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Recently, two methods for the estimation of discrete and/or continuous distribu-
tions of relaxation times from small-signal electrical frequency-response data have
been compared. For discrete-line distributions, the parametric method used was found
to be inferior in some ways to the nonparametric one, which involved Tikhonov reg-
ularization, and it was concluded that the parametric one could not be employed to
estimate continuous distributions at all. Here it is shown by Monte Carlo simulation
that both conclusions are incorrect. The same data situations analyzed in the earlier
work were reanalyzed using a complex nonlinear least-squares parametric method
that has been employed to estimate discrete-line distributions since 1982 and con-
tinuous ones since 1993. Quite different results from those presented earlier were
obtained, and the original parametric method was shown to be far superior to the
nonparametric one for the estimation of discrete-line distributions, since inversion
is unnecessary and resolution is far greater. For continuous or mixed distribution
inversions, the parametric method was again superior, and it allows unambiguous
distinction between discrete-line points and those associated with a continuous dis-
tribution, while the nonparametric inversion method does not allow such distinction
and approximates all distributional points as continuous-distribution ones. The para-
metric method used and described here is also valuable for other data analysis tasks
other than those involving inversion. Some of its error characteristics are inves-
tigated herein, and the importance of matching the weighting error-model to the
form of the errors in the data is illustrated. It was found that with normally dis-
tributed random errors added to exact data, the distributions of estimated parameters
were not normal but were closer to normal for proportional errors than for additive
ONes. (© 2000 Academic Press
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1. INTRODUCTION

For 10 years or more, two different methods have been used for inverting small-si
AC admittance data to obtain estimates of spectra, such as the deep trapping level
Schottky barrier or the relaxation-time distribution associated with the processes leadi
the measured response. The frequency-response data considered here may involve c
lines only, a continuous distribution, or a combination of both. One of the two deconvolut
methods involves the use of Tikhonov regulation [1], and the other uses complex nonli
least-squares fitting (CNLS) of an appropriate model [2—10]. Recently Maier, Winterha
and their associates have published three papers [11-13] dealing with the analysis of a
tance data by aonlinear Tikhonov regularization rathod (NTRM): termed by them a non-
parametric method. The alternate CNL&a@metric nethod (PM) developed by the presen
author [4] is mentioned in [11-13], briefly described in [12], and discussed, applied,
apparently compared in [13] to NTRM results for both simulated and experimental nc
admittance data, the latter for semi-insulating GaAs Schottky diodes. A list of acror
definitions is included at the end of this work.

The detailed comparisons of the usefulness of the NTRM and PM approaches carrie
in [13] using Monte Carlo analysis of data with fairly low noise indicated that the NTR
was greatly superior to the PM for the inversion of a continuassitiution of relaxation
times (DRT) and, as well, for a composite distribution containing three discrete lines al
continuous DRT. For the estimation of a DRT involving only three discrete lines, the |
results were superior except for uncertainty in the determination of the proper numbe
lines to estimate. Since these results differ greatly from those presented in much prior
using the original PM [4], further fitting and analysis is needed to resolve the differenc

Although the PM used in [13] was introduced by reference to that in [4], thus implyi
that the method was the same, this was not the case. Therefore, it is important to pr
DRT estimation results for the three DRT situations defined above using the original |
Such results and their comparison with the NTRM and PM estimates of [13] are prese
below. For easy distinction between the two PM approaches, let PMO denote the ori
version of [4] and PMW denote that used by Winterhaéteal. [13]. A very important
unigue feature of the PM is that it takes both the strength and position of DRT points as
parameters, not just the strength parameters as in other approaches.

Brief characterizations of the three methods are as follows:

e The NTRM is most appropriate for continuous distributions, although it was us
for all three in [13]. Because the regularization term, which tames ill-posedness effec
noisy data, introduces a trade-off between the accuracy of a DRT estimate and its re
tion, it rounds off any sharp corners of a distribution which may be present and necess
represents a discrete DRT line as a much-broadened peak. The NTRM is appropriate
estimation accuracy needs to be sacrificed to obtain many-point high resolution of a
tinuous distribution.

e In[13]itis stated that “the parametric analysis is only suited for discrete distributic
and cannot estimate continuous distributions at all,” but the PMW is applied there tc
three data situations. It leads to very poor results for continuous and mixed distributi
In addition, these poor results led the authors of [13] to conclude that the PM (actually
PMW) is unable to estimate reliable results for a composite distribution.

e The PMO applies to all three types of DRT situations and, as shown below, yie
DRT estimates much superior to those of the NTRM for all three. For discrete lines o
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there are no noisy-data ill-posed effects, leading to exceptionally accurate, high-resolt
DRT estimates with no broadening, even for appreciably noisy data. For continuous
mixed distributions, the PMO yields accurate point estimates of the distribution compon
and provides an unambiguous way of distinguishing between points associated with dis
lines and those belonging to a continuous distribution [2, 4, 7-10]. For low noise, itcan
resent sharp-corners without rounding, but as the noise level of experimental data incre
the numberM, of highly accurate continuous-DRT point estimates decreases. Thus,
resolution decreases with increasing noise. For large-noise continuous-distribution s
tions, such a those with relative errors greater than 5%, the NTRM approach is likely t
superior for most purposes.

Comparisons of the results of applying the PMO with those obtained in [13] for t
other two approaches are presented below. All the present calculations were carrie
with the free immittance-spectroscopy fitting/inversion computer program, LEVM [4, !
15]. Detailed discussion of the inversion procedures involved in the PMO and the Pl
approaches is presented in the Appendix.

2. SIMULATION RESULTS

2.1. Background

Figure 1 shows the equivalent circuit used in [12, 13] to represent the Schottky di

and to generate frequency-response data from it. Gihand R circuit elements, with
1<i <M, may represent the effect of deep levels, a continuous distribution, or@gtis;
a bulk geometric capacitance; aRgi accounts for non-zero dc conductance. The remainit
elements may be identified as arising from electrode/interface effects. It is noteworthy
in his original admittance spectroscopy work, an important precursor of [11-13], Lo
[16] did not include theRy1, Co2, Roz, andRy3 elements of Fig. 1.

For all the present Monte Carlo simulations, we shall follow the procedure of [13] by fi
generating a simulated data set without added errors and then carrying out 1000 inver
of this set with independent random errors combined with the real and imaginary p
of each original data point for each of the MC replications. As in [13], the original 10
random error sets were normally distributed with standard deviations of unity and mear
zero. Then, from the individual free-parameter estimates of the 1000 inversions and

Cor
l , Co2
— i Roz
-——[:1————{;]——{:~
GC; R; Ry
1 :
Z 1 Z'Z

FIG. 1. Equivalent circuit used in Ref. [13] and herein to model the electrical response of a Schottky dic
The element€; andR,, with 1<i < M, are included to represent the effects of deep levels, and are used her
represent discrete lines and/or continuous distributions of relaxation times. The other elements are identif
the text.
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relative standard deviations of fit; 3he estimated parameter averages and relative stand
deviations of these quantities are calculated. For simplieity signs will be omitted since
averages will be obvious.

