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Using both simulated and experimental data, detailed comparisons are made between the different
physical interpretations and responses of several important models commonly employed for fitting
and analyzing conductive-system data sets, such as those for ionic glasses. Those considered are one
following directly from stretched-exponential temporal response, designated the Kohlrausch KO;
several ones indirectly associated with such stretched-exponential response: the original modulus
formalism (OMF) model and corrected modulus formalig®@MF) ones; and the ZC model, one
whose real-part conductivity expression has been termed “universal dynamic response.” In
addition, several models involving dielectric dispersion, rather than resistive dispersion, are found
to be less appropriate for the present data than are the CMF ones. Of the four main
conductive-system models the CMF approach fits data for a wide variety of materials much better
than do the others. The OMF is shown to be both experimentally and theoretically defective and
leads to poor and inconsistent fitting results. The simple ZC model involves nonphysical
low-frequency-limiting real-part conductivity response and is usually less appropriate even than the
KO. High- and low-frequency expressions and fit results for the various dielectric elements are
presented, along with discussion of characteristic, peak, and mean relaxation times for the various
models, failing to confirm some proposed relations between these quantities suggested earlier.
© 2003 American Institute of Physic§DOI: 10.1063/1.1539092

I. INTRODUCTION II. SUMMARY OF VARIOUS RESPONSE MODELS

There are currently four main approaches for analyzing®- Kohlrausch response models and the OMF and
dispersive frequency response data of ionic materials. OfMF approaches

these, three involve stretched-exponential correlation- Electrode effects and possible nearly-constant-loss
function temporal response and lead to different types ofNCL) behaviot®~° are included here as appropriate, to-

Kohlrausch frequency-response models, all ultimately degether with the basic fitting models discussed in the follow-
rived from stretched-exponential correlation-function tempo-ng. Let us use the subscrikttaken equal td®, 0, 1, orZ, to

ral responsé?” The KO model, conceptually the simplest, is distinguish some of the different types of dispersive fre-

just the Fourier transform of stretched-exponentialquency response models. Hele specifies bulk dielectric

responsé:-® Next is the original modulus formalistOMF)  response and@ designates the ZC model. Fir=0, define
of Moynihan and associat@é,o and the third is the corrected the stretched-exponential temporal response as

modulus formalism(CMF).3"811-14The fourth model, the

ZC, involves complex power-law behavior with an exponent bo(t) =ex —(1/70)#0],  0<Bo=<1, @

n, and it is often designated as “universal dynamic responseiherer, is the characteristic relaxation time of the response.

(UDR) when only the real part of its conductivity is consid- The 0 subscripts are changed in Etj. to D ones for dielec-

ered(Ref. 6 and references therein, Ref. 15. tric situations. In most of the literature involving Kohlrausch
Although prior work indicates that the CMF is both (also designated by KWW or just)kresponse models, no

theoretically and experimentally more appropriate than thejistinction has been made between Kwe D, 0, and 1 val-

OMF and ZC/UDR approaché&s®*both of the latter mod- ues of the fractional exponer,, and it has usually been

els continue to be widely used for data fitting and analysisdesignated as jug, sometimes leading to ambiguity.

The present work includes new comparisons between these Next, define the normalized frequency response

various models in order to help the reader pick the mosguantity®

appropriate one for future use. The four models, as well as

several dielectric-dispersion ones, are defined and discussed (@)= Uk(w) ~Uk(=) _

in Sec. Il, and some of their fitting results to experimental Uk(0) = Uy()

data are illustrated in Sec. lll. Finally, Sec. IV compares _

formulas and fit results for mean values, peak values, anSOIk(O) 1 and!

various dielectric constants calculable using these models.

I —il], )

«(2)=0. For pure dielectric dispersidrf®
E‘JD(w)Ee(w), where e(w) is the complex dielectric con-
stant. For pure conductive-system dispersiorksed, 1, orZ
and U,(w)=p(w), where p(w) is the complex resistivity,
dElectronic mail: macd@email.unc.edu equal to the inverse of the complex conductivity w)
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=¢'(w)+id”(w). Note that for conductive systems, the CMF free to vary, fitting will lead to a different estimate of it than
and the OMF have usually implicitly or explicitly assumed that which would have been obtained had the KO model,
that the quantity..=p() is zero, although the effects when where M ¢o(w)=iweypgol o(w), been used for fitting. The

it is small but nonzero have been discussed elsewtére. new B estimate, arising from using the K1 model, is natu-
For simplicity and because, cannot be determined by data rally termedg;, and it is thus not appropriate to det 1 in
fitting unless the data extend to very high frequencies, it willEq. (3). Recent fitting results for CMIB; temperature, and

also be taken as zero herein. ionic-concentration dependencies appear in Ref. 8 wSgre
For k=D or 0 but not 1, the normalized frequency re- is shown to be virtually independent of either variation.
sponse is given By Conductive-system analy3i§®**leads to the follow-
. (1) ing importapt CMF general defir!itions ?Emy whose value
|k(w):f exp(—iwt)( — d—kt)dt' (3y  May be estimated from data fitting as illustrated later:
0

€c1=00To [{X VY ey=0gTo(X)g1/ €
For the KO Kohlrausch response model, t#g(t) used in o= ToTo /(X" Threv=007o(X)or v

Eq. (3) is that of Eq.(1) and is a conductive-system correla- =[yN(qd)?/6kge, ]/ T=A/T, (5)
tion function. Thek=D ¢p(t) quantity is proportional to the
dielectric transient response current, and thgw) fre-

quency response is that of the KD modé?.Note that Egs.

