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Recently, two methods for the estimation of discrete and/or continuous distribu-
tions of relaxation times from small-signal electrical frequency-response data have
been compared. For discrete-line distributions, the parametric method used was found
to be inferior in some ways to the nonparametric one, which involved Tikhonov reg-
ularization, and it was concluded that the parametric one could not be employed to
estimate continuous distributions at all. Here it is shown by Monte Carlo simulation
that both conclusions are incorrect. The same data situations analyzed in the earlier
work were reanalyzed using a complex nonlinear least-squares parametric method
that has been employed to estimate discrete-line distributions since 1982 and con-
tinuous ones since 1993. Quite different results from those presented earlier were
obtained, and the original parametric method was shown to be far superior to the
nonparametric one for the estimation of discrete-line distributions, since inversion
is unnecessary and resolution is far greater. For continuous or mixed distribution
inversions, the parametric method was again superior, and it allows unambiguous
distinction between discrete-line points and those associated with a continuous dis-
tribution, while the nonparametric inversion method does not allow such distinction
and approximates all distributional points as continuous-distribution ones. The para-
metric method used and described here is also valuable for other data analysis tasks
other than those involving inversion. Some of its error characteristics are inves-
tigated herein, and the importance of matching the weighting error-model to the
form of the errors in the data is illustrated. It was found that with normally dis-
tributed random errors added to exact data, the distributions of estimated parameters
were not normal but were closer to normal for proportional errors than for additive
ones. c© 2000 Academic Press
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1. INTRODUCTION

For 10 years or more, two different methods have been used for inverting small-signal
AC admittance data to obtain estimates of spectra, such as the deep trapping levels in a
Schottky barrier or the relaxation-time distribution associated with the processes leading to
the measured response. The frequency-response data considered here may involve discrete
lines only, a continuous distribution, or a combination of both. One of the two deconvolution
methods involves the use of Tikhonov regulation [1], and the other uses complex nonlinear
least-squares fitting (CNLS) of an appropriate model [2–10]. Recently Maier, Winterhalter,
and their associates have published three papers [11–13] dealing with the analysis of admit-
tance data by a nonlinear Tikhonov regularization method (NTRM): termed by them a non-
parametric method. The alternate CNLS parametric method (PM) developed by the present
author [4] is mentioned in [11–13], briefly described in [12], and discussed, applied, and
apparently compared in [13] to NTRM results for both simulated and experimental noisy
admittance data, the latter for semi-insulating GaAs Schottky diodes. A list of acronym
definitions is included at the end of this work.

The detailed comparisons of the usefulness of the NTRM and PM approaches carried out
in [13] using Monte Carlo analysis of data with fairly low noise indicated that the NTRM
was greatly superior to the PM for the inversion of a continuous distribution of relaxation
times (DRT) and, as well, for a composite distribution containing three discrete lines and a
continuous DRT. For the estimation of a DRT involving only three discrete lines, the PM
results were superior except for uncertainty in the determination of the proper number of
lines to estimate. Since these results differ greatly from those presented in much prior work
using the original PM [4], further fitting and analysis is needed to resolve the differences.

Although the PM used in [13] was introduced by reference to that in [4], thus implying
that the method was the same, this was not the case. Therefore, it is important to present
DRT estimation results for the three DRT situations defined above using the original PM.
Such results and their comparison with the NTRM and PM estimates of [13] are presented
below. For easy distinction between the two PM approaches, let PMO denote the original
version of [4] and PMW denote that used by Winterhalteret al. [13]. A very important
unique feature of the PM is that it takes both the strength and position of DRT points as free
parameters, not just the strength parameters as in other approaches.

Brief characterizations of the three methods are as follows:

• The NTRM is most appropriate for continuous distributions, although it was used
for all three in [13]. Because the regularization term, which tames ill-posedness effects in
noisy data, introduces a trade-off between the accuracy of a DRT estimate and its resolu-
tion, it rounds off any sharp corners of a distribution which may be present and necessarily
represents a discrete DRT line as a much-broadened peak. The NTRM is appropriate when
estimation accuracy needs to be sacrificed to obtain many-point high resolution of a con-
tinuous distribution.
• In [13] it is stated that “the parametric analysis is only suited for discrete distributions

and cannot estimate continuous distributions at all,” but the PMW is applied there to all
three data situations. It leads to very poor results for continuous and mixed distributions.
In addition, these poor results led the authors of [13] to conclude that the PM (actually the
PMW) is unable to estimate reliable results for a composite distribution.
• The PMO applies to all three types of DRT situations and, as shown below, yields

DRT estimates much superior to those of the NTRM for all three. For discrete lines only,
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there are no noisy-data ill-posed effects, leading to exceptionally accurate, high-resolution
DRT estimates with no broadening, even for appreciably noisy data. For continuous and
mixed distributions, the PMO yields accurate point estimates of the distribution components
and provides an unambiguous way of distinguishing between points associated with discrete
lines and those belonging to a continuous distribution [2, 4, 7–10]. For low noise, it can rep-
resent sharp-corners without rounding, but as the noise level of experimental data increases,
the number,M , of highly accurate continuous-DRT point estimates decreases. Thus, the
resolution decreases with increasing noise. For large-noise continuous-distribution situa-
tions, such a those with relative errors greater than 5%, the NTRM approach is likely to be
superior for most purposes.

Comparisons of the results of applying the PMO with those obtained in [13] for the
other two approaches are presented below. All the present calculations were carried out
with the free immittance-spectroscopy fitting/inversion computer program, LEVM [4, 14,
15]. Detailed discussion of the inversion procedures involved in the PMO and the PMW
approaches is presented in the Appendix.

2. SIMULATION RESULTS

2.1. Background

Figure 1 shows the equivalent circuit used in [12, 13] to represent the Schottky diode
and to generate frequency-response data from it. TheCi and Ri circuit elements, with
1≤ i ≤M , may represent the effect of deep levels, a continuous distribution, or both;C01 is
a bulk geometric capacitance; andR01 accounts for non-zero dc conductance. The remaining
elements may be identified as arising from electrode/interface effects. It is noteworthy that
in his original admittance spectroscopy work, an important precursor of [11–13], Losee
[16] did not include theR01, C02, R02, andR03 elements of Fig. 1.

For all the present Monte Carlo simulations, we shall follow the procedure of [13] by first
generating a simulated data set without added errors and then carrying out 1000 inversions
of this set with independent random errors combined with the real and imaginary parts
of each original data point for each of the MC replications. As in [13], the original 1000
random error sets were normally distributed with standard deviations of unity and means of
zero. Then, from the individual free-parameter estimates of the 1000 inversions and their

FIG. 1. Equivalent circuit used in Ref. [13] and herein to model the electrical response of a Schottky diode.
The elementsCi andRi , with 1≤ i ≤M , are included to represent the effects of deep levels, and are used here to
represent discrete lines and/or continuous distributions of relaxation times. The other elements are identified in
the text.
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relative standard deviations of fit, SF, the estimated parameter averages and relative standard
deviations of these quantities are calculated. For simplicity<> signs will be omitted since
averages will be obvious.

