional to use the symbol � for the frac-

tional exponent parameter of the EDRT model [2,17],

for simplicity it will be denoted by � herein for easy

comparison with KWW � parameters.

Comparison of the results of lines B and C shows

that the EDRT model provided a much better �t of the

CSD data at the dielectric-constant level than did the

KWW model. Further, except for the expected di�er-

ence [2,4,23] between the �01 value of line A and the �0D
value of line C, one sees that the line-C estimated pa-

rameter values are in excellent agreement with the ex-

act ones of line A, and, speci�cally, that the �D0 value

of line C is an exceptionally close estimate of 1=�C01.

Thus, although the �D1 values of lines B and C are de-

noted by a subscript n = D to indicate their estimation

at the dielectric level by a complex-dielectric- constant

response model, we see that they are, in fact, �C1 es-

timates, necessary here because no actual DSD �D1

values have been included, and we are dealing solely

with CSD-type data, not DSD.

Usually, additional information will be required to

distinguish between a true DSD data set and its trans-

form �tted by a CSD approach, or, conversely, between

a true CSD data set, and its transform �tted by a DSD

approach. Nevertheless, we shall, for convenience, des-

ignate DSD data �tted by a CSD approach, as in Eq.

(11), by CSD designations, and CSD data �tted by a

DSD approach, as in Eq. (12), by the DSD designation.

Finally, synthetic data like that of line A were gen-

erated with a permittivity �V �S in series with the rest of

the response. Here the series dielectric constant �S = 10

is used to represent the e�ect of the capacitance of com-

pletely blocking electrodes. The value of 6.884 in line

D is just the series combination of 22.09 and 10, and

(�D1+��D) should equal 10, as it does for line D. Here

we see from lines E and F that although the -K model

leads to a better �t than does the -E one, contrary to

the results in lines B and C, both �ts are relatively poor

and are much worse than that of line C.

It is interesting that because of the presence of �S
it is unnecessary to include a �D0 dc conductivity in

the �t models of lines E and F, unlike the situation for

lines B and C. When either �S or �D0 is taken as a free

parameter of the �t at the dielectric level, the initial

values progressively change until neither one makes any

contribution to the �t. Thus, while each can be accu-

rately estimated from CSD1 �tting of the data, neither

can be estimated by �tting at the dielectric level using

Eq. (12)! For actual experimental data, if the presence

of complete blocking were unrecognized, one might well

conclude that dielectric-level data similar to that used

to obtain the �t results of lines E and F were those of a

pure dispersed dielectric material (true DSD response)

without any dc resistive leakage. Here we know that it

is not, and it is worth emphasizing that instead of the

3% SF of the �t of line E, transformation of the data

to the complex � or M level and its �tting with the ap-

propriate CSD model, here the KWW1, as in line D of

Table 1, yields an exact �t.

Although a zero value of �D1 was used in gener-

ating the CSD data of rows A and D, if a non-zero

value had been included, as is always necessary for the

analysis of experimental data, we would have found

that the \�D1" estimate in lines B and C should have

been designated as �1 and would have included �D1

since �tting of this kind can only yield estimates of

�1 � �C1 + �D1 [2,3,23]. Thus for actual CSD data,

one can only estimate �D1 directly from a CSD �t and

then calculate �C1 and �C0 from such �t results. In the

absence of any DSD in the measured frequency range,

one can take the actual, always present, �D1 equal to

�D0, and we must identify the apparent DSD and non-

zero ��D as arising solely fromCSD. Finally, it is worth

remarking that an EDRT response model was found

most appropriate for �tting dispersion results for the

conductive material CaTiO3:30%Al3+ at low tempera-

tures using DSD �tting at the dielectric level, as in row

C of the present Table 1 [18]. The synthetic-data results

of lines B and C perhaps suggest why a EDRT model

was there found to yield a closer �t of the experimental

data than the KWWD model.