Although the authors of [13] stated that their additive random errors corresponded *
relatively constant error of 1%,” they did not make it clear whether the 1% error appl
to each of their individual data point values separately or to the overall relative stanc
deviation of the fit. For the first of these possibilities, the Gaussian-distributed ranc
errors to be added are scaled by multiplying them by 0.01 times each individual real-
and imaginary-part data value, while for the second choice, all additive errors are scale
a constant chosen to produce a value ti®se to 0.01, a 1% relative error.

The type of error used is very important because proper analysis should use a weig
that matches as closely as possible the error character of the data. Thus, for the first c
above, proportional errors, one would use proportional weighting, PWT, while for
additive-error choice, unity weighting, UWT, would be appropriate, as demonstrate
Subsection 2.2. Unfortunately, the matter is further confused because the authors of
specify the use of PWT in their objective function, as in the earlier work of the author (e
[4, 6-10, 14, 15]), but they assume that their simulated experimental errors are relat
constant, an apparent inconsistency unless “relatively constant” meant constant relat
individual data values rather than approximately constant.

Judging from the results in [13], it appears that the authors may possibly have
additive errors rather than proportional ones, at least for their NTRM inversions. Bece
of this uncertainty, however, most of the present comparisons have been carried out bo
additive errors and for proportional ones as well. In [18]the number of frequencies in a
data set, was set to the large value of 200 for both NTRM inversions and for the PMW,
for the present PMO analyses, we Mée= 71, for a range oy from 1 to 10 rad/s with ten
points per decade. In both cases, dhevalues involved logarithmically scaled intervals.

The number of DRT pointdy, is determined during the PM inversion procedure, b
the fixedM value used in the NTRM analysis is not entirely clear. In [12] it is stated¥hat
is at least 100. But in [13], the fixed-relaxation-time points are said to involve constar
spacing within the rangemin, Tmax Of the distribution. If one takesmi,~ 3 x 10°® and
Tmax=> 1 in order to cover most of the range of the full distribution involving three discre
points and a continuous contribution [13] and uses a spacing2ot 00>, required to
yield enough points at the low end, then of the order &ffdints are required. Such a large
value would lead to an extremely underdetermined least-squares situation, one ment
in [13]. For usual least squares analysis, one wants the number of degrees of freedom
positive, not the case for such a large number of fixedhlues. Although the introduction
of a regularization term ameliorates this problem, it nevertheless seems likely that in
the authors used not more than about 100 fixeehlues, distributed with equal intervals
on a logarithmic scale, certainly not constant spacing.

For the present PMO analyses, defineittheDRT point by the paifg, i}, whereg is
a normalized strength parameter anhdpecifies the position of the point [4]. For discrete
DRT points, takes =d;, and for points of a continuous DRT sgt=¢;, since the discrete
character of numerical analysis requires that even a continuous distribution must be de
by a finite number of discrete points. The PMW approach involves only the choied;,
but the PMO may involve generéd;, 7} pairs, possibly even including a combination o
di andc; points, a composite DRT. Because betlandz; parameters are taken free to vary
during a PMO CNLS fit, much more accurate results are obtained thandfsieere fixed,
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and a unique method of distinguishing between discrete DRT lines and continuous |
points is available, as demonstrated below.

2.2. Three Discrete DRT Pairs and Error-Model Results

The simulated data sets here involve tHigket; } distribution pairs, with values selected to
agree with those of [13], plus all five of the remaining circuit elements of Fig. 1. But beca
the authors of [13] present their estimated DRT strength parameters in unnormalized f
for ease of comparison we shall do likewise, using the unnormalized strength qudmtitie
in place of theg ones. See the Appendix for their relationship. In [183],is denoted by just
h; andhg; by 7jh(z;). No explicit values of the latter quantity are presented in [13] except
plots. In all thehe; plots in [13], a scale factor of 1§ has been omitted without explanation,
but it does appear in the corresponding plots in [12]. Note{that 7; } represents a discrete
point of the F (y) DRT of Eqg. (A.1) whenF(y) represents an unnormalized continuou
distribution.

Table | shows some results for the present discrete DRT situation. Scaled exact quar
are shown in the third column and 1000-replication Monte Carlo averages in the o
columns. Note that thé/ =2 values in column 4 agree poorly with the correspondin
exact results (even though most of their estimated relative standard deviations are
small!), and the Svalue is appreciably larger than it should be. By contrast, the corr

TABLE |
Comparison of Monte Carlo Estimated Parameter Values Obtained from Simulated Admit-
tance Data with Three Discrete Deep Levels and the Five Non-distribution Circuit Elements
of Fig. 1

Row Parameter Exact UFit: M 2 UFit M=3 UFitt M=4 PFit M=3 NTRM

A 100 & ~0 2.260.065 0.99/0.32  1.0010.32  0.9980.064 ~1

Bl 10y 2 4.8713x10*  2/0.0036 20.0037 1.970.24 1.50.13
B2 107, 1 3.062x 10°3 1/0.0033 10.0038 1.080.40 1.020.2
Cl  10%g 3 — 30.0018 30.0019 3.01.11 3.30.06
c2 107, 1 — 1/0.0018 10.0018 1.080.09 0.970.41
DI 10y, 6 6.292x10*  6l4x10“  64x10*  6.020.022 6.20.11
D2 10, 1 08725x10* 16x10*  16x10* 1.0040.018  1.00.01
E 10hy, — — — 9.91.7 — —

E 10z, — — — 9.88.2 — —

o] 10°Co, 1 0.720.0014 10.0017 0.9(.18  0.98%0.16  0.950.07
P 160Gy, 1 1.050.0016 10.0017 10.0017 10.0026  0.998.002
Q 10Cq, 1 1.042 x 10~ 110 )10 1.0040.018  1.0060.008
R 10Gg, 1 0.9879x 10 1/10°* 1/10°* 1.0030.01  1.00.005
s 16 Ros 1 1.000010° 1105 1/0.0014 10.0075  0.998.009

Note. Results are listed for runs with 1000 samples of additive or proportional independent Gaussi
distributed random errors in both real and imaginary parts of each data set. The Gaussian scale facto
additive errors was 8.07% 10~ Farads (UFit results), and that for proportional increments (PFit) was 0.01
Here & is the average relative standard deviation calculated from each set of 1000 replications,@(#) the
G (mhos), andR (ohms) parameters are defined in Fig. 1 W@k =1/Ry. The hy; andt; dielectric DRT
parameters are the Fig. 1 quantit@sand R C;, respectively. The NTRM (nonparametric) results are taken
from Ref. [13] and may possibly involve additive errors. A quantity, such, aghose exact value i, shown
above without decimal places satisfie9¥9, < q < 1.0001g, and is usually appreciably closer. For results
shown as AB, A is the estimated average value and B is the estimated avedagiee standard deviation of A.
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M = 3 choice of column 5 yields virtually exact parameter estimates. Incidentally, the U
Sk value of 0.994% could have been made 1.0% by using a slightly larger value of
random-error scaling factor.