Although the authors of [13] stated that their additive random errors corresponded “to a
relatively constant error of 1%,” they did not make it clear whether the 1% error applied
to each of their individual data point values separately or to the overall relative standard
deviation of the fit. For the first of these possibilities, the Gaussian-distributed random
errors to be added are scaled by multiplying them by 0.01 times each individual real-part
and imaginary-part data value, while for the second choice, all additive errors are scaled by
a constant chosen to produce a value of SF close to 0.01, a 1% relative error.

The type of error used is very important because proper analysis should use a weighting
that matches as closely as possible the error character of the data. Thus, for the first choice
above, proportional errors, one would use proportional weighting, PWT, while for the
additive-error choice, unity weighting, UWT, would be appropriate, as demonstrated in
Subsection 2.2. Unfortunately, the matter is further confused because the authors of [13]
specify the use of PWT in their objective function, as in the earlier work of the author (e.g.,
[4, 6–10, 14, 15]), but they assume that their simulated experimental errors are relatively
constant, an apparent inconsistency unless “relatively constant” meant constant relative to
individual data values rather than approximately constant.

Judging from the results in [13], it appears that the authors may possibly have used
additive errors rather than proportional ones, at least for their NTRM inversions. Because
of this uncertainty, however, most of the present comparisons have been carried out both for
additive errors and for proportional ones as well. In [13],N, the number of frequencies in a
data set, was set to the large value of 200 for both NTRM inversions and for the PMW, but
for the present PMO analyses, we useN= 71, for a range ofωk from 1 to 107 rad/s with ten
points per decade. In both cases, theωk values involved logarithmically scaled intervals.

The number of DRT points,M , is determined during the PM inversion procedure, but
the fixedM value used in the NTRM analysis is not entirely clear. In [12] it is stated thatM
is at least 100. But in [13], theτi fixed-relaxation-time points are said to involve constant
spacing within the rangeτmin, τmax of the distribution. If one takesτmin' 3× 10−6 and
τmax' 1 in order to cover most of the range of the full distribution involving three discrete
points and a continuous contribution [13] and uses a spacing of 0.2× 10−5, required to
yield enough points at the low end, then of the order of 106 points are required. Such a large
value would lead to an extremely underdetermined least-squares situation, one mentioned
in [13]. For usual least squares analysis, one wants the number of degrees of freedom to be
positive, not the case for such a large number of fixedτi values. Although the introduction
of a regularization term ameliorates this problem, it nevertheless seems likely that in [13]
the authors used not more than about 100 fixedτi values, distributed with equal intervals
on a logarithmic scale, certainly not constant spacing.

For the present PMO analyses, define thei th DRT point by the pair{ei , τi }, whereei is
a normalized strength parameter andτi specifies the position of the point [4]. For discrete
DRT points, takeei = di , and for points of a continuous DRT setei = ci , since the discrete
character of numerical analysis requires that even a continuous distribution must be defined
by a finite number of discrete points. The PMW approach involves only the choiceei = di ,
but the PMO may involve general{ei , τi } pairs, possibly even including a combination of
di andci points, a composite DRT. Because bothei andτi parameters are taken free to vary
during a PMO CNLS fit, much more accurate results are obtained than if theτi s were fixed,
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and a unique method of distinguishing between discrete DRT lines and continuous DRT
points is available, as demonstrated below.

2.2. Three Discrete DRT Pairs and Error-Model Results

The simulated data sets here involve three{di , τi }distribution pairs, with values selected to
agree with those of [13], plus all five of the remaining circuit elements of Fig. 1. But because
the authors of [13] present their estimated DRT strength parameters in unnormalized form,
for ease of comparison we shall do likewise, using the unnormalized strength quantitieshei

in place of theei ones. See the Appendix for their relationship. In [13],hdi is denoted by just
hi andhci by τi h(τi ). No explicit values of the latter quantity are presented in [13] except in
plots. In all thehei plots in [13], a scale factor of 10−9 has been omitted without explanation,
but it does appear in the corresponding plots in [12]. Note that{hci , τi } represents a discrete
point of theF(y) DRT of Eq. (A.1) whenF(y) represents an unnormalized continuous
distribution.

Table I shows some results for the present discrete DRT situation. Scaled exact quantities
are shown in the third column and 1000-replication Monte Carlo averages in the other
columns. Note that theM = 2 values in column 4 agree poorly with the corresponding
exact results (even though most of their estimated relative standard deviations are quite
small!), and the SF value is appreciably larger than it should be. By contrast, the correct

TABLE I

Comparison of Monte Carlo Estimated Parameter Values Obtained from Simulated Admit-

tance Data with Three Discrete Deep Levels and the Five Non-distribution Circuit Elements

of Fig. 1

Row Parameter Exact UFit: M= 2 UFit: M= 3 UFit: M= 4 PFit: M= 3 NTRM

A 100 SF ∼0 2.26|0.065 0.994|0.32 1.001|0.32 0.998|0.064 ∼1

B1 1010hd1 2 4.87|3× 10−4 2|0.0036 2|0.0037 1.97|0.24 1.5|0.13
B2 105τ1 1 3.06|2× 10−3 1|0.0033 1|0.0038 1.08|0.40 1.02|0.2
C1 1010hd2 3 — 3|0.0018 3|0.0019 3.02|0.11 3.3|0.06
C2 104τ2 1 — 1|0.0018 1|0.0018 1.03|0.09 0.97|0.41
D1 1010hd3 6 6.29|2× 10−4 6|4× 10−4 6|4× 10−4 6.02|0.022 6.2|0.11
D2 103τ3 1 0.872|5× 10−4 1|6× 10−4 1|6× 10−4 1.004|0.018 1.0|0.01
E1 1012hd4 — — — 9.9|1.7 — —
E2 109τ4 — — — 9.8|8.2 — —

O 1010C01 1 0.72|0.0014 1|0.0017 0.90|0.18 0.989|0.16 0.95|0.07
P 108G01 1 1.05|0.0016 1|0.0017 1|0.0017 1|0.0026 0.999|0.002
Q 1011C02 1 1.04|2× 10−4 1|10−4 1|10−4 1.004|0.018 1.006|0.008
R 106G02 1 0.987|9× 10−5 1|10−4 1|10−4 1.003|0.01 1.01|0.005
S 103R03 1 1.0000|10−5 1|10−5 1|0.0014 1|0.0075 0.995|0.009

Note. Results are listed for runs with 1000 samples of additive or proportional independent Gaussian-
distributed random errors in both real and imaginary parts of each data set. The Gaussian scale factor for
additive errors was 8.075× 10−11 Farads (UFit results), and that for proportional increments (PFit) was 0.01.
Here SF is the average relative standard deviation calculated from each set of 1000 replications, and theC(F),
G (mhos), andR (ohms) parameters are defined in Fig. 1 withG0i = 1/R0i . The hdi andτi dielectric DRT
parameters are the Fig. 1 quantitiesCi and Ri Ci , respectively. The NTRM (nonparametric) results are taken
from Ref. [13] and may possibly involve additive errors. A quantity, such asq, whose exact value isq0, shown
above without decimal places satisfies 0.9999q0<q< 1.0001q0 and is usually appreciably closer. For results
shown as A|B, A is the estimated average value and B is the estimated averagerelativestandard deviation of A.
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M = 3 choice of column 5 yields virtually exact parameter estimates. Incidentally, the UFit
SF value of 0.994% could have been made 1.0% by using a slightly larger value of the
random-error scaling factor.

