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4.2 CHARACTERIZATION OF THE ELECTRICAL 
RESPONSE OF HIGH RESISTIVITY IONIC 
AND DIELECTRIC SOLID MATERIALS BY 
IMMITTANCE SPECTROSCOPY 

J. Ross Macdonald 

4.2. 1 Introduction 

For at least several decades, the effects of charged-particle motion in doped semi­
conductors, amorphous materials, polycrystals, single crystals, inorganic glasses, 
and polymers have been of much interest to both experimentalists and theorists. In 
fact, J. C. Phillips [1994] has characterized the problem of relaxation in complex 
disordered systems as 'the most important unsolved problem in physics! For ioni­
cally conducting materials such as' solid electrolytes, the dynamics of the mobile 
ions have usually been investigated by analyzing the frequency response of the mate­
rial over a wide range of frequencies, sometimes as wide or wider than 10-5 Hz to 
1012Hz. Such investigations thus usually involve immittance spectroscopy meas­
urements and techniques. In this section, the main emphasis is on ionic conductors 
because of their technological importance in such areas as batteries, fuel cells, elec­
trochromic displays, energy storage in capacitors, sensors, and even bionics. Because 
the electrical response of ionic conductors is rarely of simple Debye-relaxation 
character except in limiting cases, one must be concerned with its generalization: 
dispersive response. 

Conductive-system dispersive response may be associated with a distribu­
tion of relaxation times (DRT) at the complex resistivity level, as in the work of 
Moynihan, Boesch, and Laberge [1973] based on the assumption of stretched­
exponential response in the time domain (Eq. (118), Section 2.1.2.7), work that led 
to the widely used original modulus formalism (OM-F) for data fitting and analysis. 
In contrast, dielectric dispersive response may be characterized by a distribution of 
dielectric relaxation times defined at the complex dielectric constant or permittivity 
level (Macdonald [1995]). Its history, summarized in the- monograph of Bottcher and 
Bordewijk [1978], began more than a hundred years ago. Until relatively recently, 
however, the-se two types of dispersive response were"not usually distinguished, and 
conductive-system dispersive response was often analyzed as if it were of dielectric 
character, even when this was not the case. In this section, material parameters will 
be expressed in specific form appropriate to the level concerned. 
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4.2 Characterization of the Electrical Response 265 

Conductive-system dispersion (CSO) usually involves thermally activated 
conduction extending to zero frequency plus an always-present bulk dielectric 
constant, eJ)c.o, usually taken to be frequency-independent in the experimental range. 
Dielectric-system dispersion COSO) often involves dielectric-level response with 
only weak temperature dependence, and it mayor may not involve a non­
negligible frequency-independent leakage resistivity, PCOCI = Pdc == Po == 1/0'0. There 
may be cases where separate processes lead to the simultaneous presence within an 
experimental frequency range of both types of dispersion, but this is rare for 
most solid electrolytes. Further complications are present when conduction involves 
both mobile ionic and electronic charges, neither of whose effects are negligible 
(Jamnik [2003]). Here only ionic, dipolar, and vibronic effects will be further 
considered, with the main emphasis on conductive rather than on dielectric 
dispersion. 

Since conductive-system dispersive response may be transformed and shown 
graphically at the complex dielectric level, and dielectric dispersion may be pre­
sented at 'the complex resistivity level, frequency-response data alone may be insuf­
ficient to allow positive identification of which type of process is present, since there 
may be great similarity between the peaked dispersion curves that appear in plots 
of p"(lO) and of e"(m) or of e:'(m) == e'/(ro) - (C1(/(i)£v). Here, ev is the permittivity of 
vacuum. This quantity has usually been designated as eo, as in other parts of this 
book. Its designation here as ell avoids ambiguity and allows clear distinction 
between it and e(O) = e' (0) == eo, the usage in the present section. 

Even CNLS data fitting at a specific temperature may not always allow unam­
biguous discrimination between CSD and DSD responses. But if data are available 
over a range of temperatures, discrimination is straightforward. Then, one generally 
finds that pr/T(or Po) and ~" the characteristic relaxation time of a model exhibit­
ing thermally activated CSD, involve the same activation enthalpy (usually termed 
the activation energy) (e.g. Macdonald [2002a]). This is an effective quantity when 
the pr~cess considered involves a distribution of activation energies. Dielectric dis­
persion response may not be thermally activated but when it is, 't"o certainly does not 
have the same activation energy as that of an independent leakage resistivity Po. A 
detailed study of discrimination between the two types of dispersion appears in 
Macdonald [1999a]. 

4.2.2 Types of Dispersive Response 
Models: Strengths and Weaknesses 

4.2.2. 1 ' Overview 

Conductive-system dispersive response involving mobile charge may be conceptu­
ally associated with the effects of three processes: 

1.	 electrode effects, which are particularly important at low frequencies (see 
Section 2.2.3.1) but may not be negligible at very high ones (Macdonald 
[2002a,b]); 
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2.	 ionic hopping effects, usually significant at mid-range frequencies 
(Macdonald [2002a,b ]); 

3. nearly constant loss effects primarily evident at sufficiently low temperatures 
over the usual frequency range or at high frequencies for higher tempera­
tures (Ngai [1999], 'Ngai and Le6n [2002], Macdonald [2002c, 2003b]). 

Three different kinds of models have been proposed for describing these 
'responses. A summary of some of the pertinent history of attempts to characterize 
the situation appears in Roling et al. [2001]. We shall consider here only models for 
the above behaviors that may be associated with mobile charge effects. The first and 
most desirable, would be a fully microscopic model that accounted for all the above 
processes, since they are all directly or indirectly associated with mobile charge in 
conductive-system materials. Unfortunately, this many-body problem involving all 
interactions is currently insoluble. 