(2) and (3) should be applied only for a single dispersive AR oo .
process? Thus, effects not directly associated with such dis-the distribution of relaxation times of the dispersed response

2,12,13 -
persion are not then included in the response, and only ondgodel: For the present Kohirausch models, the 01 sub

arising entirely from mobile charge effects are involved SCTiPt indicates thagx)o, is the mean ok over the KO dis-
herein fork=D. tribution involving B, rather than3,, as implied by Eq(4).

. . _ 71
The situation is a bit more complex for the conductive-The normalized means satisfy)o,=1(x" "), because of

system K1 Kohlrausch response model, that appropriat’® Close relation between the KO and K1 distributions of
whenk=1 and used for both the OMF and CMF approaches.relaxat'on tlm'e§: ““HereNs the maximum moblle charge
The OMF K1 analysis begins with the,(t) quantity, de- number densityy is the fraction of charge carriers of charge
fined as a conductive-system correlation function for electric that are mobile; and is the rms single-hop distance for the
field decay at constant dielectric displacemirthis mac- NOPPINg entity. As usual we shall take the quantities in the
roscopic approach, which also involves a quantity equivalentduare brackets of E@5) temperature independent, so the
to I,(w), has come to be known as the original modulusParametei is then independent of temperatdre. _
formalism because it was first derived at the complex modu- Because there is always a contribution to the experimen-
lus level, where M(w)=iweyp(w)=M"(w)+iM"(). tal high-frequency dielectric response from dipolar and vi-
Here e, is the permittivity of vacuum. A microscopic model bronic bulk-material effects, it is insufficient to fit experi-

with formally equivalent frequency response to thel#f mental data with a purely conductive-system response
was also published in 1973:see further discussion in Sec. M°del, such as that of EG4). For the usual frequency range
. employed for most measurements on ionic materials, roughly

The corrected form of the K1 conductive-system modu-10~>—10° Hz, bulk dielectric dispersion is negligible, and, in
lus formalism, the CMF, when expressed at the moduluéhe absence of ionic conduction, bulk response is adequately
level, may be ,written égé,la,m described by the frequency-independent dielectric constant

€p~ - Although this quantity seems to increase somewhat
Mci(w)=iweypgl (w) =[1—Io(w)]/ €cie (4 with an increase in mobile charge concentrafidor sim-
plicity | shall follow common practice here and take it inde-
pendent of frequency over the measured range as well as
independent of ionic concentration.

wherer, is, as usual, the characteristic relaxation time of the
dispersion. Herex=1/7,, and so 74(X)p1=(7)o1 and
75 {x" 1) =(771),. The quantity(7) is the mean ofr over

where | o(w) follows from Egs.(1) and (3) with k=0, pg
=p(0), andec1., is the high-frequency-limiting value of the
conductive-system part of the dielectric constasy;(w) . .
=1/M¢ (w). Here the subscrip€ is used to denote the _Tgff)’gMF equation corresponding to the CMF one of Eq.
conductive-system response justlzdas been used to des- () is

ignate the bulk dielectric response, that present in the ab- M(w)=iweypol {(0)=[1—1o( )]/ €, (6)
sence of mobile charges. The corresponding high-frequency-

limiting bulk dielectric constant isep.,, and thus for differing only in the replacement ofz,., by €., wheree,,

conductive materialg..= ecq..+ €p.. , Wheree,, is the high- =eci..t€p... It thus accounts for the effects @f.. by
frequency-limiting value of(w) for either the experimental implicity combining conductive-system and dielectric re-
data or for the total CMF theoretical model. sponses in Eq.(6), improper because only the pure

It is important to recognize that although in the modulusconductive-system Ed4)-model follows directly from Egs.
formalism the lo(w) appearing in Eqg.(4) stems from (1) to (3).
stretched-exponential temporal response involviyg By, In contrast, the full CMF fitting approach must include
the I ;(w) of this equation differs in form froniy(w), and  the effect ofep,, in @ way more satisfactory than that of the
thus its time-domain transform ishot of stretched- OMF, and thus it needs to involve a nondispersive dielectric-
exponential forn?** as is that of the KO model. Therefore, response addition to the K1 model. The simplest way is to
when Eq.(4) is a part of a full K1 data fitting model wit3, include a separate free fitting parametgk .. ; the result-
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ing composite model is denoted CKL1. It thus involves theB. The ZC response model
conductive-system parametesy, 7,, and 8;, as well as
€p- , and Eq.(5) allows an estimate of.;.. to be calculated
when the value ofx)g; is known (see Sec. IV E