For M = 4, nearly all of the parameter estimates are still accurately estimated, but the
i = 4 ones of rows E1 and E2 are both very much smaller than the other discrete estimates
(compare the scaling factors in column 2), and their relative standard deviations are so large
that these estimated quantities cannot be statistically distinguished from zero. These results
show thatM = 3 is indeed the correct choice and that it is unnecessary to use a larger value.

The results presented in column 7, for proportional errors and proportional weighting
(PWT), show appreciably poorer parameter estimates and relative standard deviation esti-
mates than do those for additive errors whenM = 3. This is because added proportional
errors affect all the data while the present additive ones are so small that they affect pri-
marily only the smaller data values. Finally, the results of column 8 should be compared
with those of columns 5 and 7. We see that many of the Ref. [13] NTRM estimates are poor
and show appreciable bias, as well as far greater uncertainties than do the discrete-DRT
UFit estimates of the PMO. Although theM = 3 PMW results presented in [13] for the
present situation are better than the NTRM ones, the relative standard deviations of their 11
parameter estimates are orders of magnitude larger than those of column 5. Further, there
are very significant differences between the presentM = 4 hdi results in column 6 and the
corresponding PMW estimates in [13], all of which are very poor. For example, for 1010hd3

the authors of [13] cite a value of 4.5|0.4 and for 103τ3 a value of 0.72|0.4. In addition, their
estimated values for the correspondingi = 4 quantities are 2.5|1 and 0.82|0.1, the latter
value being significant even though it should not be.

The value of SF and the correspondingOM objective function of Eq. (A.4) will decrease
asM is increased toM + 1 as long as adding another{ei , τi } pair improves the fit. In many
PMO fits of the author, it has been found that in this regionOM/OM+1 lies in the range
from about 1.5 to 4, andOM is approximately a decreasing exponential function ofM .
For the PMW procedure of [13], the criterionOM+1< 1.01OM was introduced and was
applied to each individual fit during MC analysis. When it failed,M was increased until
OM+1≥ 1.01OM . For the present discrete-distribution situation this procedure led to 920
M = 3 results and 80M = 4 ones [13]. Here we do not use this criterion but instead the
more stringent one of comparing the results for all 1000 replications for each of the three
M choices in the table, a comparison which makes it virtually certain that theM = 3 one
is the proper one even if the exact parameter values were unknown, as they always are for
experimental data.

Note that the relative standard deviation estimate of SF is 0.32 for both theM = 3 and 4
PMO choices. This relatively large value means that some of the individual SF values during
a run of 1000 fits will be as large as 1.5% (or as small as 0.5%) and would thus be likely to
require, in the PMW approach of [13], thatM be incremented, and such fits would therefore
not be counted as part of the Monte Carlo analysis for that value ofM , censoring and thus
biasing the results. Therefore, the present method of choosing an appropriateM is to be
preferred. Further, determination of the proper value ofM for an individual experimental
data set, the usual problem, will again generally lead to an unambiguous choice, one based
on comparing changes in parameter estimates and their standard deviation estimates, an
integral part of the output of LEVM fitting, asM is incremented.

The results presented in Table I suggest that the present discrete PMO approach produces
far better estimates than does the NTRM. The latter yields not a single line, when one is
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present, but a continuous distribution which is approximately centered on the proper line.
It is necessary to carry out separate integrations over the region of the resulting continuous
distribution around the peak in order to obtain NTRM estimates such as those in column 8
[13]. This procedure is completely inadequate when two or more lines are close together,
but such situations are handled accurately by the PMO approach [4].

The authors of [13] correctly state that in real materials instead of a single relaxation
time for a deep level one should expect a broadened line. They do not, however, estimate
such broadening, and it is clear that their line widths, which are about half a decade,
are many orders of magnitude greater than is physically likely, and an unbroadened-line
approximation will generally be most appropriate. Thus, it is clear that the PMO approach
is to be preferred to the NTRM one for slightly broadened discrete-line situations. The
PMO has been used to compare the inversion of a single line and a broadened but narrow
(continuous) approximation to it in [5]. Incidentally, the tentative suggestion in [4] that
it might be possible to combine the variable-τ feature of the PM with regularization is
inappropriate since the standard regularization approach requires a fixed set ofτs.

Because some consideration of the NTRM error model has been presented in [17], it
is worthwhile to investigate aspects of the error models used here for the PMO approach,
even though PMO inversion for experimental and simulated data containing errors has
been presented in Refs. [3–10, 14,15, 18–20], and Monte Carlo analysis of LEVM fitting
possibilities appears in [15, 18–20]. In particular, bias generated with different weightings
is studied in [20] and the adequacy of correlation estimates in [19]. Finally, [15] contains a
MC study of radioactive decay involving both experimental and simulated two-component
exponential decay.

Figures 2 and 3 show some results of single fits of data defined as above with different
types of added error and different weighting used in the fits. For the additive-error situations
of Figs. 2a and 3a, we plot the unweighted (UWT) fit real and imaginary residuals versus the
individual scaled pseudo-random errors which were added to the real- and imaginary-part
data for each point. For the AU situation of Fig. 2a, where the weighting is appropriate

FIG. 2. Weighted real- and imaginary-part single-fit residuals versus the specific random errors which were
directly (A) or proportionately (P) added to initially noise-free data calculated from the circuit of Fig. 1 with three
discrete lines present. For the AU results in (a), unity weighting was used in the data fitting, while for the PP
results shown in (b) proportional weighting was employed. All individual and Monte Carlo fit results plotted in the
present work were obtained using the parametric method (PMO) described herein and instantiated in the LEVM
fitting program.
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FIG. 3. Weighted real- and imaginary-part single-fit residuals versus the specific random errors which were
directly (A) or proportionately (P) added to initially noise-free data calculated from the circuit of Fig. 1 with three
discrete lines present. For the AP results in (a), proportional weighting was used in the data fitting, while for the
PU results shown in (b) additive weighting was employed.

for the type of input errors, we see that the real and imaginary residuals are each highly
positively correlated with their individual input errors, with, in fact, correlations of 0.98
and 0.99, respectively, as one would expect for a good fit. The situation is far different
when the weighting does not match the type of the added errors. Thus for the AP results of
Fig. 3a, where proportional weighting was used for the fit, the correlations are only of the
order of 0.5 or less. The results for proportional errors, presented in Figs. 2b and 3b, show
similar results. When the errors and weighting matched, as in the PP situation of Fig. 2b,
correlations of 0.97 and 0.99 were found, and when they did not, for the PU results of
Fig. 3b, again the correlations were of the order of 0.5 or less.