A second approach involves approximate microscopic models whose log-log 
a'(ro) slope continuously increases toward a value of unity until a high-frequency . 
plateau is reached. No account of electrode effects is included in these approaches. 
In most other models, their high-frequency slope is related to a model parameter and 
quickly increases to a constant value less than unity as the frequency increases and 
before a final plateau begins to appear (Macdonald [1997b, 2002d]). 

The third approach involves a composite model involving separate parts: one 
accounting for ionic hopping; a parallel contribution representing ilie effect of the 
endemic bulk dielectric constant, E[)oo; possibly a part describing nearly constant loss; 
and finally a series response model to account for electrode effects. For fitting most 
limit.ed-range data, only t.wo or three of these parts are usually required and excel­
lent data fits are generally found using appropriate models. We shall therefore con­
sider some composite models in detail. 

It is noteworthy that most comparisons and fits of models to experimental data 
deal only with a'(w) response. An advantage of this procedure is that a'(m) and 
e"(OJ) ~ a'(m)/roE\! are the only ones of the eight real and imaginary parts of the four 
immittance levels that are independent of the presence of EJ)oo: 0"'(ro) fitting is thus 
simpler than fitting with any of the four complex immittance-level responses or with 
the six other real and imaginary parts. Such an approach does not allow estimation 
of EDo<>, however, and it not only forfeits the error-averaging inherent in CNLS fitting 
but also the latter's test for the applicability of the Kronig-Kramers transformations. 

,The following discussion does not include consideration of all reasonable 
models that have been proposed and used for conductive-system fitting, but only 
some widely used ones and ones of particular theoretical importance. 

4.2.2.2 Variable-slope Models 

The Mismatch and Relaxation Model. Although some apparent theoretical 
defects inherent in the mismatch-and-relaxation model of Funke [1998], have been 
pointed out (Macdonald [1999b ]), they have neither been explicitly recognized nor 
directly resolved. A recent empirical modification' of this approach (Funke et al. 
[2002]) seems, however, to avoid some of the problems of the earlier work. Further, 
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new work of Funke and Banhatti [2004J corrects further weakness in the model, 
although it still contains some empirical elements and thus cannot be considered a 
full microscopic response model 

The Symmetric Hopping Model. This model (Dyre and Schreder [2000]) 
ignores Coulomb interactions, claims to be of universal character in the extreme dis­
order limit, and yields response rather similar to that of the mismatch-and-relaxation 
model. Of the several approximate but specific microscopic hopping realizations of 
the microscopic model considered by Dyre and Schreder, the diffusion-cluster­
approxirnation one led to best results, although it involves low-frequency-limiting 
response in disagreement with the physically realistic dependencies of the real and 
imaginary parts of the ac conductivity on or and (f), respectively (Odagaki and Lax 
[1980], Macdonald [1996, 1997b, 2001a]. The mathematical complexities of both 
the mismatch-and-relaxation model and the diffusion-cluster-approximation one 
makes data fitting and the estimation of values of model parameters difficult, and 
thus no CN°LS fitting of data to estimate such parameters seems to have been pub­
lished so far. 

Comparisons of the variable-slope models with real-part conductivity data have 
rarely involved responses with a variation of G'({o)/(jo greater than three decades 
starting from a low-frequency experimental value of this ratio of nearly unity, and 
even for such a limited range they usually show increasing disagreement with exper­
iment toward the high end of this ratio where the relative frequency is large. In con­
trast, the results of a PKl -model (defined in the next section) fit of accurate synthetic 
data calculated for the microscopic diffusion-cluster hopping model and involving 
a range of (j'(ro)/ao greater than seven decades yielded a value of SF, the relative 
standard deviation of the fit, of less than 0.01 and showed no deviation between 
a'(w)/Gc> data and fit points on a log-log plot, as well as no apparent slope varia­
tion (Macdonald [2001b]). 

It is therefore clear that since the variable-slope models have not been com­
pared with data that would allow discrimination between their predictions and those 
of simpler composite models, the variable-slope approaches, while of theoretical 
interest, are currently less appropriate for data fitting and analysis than are simpler 
and well-fitting composite models. 

4,,2.2,,3 Composite Models 

The ze Power-law Model. Although we discuss some single dispersive­
response models here, in practice they must always take account of EvC>Q and of pos­
sibly some other effects as well and so the overall model is always composite. A 
frequently used fitting model is the ZARC one of Eq. (22), Section 2.2. It is now 
more often designated as the ZC and, when written at the complex conductivity level, 
it may be expressed as a(ro) = O()[ 1 + (icorzc)rzc], where 0 < Yzc:S 1. The exponent 
rzc has often been written as n and is the high-frequency-limiting log-log slope of 
the model. It has usually been found to have a value in the range 0.6 :SYzc:S 0.7. 

The real part of the ZC model has been termed Jonscher or universal dynamic 
response, but the word "uni versal" is inappropriate since CNLS °fits with the ZC or 
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with its (j~({ w) part have been shown to be much poorer than those with other com­
posite models (Macdonald [2oo0b, 2003a]). Finally, the identification of 't'zc, or its 
real-part-fitting counterpart, as the inverse of the hopping radial frequency of the 
charge carriers has also been shown to be unsuitable (Macdonald [2003a]), and a 
more appropriate choice, the CKI model, is discussed below. 

OMF and eMF Kohlrausch Response Models. Consider now the general 
definition of the I, normalized frequency response quantity of Eq. (3), Section 2.2, 
with k = D, 0, and 1. For k = D, U, in that equation is the complex dielectric con­
stant, e(ro), and for the other two values, U, is the complex resistivity, p(ro). Now I, 
may be calculated from either a distribution of relaxations times or from a tempo­
ral correlation function: see Macdonald [1996, 2002d] and Section 2.1.2.3. Although 
the pOoo and PIQQ quantities entering into the definition of U« and VI are usually either 
zero or negligibly small, they may be large enough to affect the frequency response
of the model at very high frequencies (Macdonald [2002dD. They will be taken zero 
for most of the present work. Then it follows that we may write Po(w) =p%(m) and 
Pl(CO) = Poll(w), where we ignore the distinction between p(x) and POI. 