For M =4, nearly all of the parameter estimates are still accurately estimated, but
i =4 ones of rows Eand B are both very much smaller than the other discrete estima
(compare the scaling factors in column 2), and their relative standard deviations are so
that these estimated quantities cannot be statistically distinguished from zero. These r
show thatM = 3 is indeed the correct choice and that it is unnecessary to use a larger vz

The results presented in column 7, for proportional errors and proportional weigh
(PWT), show appreciably poorer parameter estimates and relative standard deviation
mates than do those for additive errors whén=3. This is because added proportiona
errors affect all the data while the present additive ones are so small that they affect
marily only the smaller data values. Finally, the results of column 8 should be comps
with those of columns 5 and 7. We see that many of the Ref. [13] NTRM estimates are |
and show appreciable bias, as well as far greater uncertainties than do the discrete
UFit estimates of the PMO. Although thd =3 PMW results presented in [13] for the
present situation are better than the NTRM ones, the relative standard deviations of the
parameter estimates are orders of magnitude larger than those of column 5. Further,
are very significant differences between the presént 4 hy; results in column 6 and the
corresponding PMW estimates in [13], all of which are very poor. For example, ein&0
the authors of [13] cite a value of 4864 and for 185 a value of 0.7/0.4. In addition, their
estimated values for the corresponding 4 quantities are 2|% and 0820.1, the latter
value being significant even though it should not be.

The value of § and the correspondinQy objective function of Eq. (A.4) will decrease
asM isincreased t& + 1 as long as adding anothigr, ¢;} pair improves the fit. In many
PMO fits of the author, it has been found that in this regi@y/Owm.1 lies in the range
from about 1.5 to 4, an®y is approximately a decreasing exponential functiorivof
For the PMW procedure of [13], the criteridDy 1 < 1.010y was introduced and was
applied to each individual fit during MC analysis. When it failéd,was increased until
Om+1>1.010y. For the present discrete-distribution situation this procedure led to ¢
M =3 results and 80 =4 ones [13]. Here we do not use this criterion but instead tt
more stringent one of comparing the results for all 1000 replications for each of the tf
M choices in the table, a comparison which makes it virtually certain thatttke3 one
is the proper one even if the exact parameter values were unknown, as they always a
experimental data.

Note that the relative standard deviation estimaterg69.32 for both theVl = 3 and 4
PMO choices. This relatively large value means that some of the indivigwal &es during
a run of 1000 fits will be as large as 1.5% (or as small as 0.5%) and would thus be likel
require, in the PMW approach of [13], thislt be incremented, and such fits would therefor
not be counted as part of the Monte Carlo analysis for that valié,afensoring and thus
biasing the results. Therefore, the present method of choosing an apprdpriat be
preferred. Further, determination of the proper valudofor an individual experimental
data set, the usual problem, will again generally lead to an unambiguous choice, one |
on comparing changes in parameter estimates and their standard deviation estimat
integral part of the output of LEVM fitting, all is incremented.

The results presented in Table | suggest that the present discrete PMO approach prc
far better estimates than does the NTRM. The latter yields not a single line, when or
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present, but a continuous distribution which is approximately centered on the proper
Itis necessary to carry out separate integrations over the region of the resulting contin
distribution around the peak in order to obtain NTRM estimates such as those in colur
[13]. This procedure is completely inadequate when two or more lines are close toge
but such situations are handled accurately by the PMO approach [4].

The authors of [13] correctly state that in real materials instead of a single relaxa
time for a deep level one should expect a broadened line. They do not, however, esti
such broadening, and it is clear that their line widths, which are about half a dec:
are many orders of magnitude greater than is physically likely, and an unbroadened
approximation will generally be most appropriate. Thus, it is clear that the PMO appro
is to be preferred to the NTRM one for slightly broadened discrete-line situations. -
PMO has been used to compare the inversion of a single line and a broadened but ni
(continuous) approximation to it in [5]. Incidentally, the tentative suggestion in [4] th
it might be possible to combine the variahideature of the PM with regularization is
inappropriate since the standard regularization approach requires a fixed set of

Because some consideration of the NTRM error model has been presented in [1
is worthwhile to investigate aspects of the error models used here for the PMO apprc
even though PMO inversion for experimental and simulated data containing errors
been presented in Refs. [3-10, 14,15, 18-20], and Monte Carlo analysis of LEVM fitt
possibilities appears in [15, 18-20]. In particular, bias generated with different weighti
is studied in [20] and the adequacy of correlation estimates in [19]. Finally, [15] contair
MC study of radioactive decay involving both experimental and simulated two-compon
exponential decay.

Figures 2 and 3 show some results of single fits of data defined as above with diffe
types of added error and different weighting used in the fits. For the additive-error situat
of Figs. 2a and 3a, we plot the unweighted (UWT) fit real and imaginary residuals versus
individual scaled pseudo-random errors which were added to the real- and imaginary
data for each point. For the AU situation of Fig. 2a, where the weighting is appropri
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FIG. 2. Weighted real- and imaginary-part single-fit residuals versus the specific random errors which \
directly (A) or proportionately (P) added to initially noise-free data calculated from the circuit of Fig. 1 with thr
discrete lines present. For the AU results in (a), unity weighting was used in the data fitting, while for the
results shown in (b) proportional weighting was employed. All individual and Monte Carlo fit results plotted in
present work were obtained using the parametric method (PMO) described herein and instantiated in the L
fitting program.
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FIG. 3. Weighted real- and imaginary-part single-fit residuals versus the specific random errors which \
directly (A) or proportionately (P) added to initially noise-free data calculated from the circuit of Fig. 1 with th
discrete lines present. For the AP results in (a), proportional weighting was used in the data fitting, while fo
PU results shown in (b) additive weighting was employed.

for the type of input errors, we see that the real and imaginary residuals are each h
positively correlated with their individual input errors, with, in fact, correlations of 0.¢
and 0.99, respectively, as one would expect for a good fit. The situation is far diffe
when the weighting does not match the type of the added errors. Thus for the AP resu
Fig. 3a, where proportional weighting was used for the fit, the correlations are only of
order of 0.5 or less. The results for proportional errors, presented in Figs. 2b and 3b, ¢
similar results. When the errors and weighting matched, as in the PP situation of Fig
correlations of 0.97 and 0.99 were found, and when they did not, for the PU result
Fig. 3b, again the correlations were of the order of 0.5 or less.