Although the estimated parameter values and their estimated standard deviations are
appreciably worse for both types of mixed fit than for AU and PP results, the PU pa-
rameter estimates were considerably poorer on both counts than the AP estimate. These
results graphically indicate the importance of matching the type of weighting used with the
type of errors present in the data. LEVM also includes the possibility of using weighting
which assumes the simultaneous presence of both small additive errors (an error floor) and
proportional ones.

Finally, standard statistical tests for normality, and quantile–quantile plots, showed, as
one might expect, that the AU and PP residuals were distributed normally with very high
probability, but those for the PU and AP fits were not. Further, such tests for the MC
SF estimate for the PP situation led to quantile–quantile curves which showed reasonable
agreement with a Gaussian distribution except at the high end of the plots where larger
values of SF than predicted for such a distribution were apparent. In fact, a log-normal
distribution appeared to be about as likely as a normal one.

Tests of MC parameter estimates, such as those presented in Table I, showed that they
were far from normally distributed for additive errors and were often highly peaked, al-
though theτi parameter estimates were generally closer to normal than thehdi ones. Further,
parameter-estimate distributions were more normal for proportional than for additive errors.
Even though the parameter standard-deviation estimates do not have their usual probabil-
ity interpretation here, they are nevertheless useful for comparisons and to give a rough
idea of the likely uncertainty of the parameters. Although estimated standard deviations of
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parameters are presented in [13], possible limitations on their interpretation are not men-
tioned there.

In summary, for the present discrete-DRT situation one can readily determine, using the
PMO, that value ofM which accounts for all the discrete lines (or levels) present and find
that further increase inM is nugatory (see also [4]). Because the problem is not ill-posed, the
discrete DRT parameters and all others present are on a common footing, and the situation
is just one of fitting, not inversion. Thus, it is inefficient, much more difficult, and much
less accurate to use the large-M NTRM for discrete problems, ones where regularization is
inappropriate and unnecessary.

2.3. A Continuous Gaussian Distribution

In Ref. [13], the authors compared their PMW and NTRM results using data generated
from both a continuous Gaussian distribution in a logarithmicτ variable and the five addi-
tional circuit parameters of Fig. 1. Their distribution was stated to involve a DRTτ peak
value,τp, of 0.05 and a variance,σ 2, of 2 [13]. Note that a Gaussian distribution involving
a logarithmic variable, such as the presenty one defined below, is not a log-normal distri-
bution [21], but it has been used for many years in the present field and is included as a
fitting function in LEVM [14, 22, 23].

A normalized, continuous Gaussian distribution of dielectric relaxation times, involving
y, here defined as ln(τ/τp), and a variance ofσ 2, may be written as

FD(y) = exp[−(y/σ)2/2]/(2πσ 2)
1
2 , (1)

and its response at the admittance level, sayYG(ω), is

YG(ω) = iω1C
∫ ∞
−∞

FD(y) dy

[1+ iωτp exp(y)]
, (2)

where for numerical calculations the limits of the integral rarely need to be larger than 5σ ,
and1C is a measure of the strength of the distribution (see the Appendix). To agree with the
choices in [13], we set1C= 10−9, but in order to match the actual width of the distribution
used in [13], we had to chooseσ 2= 1/2 instead of the variance value of 2 specified in [13].
The free parameters for Gaussian DRT fitting with LEVM are1C, τp, andφ≡ 21/2σ , equal
to 1 for the above choice ofσ .

Before using the PMO to invert noisy data involving a Gaussian distribution and the
two free parametersC01 and G01 of the Fig. 1 circuit, it is of interest to analyze such
data directly by fitting the data to a Gaussian-distribution model and carrying out a 1000-
replication Monte Carlo analysis based on direct fitting of exact data calculated with LEVM
with additive random errors added, as in the previous section. The following estimates were
obtained for1C, τp,φ, C01, andG01, respectively: 0.9999× 10−9|0.0055, 0.04999|0.0081,
0.9999|0.0071, 10−10| ∼0, and 1.0002× 10−8|.0041. These estimates involve direct fitting
of a known model and thus do not involve inversion.

Table II shows some PMO Monte Carlo estimates. Although all points are shown in
the subsequent plots, for simplicity and to allow some quantitative comparisons between
different PMO fitting situations, only the three{hci , τi } estimates that include the one with
largesthci are listed. No PMW{hci , τi } estimates were listed in [13]. Note especially the
improvement in the present{hci , τi } estimates for the U fits asM is increased from 7 to 11.
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TABLE II

Comparison of Monte Carlo Fit Results for Simulated Admittance Data Involving

a Gaussian Continuous Distribution and Two Additional Parameters

Row Parameter Exact, M= 11 UFit: M= 7 UFit: M= 11 PFit: M= 11

A 100 SF ∼0 0.9950|0.298 1.028|0.318 1.065|0.063

J1 109(hc4, hc6) 0.8310 0.7390|0.052 0.8302|0.0026 0.8183|0.012
J2 τ4, τ6 0.0327 0.0297|0.055 0.0326|0.0051 0.0321|0.032
K1 109(hc5, hc7) 0.9882 0.9830|0.062 0.9887|0.0076 0.9999|0.017
K2 τ5, τ7 0.0547 0.0557|0.134 0.0548|0.0619 0.0537|0.010
L1 109(hc6, hc8) 0.6814 0.5341|0.163 0.6833|0.0123 0.7354|0.026
L2 τ6, τ8 0.0925 0.1051|0.162 0.0924|0.0106 0.0869|0.041

O 1010C01 1 1 1 0.9998|0.0014
P 108G01 1 0.9987|0.007 0.9982|0.007 0.9988|0.0036

Note.The two parameter symbols listed together in several rows above apply to theM = 7 and theM = 11 fits,
respectively. Other information is the same as that listed in the heading of Table I except that here the Gaussian
scale factor used for additive errors was 1.25× 10−10 Farads for the UFit results. For comparison, NTRM results
from [13] are 1010C01= 0.99|0.01 and 108G01= 1.0|0.002. No NTRM{hci , τi } numerical values were included
in [13] for the present case.

Although the present PMO approach is appropriate for both discrete-distribution and
continuous-distribution data, see Eqs. (A.6) and (A.7), and least-squares fitting (especially
with theτi parameters free as well as thehci ones) provides some regularization effect for
ill-posed continuous-distribution estimation, one finds that asM increases the uncertainty
in continuous-distribution parameter estimates and their estimated standard deviations will
eventually stop decreasing and begin to grow as ill-conditioning effects increase. Thus the
maximum resolution of PMO-distribution estimates decreases as noise in the data increases.
For exact simulated data, however, one can usually obtain at least 19 points, all of them very
accurate, except possibly those at the extreme ends of the distribution. For experimental data
involving a continuous distribution, a value ofM which yields optimum PMO inversion
results may always be found by increasingM until parameter uncertainties stop decreasing.
Further increase inM is counterproductive.

For the present noisy-data situation, it was found that no improvement occurred asM
increased from 13 to 14, and theM = 11 choice yielded the most parameter estimates with
adequately small relative standard deviations. Table II also indicates, as in the discrete case
above, that the relative standard deviation estimates of the continuous-distribution parameter
points are significantly poorer for theM = 11 data containing proportional errors than for
the additive error ones. The PMW results of [13] for the present AU situation were greatly
inferior to those obtained here, with most of the replications leading toM = 5 and only
1.5% of them toM = 6.