The stretched-exponential temporal response of Eq. (63), Section 2.1, a versatile 
and theoretically plausible correlation function, is one whose corresponding fre­
quency behavior is now called Kohlrausch-Williams-Watts or just Kohlrausch 
[1854] model response, denot.ed here by Kk. It is also now customary to replace the 
a of the stretched-exponential equation by 13 or 13h with k =D or O. The k =D choice 
may be related to KD-model dispersive frequency response involving a distribution 
of dielectric relaxation (properly "retardation") times, and the k = 0 and 1 choices to 
two different distributions of resisti vity relaxation times and thus to KO and K I-model 
responses, respectively. Note that the f31 parameter of the important Kl model is not 
directly related to stretched exponential temporal response, as are the other 
Kohlrausch models, but the DRTs of the KO and Kl models are closely related 
(Macdonald [1997a]). Further, although the K'O and KO models are identical in form, 
they apply at different immittance levels and so represent distinct response behaviors. 

No closed form expressions are available for the frequency responses of the Kk 
models for arbitrary f3k values but algorithms for calculating such responses and for 
fitting data with them are included in the free LEVM CNLS fitting program 
(Macdonald and Potter [1987], Macdonald [2000a]) and are very accurate for 0.3 ~ 

f31< ~ 0.7 and somewhat less accurate outside this range. Further, LEV'M also includes 
closed-form exact-response expressions for the choices 13k = 1/3 and 1/2. 

Although defects in the 1973 OMF KI-model approach of Moynihan and asso­
ciates [1973] have been pointed out for the last 10 years, papers continue to be pub­
lished that use the OMF and ignore criticisms of it. It is therefore worthwhile to 
discuss it and its corrected version, the corrected modulus formalism (CMF), in order 
to make the issues involved clear to the reader, who can then make an informed 
choice between the two approaches. Although they both use the Kl response model, 
the OMF and eMF approaches are nevertheless crucially different. 

Since the OMF response model was originally derived at the modulus level, let 
us begin by writing for the KO model, Mo(ro) = iroeVp(/o(ro). In contrast, the OMF 

IL ._. ----J 
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analysis (Moynihan et al. [1973]) led to the following result for the MI(ro) response 
of the K 1-model in terms of lo(to), 

M1(co) =iOJevpol1 (m) =[1- IOJ (m)]/cZ (I) 

where, cz was defined as C/)oo, now written by supporters of the OMP as coo. The sub­
script 01 is used here to indicate that 100(m) isjustlo(m) in form but involvesji, rather 
than /30. 

The OMF K1 model of Eq. (l ), derived from a pure!y conductive-system cor­
relation function, improperly mixes together conductive-system and dielectric­
system responses through its identification of Ez as e[ft.n. This identification leads to 
a world of problems (e.g. Macdonald [1996, 2002a, 2004J) vitiating this approach 
and implying that the OM'P should be replaced by the CM'P or by a superior model, 

The CMF correction is simple: cz in Eq. (1) is defined as the limiting dielectric 
constant CCle>o == eel (00), a purely conductive-system non-zero quanti ty associated only 
wi th charge-carrier motion and defined below. Except for the explicit introduction 
of cz, the essence of the 1973 OMF derivation of Eq. (1) appeared in the earlier work 
of Macdonald and Barlow [19631. Incidentally, for the KG model, ceo"" == cco(oo) = 
O. For both the KO and CMF K 1 models, one therefore needs to account for the 
endemic presence of eoC'<) by including a free dielectric-constant fitting parameter, e; 
in the composite fitting model, now designated the CKO model for KOresponse and 
the CKI for the C'MF Kl situation. Then for the KO model Coo = e.; and for the 
CK 1 COQ = £C100 + C[)<><;. The separate existence of CClo<> is not recognized by users of 
the O'MF. Note that CKO and CKI fits of the same data lead to nearly the same 
estimates of e: 

It has sometimes been found useful to replace the ideal capacitance represented 
by e.r = £Doo by a parallel constant-phase element, the PCPE, cpc(m) == Apc(im)-r,·c, 
with 0 ~ lJ'c < I, reducing to a nearly ideal capacitance when Ypc « 1 so that 
Apc == C/)oo. The resulting composite model has been designated the PK 1. A series 
C'PE, the SCPE, O:~'({ (0) == cvAs({ilO)r~(' with 0 ~ rs-c ~ I, has often been found satis­
factory for modeling electrode effects, and it represents the effect at the complex 
resistivity level of a completely blocking series capacitance when r~c = 1. When 
SCPE response is combined with that of the CKl, the result is written as the C'KIS 
model. For the data fitting described in the,next section, it turns out that a more com­
plicated model is needed to represent electrode effects ITIOre exactly. 

The OMF KI was derived by considering electric field decay at constant dielec­
tric. displacement and is thus a macroscopic response model. It has been shown, 
however, that the CMF Kl, with cz=£Cloo, is completely isomorphic in form with the 
famous stochastic-transport microscopic analysis of Scher and Lax [1973a], a con­
tinuous-time, random-walk hopping model. The extended version of this model 
(Macdonald [2002d]) leads to response of exactly the form shown in Eq. (I), involv­
ing a quantity equivalent to 101(00) derived by Fourier transform from an initially 
unspecified correlation function associated with a waiting time distribution for 
hopping. It is the specific stretched-exponential choice for this function that leads to 
explicit K 1 response. These considerations show that the Kl may be derived by con­
sidering either macroscopic or microscopic processes, and such generality possibly 
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270 Chapter 4 Applications of Impedance Spectroscopy 

accounts for the ability of the CKI to fit a variety of conductive-system frequency­
response data exceptionally well (e.g. Macdonald [2000b, 2002a, 2003a)). 