Although the estimated parameter values and their estimated standard deviation
appreciably worse for both types of mixed fit than for AU and PP results, the PU
rameter estimates were considerably poorer on both counts than the AP estimate. -
results graphically indicate the importance of matching the type of weighting used with
type of errors present in the data. LEVM also includes the possibility of using weight
which assumes the simultaneous presence of both small additive errors (an error floor
proportional ones.

Finally, standard statistical tests for normality, and quantile—quantile plots, showec
one might expect, that the AU and PP residuals were distributed normally with very t
probability, but those for the PU and AP fits were not. Further, such tests for the |
Sk estimate for the PP situation led to quantile—quantile curves which showed reasor
agreement with a Gaussian distribution except at the high end of the plots where I
values of $ than predicted for such a distribution were apparent. In fact, a log-norr
distribution appeared to be about as likely as a normal one.

Tests of MC parameter estimates, such as those presented in Table I, showed tha
were far from normally distributed for additive errors and were often highly peaked,
though ther; parameter estimates were generally closer to normal thdntees. Further,
parameter-estimate distributions were more normal for proportional than for additive er
Even though the parameter standard-deviation estimates do not have their usual pro
ity interpretation here, they are nevertheless useful for comparisons and to give a r
idea of the likely uncertainty of the parameters. Although estimated standard deviatior
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parameters are presented in [13], possible limitations on their interpretation are not r
tioned there.

In summary, for the present discrete-DRT situation one can readily determine, using
PMO, that value oM which accounts for all the discrete lines (or levels) present and fi
that further increase il is nugatory (see also [4]). Because the problem is notill-posed, 1
discrete DRT parameters and all others present are on a common footing, and the sitt
is just one of fitting, not inversion. Thus, it is inefficient, much more difficult, and muc
less accurate to use the laryeNTRM for discrete problems, ones where regularization i
inappropriate and unnecessary.

2.3. A Continuous Gaussian Distribution

In Ref. [13], the authors compared their PMW and NTRM results using data gener:
from both a continuous Gaussian distribution in a logarithtmi@riable and the five addi-
tional circuit parameters of Fig. 1. Their distribution was stated to involve a DR&ak
value,tp, of 0.05 and a variance,?, of 2 [13]. Note that a Gaussian distribution involving
a logarithmic variable, such as the presgmne defined below, is not a log-normal distri-
bution [21], but it has been used for many years in the present field and is included
fitting function in LEVM [14, 22, 23].

A normalized, continuous Gaussian distribution of dielectric relaxation times, involvi
y, here defined as {m/7p), and a variance aof 2, may be written as

Fo(y) = exp[—(y/0)?/2]/ (26?3, @)

and its response at the admittance level,4aw), is

Ye(w) = ia)AC/Oo Fo(y) dy (2

oo [L+iwTpexpy)]’

where for numerical calculations the limits of the integral rarely need to be larger éhan
andAC is a measure of the strength of the distribution (see the Appendix). To agree witt
choices in [13], we seAC = 109, but in order to match the actual width of the distributior
used in [13], we had to choos€ = 1/2 instead of the variance value of 2 specified in [13]
The free parameters for Gaussian DRT fitting with LEVM A€, t,,, and¢ = 2V/2¢, equal

to 1 for the above choice of.

Before using the PMO to invert noisy data involving a Gaussian distribution and
two free parameter€y; and Gg; of the Fig. 1 circuit, it is of interest to analyze such
data directly by fitting the data to a Gaussian-distribution model and carrying out a 1C
replication Monte Carlo analysis based on direct fitting of exact data calculated with LE
with additive random errors added, as in the previous section. The following estimates \
obtained forAC, tp, ¢, Co1, andGoy, respectively: ®999x 10-9|0.0055, 0049990.0081,
0.99990.0071, 1019 ~ 0, and 10002x 10-8|.0041. These estimates involve direct fitting
of a known model and thus do not involve inversion.

Table 1l shows some PMO Monte Carlo estimates. Although all points are showr
the subsequent plots, for simplicity and to allow some quantitative comparisons betw
different PMO fitting situations, only the thréh,;, 7;} estimates that include the one with
largesth; are listed. No PMWhg;, 7} estimates were listed in [13]. Note especially the
improvement in the preseftt.;, 7} estimates for the U fits ad is increased from 7 to 11.
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TABLE Il
Comparison of Monte Carlo Fit Results for Simulated Admittance Data Involving
a Gaussian Continuous Distribution and Two Additional Parameters

Row Parameter Exact, M 11 UFit M=7 UFit M=11 PFit: M=11
A 100 & ~0 0.99500.298 1.028.318 1.065.063
J 10°(hes, hes) 0.8310 0.739Mm.052 0.8301.0026 0.818®.012
X 74, Ts 0.0327 0.029[0.055 0.032/.0051 0.032[D.032
Ky 10 (hes, her) 0.9882 0.983m.062 0.988]0.0076 0.999®.017
K, Ts, T7 0.0547 0.055[0.134 0.0548.0619 0.0530.010
L, 10 (hgs, heg) 0.6814 0.534D.163 0.6831®.0123 0.7351.026
L, Tq, Tg 0.0925 0.105[D.162 0.0921D.0106 0.086®.041
O 10°Cy, 1 1 1 0.9998.0014
P 16Go, 1 0.99870.007 0.998®.007 0.9988%.0036

Note.The two parameter symbols listed together in several rows above applyb+hé and theM = 11 fits,
respectively. Other information is the same as that listed in the heading of Table | except that here the Gau
scale factor used for additive errors was 1:250~2° Farads for the UFit results. For comparison, NTRM results
from [13] are 16°Cy; = 0.99,0.01 and 186G, = 1.0]0.002. No NTRM{hg;, 7;} numerical values were included
in [13] for the present case.

Although the present PMO approach is appropriate for both discrete-distribution
continuous-distribution data, see Eqs. (A.6) and (A.7), and least-squares fitting (espe«
with the r; parameters free as well as thg ones) provides some regularization effect fo
ill-posed continuous-distribution estimation, one finds thatlamcreases the uncertainty
in continuous-distribution parameter estimates and their estimated standard deviation
eventually stop decreasing and begin to grow as ill-conditioning effects increase. Thu:
maximum resolution of PMO-distribution estimates decreases as noise in the dataincre
For exact simulated data, however, one can usually obtain at least 19 points, all of them
accurate, except possibly those at the extreme ends of the distribution. For experimente
involving a continuous distribution, a value & which yields optimum PMO inversion
results may always be found by increasMauntil parameter uncertainties stop decreasin
Further increase iM is counterproductive.

For the present noisy-data situation, it was found that no improvement occuridd a
increased from 13 to 14, and tiv = 11 choice yielded the most parameter estimates wi
adequately small relative standard deviations. Table Il also indicates, as in the discrete
above, thatthe relative standard deviation estimates of the continuous-distribution parat
points are significantly poorer for thd = 11 data containing proportional errors than fo
the additive error ones. The PMW results of [13] for the present AU situation were gre.
inferior to those obtained here, with most of the replications leadinigl to 5 and only
1.5% of them toM = 6.