A more general alternative model is to include in parallel
with K1 a constant phase elemefRCPH, defined at the o(w)=0o[1+(iwT)"], (10
complex dielectric level as

The ZC is probably the simplest useful response model.
Its historical background is discussed in Ref. 6. At the com-
plex conductivity level it may be expressed as

with 0<n=<1. Although the ZC, particularly in a simplified
= Apdiw)~7PC 7 expression foro,(w), the UDR response model, has been
epcl @) =Apdi0) @ known and used for many yed$>2¢ both the power-law
where 0< ypc<18161819The resulting composite model, low-frequency-limiting behavior of ¢,(w)— o) and the
which can also represent nearly constant loss effects whemigh-frequency limiting response of,(w) are nonphysical.
present, is termed the PK1. Note that whe=0, epcis an  Fitting of ¢o’(») data to theo;(w) model thus invariably
ordinary dielectric constant such ag.., and whenypc=1  Yields an inaccurate estimate of.° See also the fit results
epc becomes a pure conductance. Whea is used to rep-  presented here in Sec. IVF.
resent NCL behaviorypc<1 andApc=~ €p.. . The UDR form, defined at the real conductivity level, is
In contrast, the OMF f|tt|ng model involves only tbg, oh(@) =gl 1+ (wm)"], (11)
7., and B, parameters, allowing no separate estimation of
€b.. andecy.. , but an estimate of,. may be calculated from SO it follows that 7, = 7,[ cosam/2)]'", generally smaller
the OMF analog of Eq(5)379101423245ing the above- thanr;. In the pastry has been identified as the inverse of

given parameter estimates and the hopping frequency of the charge carrers? but this
interpretation was soon challengéd">?and does not seem
€= emalX)o1, (8 well justified either theoretically or experimentally. Further,
where recent work>'* has shown that the Scher—Lax microscopic

modef! mean time for a hop can be identified as the CMF
mean relaxation timeg(7)g;=75(X)p; Of the macroscopic
CK1 model; see Eq(5) and the discussion of the isomor-
is a Maxwell type of relation. In most applications of the phism of the microscopic and macroscopic models in Sec.
OMF, instead of using Eq8) directly, Egs.(8) and(9) are  lll. Since there is no reason to believe thaj=(7)q, it
used to estimater, when an independent estimate @f is ~ should not be identified as the hopping time. Further, since
available. Although the slightly greater simplicity of the the real and imaginary parts of EG.0) satisfy the Kronig—
OMF compared to the CMF encourages its use, OMF fitting<ramers relations, this equation should always be used in
invariably leads to inconsistencies in fitting experimentalplace of Eq.(11).3%33
data and thus to much less accurate fitting than does the When the ZC is used to analyze conductive-system data
CMFS5-814.16 by means of complex-nonlinear-least-squares fitting, one

In the past, there has been little direct fitting of B4.or ~ must include the termweye.. in the full fitting model at the
(6) to data because no analytical result for the integral of Eqcomplex conductivity level in order to account for the en-
(3) is available for arbitrary values @8, in Eq. (1). There- demic presence of,.. Note, however, that such a term con-
fore, 14(w) has had to be calculated numerically for eachtributes nothing to thes'(w) part of the response. In the
separate value ab by a Fourier transform of Eq3), a task absence of electrode and NCL effects, it is clear from Eq.
not amenable for data fitting with free model parameters(10) that the high-frequency-limiting log—log slope @f(w)
Luckily, an alternative exists and has been used in such datgersusw is just the exponent. But limited-range data may
fitting by the author since 1996. Both the KO and K1 fre- not be sufficient to allow a good estimaterofo be obtained
quency and temporal responses associated with such equanless the data are accurately described by(E®g). at high
tions as Eqgs(4) and (6) may be accurately calculated or frequencies. If data are, as usual, well fitted by the CK1 or
fitted using the free.lEvm complex-nonlinear-least-squares PK1 models, it is clear that at the complex admittance level
computer prograrf® Further, unlike the Fourier transforma- the C of the CK1 approach should involve the term
tion approachLevm allows possible inclusion in the total iweyep.., Not theiweye., of the ZC and CKO models.
fitting model of not only KO or K1 response but also of
effects associated witky,,, partial or full blocking at elec- |1l. COMPARISON OF SEVERAL FITTING MODELS
trodes, and nearly constant 105619

The By, OMF B;, and CMF B, quantities associated
with Egs. (1), (4), and(6) are generally quite different and In the first version of the present work, detailed compari-
should not be designated by just The high-frequency- son of fitting results of the same data sets using the OMF and
limiting log—log ¢’ (w) slopes of the three basickkmodels = CMF approaches was emphasized. A reviewer suggested that
involving B, are (1- Bp), Bo, and (1-p;).* Thus for a  because “there is little doubt that there are electrical dipoles
given conductive-system data set extending to sufficientlyn ionic solids,” such comparisons should include dielectric-
high frequencies we expect thag and (1- 84) should both  dispersion models as well as conductive-dispersion ones and
equal the ZC power-law exponent Some relevant fitting cited the present Refs. 34—36 as illustrative of such compari-
results are included in Sec. Ill. son. These works dealt with data for melts, glasses, and lig-