When theM = 11 results are compared, where possible, with the results cited above for
direct fitting of the data with a known Gaussian model, one sees that the parameters and
error estimates of the two incidental parameters are comparable, and the{hci , τi } parameter
estimates shown in the table are excellent, indicating that for the present situation the
continuous-distribution PMO inversion approach suffers negligibly from ill-posed-inversion
limitations. But this conclusion is somewhat misleading: the number of significant parameter
estimates which may be obtained is limited by noise in the data as mentioned above,
and, as demonstrated below, the smaller thehcis, the poorer their AU-type estimates are.
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FIG. 4. Estimated Monte Carlo discrete points,hci , approximating a continuous Gaussian distribution of
relaxation times included in Fig. 1 in place of itsCi and Ri elements. The peak of the exact input distribution
occurred at log(τ/τo)= log(τp/τo)=−1.30103, withτp= 0.05 s andτo= 1 s. The latter normalizing value is used
throughout this work. See Table II.

Furthermore, unlike the discrete-distribution situation, a small fraction of the present MC
replications at fixedM did not fully converge after 900 or more iterations; therefore, only
those that did were included in the MC results.

Figure 4 shows the estimated continuous-distribution points obtained from various fit
choices. The solid line and the solid circles were calculated from the exact Gaussian DRT.
The open circles, obtained from a single PMO fit of data without additive errors, should
uniformly encircle the solid points if the estimates were exact. We see that, in fact, this
seems to be the case, but the log–log plot of Fig. 5 shows that the two smallesthci estimates
are slightly too large, possibly end-point artifacts of the quadrature weighting procedure
used in the inversion [4].

The M = 11 AU points shown as squares in Fig. 4 also appear to be excellent estimates,
except for the one for the largestτ . Note especially that theM = 7 points generally occur at
different positions on the exact Gaussian response curve than do theM = 11 ones, contrary
to the behavior found for discrete DRT points. Thus, it is clear that we are dealing here with
points delineating a continuous rather than a discrete distribution, showing that the two can
indeed be distinguished. No unambiguous discrimination of this kind is possible with the
fixed-τ NTRM approach.

The NTRM curve in [13] corresponding to the one of Fig. 4 was plotted on a smaller
scale than that of Fig. 4, but it nevertheless shows much larger discrepancies near its peak
and also more errors on the high-τ side of the peak than those in Fig. 4. Although this
continuous-DRT estimate was claimed in [13] to be very accurate, it is in fact much less
accurate over the fullτ range than that obtained with the PMO approach.

Log–log plotting, not included in the Ref. [13] work, is useful for showing the response
in the small-he region. We see from Fig. 5 that the high- and low-τ end-points for both
M = 7 and 11 are very poor, and, in fact, their relative standard deviations are greater than
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FIG. 5. The same results as in Fig. 4 but here plotted with logarithmic ordinate values.

one, indicating that these estimates are wholly inadequate. Thus, only (M − 2) points are
meaningful for the present results. Nevertheless, they show that the PMO can indeed estimate
a limited number of points of a continuous distribution appreciably more accurately than
the NTRM can with a vastly larger number of points. This follows because regularization
must try to achieve a balance between a good fit of the original data and not too much
smoothing, something which renders most point estimates less accurate, even for the best
choice of the regularization parameter, one not always readily obtained. Because the top
nine open-square PMO points in Fig. 5 surround very closely the exact Gaussian values,
denoted by the solid-circle points, it is clear that many points of a Gaussian distribution
are extremely well estimated here from noisy data, as is also shown by separate direct least
squares fitting of these nine open-square points to such a distribution.

In [13] it is implied that the least-squares estimator, such as that used in the PM and
discussed in the present. Appendix, is not consistent for largeM . Although the addition of
a regularization term to the model, as in the NTRM, controls the ill-conditioning associated
with largeM values for a continuous distribution, it was not claimed in [13] that the NTRM
is itself consistent. Consistency requires that estimated parameters, such thehci , converge
in probability to their exact values as the number of observations,n, approaches infinity
[24].

Here we find that the estimated uncertainties of then= 1000 PMO (mean) SF values
listed in Tables I and II are rather large and do not decrease appreciably forn≥ 100. Further,
the estimated values of thehci uncertainties of Table II also do not decrease appreciably
for largern. Therefore, the nonlinear least squares estimator used in the PMO is indeed
not consistent here for the inversion of continuous distributions, even for relatively small
M values at constantN. But what matters most is that forM values large enough to
give appreciable resolution, ill-conditioning effects are still minor for experimental data
with usual small random errors, and many PMO DRT point estimates are quite accurate,
as demonstrated by the results of columns five and six of Table II and by Fig. 5. It is
finally worth emphasizing that whenN is increased within a constant frequency range at
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constantM , for anM value at or below its optimum value, MC analysis indicates that PMO
parameter estimates approach their exact values asN increases, providing a possible means
of achieving improved estimation accuracy.

2.4. Three Discrete DRT Points and a Continuous Gaussian Distribution

The results discussed in this section involve data sets which include the elements of both
the preceding sections and the five non-distribution circuit elements of Fig. 1. Thus, for the
PMO analysis whenM = 13 there are a total of 2× 13+ 5= 31 free parameters. The more
non-distributional extra parameters present, especially ones which contribute significantly
to the frequency response in the same regions as the distribution, the less accuracy one can
expect in inversion results. Thus, the continuous-distribution points in Table III and in Figs. 6
and 7 are less accurate than those listed in Table II and shown in Figs. 4 and 5. Nevertheless,
Figs. 6 and 7 indicate that five or six good-point estimates of the Gaussian distribution are
present for both theMc= 8 and theMc= 10 choices, where hereMc includes only the
readily identified continuous-distribution{hci , τi } points out of the totalM = 11 and 13
estimates shown.

For simplicity, the three discrete point estimates are not included in Fig. 7, but Fig. 6
and the results in Table III show that they are exceptionally accurately determined for both
theM choices. Furthermore, since the positions of the discrete points were independent of
M to three significant figures or more, unlike those of the continuous DRT, discrimination

TABLE III

Comparison of Monte Carlo Fit Results of Simulated Admittance Data with

Three Discrete Deep Levels, a Gaussian Continuous Distribution, and the Five Non-

distribution Circuit Elements of Fig. 1

Row Parameter Exact UFit: Mc= 8 UFit: Mc= 10 NTRM

A 100 SF 10−9 0.998|0.24 1.021|0.24 ∼1

B1 1010hd1 2 2|0.0059 2|0.0040 —
B2 105τ1 1 1|0.0031 1|0.0022 —
C1 1010hd2 3 3|0.0031 3|0.0024 —
C2 104τ2 1 0.9993|0.0051 0.9994|0.0047 —
D1 1010hd3 6 5.992|0.0042 5.994|0.0024 —
D2 103τ3 1 0.9991|0.0036 0.9986|0.0040 —