B. DSD-type data

Let us now regard the best-�t EDRT results of row

C of Table 1 as representing possible DSD response with

non-negligible leakage resistance. For concreteness, the

parameter estimates and EDRT response model of row

C were used to generate a new exact data set. The data

were then transformed to the complex resistivity level

and �tted with Eq. (11) using several models, all with

�C1 = 0. The best-�t model found, was, not surpris-

ingly, the KWW. Since leakage resistance can be of any

value, in order to investigate its e�ects three di�erent

values of the dc conductivity, �0 = �D0, are used in col-

umn 7 for lines A, D, and G of Table 2. That for line

A is the value shown in row C of Table 1, designated as

�C0 � 1=�C01 = (��C1)�1 hereafter, and those for lines

D and G are ten times larger and smaller, respectively.
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Finally, all three of these sets of exact data implicitly

involved �D1 = 10, obtained by setting �1 = 32:11

rather than the 22.11 of row C of Table 1.

TABLE 1. DSD �tting results of exact CSD data calculated using Eq. (11) with the KWW1 model and the
parameter values of rows A and D. These data sets were �t at the complex dielectric constant level using Eq. (12).
Here �S is the dielectric constant of a series capacitance, and -K and -E designate the use in this equation of the
KWWD model or the EDRT model, respectively. The presence of a non-zero value of �S changes the interpretation
of the �n1 and ��n quantities, as discussed in the text. �n1 equals either �D1 or �C11 as appropriate. SF is the
relative standard deviation of a �t.

TABLE 2. CSD �tting results of exact DSD data calculated using Eq. (12) with the EDRT model, the parameter
values of rows A, D, and G, and ��D = 78.48. These data sets were �t at the complex resistivity level using Eq.
(11) with a KWW1 or KWW0 model, and a parallel conductivity, �CP . For the KWW0 �ts, the �D1-column values
are actually those of �1 = �C1n + �D1. The dimensions of the �'s and of 1=��Cn are (
-cm)�1. Here �0 is the
total dc conductivity.

Comparison of the results shown in lines A of Ta-

ble 1 and B of Table 2 shows that the EDRT model

represents the original data at the dielectric level very

well since the CSD �t results of line B are very close

to the exact ones of Table 1, line A, completing the

circle of transformations and �ts. The numbers shown

in the �CP column of Table 2 are values of a paral-

lel conductivity parameter included in the KWW1 �ts.

Non-zero values are required in order to obtain a good

estimate of the total dc conductivity, �0 = �CP + �C0,

when �C0 6= �D0. This is because the CSD constitutive

equations, (5-8), hold for Eq. (11) �ts, as indicated by

the row-E �t of Table 2. As we see, the ��C1 estimates

in Table 2 are close to the original value of this quan-
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tity even when the total dc resistivity is very di�erent.

Incidentally, in those situations where a non-zero value

of �CP was required, taking �C1 as a free �tting pa-

rameter instead of �CP led to completely unsatisfactory

�ts.

Although the KWW0 �t of line C is slightly better

than the KWW1 one of line B, it requires a non-zero

value of �CP , and, without it, the resulting SF had the

much larger value of 0.024. Further, since the original

KWW1 data included no �CP , the non-zero KWW0

�CP value is anomalous and helps one decide whether

a KWW0 or KWW1 �t is more appropriate for CSD

data, where one usually expects to �nd �CP = 0. Com-

parison of the � values shown in lines B and C, E and

F, and H and I indicate, nevertheless, that the relation

�0 + �1 = 1, proposed earlier [3,23], is closely obeyed.

The results in the table show that when the esti-

mated value of �CP is non-zero, the estimated parame-

ter values in lines E and H are not as close to the ones

used to generate the original KWW1 data as when it is

zero, but the parameter values are still relatively close

to the original exact-data values, and the CSD-�t values

of �0 are good estimates of the proper dc conductivity.

These results provide further useful discrimination in-

formation. For experimental CSD response, good �ts

of the data are nearly always found without the need to

include a parallel �CP �tting parameter, and negative

estimates of this quantity are physically unlikely for a

passive system. Thus, the presence of a signi�cant non-

zero CSD1 DCRT- model �tting estimate of �CP is an

excellent indication that one is not dealing with ordi-

nary CSD response but probably with leaky dielectric

dispersion.