When theM = 11 results are compared, where possible, with the results cited above
direct fitting of the data with a known Gaussian model, one sees that the parameter:
error estimates of the two incidental parameters are comparable, ajid;the} parameter
estimates shown in the table are excellent, indicating that for the present situatior
continuous-distribution PMO inversion approach suffers negligibly fromill-posed-inversi
limitations. But this conclusion is somewhat misleading: the number of significant param
estimates which may be obtained is limited by noise in the data as mentioned ak
and, as demonstrated below, the smalleriths, the poorer their AU-type estimates are
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FIG. 4. Estimated Monte Carlo discrete points;, approximating a continuous Gaussian distribution of
relaxation times included in Fig. 1 in place of &5 and R elements. The peak of the exact input distribution
occurred atlogr/z,) =log(t,/7,) = —1.30103, withr, = 0.05 s and, = 1 s. The latter normalizing value is used
throughout this work. See Table II.

Furthermore, unlike the discrete-distribution situation, a small fraction of the present |
replications at fixed did not fully converge after 900 or more iterations; therefore, onl
those that did were included in the MC results.

Figure 4 shows the estimated continuous-distribution points obtained from variou:
choices. The solid line and the solid circles were calculated from the exact Gaussian I
The open circles, obtained from a single PMO fit of data without additive errors, sho
uniformly encircle the solid points if the estimates were exact. We see that, in fact,
seems to be the case, but the log—log plot of Fig. 5 shows that the two srhgliestimates
are slightly too large, possibly end-point artifacts of the quadrature weighting procec
used in the inversion [4].

TheM = 11 AU points shown as squares in Fig. 4 also appear to be excellent estim:
except for the one for the largestNote especially that thigl = 7 points generally occur at
different positions on the exact Gaussian response curve than 8b+th&l ones, contrary
to the behavior found for discrete DRT points. Thus, itis clear that we are dealing here
points delineating a continuous rather than a discrete distribution, showing that the twc
indeed be distinguished. No unambiguous discrimination of this kind is possible with
fixed-t NTRM approach.

The NTRM curve in [13] corresponding to the one of Fig. 4 was plotted on a smal
scale than that of Fig. 4, but it nevertheless shows much larger discrepancies near its
and also more errors on the highside of the peak than those in Fig. 4. Although thi:
continuous-DRT estimate was claimed in [13] to be very accurate, it is in fact much |
accurate over the fult range than that obtained with the PMO approach.

Log—log plotting, not included in the Ref. [13] work, is useful for showing the respon
in the smallhe region. We see from Fig. 5 that the high- and lovend-points for both
M =7 and 11 are very poor, and, in fact, their relative standard deviations are greater
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FIG.5. The same results as in Fig. 4 but here plotted with logarithmic ordinate values.

one, indicating that these estimates are wholly inadequate. Thus,Mniy2) points are
meaningful for the present results. Nevertheless, they show thatthe PMO canindeed est
a limited number of points of a continuous distribution appreciably more accurately tl
the NTRM can with a vastly larger number of points. This follows because regularizat
must try to achieve a balance between a good fit of the original data and not too n
smoothing, something which renders most point estimates less accurate, even for the
choice of the regularization parameter, one not always readily obtained. Because th
nine open-square PMO points in Fig. 5 surround very closely the exact Gaussian va
denoted by the solid-circle points, it is clear that many points of a Gaussian distribu
are extremely well estimated here from noisy data, as is also shown by separate direct
squares fitting of these nine open-square points to such a distribution.

In [13] it is implied that the least-squares estimator, such as that used in the PM
discussed in the present. Appendix, is not consistent for lgrgalthough the addition of
aregularization term to the model, as in the NTRM, controls the ill-conditioning associe
with largeM values for a continuous distribution, it was not claimed in [13] that the NTR!
is itself consistent. Consistency requires that estimated parameters, sigh ttoeverge
in probability to their exact values as the number of observationapproaches infinity
[24].

Here we find that the estimated uncertainties ofihe 1000 PMO (mean) Svalues
listed in Tables | and Il are rather large and do not decrease appreciably fbd0. Further,
the estimated values of thg; uncertainties of Table Il also do not decrease appreciat
for largern. Therefore, the nonlinear least squares estimator used in the PMO is inc
not consistent here for the inversion of continuous distributions, even for relatively sr
M values at constani. But what matters most is that fovl values large enough to
give appreciable resolution, ill-conditioning effects are still minor for experimental d:
with usual small random errors, and many PMO DRT point estimates are quite accu
as demonstrated by the results of columns five and six of Table Il and by Fig. 5. |
finally worth emphasizing that wheN is increased within a constant frequency range



292 J. ROSS MACDONALD

constaniM, for anM value at or below its optimum value, MC analysis indicates that PM
parameter estimates approach their exact valubdkiasreases, providing a possible mean:
of achieving improved estimation accuracy.

2.4. Three Discrete DRT Points and a Continuous Gaussian Distribution

The results discussed in this section involve data sets which include the elements of
the preceding sections and the five non-distribution circuit elements of Fig. 1. Thus, for
PMO analysis wheiM =13 there are a total of 13+ 5= 31 free parameters. The more
non-distributional extra parameters present, especially ones which contribute significe
to the frequency response in the same regions as the distribution, the less accuracy ol
expectininversion results. Thus, the continuous-distribution points in Table Il and in Fig
and 7 are less accurate than those listed in Table Il and shown in Figs. 4 and 5. Neverth
Figs. 6 and 7 indicate that five or six good-point estimates of the Gaussian distributior
present for both thél. =8 and theM; =10 choices, where herl. includes only the
readily identified continuous-distributiofin, z;} points out of the totaM =11 and 13
estimates shown.