EMa= 00T/ €y 9

A. Preliminary comparisons
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uid ionic solutions and assumed that dielectric dispersiofABLE I. Comparison of values o, the relative standard deviation of a

associated with ion pairs was dominant and that ndit, for 15 fits of experimental _single-crystdi/l(w) data of 0.88ZrQ
. . . -0.12Y,05 at T=503 K. Numbers in parentheses denote the number of free
conductive-system dispersion was present. fitting parameters present. Here an initial C in a model name indicates the
The problem of deciding whether a given dispersive fre-presence of a capacitance or dielectric constant in parallel with the basic
guency response data set arises from mobile-charge effegnrpdel; P indicates a parallel con;tapt-phase-element; S indicates a series
(conductive-system dispersﬁ)nr from dielectric dispersion constant-phase-element; and GD indicates the presence of a conductance or
. . A . . . . conductivity in parallel with a dielectric dispersion modsée Sec. Il A.
is an interesting one and was investigated in 1999 using ac-
curate synthetic dafi.A K1 data set extending over a very K1 models Se KO models  S: GD models  S¢

wide frequency range was fitted with the D@D model 7 3

| , , 0.071 Ka?3) GDK1(5)  0.094
(andvice versa, where the “D” as usual denotes a dielectric cki() 0.021 CKa4) 0.035 GDKG@5)  0.019
dispersion situation. Because conductive-system response iaK156) 0.0090 CKO0%)  0.011 GDDG@5)  0.0133
volves a nonzere(0)=1/0, dc value, adequate dielectric- PK1S7) 0.0050  PKO%7)  0.0057 GDDC&)  0.0101

system fitting of such data requires that a dc conductivit)): K1(5) 0.0049 PK®) 0.0083  GDEXRS)  0.0116

guantity be included in parallel with a pure dielectric re-
sponse model, as in Refs. 34—-36. Such a KB) model

involves the four parameters., Ae=e€y—€., 7op, aNd  OMFE K1 model and the GDK1 one led to very poor fits.
Bo, as in Eq.(2). Let us denote the inclusion of a parallel gy ther, although the: values for the PK1S, PKOS, and
FO”d“Ct'V'ty parameter Py “G”; then an appropriate COMPOS-GppCS models are small, all these fits involved at least two
ite model may be designated by GDKO. Further, let *S” frae parameters with such large relative standard deviations
indicate the presence of a CPE term representing electrodfa; their values were statistically undetermined.
effects, the SCPE, in series with a conductive or dielectric Although it is surprising that the bottom three K0-model
model'*18**The number of free parameters in a compositefits |ed toS; values nearly as small as the corresponding K1
fitting model will be included in parentheses after the nameynes, it is clear that the PK1 model provided the best fit, as
of the model, for example, GDKQ®). found earlier for these dafegne very appreciably better than
The isothermal comparisons of Ref. 37 showed thaghose of the GDDC and GDEXP. In addition, fits of the
while one could generally well fit a conductive system in-present data agree with the conclusion in Ref. 37 that a
volving resistive dispersion with one involving dielectric dis- pExp model yields a somewhat better dielectric-dispersion
persion, andiice versasuch fits were not exact, allowing the fit than does a DKO or DDC one.
different processes to be distinguished. When data are avail-  Another significant result found was that fitting with the
able for a range of temperatures, one would expect the actispk1 model led to essentially the saiBe value as that for
vation energies oty and 7, for a thermally activated con- the PK1 but also to such a large uncertainty of the parallel
ductive system to be the same or very nearly efuahile  conductivity parameter that it could not be statistically dis-
such behavior is unlikely for leaky dielectric situations. tinguished from zero. As mentioned in Ref. 37, when such a
Since the authors of Ref. 38 found nearly equal activationesult appears it is a good indication that the data involve
energies using a dielectric-dispersion fitting model forconductive dispersion rather than dielectric dispersion. The
lithium chloride solutions, it is likely that conductive-system equality of the activation energies of, and 7, for fits of
analysis would have been more appropriate for their datadata for the present material over a range of temperafuass,
But this 1971 work was published before the OMF approachyell as the present results, clearly indicate that these data
had been developed. sets involve resistive rather than dielectric dispersion. Nev-
It is always a good idea to investigate the appropriateertheless, some detailed comparisons between fittings by the
ness of different fitting models when analyzing a new experitwo different approaches are included in the following.
mental data set. We shall here fit data for the single-crystal
material 0.88ZrQ-0.12Y,0; at T=503K.2 We consider
conductive-system composite fits involving the ZC, K1, an
KO models, and the dielectric-system ones GDKO, GDDC, The results in Table | suggest that detailed GDEXP-
and GDEXP ones as well. These dielectric-dispersion modelsmodel fitting be compared to that obtained using the OMF
were also used in Ref. 37. Here DC denotes the threeKl and the CMF PK1 models, but since the comparisons of
parameter Davidson—Cole model, and EXP stands for th®efs. 34—36 used the GDDC model, it will be employed
asymmetrical exponential distribution-of-relaxations-timeshere rather than the GDEXP one. Instead of using accurate
model.LEvM fitting employed proportional weighting of the complex-nonlinear-least-squares fitting of data to estimate
complex data at the modulus level and led to values of th©MF parameters, it has been customary for those employing
relative standard deviations of the fit residu@g, For the the OMF approach to use the results of Table 2 in Ref. 10 to
ZC(3), CZC(4), and PZ@5) models, values found foBg relate the width at half height of curves M"(w) data to
were 0.243, 0.0537, and 0.0543, respectively. All of thesg8(=pB,). As discussed in the following, this procedure
values are poor, but the ZC one led to completely inadequatgields inappropriate estimates. Alternatively, one may

