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Conductivity of disordered solids: Resolution of discrepancies between
micro- and macro-response models
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The widely used 1972 macroscopic electric-modulus formalism for conductive-system frequency-response
data analysis is corrected to render it properly consistent with purely mobile-charge situations. The corrected
model is found to be fully consistent with a 1973 microscopic stochastic-response approach based on
continuous-time random-walk hopping when the effect of a limiting high-frequency dielectric constant asso-
ciated only with charge motion is added to the latter model. When stretched-exponential temporal response
with a temperature-dependentb exponent is used to generate the modulus-formalism response model, its
temporal dependence is not of stretched-exponential character, and ac conductivity may show non-Arrhenius
behavior and an approach to saturation at high temperatures.
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Small-signal frequency-response measurements of
electrical response of disordered materials arising prima
from mobile charges have become a standard approach
characterizing charge-carrier dynamics; see, e.g., Refs. 1
in Ref. 1. Full analysis requires not only accura
immittance-spectroscopy~IS! data, but also an appropriat
model to represent the response and a powerful comp
nonlinear-least-squares fitting program, such as the fre
availableLEVM one.2 Since its development in 1972–197
the original macroscopic electric-modulus formalism~OMF!
approach3 has provided a widely used fitting model; see, e
the 20 references to it in Ref. 4. Unfortunately, unrecogniz
errors in this model as well as in its application to data ana
sis have rendered suspect many of the results obtained w
over the last 17 years.5–7

Here, I shall show how a corrected modulus-formalis
~CMF! approach leads to a physically consistent respo
and how comparison of it to a slightly corrected version o
microscopic random-hopping model8 yields mutual consis-
tency and new understanding of the dispersed-relaxation
havior of disordered materials. Although the results are
plicable to electronic conduction as well as ionic, I sh
concentrate on the latter situation since it is of much curr
interest, both for gaining basic understanding of dynam
processes and for use in evaluating the limitations of dis
dered materials in practical applications such as fuel c
and batteries.

Published macroscopic-level IS work has often been a
biguous in not distinguishing clearly between response fu
tions that are appropriate for direct comparison with exp
mental data and those that are not. Therefore, in
following, a subscript ‘‘E’’ will be used where needed t
indicate quantities that are appropriate. In addition, the s
scripts ‘‘C’’ and ‘‘D’’ will be employed to distinguish be-
tween quantities entirely associated with mobile charge
those that arise from dipole and electronic permittivity
fects, respectively. When no such subscripts are include
quantity is of conductive ‘‘C’’ type. Finally, we shall be
dealing with two types of conductive-system dispers
~CSD!, denoted by the subscriptk50 or 1: CSD0 and
CSD1.
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In terms of the complex resistivity,rCk(v)5rCk8 (v)
1 irCk9 (v), of a purely CSD situation, the normalized com
plex response functionI k(v) is given by

$rCk~v!2rCk8 ~`!%/$rCk8 ~0!2rCk8 ~`!%

[I k~v!

5E
0

` Gk~x!dx

@11 ivtox#

5E
0

`

exp~2 ivt !$2dFk~ t !/dt%dt, ~1!

wherex[t/to , andto is a characteristic relaxation time o
the response. Equation~1!, which follows from linear-
response theory,9,10 shows thatI k(v) may be calculated ei-
ther from knowledge of the normalized distribution of res
tivity relaxation timesGk(x) or from a temporal respons
functionFk(t), sometimes called the correlation or autoco
relation function. It involvest/to . On the other hand, for the
microscopic hopping theory of Scher and Lax,8 F(t) is de-
fined as the probability that a charge carrier not move fr
its initial position over the timet.

In the usual case whererCk8 (`)50 or is negligible in the
frequency range of interest, the complex conductivity
given by

sCk~v!5sCk8 ~v!1 isCk9 ~v!

51/rCk~v!

5sCk8 ~0!/I k~v!

[s0 /I k~v!. ~2!

It is important to note that actual data fitting should invol
the composite quantity

skE~v!5sCk~v!1 iveVeD` , ~3!

where eV is the permittivity of vacuum;eD` is the high-
frequency-limiting dielectric constant associated with dipo
©2001 The American Physical Society05-1
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and electronic vibrational polarization, present even in
absence of mobile charge; and we assume the absen
dielectric-system dispersion in the frequency range
interest.5–7 The usual expression fors0 is11,12

s05@gN~qd!2/6kT#/tH , ~4!

appropriate for low relative charge-carrier concentratio
here taken as cations. ThenN is the total cation density;g is
the fraction of mobile ions;q is the cation charge;d is the
mean hop distance for a hopping ion; andtH is a thermally
activated hopping time, discussed below.