The OMF expression for Cz = e: may be written (Macdonald [1996, 2001c, 
2002d]) 

(2) 

where the averages are over the resistivity "DRT for the KI model, and the OM"F /31 
is designated as /310 to distinguish it from that of the CM"F, /31e. Here the Maxwell 
quantity EMa is 

EMa::O'o'fo / Ev (3) 

x ==r/'fo; and To denotes the characteristic relaxation time of the K I model, and it 
will be used for other models as well. The part of Eq. (2) involving the gamma func­
tion is only appropriate in the absence of cutoff of the K I distribution of relaxation 
times (Macdonald [1996, 2001c]). 

In contrast, for the CMF KI dispersion model, cz = CCloo, where 

EC!e><> = CMa/\X-1)1 = eMa (X)OI = EMa/31(~r(/3i(!) 
(4) 

=[}N(qd)2 /(6kB£ v )]/T =A/T 

and N is the maximum mobile charge number density; r is the fraction of charge 
carriers of charge q that are mobile; and d is the rms single-hop distance for the 
hopping entity. The high-frequency-limiting effective dielectric constant, CCloo, asso­
ciated entirely with mobile-charge effects, is likely to arise from the short-range 
vibrational and librational motion of caged ions. 

Comparison of eMF equations with those of the Scher-Lax hopping model 
(Macdonald [2002d]) shows that the Kl mean relaxation time, (T)01 == 't:J(X)OI' is iden­
tical with the mean hopping time of the microscopic model, also defined as the mean 
waiting" time for a hop. The term involving N in Eq. (4), not included in the OMF, 
is fully consistent with the Scher-Lax model predictions. In practice, fits of the same 
data with the OMF KI and with the CKI of the CMF approach lead to very differ­
ent estimates of 'fo and of /310 and /31e. 

We expect that the quantities in the square brackets of Eq. (4) are usually tem­
perature independent, so the fitting parameter A is then itself independent of tem­
perature. It follows that in the usual case where To is thermally activated, TO() is 
activated with the same activation energy (Macdonald [2002a]). The presence of the 
N term of Eq. (4) shows that as the ionic concentration approaches zero, eCll>Q ~ 0 
and so CQC ~ eL)QO' requiring that CMa ~ 0 as well, in accordance with CMF fit results. 
The situation is different for the OMF expression of Eq. (2), however. In this case, 
OMP fits show that both e: and CMa approach the same constant value, that of CDCICl' 

There is then no dispersion, and the response reduces to that of single-time-constant 
Debye behavior. 

Fits of frequency-response data for a variety of materials, temperatures, and 
concentrations lead to {3IC estimates all very close to 1/3. But OMF fits, particularly 
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of data in M"(lO) form, the usual OMP approach, invariably yield appreciably larger 
values of {31C), ones that approach unity as the ionic concentration decreases or as the 
temperature increases. Such dependence led most users of the OMF to conclude that 
the correlation between charge carriers decreased as {310 increased. But constancy of 
{3le and the lack of Coulomb interactionsin the well-fitting CMF microscopic model 
fail to support this supposition. For most data, it has been found that C'KJ fits are 
superior to CKO fits of the same data, but even in situations where these fits are com­
parable, CK 1 ones are preferable to CKO ones because {3le == 1/3 estimates are vir­
tually independent of temperature and ionic concentration, while CKO {3n estimates 
depend strongly on these variables (Macdonald [2002a, 2003a]). 

Note that OM'F data fitting with 'LEVM leads to estimates of the free parame­
ters p(), ~H and {3J(), and 800 may then be calculated using Eq. (2). When {3le is taken 
constant at the value of 1/3, CMF fits yield estimates of Po, 'l1' and ex == C[)c.o, and CCloo 

may then be calculated using Eq. (4), with CCloo =6CMa for this value of {3le. Although 
po estimates are usually nearly the same for the two types of fits of the same data, 
as are also calculated values of e..., {310 is always appreciably larger than 1/3, and 
CMF Ttl estimates are generally at least an order of magnitude smaller than those 
from OMF fits. 

When the OMF approach is used to fit experimental data, a fatal flaw appears, 
one that invalidates any conclusions based on such fitting results. For good data, all 
eMF fits yield closely the sa.me estimates of To and {3le, independent of the immit­
tance level for the data. This is not the. case, however, for OMF fits. They lead to 
inconsistent results such that fits of the data in M(w) or M"(ro) form yield charac­
teristically large values of {310, usually falling in the range 0.45 ~ (310 ~ 0.55 for mid­
range temperatures and concentrations, while fits of the same data in a' «(0) form 
yield values close to 1/3. As mentioned earlier, since Eooo has no effect on a'(w) 
response, K1 and CK 1. fits at this level must yield the same estimates, and OMF and 
CMF fits are then equivalent. A table of such comparisons and further discussion of 
OMF problems appear in Macdonald [2004] and make it evident that the OM'P 
treatment of £D- as an intrinsic part of the K1 dispersive conductive-system model 
is incorrect. 

Coupling and Cutoff Models. The Ngai coupling model (Ngai [1979, 1998]), 
discussed in Macdonald [1998, 2005a], has been used in many conductive-system 
data analyses by Ngai and his associates. It assumes that for times longer than t, (a 
temperature-insensitive cross-over time of the order of 1ps) the temporal response 
of the system is of stretched-exponential character, and for shorter times it is of ordi­
nary exponential character. In its applications to frequency response behavior, the 
coupling model has made use of OMF estimates of {310, although the frequency­
response model directly corresponding to stretched-exponential behavior is the KO, 
not the K1, and generally {310 -:/:. (Jo. 