The small but non-zero SF = 0.0071 value in row

B of Table 2 is an indication that the KWW1 CSD1

�tting model, I1(!), is not quite entirely appropriate

for ID(!) EDRT DSD data, and it is reasonable to as-

sume that if an appropriate model were available, an

exact �t would be found. For actual experimental data,

where the errors present in the data generally lead to

SF values greater than 0.0071, the distinction is usually

unimportant.

Figure 2 compares the M"(!) curves for the �ts of

lines B, E, and H of Table 2 and for two smaller val-

ues of the dc conductivity. Particularly interesting is

the double-peak curve present when �0 is smaller than

�C0. No trace of such behavior is apparent for any of

the corresponding { �"(!) curves. Because the line-H �t

is the worst of the three, both the original data and the

�t points are included, but only the data lines or points

are presented for the other curves. Estimation of the

DRTs associated with these cases can shed further light

on their di�erences and is explored in the next section.

When two peaks are present, the peak of the lower-

frequency one appears at lower and lower frequencies as

�0 decreases, as illustrated by the curve with r = 0:01.

Finally, when there is no dc conductivity, this response

disappears from the measurable frequency range.

Figure 2. Comparison of the three M"(!) data-line curves
for rows A, D, and G of Table 2, and �t points for row
H (open circles), and, as well, curves for two other smaller
�xed values of �0. Here r � �0=�0A where �0A = �C0 =
6:895 � 10�10 (
-cm)�1 is the dc conductivity included in
the original exact EDRT dielectric data for row A of Table
2, and the �rst three �0 values are those of rows D, A, and
G of column 7 of Table 2. �N = 1 s here and elsewhere.

IV Data inversion and identi�-

cation of dispersion types

A. Background

Gross [5,7-9], Gross and Pelzer [6], and Kita [28]

have been concerned with deriving analytic integral

transforms connecting the DRTs associated with the

I1(!) and ID(!) functions used to represent the same

frequency-response data set. These transforms involve

principal-value integration and, for DRTs only de�ned

numerically, as is the case for the KWW model, they

would be di�cult to apply to yield accurate results,

and, in fact, no transform results for such DRTs have

been published. Therefore, here a di�erent approach
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involving inversion is illustrated, one which yields DRT

estimates which represent their associated frequency re-

sponse with extremely high accuracy and do not require

analytic expressions.

For the KWW model in the small-x region, the

G0(x) or GD(x) DRT is proportional to x�(1��n) and so

diverges in the limit for �0 or �D < 1 [2,29,30]. There-

fore, it is more instructive to plot FD; which does not

diverge in the limit, vs. y or log(x), rather than to plot

GD(x) vs. log(x). The above de�nitions and analysis

show that for the KWW and other similar models FD
and G1 are proportional to xGD and xG0 respectively,

and do not diverge as x! 0. For direct comparison of

inversion results that estimate G0 and G1, or GD and

G1 from the same frequency-response data, it is most

useful to compare the normalized distribution estimates

of F0 or FD and G1. For accurate inversions, F0 and G1

should be identical. The LEVM program estimates F1
directly for CSD1 analysis, but then outputs the corre-

sponding G1 while CSD0 or DSD inversion yields F0 or

FD. For convenience, let H(x) denote FD, F0, or G1.

The high-resolution numerical inversion algorithm

in the LEVM program yields a total of M points of a

continuous, discrete, or mixed distribution, where M is

presently limited to a maximum of 19. Therefore, for

such results, we replace H(x) by Hi, with 1 � i � 19.

LEVM inversion yields estimates of the M point pairs,

fHi; xig, where both quantities are free variables of the

�t [11], not the case for other inversion techniques. Dis-

crete and continuous-distribution points may therefore

be unambiguously identi�ed by comparing results for

two di�erent values of M [11]. For continuous distribu-

tions, all xi estimates will be di�erent for the two inver-

sions, but the xi values of any discrete points present

will remain the same. In the LEVM inversion algo-

rithm, which uses numerical quadrature, it has not been

found possible to account for end-point e�ects accu-

rately for arbitrary distributions. Therefore, those Hi

estimates with the smallest, and sometimes largest xi
values, and, to a lesser degree, their immediate near-

est neighbors, will be less accurate than the remaining

estimated points of the inversion [4,11,30].