The mth moments of the normalizedGk(x) distribution
are given by

^tm&k[to
m^xm&k[to

mE
0

`

xmGk~x!dx, ~5!

and we may also express the first moment or mean valu
t for the k50 situation as

^t&05E
0

`

t$2dF0~ t !/dt%dt5E
0

`

F0~ t !dt. ~6!

Note that^xm&k is a dimensionless quantity which depen
only on the shape of the distribution and is independen
to .

The macroscopic OMF analysis, expressed in terms of
present notation, leads to an expression for the respo
at the electric-modulus level,MC1(v)[ iveVrC1(v)
5MC18 (v)1 iM C19 (v), by starting with theI 0(v) response.
The result at the complex conductivity level is

sC1~v!5 iveV /MC1~v!5 iveVeD` /@12I 0~v!#, ~7!

whereMC1(`) was identified as 1/eD` .3 In later applications
of the OMF,e` has generally been used in place ofeD` , but
this is misleading, as discussed below. Thev→0 limit of
Eq. ~7! may be readily shown to be3,5

s05eVeD` /^t&0 , ~8!

a widely used but inappropriate result.
To obtain a specific form forI 0(v), Macedoet al.3 used

Eq. ~1! with the felicitous choice

F0~ t !5exp$2~ t/to!b0, ~9!

the stretched-exponential function involving the shape
rameter b0 , with 0,b0<1. The resulting I 0(v) is a
Kohlrausch-Williams-Watts~KWW! response model, the
KWW0.

13 Although I k(v) cannot be expressed in close
form except for a few fractional values ofbk , very accurate
approximations for both KWW0 and KWW1 responses are
included inLEVM for arbitrary bk , thus allowing direct fit-
ting of experimental data to a KWW model. When th
KWW0 model is used in Eqs.~2! and ~3! for fitting experi-
mental data, it leads to an estimate ofb0, but generally does
not yield as good a fit as does the KWW1 CMF response
model involvingb1.12b0 .6,7

There are several problems with the CSD1 OMF model of
Eq. ~7!. The authors and later users apparently did not r
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ognize that thek51 complex dielectric constant, given b
eC1(v)[1/MC1(v)5eC18 (v)2 i eC19 (v), involved a nonzero
value of eC18 (`)[eC1̀ ÞeD` , so that e`E5e`5eC1̀

1eD` . In addition, they did not distinguish betwee
MC1(v) and theMC1E(v) which follows from the combina-
tion of Eqs. ~3! and ~7!. Finally, actual calculation of
MC18 (`) yields 1/eC1̀ ,5 thus showing that such quantities a
MC1(v) arise directly from pure conductive-system char
motion alone. It follows that for the CMF~Refs. 5, 6!

s05eVeC1` /^t&01[eVeC1` /~to^x&01!, ~10!

and

sC1~v!5s0 /I 1~v!

5 iveVeC1` /@12I 01~v!#

5 ivs0to^x&01 /@12I 01~v!#. ~11!

The subscript 01 has been included here to indicate tha
though^x&01 , for example, involves thek50 Gk(x) distri-
bution, it is now associated with thek51 response, and thu
properly must involve ak51 shape parameterb1 rather than
the k50 parameterb0 . If I 01(v) is calculated from the
F01(t) stretched exponential, then the KWW1 response is
given by Eq.~11!. It is noteworthy that the associatedF1(t)
response is not of stretched-exponential charac
however.14,15

In an effort to justify the presence ofe` ~actually eD` ,
since the existence ofeC1̀ was unrecognized! in the OMF
approach, Ngai and Leo´n4 have argued thate` inevitably
enters in macroscopic measurements. This is certainly t
and it is the reason thateD` is present in Eq.~3!. But their
approach to producing as~v! expression which arises ‘‘en
tirely from the motion of ions’’ by subtracting the term
iveVe` from the OMFs-level expression, one which intrin
sically includese`5eD` , fails. On the other hand, it is no
surprising that a proper mobile-charge theory should yi
only conductive-system quantities, such as theeC1̀ in the
CMF and in all the results of the microscopic theory of Sch
and Lax.8

In recent correspondence,16 León has stated, ‘‘In my opin-
ion, ‘relaxing’ mobile charges feel the total high-frequen
permittivity in the medium . . . .’’ I agree, provided that he i
referring to eD` rather than toe` ~which could be self-
referential!. But for situations whereto is thermally acti-
vated, it is the activation energy itself that one would exp
might depend oneD` . In fact, as mentioned in Ref. 8,
formula given for the activation energy of low-compensat
semiconductors is proportional to 1/eD` . It seems plausible
that some similar or possibly lesser dependence involv
screened Coulomb interactions should be present in the
vation energy ofto for ionic hopping, but there appears to b
no justification for the direct presence ofeD` or e` in the
OMF expressions of Eqs.~7! and ~8!, since neither follows
consistently from a mobile-charge-only analysis.