A superior alternative, the cutoff model, avoids this inconsistency, makes no use 
of the OMF, and is based on a cutoff of the K1 distribution of relaxation times at 
,= t; It does not involve the OMF assumption that the correlation between charge 
carriers decreases as (31C) increases for response at frequencies below to; = tlt., and 
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it properly undergoes a transition to simple Debye response for frequencies greater 
than lOC' Further, as shown in Macdonald [2005a], it leads not only to a smoother 
frequency-response transition around to = lOt: but also to satisfaction of the physical 
requirement that the Kl "Co(T) never decreases below te as the measurement tem­
perature becomes high. This requirement is not met by the fo(T) of the coupling 
model approach, suggesting that it should be superseded by the cutoff model. Both 
the coupling model and the cutoff one lead to non-Arrhenius behavior of C1<,(T), with 
a transition frorn a low-temperature Arrhenius activation energy to a smaller appar­
ent energy at ~igh temperatures (Macdonald [1998, 2005a], Leon et al. [1998]). 

Rationalization of the Barton, Nakajima, and Namikawa Relation. The 
Barton [l966], Nakajima [1972], and Namikawa [1975] empirical relation, usually 
designated by BNN, has played a useful role for some time in the analysis of dis­
persed frequency response data (e.g. Dyre [1988], Macdonald [1996], Dyre and 
Schreder [2000], Porto et al. [2000]). It involves a loosely defined parameter, p, 
expected to be of order 1, and Nakajima and Narnikawa believed that it arose from 
correlation between electrical conduction and dielectric polarization, apparently 
because it involved both measured dc conductivity and a dielectric strength quan­
tity Se. 

But as we have seen, for a conductive system both O() and ~e =s'(O) - e'(oo) = 
q) - ED<) may arise entirely from mobile charge effects and not involve bulk dielec­
tric effects at all. Then se =~ecl == felO - eCJc>o for the CKI model, and ~e =~eC() == 
ecoo for the CKO one. It was indeed pointed out by Macdonald [1996] that the Kl 
conducting-system model could lead to a quantitative value for p, one that depended 
on the value of {3le­

Here it is shown that the 'BNN expression is most reasonably interpreted as 
arising entirely from charge motion, and if the K 1 fit value of {3Je = 1/3 is a uni­
versal value, then the value of p is fully defined and the BNN equation is just a 
natural consequence of the apparent universal applicability or quasiuni versality of 
the conductive-system CKI model with {3IC =1/3. For ion-conducting homogeneous 
glasses and single crystals with charge motion allowed in all three dimensions it has 
been shown theoretically, in two independent ways that 1/3 is the only possible value 
of {3](0 and that the resulting high-frequency-limiting-response power-law exponent 
is 2/3 (Macdonald [2005b],Macdonald and Phillips [2005]). Consistent with these 
results, it follows that CKO model fits of such response lead to /30 = 2/3 when the 
data, extend to sufficiently high frequencies. 

TheBNN equation may be expressed as 

~e = p-I(Go/evlOp) = p-J(1:p / f o)EMa = p-l(vo/vp)eMa (5) 

Here as usual, 1:0 is the characteristic response time of a fitting model such as the 
CK 1. Further, to, == 21Wp = I/1:p, where vp is the frequency at the peak of the dielec­
tric loss curve, e;(v), and v, ~ vP' For {3le = 1/3, the Kl model leads to eC]oo =6e.-'1t1 
and to eelO =60eMa (Macdonald [2001c, 2005b]). Therefore, ~e= 54eMa and one may 
write for this situation [J = (v{)vp)/54. 

Sidebottom [1999] noted the similarity between the BNN equation and a scaling 
factor he proposed. This similarity arises because his result, appropriate for situa-
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4.2 Characterization of the Electrical Response 273 

tions where the frequency response shape of the model is temperature independent, 
the situation for the KJ model with a constant !3IC = 1/3 value, is a simplification of 
scaling factors associated with KO and K I models with variable !3b as discussed in 
Macdonald [200Ic]. Of course with accurate CN°LSfitting, scaling is unnecessary. 
The success of the Sidebottom scaling approach is further indirect evidence of the 
widespread applicability of the CMF CKI model with fixed {3J(; = 1/3. 

From nearly exact calculations of Kl model e.:"(ro) synthetic data derived from 
the parameter estimates of experimental data tits of the next section, with the elec­
trode contributions present or removed, one finds that the v.Iv, ratio is about 95 and 
89, respectively, leading to p estimates of about 1.77 and 1.65. The 1.65 value is the 
appropriate one forK1-alone response and is universal to the degree that Eqs (1) 
and (4) are applicable and {3le =1/3.Although many data fits suggest that this value 
of {3J<:-, is a constant for CKI fits, one would expect that as {31C ~ 1, p should also 
approach unity in the limit, and, for example, when f3le = 0.5, one obtains p == 1.27. 

Over the years since the introduction of the BNN equation, published p values 
have mostly fallen in the range of 0.5 to 10 but are often close to unity. Accurate 
estimation of p directly from experimental data is uncertain when electrode effects 
are significant and/or when the data range is too small to lead to good estimates of 
G<) and e: It is therefore appropriate to calculate p values from parameter values esti­
mated from data fitting. 