For simplicity, the three discrete point estimates are not included in Fig. 7, but Fig
and the results in Table Il show that they are exceptionally accurately determined for |
the M choices. Furthermore, since the positions of the discrete points were independe
M to three significant figures or more, unlike those of the continuous DRT, discriminat

TABLE 11l
Comparison of Monte Carlo Fit Results of Simulated Admittance Data with
Three Discrete Deep Levels, a Gaussian Continuous Distribution, and the Five Non-
distribution Circuit Elements of Fig. 1

Row Parameter Exact UFit: M=8 UFit: M, =10 NTRM

A 100 & 10°° 0.9980.24 1.0210.24 ~1

B1 10N, 2 2/0.0059 20.0040 —

B2 10n, 1 1/0.0031 10.0022 —

C1 10y, 3 3/0.0031 30.0024 —

c2 101, 1 0.99930.0051 0.99910.0047 —

D1 10°hys 6 5.9920.0042 5.99/D.0024 —

D2 107, 1 0.99910.0036 0.998/®.0040 —

J 10 (hes, hes) 0.8980 0.707®.044 0.899/0.021 —

X T4, Ts 0.0362 0.028D.074 0.036/D.062 —

K, 10 (hes, hey) 0.9558 1.00/D.034 0.968f/.034 —

K, 5, T7 0.0611 0.049®.119 0.0610.125 —

L, 10 (heg, heg) 0.5679 0.752D.077 0.571/0.059 —

L, T6, T 0.1054 0.084[D.117 0.104®.074 —

O 10°Cy, 1 14.6x 104 1/2.6x 10* 0.990.01
P 160Gy, 1 0.9960.015 0.9940.019 1.00.002
Q 10"Cq, 1 14.7x 10°° 1/2.6x 10°° 1.00.002
R 106Gy, 1 11.3x 10 1104 1.01/0.005
S 1GRys 1 12.8x 10°° 12.9x10°° 0.9970.008

Note.Other information is the same as that listed in Table | except that here the Gaussian scale factor
for additive errors was 2.3% 10-*° Farads.
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FIG. 6. Monte Carlo results for PM fitting/inversion similar to those in Fig. 4, but here the original da
analyzed were calculated from the Fig. 1 circuit with three discrete lines, an exact continuous Gaussian
contribution, and all five of the other circuit elements shown in the circuit. See Table Ill. Here and in Fig. 7,
refers to continuous-distribution points only.

between the two types was unambiguous. It is worth reiterating that estimates of the dis
DRT points present here do not involve inversion problems when the PMO is emplo
since the fit model for discrete points of a composite distribution is exactly known. But
contrast, PMO inversion of an unknown continuous distribution involves ill-conditionil
associated with discretization and consequent inaccurate numerical quadrature, as v

1 — Exact
eeeee Exactihe, 7}
00000 MC: M.=10
1 xkkkk MC: M.=8

—5—3 22 T 2170
log(T/7Ts)

FIG. 7. Same results as in Fig. 6 but here plotted with logarithmic ordinate values and with discrete-
contributions omitted.
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random errors in the data. Although the authors of [13] did not list any estimates of the
Fig. 1 non-distributional circuit elements for the present situation, they mentioned that t
were nearly the same as those found for the continuous-distribution case. Therefore,
estimates are included in Table III.

Using their discrete PMW analysis approach and stopping criteria, the authors of |
found that for the present data situation 92.5% of their 1000 replications involved ¢
M =5, and, of these five, only one defined fii)gs, 73} point, and three others did a very
poor job of delineating the continuous distribution. Better, but still poor, result were fou
with M =8, but only 0.3% of the 1000 replications involved this choice. By contrast, t
presentM =11 results are far superior to any of the Ref. [13] estimates for the pres
data situation and show clear distinction between the three discrete-distribution points
the eight points estimated for the continuous distribution. Even larger errors appeare
the NTRM continuous-distribution estimation of [13] than were present in the absenc
discrete points, yet the authors again claimed very accurate estimation.

For actual GaAs measured data, the PMW analysis of [13] led to seven discrete-line cc
butions. The authors considered that six of these lines might be associated with a contin
not discrete DRT, one which approximately defined an asymmetric, non-Gaussian dist
tion with a long tail on its smalk side, a common shape. The seventh point agreed witt
peak at even smallar also predicted by the NTRM analysis, but the question of wheth
it represented a discrete DRT point or not was unresolved. The results and compar
herein indicate that had the PMO approach been used for these data, in place of the le
propriate models used in [13], it would most likely have been possible to resolve the ak
ambiguities by achieving both greater accuracy and definite discrimination. Then, not
would any discrete points be well identified but a good estimate of the actual continu
distribution present would have been found, and the procedure could have been ar
for data at different temperatures in order to obtain useful estimates of relevant thel
activation energies.

3. SUMMARY AND CONCLUSIONS

By direct comparison of PM and NTRM MC results for the same data situations, nearly
of the criticisms of the PM in recent publications [12, 13] have been shown to be unfoun
The criticisms evidently arose, at least in part, from differences between the PMW appr«
employed in [13] and the PMO approach described herein and used previously. The P\
far superior to all other analysis methods for estimating discrete-line contributions to o
since such estimation does not require inversion. By contrast, the NTRM greatly broa
delta-function lines and cannot distinguish them from narrow continuous distributions
resolve them when they are close together.

For the estimation of continuous or mixed distributions, the PMO has several advant
over the NTRM approach, particularly for admittance data, such as that considered |
which extends over many decades of frequency. First, it allows unambiguous identifice
of and discrimination between estimated points associated with discrete lines and t
connected with continuous distributions. Second, it leads to more accurate determin:
of discrete-line points and of a limited number of continuous-distribution points than d
the NTRM. As the noise present in the data increases, however, the number of signif
continuous-distribution points which can be extracted by PMO inversion decreases. N
theless, for ordinary experimental data, much inversion experience using the PMO sl
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that a sufficient number of significant points can be found to well define the distribution
identify it if it is of known form. For continuous distributions with many peaks and valley
(not the usual situation), however, the NTRM is likely to be able to delineate the distribut
more completely when the noise level is relatively high than can the PMO approach.
as usual for regularized inversion, one then trades off accuracy for resolution.

The LEVM computer program [4, 14, 15] allows one to use the PMO to fit or inve
data at any of the four immittance levels and, more importantly, it allows one to estin
either a dielectric- or a conducting-system DRT. Such estimation may be carried out
full complex frequency-response data, with either the real or the imaginary part of s
data, or from the associated temporal response data. Further, when the distribution has
estimated by one of these approaches, it can be used to calculate the response ass
with any or all of the others. Thus, it obviates the need for Kronig—Kramers or Foul
transformation of the original data, an advantage which is especially important wher
data span many decades.

Given some data, there are three distinct analysis avenues of usual interest. Firsi
may merely wish to obtain a function that fits the data as accurately as possible, per
for interpolation or extrapolation purposes. In this case, the PMO should be the me
of choice, especially for low-noise situations. Usually more important is the task of fitti
the data to a known model in order to estimate its parameters and to use the resu
gain insight into the physical processes involved in the situation that led to the data. '
approach allows one to discriminate between several plausible models, select the one\
fits best, and evaluate the level of residual systematic error if it is significant [6, 7, 25—
The model used may or may not be defined in terms of a DRT. The LEVM progran
particularly valuable for such fitting.

Finally, one may want to derive an estimate of the DRT inherent in the data or verify
presence. This approach is distinct from the ones immediately above only for contint
distributions. But even here, if one believes that a particular continuous distributiot
likely, it is best (at least initially) to avoid inversion (but not ill-conditioning arising fron
discretization) and to fit the data directly with one or more response models involving
DRTs of interest. If a good fit without significant systematic error is obtained, one can ¢
the process there. If, however, one wishes to estimate an unknown continuous DRT
the data, inversion (such as that possible with the PMO or NTRM) may be necessary.