We are now ready to compare the CMF with the stoch
tic transport model~STM! of Ref. 8. In terms of the presen
notation, the STM leads to
5-2
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BRIEF REPORTS PHYSICAL REVIEW B 63 052205
s05@gN~qd!2/6kT#/^t&01, ~12!

where Scher and Lax used the first part of Eq.~6! and iden-
tified their resultingtH5^t&01 as the mean time for a hop, o
the mean waiting time. We see that it is also the mean re
ation time for thek50 distribution involving thek51 value
of the shape parameter. Note that Eqs.~10! and~12! yield the
important result

eC1`5@gN~qd!2/6kTeV#, ~13!

showing thateC1` should be proportional toT21 wheng is
constant, in rough agreement withLEVM fitting of
Na2O•SiO3 data.6

An expression identical to that of Eq.~13! except with 3
instead of 6 was recently published by Sidebottom.12 But
Sidebottom did not use the MF, and his derivation was qu
different from that leading to Eq.~13!. Further, he identified
his result asDe[e02e` , actually equal toe0E2eD`E5e0
for k50.5,14 Note that although the CMFeC10 is quite differ-
ent from eC1` , @eC0(0)#01 actually equalseC1` , because
G1(x)5xG01(x)/^x&01.6 For k51, however, De5eC10E
2e`E5eC102eC1` .5,6

When one uses Eq.~13! in the complex conductivity STM
result of Ref. 8, specialized for the situation where the spa
and temporal distributions of each hop are considered in
pendent of each other, it becomes just

sSTM~v!5 iveVeC1`@ I 01~v!/$12I 01~v!#, ~14!

not quite the same as the CMF result of Eq.~11!. In fact,
however, it can be readily shown that this expression
exactly the same real part as that of Eq.~11!, but a different
imaginary part. To make them exactly equal, it is only ne
essary to add the effect of the capacitanceeC1̀ , namely,
iveVeC1̀ to the Eq.~14! response function. TheneSTM`E
5eC1̀ 1eD` , instead of justeD` . Since the CMFI 01(v)
function of Eqs.~11! and ~14! satisfies the Kronig-Kramer
relations at the complex resistivity level, this minor chan
makes the corrected STM also do so. The resulting deta
agreement established here between the present corr
macro and micro approaches, but not possible using
OMF,4 justifies them both and underlines the importance a
appropriateness of the resulting joint micro-macro model
m
.
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analyzing relaxation in disordered materials. An importa
conclusion is that since the STM does not involve long-ran
Coulomb charge interactions, good fits with the macrosco
KWW1 CMF response model, as often found for disorder
glasses,5–7,15 indicate that such interactions are then uni
portant.

We have already mentioned that there is some evide
thateC1̀ ;1/T as in Eq.~13!, but accurate estimation ofeC1̀

~andeD`! requires complex-nonlinear-least-squares fitting
the full data, taking proper account of botheD` and possible
electrode effects~e.g., Refs. 6,7,15,17!. Work in progress
shows that CMF fits of various experimental data sets
different materials yield consistent results, while fitting wi
the OMF, where no separateeD` parameter is included, usu
ally yields not only poorer fits but inconsistent estimates
b1 from separate fits ofsdat8 (v) and Mdat(v) or Mdat9 (v).
Since the presence or absence ofeD` does not affect
sdat8 (v), such inconsistency is a crucial indicator of the i
appropriateness of the OMF.

Plotting of an experimental data set at the modulus lev
Mdat(v), generally shows a peak ofMdat9 (v) at v5vmp,
Mdat9 (vmp), and a limiting value ofMdat8 , Mdat̀8 51/e`E

51/@eC1̀ 1eD`#, at much higher frequencies. Surprisingl
data for different materials show thatMdat9 (vmp) may de-
crease, increase, or remain constant as the measuremen
perature increases~e.g., Ref. 18!. Thus, it is not proportional
to Mdat̀8 , but simulation shows that for data with consta
eC1̀ , where only b1 varies, MC1E9 (vmp)/b1 is approxi-
mately constant for 0.4<b1<0.6. Detailed fitting is needed
however, to elucidate the various interactions properly.

Finally, for the KWW1 response, the preexponential ter
of the s0 expression of Eq.~12! is proportional to
b1 /$TG(1/b1)%, where G is the Euler gamma function
Whenb1 increases toward unity asT increases, this term no
only leads to a better Arrhenius fit ofs0(T) with a T22

preexponent expression rather than with aT21 one, but
s0(T) tends toward non-Arrhenius saturation at high te
peratures, a different cause for limiting high-temperatu
conductivity, which can be deleterious in practical applic
tions, than that associated with low-t cutoff of the G1(x)
distribution at constantb1 .14
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