Although Hunt [1992] concluded that p cannot have a universal value, the 
present 1.65 value is consistent with most of the many BNN-related p estimates for 
experimental data presented by Dyre and Schreder [2000] in their Figure 3, ones 
mostly slightly larger than unity. Such agreement is further evidence of the appro­
priateness of the CK I model for many different materials. Earlier, Dyre [1988] 
quoted an estimate of p for a CTRW model different from the present Scher-Lax 
K lone of only 0.42, while for their microscopic symmetric hopping model Dyre 
and Schreder [2000] listed a value of 1.5 ± 0.4. The present results show that if CMF 
fitting is used, there is no need for the BNN since it is an automatic consequence of 
the applicability of such fitting. When CK1 CNLS fit parameters are available, 
however, the BONN equation with p = 1.65 may be used to obtain an accurate esti­
mate of vI' for the conducting-system part of the data alone. 

Finally, Porto et al. [2000J have recently suggested that the °BNN relation cannot 
apply for an appreciable range of concentrations because data fits show that se does 
not scale as NIT. But Eq. (4) shows that for the CMF Kl model eCJOQ does indeed 
scale in this fashion and involves d2 as well. Further, at constant {3IC' .scw and thus 
se also do so (Macdonald [200 1c, 2002a]). Therefore, this criticism does not seem 
appropriate. To test the matter, estimates of P were calculated from CKI CNLS fits 
of xcK20·( 1 - X(.)Ge02 gerrnanate glasses with the relative ionic concentration, XC" 

equal to 0.2 and 0.02, data kindly provided by Drs. Jain and Krishnaswami [1998J. 
The p estimates were 1.64 and 1.65, respectively, thus well verifying the appropri­
ateness of the BNN equation over a considerable concentration variation. 

Nearly Constant Loss Models. Nearly constant loss (NCL) is evidenced by a 
power-law dependence of cr'(m) on frequency with an exponent very close to unity, 
leading to e~:(ro) loss response that varies only slightly over a substantial frequency 
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range. It may appear directly at low temperatures or may contribute significantly to 
a( (0) response at the high end of the measured frequency range. In the first case, 
NCL is dominant and thermally activated hopping response is completely negligi­
ble (Macdonald [2001 a, 2003bJ. In the second case, hopping is dominant over most 
of the frequency range. 

Excellent reviews and discussions of NCL behavior in ionically conducting 
glasses appear in Ngai [1999] and Roling et al. [2001J. Although most authors 
believe that NCI-, arises from the restricted motion of caged ions or groups of atomic 
species, very few quantitative NCL models have been proposed. An important early 
composite one may be written as (j'(<.o) = <J()[ 1. + (alTo)"'] + Aaf, with 0 < n ~ :1 and 
s ::= 1 (Lee et al. I: 1991], Nowick et al. I: 1998]). The first term represents universal 
dynamic response, as discussed earlier, and constant loss occurs when s = l , not a 
viable situation for a finite frequency range. 

Although this composite model implies the additivity of hopping and NC'L 
effects, the appropriateness of such additivity has been challenged by Leon et al. 
[2001.] and Rivera et al. [2002]. 'They suggested an alternate serial (not series) picture 
in which NCL ceases to exist when hopping begins and ions begin to exit their cages. 
This is not a quantitative model, and their work dealt primarily with a'(oo) response. 
Fitting of both synthetic and experimental complex data provides strong evidence, 
however, that additivity should not be rejected, and analysis using a quantitative 
complex model such as the PKI suggests that hopping and NCL effects can exist 
simultaneously in a crossover region of finite length (Macdonald [2001 a-c, 2002a]). 
Here,the parts of the model are in parallel electrically and additivity is ensured. The 
PCPE part of the expression models Nf'L behavior and can extend over an unre­
stricted frequency range. 

Although a PCPE may be used to model NCL data with equal slopes for both 
a'(<.o) and £,;'(eu) since they both involve the samejs..« 1 exponent, SOInedata may 
be better represented by such power-law response fora'( w) but by a function that 
yields a very close approximation to constant loss for the e.;'(w) part of the response 
(Nowick et al. [1998]). In the absence of hopping, just the series combination of an 
ideal capacitor and a CPE can yield such behavior with very nearly constant loss 
over several decades of frequency (Macdonald [200Ia]). 

It was first shown in 2002 that the CPK:I compositemodel, where both C and 
a PCPE are in parallel with Kl, could be used to represent frequency-independent 
undispersed £D~ behavior, hopping behavior, and NCL (Macdonald [2002a]). This 
work, in turn, suggested that the model could be made more physically plausible by 
an effective medium approach, one that might be able to represent both kinds of 
N'C.L. behavior, as well as possibly non-negligible hopping effects. The resulting 
effective medium model, the ENIK1, indeed met this objective well (Macdonald 
[2003bD. It is based on the assumption of a background involving a constant £1)00 

term and a volume fraction, 11, of "inclusions" associated with ions vibrating over 
a limited region and represented by a PCPE. Thus, even in the absence of the Kl 
part, £E,~t< <.0) is complex, 

The EMKI model, unlike the CPKI one, leads to physically plausible low­
frequency-limiting slopes for t~(oo) and other immittance functions, as well as equal 
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or superior fits to those of the CPKI. As a first approximation, '1J is set equal to the 
rela tive ionic concentration, XC' Synthetic data for E;'~f( (u) extending over many 
decades of frequency and for a wide range of 1] values showed that although there 
is no finite range of exact constant-loss behavior, such response is well approximated 
for 11 near 0.25. In addition, when the response is approximated by a power-law 
model, the resulting very small exponent may be either positive for 11 «0] or neg­
ati ve for 1] ~ 0.25 over the higher-frequency region of the response. 

There are two important questions arising from the present model discussions. 
First, a microscopic model needs to be developed that leads to {31c == 1/3 and is less 
approximate than the Scher-Lax one and second, a microscopic model is also needed 
that yields response like the present effective medium model and takes explicit 
account of the detailed interactions, electromagnetic and otherwise, between vibrat­
ing ions and bulk dipoles. 