In the preceding section, we have shown by �tting of

accurate numerical data that there is a very close con-

nection between an EDRT representing a distribution

of \dielectric" relaxation times and the corresponding

KWW1 DRT representing a distribution of \resistiv-

ity" relaxation times: data generated by one of these

response functions may be closely �t when the other is

used instead, as demonstrated by the results presented

in Tables 1 and 2. This connection has been further

investigated by inversion, and some of the results ob-

tained are presented in Figs. 3 through 5.

B. DRT inversion estimates: Fig. 3 re-
sults

To obtain the DRT results shown in Fig. 3, CSD1-

type KWW1 frequency response data were produced

using the parameters of row A of Table 1, except that

�D1 was usually taken as 10 rather than zero, yield-

ing �1 ' 32:09. The 1,A FD distribution-of-dielectric-

relaxation- times curve shown in Fig. 3 was obtained

by numerically inverting this data set, expressed at the

complex dielectric constant level, using Eqs. (1) and

(12). For comparison, the 2,A data for inversion in-

volved the parameters obtained from a �t of the 1,A

data using the EDRT model. The close agreement be-

tween the 1,A and 2,A curves again shows that the

EDRT is a good approximation to the distribution of

\dielectric" relaxation times associated directly with

the original KWW1 data. Because of inaccuracies in

the largest-� points of the two curves, it is di�cult

to isolate any signi�cant di�erence between them, al-

though an accurate EDRT should yield a straight line

until the appearance of an abrupt cuto� near �=�0 =

1. [17,30]. These inversions included the free parame-

ters �1 and �0 as part of the full �tting circuit and

led to estimated values of them in virtually perfect

agreement with those expected. No adequate inversions

could be obtained without the inclusion of these param-

eters since they contributed appreciably to the full data

which were inverted. The errors in all the smallest-�

points for the various curves are clearly evident in this

�gure.

The points of the G1 DRT curve marked � 1,A;CSD

in Fig. 3 have been �tted directly to the KWW0 dis-

tribution using LEVM. Such �tting yields estimates of

�1 and �01. The SF value using all the points was 0.06,

but with end points eliminated it dropped to 0.0014 and

yielded parameter estimates correct to three signi�cant

�gures or better, well validating the inversion proce-

dure. The curve marked 2,A; CSD involved resistive

DRT estimation found by CSD1 inversion of the 2,A

EDRT data and is thus an estimate of the Voigt-model

distribution following from data generated with the 2,A

Maxwell model, one which here involves a distribution

of dielectric relaxation times.
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Figure 3. Log-log plots of H; DRT strengths vs. � . In
the legend, � indicates dielectric-level inversion to estimate
dielectric DRTs, while � indicates resistivity-level inversion
to estimate the related distributions of resistivity relaxation
times. Here 1,A and 2,A denote data associated with the
A-row of Tables 1 and 2, and CO identi�es a cuto� distribu-
tion with ymin = �10. �D1 was 10, except where indicated
otherwise.

It is important to note that the 1,A;CSD and

2,A;CSD results represent basic distributions which do

not include the e�ect of any non-zero �D1. One obtains

exactly the same results inverting data with �D1 = 0 or

data with �D1 6= 0, provided that the e�ect of non-zero

�D1 is properly included in the inversion procedure.

Unfortunately, unlike the inversion of data to obtain a

distribution of dielectric relaxation times, as discussed

above, inversion to obtain a distribution of resistive re-

laxation times does not allow a quantity such as �D1 to

be a free parameter, thus it cannot be estimated from

the inversion �t but must �rst be estimated as in the

�ts of 1,B or 1,C and then taken as a �xed parameter

in the CSD inversion.

The curves in Fig. 3 with �D1 = {1O and + 20

show the e�ect of not accounting for a non-zero �D1 in

the inversion. As demonstrated, when �1 < ( > )�C1

the apparent DRT is wider (narrower) than the proper

KWW0 distribution and is not well �tted by such a

distribution. When �D1 is of the order of 100 and is

not accounted for in the inversion, the resulting distri-

bution shows a straight-line portion very close to that

of the 2,A EDRT one.