dB. Detailed fitting results

parameter estimates. readily employLEvM fitting to obtain accurate estimates of
Table | shows fitting results for 15 other models. No all OMF model parameters, as illustrated here.
convergence could be obtained for fitting with the (80 Some detailed results of PK1, K1, and GDDC fittings of

model since it involves na, parameter. Note that both the the data used for generating Table | are presented in Fig. 1.
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FIG. 1. (a) M'(v) and M"(v) data and fit results for the PK1 and K1 moddls). Real (') and imaginary (") relative residuals, each defined here as
(data—model predictiofimodel predictiop for PK1, K1, and GDDC model fits. The residual lines are included here solely to guide the eye. Here and
hereaftery,=1 Hz. Note that the K1-fit residuals are shown here at one-tenth of their actual size.

0.002

Although the GDDC-fit points are omitted in Fig(al be- larger than the CKL1S fit estimate of 28.29 where {Bg
cause they would not be well distinguishable, the differencegstimate is 0.319. An improved PK1-like NCL approach is
between the three fit predictions are made clear by the rediscussed in Ref. 8, and related work in progress that re-
sidual plots of Fig. (b). These results, consistent with the places the PCPE term by an effective-medium model does
correspondindse values, show that the PK1 model is appre-lead to a physically realizable expression &y, .
ciably superior to the GDDC one, especially at low and mid-  Aside from the more accurate fit of the CMF, true even
frequencies, and both are far superior to the K1 model fowhen any CPE element is omitted, why should one prefer the
fitting the present data. CMF to the OMF? Further reasons are summarized in the
Particularly important is the difference between e  following, but Fig. 2 makes the difference in fitting results
estimates shown. It arises from the absence afjgnparam-  graphic. Here we have plotted full CK1S and KL'(v) fit
eter in the OMF K1 fit. Itsec4.. estimate of 28.88 is identi- results for comparison with the K1-only part of the CK1S
fied, as usual in this approach, as, and we see that it and PK1 fits. The vertical dashed lines, plotted gt
agrees quite well with the value from the GDDC fit. Ng@ =1/2w1,, clearly occur beyond the peaks of the curves,
estimate is shown for the PK1 fit because the presence of thehowing that the sometimes-used identificationvgfwith
PCPE term in this model, applying for all frequencies, pro-the peak frequendyis inappropriate. Further, as shown here
hibits the accurate determination of such a quantity. If, how-and hereafter, OMF estimates gf are always much larger
ever, we approximatep,, by the Apc=24.78 PK1 fit esti- than are CMF-fit ones.
mate, not unreasonable since the associgigdestimate is Although the K1 parameter estimates obtained from the
only 0.0039, we obtain the value,=29.65, somewhat CK1S and PK1 fits are in close agreement, the slightly
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-

004 nearly universal result for various types of relaxation and
- 10.88Z2r020.12Y,0; materials.
] .?': (I)%Kcrystol 7 The effect of limited frequency range ¢8y estimation
. was investigated starting with data forghiage;s- TiO3 at
0.03 ] T=150K kindly provided by Dr. C. Lew. LEvM fitting us-
ing the CMF approach led to parameter estimates that were
then used to generate a virtually exact K1-molldlw) data
set with8,=1/3 for the range 0% w=<10°r/s. For this set,
€c1=2/3. Since no value o&p,, was included, the OMF
and CMF approaches were formally equivalent. The data
were then fitted with the CKO model, one including a fege
parameter. It was needed to model the nonzgyp, of the
data since for the K@¢g()= €cg..=0.
Fit results for both proportional and unity weighting
’ should lead tgBy=2/3 if the relationBy=1— 3, were ap-
0.00 3 2 i 3 il 4 il 5 il 6 "'F'-/ plicable. In fact, proportional-weighting fitting led to the
large S value of 0.073 and to the estimagfy=0.59. With
) unity weighting, which emphasizes large data values, the fit
at and near the peak was better and legB$e-0.61. Better

FIG. 2. Comparison of full OMF K1 and CMF CK1S fits of Fig. 1 data with ; it ; g ;
im f the limiting value wer in fittin
the K1-response parts of the CMF CK1S and PK1 fits. The fit parameterseSt ates of the ting value were obtained by tting just

were used to generate and extrapolate these results to higher frequencitd€ 0’ (@) data. Then, proportional and unity weighting led to

The vertical dashed lines show the positionsvgis 1/277, for the OMF  estimates of 0.617 and 0.656, respectively. When the data

and CMF curves. range was extended to A0's, these estimates were im-
proved to 0.628 and 0.667, respectively.