Although the titles of all three of Refs. [11-13] involve the subject of analysis of admnr
tance data, it is worth pointing out that [11, 12] use a variant of the NTRM method ¢
thus deal only with inversion approaches. The work of [13] includes a variant of the PM
well as an improved version of the NTRM, but again both approaches are used to esti
DRT components. Therefore, itis only to the last of the three types of data analysis def
above that the [11-13] work primarily applies.

Definition of Acronyms

AP Additive errors and proportional weighting (PWT)

AU Additive errors and unity weighting (UWT)

CNLS Complex nonlinear least squares

DRT Distribution of relaxation times

LEVM A complex nonlinear least-squares fitting and inversion program
MC Monte Carlo analysis
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NTRM Nonlinear Tikhonov regularization method; see [1, 13]

PFit Fit of data with PWT

PM Parametric method: variabtes and no explicit regularization; the
designation “PMQ" refers to the original method (e.g., [4]), and “PMW"
to that in [13]

PP Proportional errors and proportional weighting

PU Proportional errors and unity weighting

PWT  Proportional weighting in fitting

UFit Fit of data with UWT

UWT  Unity weighting in fitting

APPENDIX: PMO AND PMW INVERSION APPROACHES

Al. Background

Parametric inversion/fitting approaches of the type considered herein involve the
mation of M {g, 7;} parameters, since thg, as well as the, parameters are taken free
to vary. As defined in Subsection 24,,is a general strength parameter which can repr
sent discrete-DRTq;, or continuous-DRTg;, points. In contrast to “parametric,” the term
“nonparametric” is used in [12, 13] to indicate that the inversion procedure assumes
presence of a continuous DRT, even though numerical estimation, a necessary part ¢
approach, requires the replacement of integrals by sums and will yield only a finite nun
of points. Although the NTRM approach, which uses only fixed values,afan involve
a very large valueM, of free ¢;-parameter estimates, the term “nonparametric” seem:
somewhat misleading descriptor, and the more specific designation, NTRM, is used i
place herein.

Rather than employing a large number of fixgd/alues as in the NTRM, the PMO as
used here and in earlier work (e.g., [4, 6—10]), usually starts with a small numbef{ree-
parametet; andeg starting values, obtains an inversion solution, and continues obtain
such solutions with increasing until the decreasing estimated standard deviations of t
solution parameters finally reach approximate constancy or begin to increase. For simu
data without added errors, such termination is determined by round-off and truncation e
in the computations and data, and the standard deviation of the relative residuals of tf
Sk, for either frequency- or time-dependent data is often as small@sotess, a far more
accurate fit than is possible with the NTRM because of its regularization term. In contr
the presence of experimental errors in the data leads to a smaller Wgful with the
larger the errors, the small&fmax.

A2. Basic Equations and Minimization

In order to provide an equation for the total admittance of the circuit of Fig(a), we
begin by considering the dispersive contribution associatedMitk,, 7; } pairs, where the
g's are proportional to th€;'s andt; = R, C;. We follow earlier work [4, 6—10] by defining
U, as an unnormalized measured or model quantity of interest, such as an impedan
complex resistivity, or a complex dielectric constant. Heris, either taken as D, to denote
dielectric dispersion, or 0 or 1, denoting two kinds of conductive-system dispersion. |
mathematically convenient to express the normalized forby,pf,, in terms of a DRT, say
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On(7). Letx = t/10n, Wherer,, is a characteristic response time of the fitting model or ju:
a normalization quantity, and defirye= In(x) andGp(X) = tongn(t). We may now write

Un(w) — Un(c0) ® Gp(x)dx e Fn(y)dy
In(w) = = / - = / - , (A1)
Un(0) — Un(c0) o [1+4iwtenX] —o [1 +iwTonexp(y)]
where
Un(w) = U/ () + 18U/ (w), (A.2)
and thus
In(w) = 1 )(®) + 180l (). (A.3)

Since the DRTs are taken normalized inthe above, it followd tfi@f = 1 andl,,(c0) = 0.
Itisimportant to emphasize that the choice D specifies that thgp response of Eq. (A.1)
refers to only that part of the complex dielectric constafat) (or corresponding complex
capacitance) associated with dispersion and thus can be represented by a distribut
dielectric-system relaxation times. On the other hand, the chaiee® andn =1 specify
response at the complex resistivityw) (or impedance) level and thus involve, througt
Gp andG;, distributions of conductive-system relaxation times. We follow the usual si
conventions and set the quantitigsands; in Egs. (A.2) and (A.3) equal to 1 ardg equal
to —1. Incidentally, theF, distribution above may be simply related to a distribution ¢
activation energies [28] and is given By(y) = X G (X).

Although it has been shown that if a given data set may be well represented by a diele«
system DRT, it can also usually be well represented by a conducting-system one in:
[9]; we shall follow the work of [11-13] here and consider only dielectric dispersion, cc
sistent with Fig. 1. We shall thus omit the D subscript from now on andltékg= |5 (w).
Lete(0) — e(00) = A€, an overall dispersion-strength quantity, and note that the dispers
contribution at the admittance level is jusiCy Ael (w), whereCy is the vacuum capaci-
tance of the system for unity dielectric constant. Then the sum d@itkés justCy Ae. The
Y1(w) part of the Fig. 1 circuit, equal to/Z,, is then given byso1 + i {Cp1 + Cy A€l (w)}.
HereCp; = Cye(00), andGp; = 1/ Ry; should not be confused with tli&, distribution de-
fined above. Finally, th&, of Fig. 1 is given by(Gg, + i wCo2) ™t + Ruz, andY (w) =
{Z1(w) + Z2(w)} L. For convenience, explicit units will be suppressed herein, but the ur
of capacitances and resistances are all taken as Farads and ohms, respectively.

In this section, we shall use the normalized strength paranmeptdnst it is readily shown
that the unnormalized NTRM strength parameters used in [12 hi3]are related to the
corresponding normalizegl ones byCy Aeg wi = hejwTi, where thew; are the quadrature
weights introduced in Eq. (A.7) below and thei’s are NTRM weights. If we assume
thatw; = wr;, it follows thatAC = Cy Ae = 2™ | hejwi, and sche; = C; = ACq. For the
discrete DRT situatiorhej = hgi and all thew; = 1. For the NTRMg =g;.

In the present work, we shall u¥eto denote model values arg to denote data values.
We calculate 100( (w) synthetic data sets each involvilydiscretew values using the
Fig. 1 circuit (the model) without added error or with errors (then designat&g(ay)), and
these data sets are inverted/fitted by the specific PMO approach instantiated in the LI
computer program. Such inversions just amount to CNLS fitting of the model to the dat
order to obtain estimates of the free parameter values of the model, many or all of w
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may define a distribution of relaxation times such as thatin Eq. (A.1). But nonlinear anal
is needed even in linear situations because all probability-density strength parametel
constrained to be positive. For a fixed valueMf the objective function which is to be
minimized, Oy, is of the form [14, 15, 18]

Owm

N
> RO+ (RO, (A.4)
k=1

where R, =[Y}, — Yi1/V{ and R/ =[Yg, — Y1/ V/ are weighted residuals. The actual
weights involved in the fitting are/l/k’2 and ],/Vk”z.