J1 109(hc4, hc6) 0.8980 0.7076|0.044 0.8991|0.021 —
J2 τ4, τ6 0.0362 0.0281|0.074 0.0364|0.062 —
K1 109(hc5, hc7) 0.9558 1.004|0.034 0.9686|0.034 —
K2 τ5, τ7 0.0611 0.0499|0.119 0.0614|0.125 —
L1 109(hc6, hc8) 0.5679 0.7521|0.077 0.5711|0.059 —
L2 τ6, τ8 0.1054 0.0841|0.117 0.1045|0.074 —

O 1010C01 1 1|4.6× 10−4 1|2.6× 10−4 0.99|0.01
P 108G01 1 0.996|0.015 0.994|0.019 1.0|0.002
Q 1011C02 1 1|4.7× 10−5 1|2.6× 10−5 1.0|0.002
R 106G02 1 1|1.3× 10−4 1|10−4 1.01|0.005
S 103R03 1 1|2.8× 10−5 1|2.9× 10−5 0.997|0.008

Note.Other information is the same as that listed in Table I except that here the Gaussian scale factor
for additive errors was 2.35× 10−10 Farads.
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FIG. 6. Monte Carlo results for PM fitting/inversion similar to those in Fig. 4, but here the original data
analyzed were calculated from the Fig. 1 circuit with three discrete lines, an exact continuous Gaussian DRT
contribution, and all five of the other circuit elements shown in the circuit. See Table III. Here and in Fig. 7, MC

refers to continuous-distribution points only.

between the two types was unambiguous. It is worth reiterating that estimates of the discrete
DRT points present here do not involve inversion problems when the PMO is employed
since the fit model for discrete points of a composite distribution is exactly known. But, in
contrast, PMO inversion of an unknown continuous distribution involves ill-conditioning
associated with discretization and consequent inaccurate numerical quadrature, as well as

FIG. 7. Same results as in Fig. 6 but here plotted with logarithmic ordinate values and with discrete-line
contributions omitted.
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random errors in the data. Although the authors of [13] did not list any estimates of the five
Fig. 1 non-distributional circuit elements for the present situation, they mentioned that they
were nearly the same as those found for the continuous-distribution case. Therefore, those
estimates are included in Table III.

Using their discrete PMW analysis approach and stopping criteria, the authors of [13]
found that for the present data situation 92.5% of their 1000 replications involved only
M = 5, and, of these five, only one defined the{hd3, τ3} point, and three others did a very
poor job of delineating the continuous distribution. Better, but still poor, result were found
with M = 8, but only 0.3% of the 1000 replications involved this choice. By contrast, the
presentM = 11 results are far superior to any of the Ref. [13] estimates for the present
data situation and show clear distinction between the three discrete-distribution points and
the eight points estimated for the continuous distribution. Even larger errors appeared for
the NTRM continuous-distribution estimation of [13] than were present in the absence of
discrete points, yet the authors again claimed very accurate estimation.

For actual GaAs measured data, the PMW analysis of [13] led to seven discrete-line contri-
butions. The authors considered that six of these lines might be associated with a continuous,
not discrete DRT, one which approximately defined an asymmetric, non-Gaussian distribu-
tion with a long tail on its small-τ side, a common shape. The seventh point agreed with a
peak at even smallerτ also predicted by the NTRM analysis, but the question of whether
it represented a discrete DRT point or not was unresolved. The results and comparisons
herein indicate that had the PMO approach been used for these data, in place of the less ap-
propriate models used in [13], it would most likely have been possible to resolve the above
ambiguities by achieving both greater accuracy and definite discrimination. Then, not only
would any discrete points be well identified but a good estimate of the actual continuous
distribution present would have been found, and the procedure could have been applied
for data at different temperatures in order to obtain useful estimates of relevant thermal
activation energies.

3. SUMMARY AND CONCLUSIONS

By direct comparison of PM and NTRM MC results for the same data situations, nearly all
of the criticisms of the PM in recent publications [12, 13] have been shown to be unfounded.
The criticisms evidently arose, at least in part, from differences between the PMW approach
employed in [13] and the PMO approach described herein and used previously. The PMO is
far superior to all other analysis methods for estimating discrete-line contributions to data,
since such estimation does not require inversion. By contrast, the NTRM greatly broadens
delta-function lines and cannot distinguish them from narrow continuous distributions or
resolve them when they are close together.

For the estimation of continuous or mixed distributions, the PMO has several advantages
over the NTRM approach, particularly for admittance data, such as that considered here,
which extends over many decades of frequency. First, it allows unambiguous identification
of and discrimination between estimated points associated with discrete lines and those
connected with continuous distributions. Second, it leads to more accurate determination
of discrete-line points and of a limited number of continuous-distribution points than does
the NTRM. As the noise present in the data increases, however, the number of significant
continuous-distribution points which can be extracted by PMO inversion decreases. Never-
theless, for ordinary experimental data, much inversion experience using the PMO shows
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that a sufficient number of significant points can be found to well define the distribution and
identify it if it is of known form. For continuous distributions with many peaks and valleys
(not the usual situation), however, the NTRM is likely to be able to delineate the distribution
more completely when the noise level is relatively high than can the PMO approach. But,
as usual for regularized inversion, one then trades off accuracy for resolution.

The LEVM computer program [4, 14, 15] allows one to use the PMO to fit or invert
data at any of the four immittance levels and, more importantly, it allows one to estimate
either a dielectric- or a conducting-system DRT. Such estimation may be carried out with
full complex frequency-response data, with either the real or the imaginary part of such
data, or from the associated temporal response data. Further, when the distribution has been
estimated by one of these approaches, it can be used to calculate the response associated
with any or all of the others. Thus, it obviates the need for Kronig–Kramers or Fourier
transformation of the original data, an advantage which is especially important when the
data span many decades.

Given some data, there are three distinct analysis avenues of usual interest. First, one
may merely wish to obtain a function that fits the data as accurately as possible, perhaps
for interpolation or extrapolation purposes. In this case, the PMO should be the method
of choice, especially for low-noise situations. Usually more important is the task of fitting
the data to a known model in order to estimate its parameters and to use the results to
gain insight into the physical processes involved in the situation that led to the data. This
approach allows one to discriminate between several plausible models, select the one which
fits best, and evaluate the level of residual systematic error if it is significant [6, 7, 25–27].
The model used may or may not be defined in terms of a DRT. The LEVM program is
particularly valuable for such fitting.

Finally, one may want to derive an estimate of the DRT inherent in the data or verify its
presence. This approach is distinct from the ones immediately above only for continuous
distributions. But even here, if one believes that a particular continuous distribution is
likely, it is best (at least initially) to avoid inversion (but not ill-conditioning arising from
discretization) and to fit the data directly with one or more response models involving the
DRTs of interest. If a good fit without significant systematic error is obtained, one can stop
the process there. If, however, one wishes to estimate an unknown continuous DRT from
the data, inversion (such as that possible with the PMO or NTRM) may be necessary.

Although the titles of all three of Refs. [11–13] involve the subject of analysis of admit-
tance data, it is worth pointing out that [11, 12] use a variant of the NTRM method and
thus deal only with inversion approaches. The work of [13] includes a variant of the PM, as
well as an improved version of the NTRM, but again both approaches are used to estimate
DRT components. Therefore, it is only to the last of the three types of data analysis defined
above that the [11–13] work primarily applies.