As the above-mentioned results sh@y, estimates from
higher peak of the K1 part of the PK1 fit shown in Fig. 2 is fits of synthetic K1 data are sensitive to the range of the data
associated with the lack of an exag.. value for the PK1  and to which immittance level is used in the fitting. For fits
fit, as discussed earlier. Nevertheless, the present results igt experimental data with a CMF approach involving the K1
dicate that rather than just being arbitrary fitting modelsmodel, there is much less, sensitivity for data with small
CK1S and PK1 fits allow one to closely estimate a K1-model5nqom errors, and none of course when the data have van-
description, one describing significant and meaningful phySiishineg small random errors and are of K1 character.

cal response. _In recent composite CMF K1 fits of limited-range data
The difference between the CMF and OMF K1 curves isg, sayeral different materiafe® 16 most 3, estimates were

particglarly large for t_he present data whetg.> ecy.. bL_'t again found to be close to 1/3 for complex fits at any of the
the widths at half height of the top K1 curves of the flgurefour immittance levels or for fits of any of the eight indi-

nevertheless lead, on using Table 2 of Ref. 104toesti- fvidual real or imaginary parts of the data. Such comparisons

mates in close agreement with the direct-fit CMF ones of . " .
0.319 and 0.318 for the CK1S and PK1, respectively. Refer-o 9 the OMF K1 model for fitting were, however, incon-

ence 10, Tabe 2 actualy spplesony o e L el anc 7", 200 1 () 1 1 (o) wede fy estmatee
should therefore never be used with experimemdl( w) 9 b 9 '

data because such data always include the effects, of tency also appear_ed when OM#; estimates foraf(w) f Its
Remember that the conductive-system K1 model and g were compgred Wlth reisults for any of the ther immittance-
are associated entirely with mobile-charge effects, and. level OMF fits. Sinces’(w) data values are mdepeno!ent of
thus should not involveany bulk dipolar effects, such as 1€ Presence or absenceegf. effects, OMF and CMF fits of
those leading tap.. . data at this level should ylgld closely the saﬁpegtlmated
Recent KI CMF data analysis for different ionic- values. Such results were indeed observed, verifying the ap-
conducting materials has indicated thtis virtually inde- ~ Propriateness of the CMF and the inappropriateness of using
pendent of both temperature and mobile-ion concentratioff’® OMF for parameter estimation at the modulus level, as
and is close to 1/3 in value®® This result is in agreement illustrated in Fig. 2 and in Sec. IVF.
with an earlier study yielding (2 n)=0.33 estimates for a A final inconsistency of the OMF approach appears
wide variety of materials, a study that also showed that OMPvhen the formal results of the conductive-system micro-
estimates ofB; were quite different and of the order of Scopic continuous-time random-hopping model of Scher and
0.58%° Reference 40 also states that{f)=0.33 values are Lax** are compared to those of the macroscopic modulus
typically observed for mechanical losses in ionic glassesformalism!®!* The Scher-Lax model involves 41
Furthermore, nuclear spin relaxation results for a Li chlo-—lo(w)] term in its response, just as in Eg). The €5 ()
roborate glass analyzed by Ed) with k=0 led to a value expressions following from the two models are of exactly the
of B, of 0.35, which was compared with an OMF electrical same form, but the;;(w) expressions differ by the absence
conductivity relaxation estimate of 0.86These results be- of a nonzeroe(;() = ec1.. in the microscopic model. Note
gin to suggest that a K1 value @f=1/3 may possibly be a that with the present stretched-exponential expression for

——— CMF: K1 rt,CK1S
- CMF: CK1S fit
« = = OMF: K1 fit
-=== CMF: K1 part,PK1

0.01 ;
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TABLE II. Fitting results using row-1 synthetibl (w) data derived from fitting single-crystal 0.88Zr®.12Y,0; at T=503 K. In row 1,ep,.=23, and it
is zero for row 2. The dimension af, is S/cm and that of all~related quantities is seconds. Rows 3 andw) fits; rows 5-7:0'(w) fits. See Egs.
(23)—(22) for (x)=(7)/ 7, expressions.