Direct �tting to the KWW0 distribution model of

the 2,A;CSD results with end points omitted led to

SF ' 0:02, with parameter estimates equal to those

of the original KWW1 model to nearly three signi�-

cant �gures. Thus, although the KWW DRT is not

quite the exact CSD distribution related to the DSD

EDRT, comparison of the relevant curves in the �gure

shows that any di�erence is virtually imperceptible in

a log-log plot and suggests that for usual experimental

data containing only random errors it would be di�cult

to verify any di�erence. Incidentally, although CSD0-

type inversion of the 2,A EDRT data was carried out,

it did not lead to a DRT close to that of the KWW0

but instead to one nearer in form to the original EDRT

of curve 2,A.

Meixner [31], and later Gross [5,8,9], stated that if

one of a continuous-distribution DRT pair was trun-

cated within a limited interval, then the other distribu-

tion of the pair would be continuous in the same interval

and be zero outside, except for the appearance of a sin-

gle discrete line. Later, Gross [9] presciently pointed

out that such lines need not always appear, but he did

not explicitly specify the general conditions required

for their appearance or absence. Here, we do so be-

low. Incidentally, Gross [9] made the cogent comments

that (a) either, but not both, of related Maxwell and

Wagner-Voigt models can have physical signi�cance for

a given real material, and (b) the discrete lines which

sometimes appear have hardly more than mathemati-

cal signi�cance. An important purpose of the present

work is to �nd clues from �tting and inversion which

may allow one to decide which one of the DRTs in (a)

is associated with a physically signi�cant model.

The two curves marked \CO" in Fig. 3 are ones in

which the EDRT used in generating the data was cut

o� by using ymin = �10: Now since log(�min=�N ) =

logf�0D exp(ymin)=�Ng with �N = 1 s, the result is

about {5.68. The points with smallest � on the two CO

curves are both at about {5.60. As the M value used

in the inversion increases, the smallest-� value found

decreases toward the cuto� limit. The two DRTs are

clearly non-zero over the same interval, as required by

the earlier work, but no discrete line is found for the

distribution of resistive relaxation times, contrary to

the earlier predictions. Incidentally, the SF values of

LEVM inversion �ts of the present type decrease sub-

stantially for exact data as i! i + 1 and as the width

of the non-zero interval of a continuous distribution de-

creases. For example, typical inversions such as the

2,A; CSD one of Fig. 3, where M = 19, have SF
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values of about 3 � 10�4, while the CO curves with

M = 13 lead to SF values less than 10�5. These re-

sults show how closely the inversion-�t models �t the

original frequency-response data and make it clear that

with such good �ts there is no possibility of missing a

discrete line.

C. DRT inversion estimates: Fig. 4 re-

sults

We have seen that while changes in �D1 change the

shape of the DRT obtained by inversion of the full data

when the presence of �D1 is unaccounted for, no dis-

crete line occurs. But since changes in �D1 do not di-

rectly involve the CSD constitutive equations, Eqs. (5-

8), it is worthwhile investigating the e�ects of changes

which do so. Some inversion results, with all non-zero

�D1 e�ects properly accounted for, are presented in

Fig. 4 for the three di�erent values of �0 used in rows

A, D, and G of Table 2. De�ne r as the ratio of the

�xed �0 values of rows D or G of column 7 of Table 2

to the �xed �0 = �C0 value listed in row A. The r = 10

and r = 0:1, M = 19A curves are inversion results

obtained with no �CP parameter included in the inver-

sion; thus they should not be expected to yield proper

DRT estimates.

The two r = 10 curves demonstrate that changing

M does not signi�cantly change the optimized � value

of the peak point, thus suggesting that this point arises

from a discrete line while the other points are associated

with a continuous distribution. Similarly, appreciable

changes in M for the �rst r = 0.1 curve do not change

the position of the circular-symbol point enclosed in the

square, thus verifying that this point also represents a

single discrete DRT.