Definition of Acronyms

AP Additive errors and proportional weighting (PWT)
AU Additive errors and unity weighting (UWT)
CNLS Complex nonlinear least squares
DRT Distribution of relaxation times
LEVM A complex nonlinear least-squares fitting and inversion program
MC Monte Carlo analysis
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NTRM Nonlinear Tikhonov regularization method; see [1, 13]
PFit Fit of data with PWT
PM Parametric method: variableτi s and no explicit regularization; the

designation “PMO” refers to the original method (e.g., [4]), and “PMW”
to that in [13]

PP Proportional errors and proportional weighting
PU Proportional errors and unity weighting
PWT Proportional weighting in fitting
UFit Fit of data with UWT
UWT Unity weighting in fitting

APPENDIX: PMO AND PMW INVERSION APPROACHES

A1. Background

Parametric inversion/fitting approaches of the type considered herein involve the esti-
mation of 2M {ei , τi } parameters, since theτi , as well as theei , parameters are taken free
to vary. As defined in Subsection 2.1,ei is a general strength parameter which can repre-
sent discrete-DRT,di , or continuous-DRT,ci , points. In contrast to “parametric,” the term
“nonparametric” is used in [12, 13] to indicate that the inversion procedure assumes the
presence of a continuous DRT, even though numerical estimation, a necessary part of the
approach, requires the replacement of integrals by sums and will yield only a finite number
of points. Although the NTRM approach, which uses only fixed values ofτi , can involve
a very large value,M , of freeci -parameter estimates, the term “nonparametric” seems a
somewhat misleading descriptor, and the more specific designation, NTRM, is used in its
place herein.

Rather than employing a large number of fixedτi values as in the NTRM, the PMO as
used here and in earlier work (e.g., [4, 6–10]), usually starts with a small number,M , of free-
parameterτi andei starting values, obtains an inversion solution, and continues obtaining
such solutions with increasingM until the decreasing estimated standard deviations of the
solution parameters finally reach approximate constancy or begin to increase. For simulated
data without added errors, such termination is determined by round-off and truncation errors
in the computations and data, and the standard deviation of the relative residuals of the fit,
SF, for either frequency- or time-dependent data is often as small as 10−8 or less, a far more
accurate fit than is possible with the NTRM because of its regularization term. In contrast,
the presence of experimental errors in the data leads to a smaller usefulMmax, with the
larger the errors, the smallerMmax.

A2. Basic Equations and Minimization

In order to provide an equation for the total admittance of the circuit of Fig. 1,Y(ω), we
begin by considering the dispersive contribution associated withM {ei , τi } pairs, where the
ei ’s are proportional to theCi ’s andτi = Ri Ci . We follow earlier work [4, 6–10] by defining
Un as an unnormalized measured or model quantity of interest, such as an impedance or
complex resistivity, or a complex dielectric constant. Here,n is either taken as D, to denote
dielectric dispersion, or 0 or 1, denoting two kinds of conductive-system dispersion. It is
mathematically convenient to express the normalized form ofUn, In, in terms of a DRT, say
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gn(τ ). Let x≡ τ/τon, whereτon is a characteristic response time of the fitting model or just
a normalization quantity, and definey≡ ln(x) andGn(x)≡ τongn(τ ). We may now write

In(ω) ≡ Un(ω)−Un(∞)
Un(0)−Un(∞) =

∫ ∞
0

Gn(x) dx

[1+ iωτonx]
=
∫ ∞
−∞

Fn(y) dy

[1+ iωτon exp(y)]
, (A.1)

where

Un(ω) = U ′n(ω)+ i δnU
′′
n (ω), (A.2)

and thus

In(ω) = I ′n(ω)+ i δnI ′′n (ω). (A.3)

Since the DRTs are taken normalized in the above, it follows thatIn(0)= 1 andIn(∞)= 0.
It is important to emphasize that the choicen=D specifies that theUD response of Eq. (A.1)
refers to only that part of the complex dielectric constantε(ω) (or corresponding complex
capacitance) associated with dispersion and thus can be represented by a distribution of
dielectric-system relaxation times. On the other hand, the choicesn= 0 andn= 1 specify
response at the complex resistivityρ(ω) (or impedance) level and thus involve, through
G0 andG1, distributions of conductive-system relaxation times. We follow the usual sign
conventions and set the quantitiesδ0 andδ1 in Eqs. (A.2) and (A.3) equal to 1 andδD equal
to −1. Incidentally, theFn distribution above may be simply related to a distribution of
activation energies [28] and is given byFn(y)≡ xGn(x).

Although it has been shown that if a given data set may be well represented by a dielectric-
system DRT, it can also usually be well represented by a conducting-system one instead
[9]; we shall follow the work of [11–13] here and consider only dielectric dispersion, con-
sistent with Fig. 1. We shall thus omit the D subscript from now on and takeI (ω)= I D(ω).
Let ε(0)− ε(∞)≡1ε, an overall dispersion-strength quantity, and note that the dispersion
contribution at the admittance level is justiωCV1ε I (ω), whereCV is the vacuum capaci-
tance of the system for unity dielectric constant. Then the sum of theCi ’s is justCV1ε. The
Y1(ω) part of the Fig. 1 circuit, equal to 1/Z1, is then given byG01+ iω{C01+CV1ε I (ω)}.
HereC01=CVε(∞), andG01≡ 1/R01 should not be confused with theG1 distribution de-
fined above. Finally, theZ2 of Fig. 1 is given by(G02 + iωC02)

−1 + R03, andY(ω) =
{Z1(ω)+ Z2(ω)}−1. For convenience, explicit units will be suppressed herein, but the units
of capacitances and resistances are all taken as Farads and ohms, respectively.

In this section, we shall use the normalized strength parametersei , but it is readily shown
that the unnormalized NTRM strength parameters used in [12, 13],hei, are related to the
corresponding normalizedei ones byCV1εeiwi = heiwT i , where thewi are the quadrature
weights introduced in Eq. (A.7) below and thewT i ’s are NTRM weights. If we assume
thatwi =wT i , it follows that1C≡CV1ε=

∑M
i=1 heiwi , and sohei =Ci =1Cei . For the

discrete DRT situation,hei = hdi and all thewi = 1. For the NTRM,ei = ci .
In the present work, we shall useY to denote model values andYd to denote data values.

We calculate 1000Y(ω) synthetic data sets each involvingN discreteω values using the
Fig. 1 circuit (the model) without added error or with errors (then designated byYd(ω)), and
these data sets are inverted/fitted by the specific PMO approach instantiated in the LEVM
computer program. Such inversions just amount to CNLS fitting of the model to the data in
order to obtain estimates of the free parameter values of the model, many or all of which
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may define a distribution of relaxation times such as that in Eq. (A.1). But nonlinear analysis
is needed even in linear situations because all probability-density strength parameters are
constrained to be positive. For a fixed value ofM , the objective function which is to be
minimized,OM , is of the form [14, 15, 18]

OM =
N∑

k=1

[
(R′k)

2+ (R′′k )2
]
, (A.4)

where R′k≡ [Y′dk−Y′k]/V ′k and R′′k ≡ [Y′′dk−Y′′k ]/V ′′k are weighted residuals. The actual
weights involved in the fitting are 1/V ′k

2 and 1/V ′′k
2.