LEVM allows many different types of weighting (error models) to be chosen (see, e
[14, 15, 18] and the LEVM manual). Here we need only consider unity weighting (UW
where all theV's are set to unity, and proportional weighting (PWT), whefe= Y}, and
V' =Yy, for all k values. If we defindd = 2N — My as the number of degrees of freedon
for a fit of complex data, then the variance of the f&, B just given byO/D. This is a
standard and common definition of the variance, generalized to complex-data fitting
15, 19]. Although presmoothing of data before least-squares fitting is mentioned in [4]
may possibly be useful for very noisy and irregular data, it should generally be avoi
since the least-squares fitting itself provides a kind of smoothing.

For complex data fittingWlt is the sum of 21 and the number of all other free parameter
of the fit. Note that §is the standard deviation of the relative residuals for PWT and is th
actually the relative standard deviation of the fit. Even in the UWT case, we calculate ¢
a relative standard deviation for comparison with PWT values. Thi Bideed a proper
measure of the relative standard deviation of the weighted fit is shown by thatiShates
for Monte Carlo fits of data with known variance listed in Tables |-l herein, as well as
many prior Monte-Carlo fit results.

A3. Discrete, Continuous, and Composite Fitting Models

It remains to discuss the numerical calculationl@f). To do so for discrete data,
wmin < wk < wmax With 1 <k < N, one must approximate the integrals in Eq. (A.1) by nt
merical quadrature. This is trivial for a purely discrete distribution involving delta-functic
lines because then, for example, [4, 6],

i=M
GO = a(x—X). (A.5)
i=1
and so
i=M di
I (wx) = ; m, (A.6)

an exact result with na; discretization errors involved. Herect; may be written as
(wkTo) (11 /T0) = QkX;. FoOr experimental or synthetic immittance data it is convention
to useN wy data points distributed equally or approximately equally on a logarithrr
scale betweetnin andwmax. The PMW approach in [13] involves equations equivalent t
Eq. (A.6).
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The situation is slightly more complicated for continuous or mixed distributions.
[13] the authors use only their equivalent of Eq. (A.6) for their PMW approach, one o
appropriate for discrete distributions, although they applied it to continuous ones as \
A straightforward approach for continuous or composite distributions is to initially ignc
the difference between amy andc; strengths present and use an appropriate quadrat
approximation for the integral of Eqg. (A.1), one which involves the weightsThe result,
written in terms ofy;, is

- € Wi

= L o]

(A7)

This result reduces to that of (A.6) when all the quadrature weights are set to unity,
remember that the's arenotdistributed with constant spacing, as is the case for the pres
PMO and the PMW, which both take thgs as free parameters. Nor is constant spacir
present for the NTRM of [13] which uses fixedpoints, apparently distributed uniformly
on a logarithmic scale. To treat these situations properly a special generalized quadr
procedure is needed, as described in [19]. When Eq. (A.7) is used for a possibly comp
DRT, itis easy to distinguisty andc; points, as discussed and demonstrated in the main te

In [11-13] the authors used expressions similar to Eq. (A.7) as that part of their NT!
analyses which did not include their regularization term. But in [11, 12] they omitted ¢
guadrature weights for these analyses and instead used their equivalent of Eq. (A.6).
thus implicitly estimated discrete rather than continuous distributions. It is only in [13] tl
w; terms appear, in consonance with the earlier approach of [4]. That earlier work is
mentioned at this point nor is the change from the earlier analysis methods of [11, 12] nc
In [13] the authors do, however, identify the weights as arising from the discretization
do not discuss their calculation. In contrast, in [4] and in the LEVM manual several spec
quadrature procedures and the resulting weights associated with them are discussed

It is worth mentioning that when a converged inversion of data to yield a DRT estim
has been carried out using either Eq. (A.6) or (A.7), that solution is readily converted, u:
LEVM with minimum additional calculation, to the one involving the other expressio
Note, however, that conversion of the point estimates of a true continuous distribut
where estimation is ill-conditioned and ill-posed, to Eq. (A.6) points is not physica
meaningful.

On the other hand, &, 7;} fit of data involving a continuous distribution provides ar
approximation to the appropriate set {@f, i} points defining the distribution. Once a
distribution has been accurately estimated and is available in either numeric or analy
form, it can be used to transform response from the frequency to the time domain or
versa [6]. This capability is particularly valuable for data spanning many decades, a situ:
where numerical Fourier transformation is usually impractical [2, 4, 6].

Incidentally, CNLS fitting of equations equivalent to (A.6) with all parameters free to ve
has been used since the early 1980s [29], but such PM analysis involving Eq. (A.7) s¢
to have been first introduced in 1993, the PMO [4]. An approach equivalent to the us
Eq. (A.6) with alld; andt; parameters free, together with nonlinear least squares fitting, v
independently described in 1989 for viscoelastic situations [30]. The requirement tha
e andr; parameters be positive, necessary for a physically realizable probability den
was not mentioned in [13, 30]. All the present dispersion approaches are applicab
mechanical as well as electrical dispersion/relaxation situations.
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How can one explain the differences between the PMW, PMO, and NTRM restL
particularly those for continuous and composite distributions? First, the PMO and P
involve the unique feature of allowing the parameters to be free variables during fitting
[4]. Second, the PMO uses a very stringent double-precision iterative convergence crite
namely that convergence is not declared until changes in the objective function only o
at the 11th decimal place or beyond. Third, since the PMW approach does not em
guadrature weights at all when it is used for continuous distributions and the NTRM n
not use quadrature weights appropriate for non-constaspacing [19], their results are
thus likely to be less appropriate and accurate than those of the PMO, which takes p!
account of variable spacing. Fourth, the Ref. [13] condition for changing the valie of
is evidently less effective for the PMW approach than that used for determining the n
appropriateM value using the PMO. For example, out of 1000 MC fits of the continuo
distribution data, the authors of [13] found only 15 with their maximum valuMet 6,
while PMO inversion yielded nearly a full 1000 converged fits with=11, the most
appropriate choice (see Figs. 4 and 5). Further, the estimated values and uncertainties
PMO {e, 1;} parameters were orders of magnitude better than those of the PMW. Fin:
the present results have demonstrated that the PMO is capable of estimating a useful nt
of accurateglg, tj} values, while the NTRM can yield many more continuous-distributic
points at the cost of decreased accuracy and inadequate resolution of closely spaced d
DRT lines.
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