Suppose that we now account for the need for a non-

zero �CP by including such a separate, parallel conduc-

tivity parameter in the full inversion model. For the

r = 10 results, one �nds, as expected, that the inclusion

of such a parameter with a �xed value of 69:02� 10�10

(
-cm)�1 results in a DRT estimate in full agreement

with that designated by 2,A; CSD in Fig. 3. Here

that curve is reproduced as the solid line labeled r = 1,

M = 19 and is shown without any points included.

Thus, no discrete line appears when the e�ect of �CP

is properly taken into account.

But what happens for the r = 0:1 situation when

a negative �CP is included? Again one �nds that

the inversion points approach the usual CSD r = 1,

M = 19 distribution as �cp decreases from zero toward

the Table-2 row-H �t value of�6:046�10�10 (
-cm)�1.

Inversion with a non-zero value of �cp near that above is

di�cult because it involves the small di�erence between

two nearly equal large numbers. The points identi�ed

by r = 0:1,M = 19B in the �gure are the largest eight �

values found in the inversion when the parallel conduc-

tivity used in the inversion was set to the intermediate

value of �1:7� 10�10 (
- cm)�1. The other points of

the 19 fell very closely on the r = 1 line. Here the last

point on the right is still a discrete-distribution one,

but we see that, as the added parallel conductivity be-

comes more negative, all the higher-� points approach

the r = 1 line as the proper value of �CP is approached.

For this value, the discrete point has disappeared and

all points are those of the expected continuous distri-

bution. The present results suggest that the presence

of a discrete line in previous analytical calculations of

a CSD DRT arose because the need for �CP was unrec-

ognized and thus was not included in the analysis.

Figure 4. Inversion results similar to those of Fig. 3 except
that the e�ects are demonstrated of three di�erent choices
for the conductivity ratio r de�ned in the Fig.-2 caption
and used in generating the data. All inversion results shown
were carried out with the parallel conductivity, �CP taken
zero except for the M = 19B curve, where �CP was �xed at
�1:7� 10�10 (
-cm)�1. With the proper �CP values used
in the inversions (see Table 2), the r = 0:1 and r = 10 re-
sults agreed with the KWW0-DRT r = 1 curve shown. All
points shown here are associated with continuous distribu-
tions except those enclosed in squares.



J. Ross Macdonald 343

D. DRT inversion estimates: Fig. 5 re-
sults

Kita [28] was unable to obtain analytically a DCRT

expression from a particular distribution of dielectric

relaxation times, that of Davidson and Cole [DC] [32],

which satis�ed the principle of equivalence of Maxwell

and Wagner circuits. See the Appendix for details

about this important principle. Gross [8,9] showed that

the principle was valid if the calculated Wagner-Voigt

DRT included a discrete line, shown to arise from the

intrinsic cuto� (truncation) of the DC distribution at

� > �0D. Incidentally, Kita's work also suggests that

the CSD response most appropriately associated with

a Maxwell-model DSD data set is of CSD1 rather than

CSD0 type.

Figure 5. Inversion results for the dielectric DRTs (desig-
nated with �): (a) the 2,A exponential DRT, EDRT, re-
peated from Fig.3, and (b) the Davidson-Cole DRT, DC.
Also shown are CSD-inversion DRT estimates associated
with (b), marked DSD ! CSD, and the 1,A,CSD KWW0
DRT, also repeated from Fig.3, both designated with �.

Since we have demonstrated earlier that abrupt cut-

o� of an exponential distribution at a small �min value

does not lead to the appearance of a discrete line, it is

worthwhile to apply the present methods to estimate

points of a DDRT, starting with DC data at the � level.

First, however, for the convenience of the reader in com-

paring the work of Gross and Kita, it is worth pointing

out that Kita's symbol � denotes the dielectric permit-

tivity, here ��V , while Gross [8] de�nes �� as the com-

plex dielectric constant but then omits a necessary �V

term in his admittance and time-constant expressions.