LEVM allows many different types of weighting (error models) to be chosen (see, e.g.,
[14, 15, 18] and the LEVM manual). Here we need only consider unity weighting (UWT),
where all theV ’s are set to unity, and proportional weighting (PWT), whereV ′k =Y′dk and
V ′′k =Y′′dk for all k values. If we defineD≡ 2N−MT as the number of degrees of freedom
for a fit of complex data, then the variance of the fit, S2

F, is just given byO/D. This is a
standard and common definition of the variance, generalized to complex-data fitting [14,
15, 19]. Although presmoothing of data before least-squares fitting is mentioned in [4] and
may possibly be useful for very noisy and irregular data, it should generally be avoided
since the least-squares fitting itself provides a kind of smoothing.

For complex data fitting,MT is the sum of 2M and the number of all other free parameters
of the fit. Note that SF is the standard deviation of the relative residuals for PWT and is thus
actually the relative standard deviation of the fit. Even in the UWT case, we calculate such
a relative standard deviation for comparison with PWT values. That SF is indeed a proper
measure of the relative standard deviation of the weighted fit is shown by the SF estimates
for Monte Carlo fits of data with known variance listed in Tables I–III herein, as well as by
many prior Monte-Carlo fit results.

A3. Discrete, Continuous, and Composite Fitting Models

It remains to discuss the numerical calculation ofI (ω). To do so for discrete data,
ωmin≤ωk≤ωmax with 1≤ k≤ N, one must approximate the integrals in Eq. (A.1) by nu-
merical quadrature. This is trivial for a purely discrete distribution involving delta-function
lines because then, for example, [4, 6],

G(x) =
i=M∑
i=1

di δ(x − xi ), (A.5)

and so

I (ωk) =
i=M∑
i=1

di

[1+ iωkτi ]
, (A.6)

an exact result with noτi discretization errors involved. Hereωkτi may be written as
(ωkτo)(τi /τo)≡Äkxi . For experimental or synthetic immittance data it is conventional
to useN ωk data points distributed equally or approximately equally on a logarithmic
scale betweenωmin andωmax. The PMW approach in [13] involves equations equivalent to
Eq. (A.6).



PARAMETRIC AND NONPARAMETRIC INVERSION METHODS 299

The situation is slightly more complicated for continuous or mixed distributions. In
[13] the authors use only their equivalent of Eq. (A.6) for their PMW approach, one only
appropriate for discrete distributions, although they applied it to continuous ones as well.
A straightforward approach for continuous or composite distributions is to initially ignore
the difference between anydi andci strengths present and use an appropriate quadrature
approximation for the integral of Eq. (A.1), one which involves the weightswi . The result,
written in terms ofyi , is

I (ωk) =
i=M∑
i=1

eiwi[
1+ iωkτoeyi

] . (A.7)

This result reduces to that of (A.6) when all the quadrature weights are set to unity, but
remember that theτi ’s arenotdistributed with constant spacing, as is the case for the present
PMO and the PMW, which both take theτi ’s as free parameters. Nor is constant spacing
present for the NTRM of [13] which uses fixedτi points, apparently distributed uniformly
on a logarithmic scale. To treat these situations properly a special generalized quadrature
procedure is needed, as described in [19]. When Eq. (A.7) is used for a possibly composite
DRT, it is easy to distinguishdi andci points, as discussed and demonstrated in the main text.

In [11–13] the authors used expressions similar to Eq. (A.7) as that part of their NTRM
analyses which did not include their regularization term. But in [11, 12] they omitted any
quadrature weights for these analyses and instead used their equivalent of Eq. (A.6). They
thus implicitly estimated discrete rather than continuous distributions. It is only in [13] that
wi terms appear, in consonance with the earlier approach of [4]. That earlier work is not
mentioned at this point nor is the change from the earlier analysis methods of [11, 12] noted.
In [13] the authors do, however, identify the weights as arising from the discretization but
do not discuss their calculation. In contrast, in [4] and in the LEVM manual several specific
quadrature procedures and the resulting weights associated with them are discussed.

It is worth mentioning that when a converged inversion of data to yield a DRT estimate
has been carried out using either Eq. (A.6) or (A.7), that solution is readily converted, using
LEVM with minimum additional calculation, to the one involving the other expression.
Note, however, that conversion of the point estimates of a true continuous distribution,
where estimation is ill-conditioned and ill-posed, to Eq. (A.6) points is not physically
meaningful.

On the other hand, a{di , τi } fit of data involving a continuous distribution provides an
approximation to the appropriate set of{ci , τi } points defining the distribution. Once a
distribution has been accurately estimated and is available in either numeric or analytical
form, it can be used to transform response from the frequency to the time domain or vice
versa [6]. This capability is particularly valuable for data spanning many decades, a situation
where numerical Fourier transformation is usually impractical [2, 4, 6].

Incidentally, CNLS fitting of equations equivalent to (A.6) with all parameters free to vary
has been used since the early 1980s [29], but such PM analysis involving Eq. (A.7) seems
to have been first introduced in 1993, the PMO [4]. An approach equivalent to the use of
Eq. (A.6) with alldi andτi parameters free, together with nonlinear least squares fitting, was
independently described in 1989 for viscoelastic situations [30]. The requirement that all
ei andτi parameters be positive, necessary for a physically realizable probability density,
was not mentioned in [13, 30]. All the present dispersion approaches are applicable to
mechanical as well as electrical dispersion/relaxation situations.
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How can one explain the differences between the PMW, PMO, and NTRM results,
particularly those for continuous and composite distributions? First, the PMO and PMW
involve the unique feature of allowing theτi parameters to be free variables during fitting
[4]. Second, the PMO uses a very stringent double-precision iterative convergence criterion,
namely that convergence is not declared until changes in the objective function only occur
at the 11th decimal place or beyond. Third, since the PMW approach does not employ
quadrature weights at all when it is used for continuous distributions and the NTRM may
not use quadrature weights appropriate for non-constantτi spacing [19], their results are
thus likely to be less appropriate and accurate than those of the PMO, which takes proper
account of variable spacing. Fourth, the Ref. [13] condition for changing the value ofM
is evidently less effective for the PMW approach than that used for determining the most
appropriateM value using the PMO. For example, out of 1000 MC fits of the continuous
distribution data, the authors of [13] found only 15 with their maximum value ofM = 6,
while PMO inversion yielded nearly a full 1000 converged fits withM = 11, the most
appropriate choice (see Figs. 4 and 5). Further, the estimated values and uncertainties of the
PMO {ei , τi } parameters were orders of magnitude better than those of the PMW. Finally,
the present results have demonstrated that the PMO is capable of estimating a useful number
of accurate{ei , τi } values, while the NTRM can yield many more continuous-distribution
points at the cost of decreased accuracy and inadequate resolution of closely spaced discrete
DRT lines.
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