4.2.3 Illustration of Typical Data 
Fitting Results for an Ionic Conductor 

CNLS fitting has been little used by most workers who have analyzed frequency­
response data for solid ionic conductors. The majority of published work deals pri­
marily with either cr'(v) or M"(v) response, but not usually with both or with 
simultaneous fitting of real and imaginary parts of an immittance data set. An appar­

/(ent advantage of the fitting and analysis of er v) data alone is that it and its direct 
transform, E!/(OJ) == er'((j)/(UEl,l, are the only imrnittance-level parts that include no 
effects from CDfXJ' as already mentioned in Section 4.2.2.1. But much more can gen­
erally be learned by considering full complex response at other immittance levels. 
Here we will only deal with data that do not extend to high enough frequencies or 
low enough temperatures to require a nearly constant loss contribution. 

It is therefore worthwhile to illustrate, for a typical data set, the usefulness of 
CNLSo fitting and of various plots of the results. For generality, the data set selected 
is one for which both .. bulk dispersion and electrode effects are non-negligible. It 
was kindly provided by Dr Carlos Leon and involves the fast ionic conductor 
LL)o..J.~a()05rTiOoo~, measured at T'=225 OK (Leon et al. [1998]). This set is designated here­
after as LLTO.5. Fitting was carried out using the 0 circuit of the LEVM program. 
To allow independent work with this data set, its full LEVM input file, 225Z36EL, 
has been included in the LEV11 FITTESTS folder of t.est files for the 0 circuit. 

Figure 4.2.1 shows the full 0 circuit. For LEV~l, only those circuit elements 
that are given non-zero values are used in fitting. Here "DE" designates a distrib­
uted circuit element, one that can be selected from a large number of different ele­
ments available in LEVM. DED involves a dielectric distributed element, such as 
the oDSoO, a dielectric-system dispersive element. Similarly, DEC~ designates a con­
ductive d.istributed element, such as the CSD. In LEVM, the series inductance shown 
in the figure may be replaced by a short circuit, a resistor, or a capacitance, ('s. 

Since it was initially established that the LLTO.5 data sets for different tern­
peratures involved thermally activated response and were therefore of CSD charac-
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Figure 4.2.1. The LEVNl fitting circuit O. It may be used as shown for tilting immittance data in 

raw or specific form. The DE blocks luay each be selected as anyone of the many available 

distributed-circuit-clement response models. 

ter, we begin by carrying out eMF fits of the T =225K data. The bulk response was 
thus represented by theKl model in the DEC part of the circuit. It involves the 
parameters po, rm and {3lC, but, as usual, a {3IC value of 1/3 yielded best results. There­
fore, this value was taken as fixed for all the present tits. When the eMF CK 1 model 
was employed, £/)<><> was represented by the CrA~ element of the circuit. As usual, 1(><> 
was found to contribute nothing to the fits and was thus not used thereafter. 

For blocking electrodes the simplest element to represent their effect is a series 
capacitance. C5;, but electrode processes are generally too complicated for adequate 
representation by a single capacitance. The next level of complexity, often found 
adequate, is to use a series constant-phase element, the SePE, in the ·DE} position 
of the circuit. A recent analysis of the use of a CPE for modeling electrode behav­
ior appears in Bisquert et al. [1998J. For the present data, for which electrode effects 
are far from negligible, it was found that they were best represented by a SePE in 
parallel with the C3 capacitance of the circuit, all in series with C,~" involving a total 
of four free fitting pararneters. The full CK1 model including these free electrode­
related parameters is termed the CKIEL and involves a total of seven free 
parameters. 

The CK lEL CNLS fit of the data at the complex resistivity level using LfivM 
with proportional weighting led to the estimates £J)~) == 83.08, po == 1.784 X 105 

0 h ll 1­

em, and To == 4.488 x lO-~ s. In addition, the estimate for the y,)·c' parameter of the 
sePE was about 0.641. The fi t also led to the estimates Eo == 254, £elO == 171, ECJ<~ 

== 17.1, Eoo == 100, and L1e = L1Ecl == 154. Exactly the same parameter values were 
obtained for proportional-weighting fitting at the complex modulus level. The rela­
tive standard deviation of the overall fit, Sh was 0.0072, indicating an excellent 
result. 

When electrode effects were represented only by a SCPE, the CKIS model, SF 
increased appreciably to 0.015. This f t led to a larger XS'c estimate of about 0.897 
and to the slightly different estimates for EDc:" C{), £CI<), Eel"", Coo, and ~£ of about 79, 
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Figure 4.2.2 . Th ree-d imensional log-log- log plot, with planar projections . The so lid lines and so lid 

circles sho w the data, and open circles identify points from CK IEL-model CNLS fitting of the Li." 

La""TiO! data (denoted LLTO.5 hereafter) at the com plex resistivity level. The quanrities with a 

subscript " n" in the axes names of this and subsequent figures are of unity magnit ude and are included 

to make the arguments of the logarithms dimensionless as they should be. 

254 ,175, 17.5,97. and .IS7, respectively. In the limit of low frequenc ies, the four­
parameter model for electrode behavi or is dominated by the blocking capacitor. C.I-. 
Its value . expressed in dielectric-constant form was more than 30 times larger than 
the CKI EL estim ate of co. 

Figure 4.2.2 present s a 3-D log·-Iog--Iog plot of complex-resistivity data as well 
as fit point s for the CKIEL model lit. The projections in the three planes invol ve 
only the data . The 3-D line shows every other one of the data points and every fourth 
fit point. Since the open-circle fit point s enclose their corre sponding data point s sym­
metrically. no dev iation s are evident. The projection lines at the two back plan es 
clearly show the transition to elect rode-related power-law behavior toward the low 
end of the frequency scale. Space restricti ons preclude presentation here of the three 
other 3-D immitt ance plots. 