For easy comparison, two DRT curves previously

presented and discussed are included in Fig. 5. The

curve marked DSD,DC is the distribution of dielectric

relaxation times estimated by inversion of exact DC

data. The original KWW1 frequency-response data

were �tted using the DC model (with a somewhat less

accurate �t found than that obtained with the EDRT

model), and then exact DSD data were generated with

the DC model using the values of the appropriate pa-

rameters of Section III-A, except that �0D was set to

0.025 s, the approximate �t value. Comparison of the

�rst two curves identi�ed in the �gure indicates ex-

tremely good agreement between the EDRT DRT es-

timate and that for the DC situation except for the

three highest-� points. As expected, for the DC curve

we see the approach to an in�nite value at cuto�, but

because of the problem with end-point estimates, the

last two points do not rise as fast as required for an ex-

act DC DRT. The maximum-� estimate with M = 19

was about 0.021 s, and it was found to approach closer

and closer to the cuto� value of 0.025 s as the value of

M used in the inversion was increased.

The last two curves in Fig. 5 compare the practi-

cally exact KWW0 F0, or, equivalently, the KWW1 G1

distribution, with the CSD1 inversion estimate of G1

associated with the exact DSD DC data. We see that

although the agreement is not quite as close as that

for the comparable EDRT �-level comparison of Fig.

3, the agreement is still su�ciently good that for typi-

cal experimental data one would not be able to distin-

guish well between the three di�erent DRT estimates.

Although �tting comparisons for DDRT estimates ob-

tained from the same data might allow somewhat bet-

ter discrimination, the most appropriate �tting model

can be much better identi�ed from direct �tting in the

frequency domain of original frequency-response data.

The present results again con�rm that accurate inver-

sion estimates of truncated DSD DRTs need not lead

to the appearance of a discrete response line.

V Summary and conclusions

It has been shown that frequency-response data asso-

ciated with a model of a leaky, dispersive dielectric

material can be �tted with very high accuracy by a

conductive-system response expression. Therefore, one

cannot use CSD and DSD �tting of a given data set to

determine unambiguously whether observed electrical

dispersion is associated with relaxing dipoles or with
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mobile charges. This conclusion is foreshadowed by

earlier work [3] in which it was demonstrated that the

limiting high- and low-frequency log-log slopes of all

immittance responses are exactly the same for DSD

and CSD1 response when �1 = �D and for DSD and

CSD0 response when �0 = 1 � �D , provided the DSD

response involved �0 6= 0 and the CSD response in-

volved �D1 6= 0:

Here, we �nd that the requirement that CSD and

DSD approaches (possibly involving conductive or di-

electric distributions of relaxation times, respectively)

be able to �t data equally well necessitates an augmen-

tation of the Wagner-Voigt relaxation circuit usually

considered in applying the principle of equivalence of

Maxwell and Wagner-Voigt circuits. CSD model re-

sponse, Eq. (11), involving a discrete or continuous dis-

tribution of conductive relaxation times in the Wagner-

Voigt circuit, must not only be augmented by the ef-

fects of a parallel speci�c susceptance (associated with

the limiting dielectric constant �D1) [2,3,23], but also

by a parallel conductivity, here designated as �CP . See

the results presented in Table 2. In exceptional cases,

�CP , which is not a separate parameter in DSD �tting,

must be negative to allow adequate CSD �tting of arbi-

trary DSD data. When a �CP estimate is negative, it is

highly unlikely that the response of the physical system

investigated is dominated by dispersion associated with

mobile charges, rather than by purely dielectric e�ects,

and it is still unlikely even when �CP is positive and

signi�cant compared to �0. Thus, though discrimina-

tion is not unambiguously possible when �CP 6= 0, it

is nevertheless plausible. Conversely, when an estimate

of �CP is statistically indistinguishable from zero, the

data may, in principle, be equally well �tted by a CSD

or a DSD approach, thus precluding discrimination us-

ing only a single data set.

The present analysis leads to the important conclu-

sion that if CSD data involves KWW1 I1(!) disper-

sive response, then the EDRT ID(!) response model is

an appropriate choice for DSD �tting of the data using

Eq. (12). Although the use of the Davidson-Cole ID(!)

model for generating DSD data also leads rather closely

to KWW1 CSD response, somewhat better results are

found for the KWW1, EDRT pair.