No. Model 1065 B 100, 100m7, 107, 107, 104 oy 104 7Y
1 CMF:CK1 1/3 1.845 1.035 0.0400 1.212 0.2400 2.400
Data
2 K1 data 1/3 1.845 3.738 0.0400 0.0598 0.2400 2.400
3 OMF:K1 fit 2.87 0.5460 1.850 1.017 0.8101 1.069 1.395 3.443
4 CKO fit 1.28 0.5233 1.841 1.020 1.096 1.186 - 2.023
5 CKO o fit 0.98 0.5402 1.865 1.017 1.781
6 ZC o’ fit 1.75 0.3898 1.716 1.093 3.905
o free
7 ZC o’ fit 3.68 0.3492 1.845 0.8967 4.544
oy fixed

¢o(t) no overt Coulomb interactions appear in the micro-1V. COMPARISONS OF MEAN-VALUE AND

scopic(or macroscopicK1 response model. DIELECTRIC-CONSTANT EXPRESSIONS AND FIT
Unfortunately, the Kronig—Kramers relations do not leadRESULTS

to clarification of the above-mentioned difference in the twoa Background

models, a difference ascribed by Scligrivate communica- ] )

tion) as arising from the inapplicability of the microscopic ~ Because all dispersed-response models lead to relations

approach at very high frequencies. It has been shown, howUch as Eqs(5) and (8) that involve averages over their

ever, that a distribution of relaxation times estimated using!iStributions of relaxaéloln t|mes,"|t IS rllmportalr!t to compare
Levm from specificel.y(w) K1 response alone may be em- Means for various models as well as the resulting expressions

ployed to estimate the correspondieg, () responsé? 4 that relate limiting dielectric constants and dc conductivity.
The resulting e.;(w) response agréed well with the We shall start with general relations for limiting dielectric

macroscopic-model response and included a proper nonzefgnstants and then show gxplicit forms and fitting result; for
value of ecy.., showing that when the real and imaginary e Present models of interest. Denote the rlgrlrgglaed
parts of the microscopic response are made consistent tiglaxation-time distribution a&(x). Then, generalfy©**

two models are fully isomorphic. Since these calculations o

and responses involve only mobile-charge effects, the OMF {7 k= To(X")k= Tgnfo X"Gy(x)dx

is intrinsically nonisomorphic because its limiting dielectric

constant involves dipolar as well as monopolar effects and m ? 1

the model is thus not isomorphic to the Scher—Lax micro- =[TOIF(m)]f0 u™ i (u)du, (12)
scopic response theory as claimed eafftéf _ .

The above-mentioned CMF isomorphism provides an inWhereu=t/7, andI'(m) is the Euler gamma function. For
structive microscopic interpretation of the K1 conductive-KK conductive-system m0d9|5G1(X):_(X/.<X>01)G0(X)_-3
system model. The Scher—Lax approach is that of stochastlgnfortunately, for thek=2z zZC model with its nonphysical
hopping transport of charge involving a continuous-time ranJimiting responses( ), for example, does not exist unless
dom walk on a lattice. The excellent fits of experimental data3z(X) is cutoff at both extremes. All the following results
using such macroscopic CMF models as the CK1, the Ck1gnvolve no CUtOf_fS? appropriate for the data set used for the
and the PK1 suggest that not only is one dealing with &Present comparisons. The quantyis a free dielectric pa-
conductive system but the physical processes associated wigmeter used in fitting with some of the following models.
charge motion in the material investigated are well described
by those of the microscopic Scher—Lax model.

The major problem with the OMF approach, the unwar-B- €KO model

ranted replacement &-;.. by ep., Or €,,, was first pointed fcoo/EMa=<X>o=B(§lF(ﬂEl), (13
out in 1994* As already mentioned, in 1995 Sidebottom, .
Green, and Bro# showed that UDR power-law data analy-  €co=/€ma=1(X"")0=0, (14)

sis for a wide variety of materials yielded {In) values of
about 0.33, quite different from their larger OM#,; esti-
mates of about 0.58, but no explanation of the difference Was ~k1 cME model
presented. Since then, the OMF and CMF data fitting ap-

€,= €y, €= €cooT €xn- (15

proaches have been compared in détdif>*When elec- eciol €ma= (X)1=[(x*)01/(X)o] =T (287 /T (B1 ),
trode and/or nearly-constant-loss effects are properly ac- (16)
counted for, the OMFpB,; is found to increase with Jen-=1Ux" Y = (x)m= BT (81 1
temperature, quite different from CMF-fit constant estimates cor/ €wa=1UX)1=(Kor=F1 T (81 ), @9
Of abOUt l/? €D ™ €y 6oc:€C10c+ €D s €p= Ec10+ €D - (18)
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TABLE lIl. Results for various dielectric quantities calculated from exact dedevs 1 and 2 and fits to the
row-1 data(rows 3—-7. Here €y, is the Maxwell-type quantity of Eq9). See Eqs(13)—(23) for calculation
formulas employed. Thecyo results are discussed in the text.