The prediction [8,9,31] that truncating a full-range

DSD DRT, or using the DC, which involves an intrin-

sically truncated distribution, leads to CSD response

with both a continuous DRT and a discrete response

line has not been veri�ed by the present work. It has,

however, been found that when �CP is not accounted

for in the inversion, such a line appears whether the

original DSD DDRT is truncated or not. When inver-

sion of frequency-reponse data is used to estimate a

CSD DCRT, taking proper account in the �tting pro-

cedure of non-zero �D1 and �CP parameters allows

one to obtain an accurate estimate of the true continu-

ous DRT involved, but omission of such parameters in

the inversion leads to erroneous estimates, as shown in

Figs. 3 and 4. None of the earlier analytical DRT work

[8,9,28,31] took explicit account of these parameters,

possibly explaining the present discrepancies.

Although DSD and CSD inversion results are in-

structive and can be useful for distinguishing between

continuous and discrete parts of a DRT, it appears

that direct �tting of frequency- (or temporal- [2,25])

response data is likely to allow better discrimination

between various possible dispersive models for DSD or

CSD �tting, and, in some cases, it can lead to a plausi-

ble conclusion about the identity of the dominant phys-

ical processes involved in the dispersion. Measurements

over a range of temperatures should allow even better

decisions about the character of the dominant disper-

sion process to be reached.
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De�nition of Acronyms

ac Alternating current
CSD Conductive-system dispersion
CSDn n = 0 or 1; see below for de�nitions of the n values
dc Direct current
DC Davidson-Cole response model
DCRT Distribution of conductive-system relaxation times
DDRT Distribution of dielectric-system relaxation times
DRT Distribution of relaxation times
DSD Dielectric-system dispersion
EDRT Exponential distribution of relaxation times
KWW Kohlrausch-Williams-Watts response model
KWWn KWW response de�ned by index n, where n = D, 0, or 1 (see below)
LEVM The complex-nonlinear-least-squares �tting program used herein
n=D The response is of DSD character involving a DDRT
n=C The response is of CSD character involving a DCRT and n = 0 or 1
n=0 The response is of CSDO character, possibly involving a DCRT formally

equivalent to a given DDRT
n=1 The response is of CSDl character involving a DCRT related to a given

CSDO DCRT by Eq. (13) of the text

APPENDIX

Because of the importance of the principle of equiva-

lence for relaxation systems, it is worthwhile to summa-

rize some historical information about it, most of which

appears in Ref. 33. Two two-terminal passive circuits

with time-invariant elements are said to be equivalent

when their responses over the full frequency range are

exactly the same. Consider pure reactance circuits �rst,

ones made up only of non-dissipative ideal capacitative

and inductive elements. In 1924 Foster [34] proved that

any such reactance system can be equivalently repre-

sented by a parallel combination of resonant elements

(capacitance and inductance in series) or by a series

combination of antiresonant elements (capacitance and

inductance in parallel). To account properly for pole

and zero behavior at zero and in�nite frequencies, sin-

gle elements must also be included in order to obtain

full equivalence [35].

Later, Bode [36] showed that the Foster reac-

tance theorem could be generalized by a frequency-

transformation method. For a relaxation situation,

his procedure replaces inductances in the original re-

actance system by resistances. This procedure can

thus lead to Maxwell and Wagner-Voigt circuits which

are equivalent. As shown herein, for full equivalence

of dielectric- system response to conductive-system re-

sponse (in which the e�ective resistance at in�nite fre-

quency associated with the dispersion process is zero),

the Maxwell circuit must, in general, include a capaci-

tor and a resistor in parallel with the rest of the circuit,

and the Wagner-Voigt circuit must also include such

parallel elements. The parallel capacitance represents

the high- frequency-limiting dielectric constant of the

system, and the parallel resistances are di�erent for the

two cases. Actual transformations from one circuit to

the other are best carried out by complex-nonlinear-

least-squares �tting [27], but Novoseleskii et. al. [37]

have provided some useful analytical expressions for do-

ing so for circuits with only three or four elements. The

present work demonstrates that the principle of equiv-

alence applies for continuous distributions as well.
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