No. Model €y €Ma €Cke € €cko €xo
1 CMF: CK1 23 5/6 5 28 50 73
2 K1 5/6 5 5 50 55
3 OMF:K1 fit 16.93 29.15 29.15 71.94 71.94
4 CKO fit 28.76 22.79 0 28.76 42.06 70.82
5 CKO o' fit 21.42 0 37.51
oy free
6 ZC o’ fit 21.21 74.44
oy free
7 ZC o' fit 18.46 91.37
o, fixed
D. K1 OMF model Table Il presents values of various quantities for the ex-
_ A _ —1 -1 act data in rows 1 and 2 and for fit results in rows 3—7. Here
€10/ €pa= (X)1=[{(XDo1/(X) o] =T'(2B81 HIT(B1 "),

(19) M’,;(wp) is the peak value of th#1"(w) data or fit andr,
=1/w, is the corresponding tau value, whesg is the mode
€10/ eya= LX) 1=(X)o1=B1 T (B ), (200 of the response curve. The, column has been included
1) because it was stated some years ago that for conductive
systems 7, and the (7 defined by 7,87 (81
Although the right-hand sides of Eql6) and (17) are the  =¢ e, /o, were in close agreemefit.But because the re-
same in form as those of Eq4.9) and(20), large differences syits in Table |1 show that,# 7,, this definition of(7) is
between ther, and 3, estimates obtained from CMF and jncorrect and unequal to that following from Eq8) and
OMF fits of the same data ensure that theiio and eci.  (19) for the OMF,(7)01= 7o(X)o1.-
estimates will also differ substantially, as illustrated in Sec.  Taple |1 also shows that there are no equalities between

IV F. Note that the conductive—;ystenﬁ:“ subs_cript i§ oOMit-  the estimates ofo, 7, and( 7)o, obtained from the same fit
ted here from the above-mentioned OMF dielectric-constantasits. Léa. Lucia. and Santamaria found excellent agree-

designations pecause the OM.F approach is a combination.ﬂf]ent' however, between their Z& = r, and( 7)o, estimates
both conductive and dielectric responses, as already digrom fits of data for the same material as that considered here
cussed. but one with a slightly smaller 05 concentratiori® Such
close agreement suggested to them that the two quantities
E. ZC model with B,=1—n=g, might be the same. As in the present work, theiry; esti-
" " mates involved the OMF K1 model, but the®(= ;) and
5CZO/6Mai<X>0=f ¢0(U)dU=f exp(—ufz)du other parameter estimates were derived by a series of ap-
0 0 proximations rather than directly as here. Here, the corre-
:Bglr(ﬁgl), (22) sponding estimates for comparison arg=1.093x10 *s
and(7);=1.395< 10" *s. Interestingly, much closer agree-
€= €czoT €x - (23)  ment is apparent here between theestimate and the OMF
K1 7,=1.069% 10" 4s one. Accurate fitting of data from dif-
ferent materials and at different temperatures is needed in
order to assess the generality of these results although the
more significant comparisons are those involving CMF
F. Synthetic data fitting results rather than OMF fitting results.
In the following two tables, results are presented for fits ~ Table Il showss’(«) fit results in rows 6 and 7 for the
of the various models to an exact CK1 data set. This seZC model. These results therefore are also ones that would
which involved 81 points logarithmically distributed over the be obtained from a UDR-model fit using Ed-1) except for
range 10&w=<1CPr/s, was derived by starting with the the difference between; and 7, estimates already men-
CK1S fit parameters, adjusting the values of those involvingioned. The results in rows 6 and 7 differ becaagewas, as
the CK1 part of the response slightly, and then using them itusual, a free fitting parameter for the row-6 fit and was held
LEVM to generate the data. Thus, the resulting data set wefixed at the exact row-1 value for the row-7 fit. HeBg is
represents the response of single-crystal 0.88ZrOdefined as (+n), so its row-6 value corresponds to
-0.12Y,04 at T=503K with electrode or nearly-constant- =0.61, a common value for UDR fits for materials and tem-
loss effects removed. Becausevm yields the most accurate peratures where electrode and NCL effects are
response foiB;=1/3 and because many fit results well ap- negligiblé>2°41 or properly accounted for in complex-
proximate this value, it was used, along with=5.421 nonlinear-least-squares fitting. The row-6 estimatergfis
X 10" Q cm. the worst of those in Table I, and when it is held fixed at the

€,=€1x, €Eg=€pT €.

Equation (22) for ecy, involving a Kohlrausch response
approximation, is discussed in the following.
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proper value, as in row 7S¢ is far larger. The row-60p  allows the calculation of valid estimates &f,.. and ec4g-
estimate is poorest because ZC low-frequency-limiting be-  Unfortunately, all publications dealing with the CMF
havior is physically improper. For this reason, in the absencéave been largely ignored so far, and the OMF continues to
of physically realizable cutoffe;(w) increases indefinitely be widely employed. For example, Ref. 41 provides a list of
as w—0 and(x); is infinite. 20 OMF papers, many appearing after 1995, and many oth-

Now it is clear that the ZC model is more comparable toers continue to be published. Because science involves the
the KO rather than to the K1 one. For illustrative purposessearch for truth, continuing users of the OMF should either
only, | make the approximation of using ZC fit parameteraccept the CMF or show where and why it is incorrect. Since
estimates in the KO expression of Eg2) in order to calcu- neither has happened in the last seven years, it seems highly
late the(7),=(7), results of rows 6 and 7. It is clear that probable that the basic premise of the CMF is unlikely to be
they are appreciably larger than the other values in Table Ifalse and thus the CMF is a far more appropriate idealization
perhaps in part because tBe=(1—n)= 3, relation is too  of the actual conductive-system physical situation than is the
approximate. OMF.
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