Figure 4.2.3 shows the behavior of the real and imaginary part s of the complex 
modulus . In addition to the CKlEL-fit lines, those for the CK I and Kl parts of the 
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Figure 4.2.3. Log-log complex modulus data and tit results for A1'((I) and A1"(w) obtained from
 

fitting the Mt (0) complex data with the CKI EL model. In addition, predictions for the CK I and K]
 

parts of the full model are shown.
 

1110del are also shown. They were calculated using. inLEYM, the appropriate param­
. eter values found from the full CKIEL fit, and thus they are virtually exact repre­

sentations of the model behavior for these values. The present 1\1' results show that 
electrode effects are dorninant at low frequencies and have only a minor effect at 
the high-frequency end of the data range. As one would expect, the difference 
between the CKI and Kl results, associated entirely with BD ,,,,, becomes great at the 
high-frequency end. 

It is often been stated that a virtue of plotting and analyzing data in Mil form is 
the resulting suppression of electrode effects. The present results demonstrate such 
suppression near the M" peak. but it clearly diminishes as the frequency departs from 
the peak value. Further, since the same parameter estimates are obtained for both 
p(m) and At/(m) tits when proportional weighting is employed, the suppression is 
graphical but not significant for least-squares fitting. Finally, it is evident that the 
peak of the Kl NI" curve appears at much higher frequencies than that of the data 
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Figure 4.2.4. Log---Iog <1~(W) data and fit results from CNLS fitting as in Figure 4.2.3. The CKI SG 

results eliminate both electrode effects and those of O(). 

and the CNIF CKI one and the breadth of the Kl curve at half height is also much 
larger. This difference is associated with the CKI value of Pi of 1/3 and a value 
greater than 0.5 found for OMf fitting of the IV1(w) data, as expected from the dis­
cussion in Section 4.2.2. 

'Figure 4.2.4 compares 0"«(0) data and CKIEL fit values, as well as individual 
contributions to the full model, For this immittance level, there is no effect from coco, 
so here CKIl~,L and KIEl... tit results are equivalent. The CK.lSCi results were 
obtained by first setting the C;D' parameter of the Figure 4.2.1 circuit 'to -OJ). This, 
together with the KI parameter estimates obtained from the C~Kl.E~I-, lie were then 
used in LEV1\.1 to calculate the resulting exact response of the combination and thus 
to eliminate the effect of 0'0' It is evident that, as expected, at the high frequency 
end of the range the a/( ())) response is nearly entirely associated with the ac part of 
the Kl model, with only a small contribution from electrode effects apparent. 
Purther, the data curve shows that no accurate value of O() could be directly esti­
mated from it, making it essential that all tits should account for electrode effects. 

Rather than present O'''(w) fitting results, it is appropriate to show those for the 
corresponding £'((u), related to a"(w) by a factor of l/cv()). Such results are pre­
sented in the top part of Figure 4.2.5. It is clear that the t~'(w) data curve alone does 
not allow one to obtain a reasonable estimate of Cofrom it. Removal of the electrode 
effects obtained from the full CKIEL fit leads to the low- and high-frequency plateau 
values Co and e:, respectively, while subsequent removal of C[)'''J leads to the limiting 
conductive-system Kl-rnodel quantities CelO and ECloc. It is again evident that elec­
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Figure 4.2.5. Log-log E( (0) data and fit results from CNLS fitting as in Figure 4.2.3. The exact 

CK 1 response is that without electrode effects, and the Kl response eliminates the effect of ED"" as 

welt and shows the approach of the data toward the limiting fCl<>-> value. The peak of the CKI SG £;'(0) 

curve is denoted by vp• 

trode effects playa minor but not completely negligible role at high frequencies. 
The bottom part of the present figure shows E"( ill) results, where again EDor• plays no 
role. The frequency at the peak of the CKlSG curve, thar for E;'(O)), is shown by vp 

and is needed for the calculation of the .BNN quantityp. 
Finally, Figure 4.2.6 is a linear-scale complex-resistivity-plane plot. Here, to 

allow greater resolution, lower-frequency points than those shown have been 
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results demonstrate clearly the dominance of electrode effects up to quite high frequencies. 

omitted. The results indicate that electrode effects remain important over much of 
the freq uency range, even toward the higher frequencies. Comparison of corre­
sponding data and tit points shows some very rninor discrepancies for the spur part 
of the response, ones that are too small to be evident in log-log plots. The low­
frequency end of the C:K l-only part of the response approaches t.he axis at 90° as it 
should and defines the value of p.; It is important to note that extrapolation of the 
electrode spur line down to the p' axis leads directly to an excellent estimate of po. 
This can be useful when the temperature is so high that little or none of the bulk arc 
is included in the measurement range and CNLS fitting J11ay not have been carried 
out. However, such extrapolation fails for rnixed ionic and electronic conduction 
si tuations. 

In a full data analysis, one would first determine the 1110st appropriate model 
and then use it to carry out. fits for each different temperature available. Here, only 
partial results for fits of the present T = 225K data' wi th a few other models will be 
discussed. First, SF values for CNl.,S proportional weighting fits with the CKOEL, 
OMF KIEL, and HDSD" EDAEEL models were all close to O.007~ excellent fits. 
Here, the EDAE 1110del involves an exponential distribution of activation energies 
fitted at the complex dielectric level and assuming dielectric-system dispersion. 
Since the fits were all comparable, selection of a best model must depend on other 
criteria. 

The (~KOEL model led to CNLS estimates of Eo, Ecw = ~E, and e: of about 255, 
145, and 97, respectively. Since this model always involves £('o,-v:J = 0, it does not 
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yield a separate estimate of CI.k:;, bur its f30 and y~c estimates were about 0.487 and 
0.635, respecti vely. Note that with (3le = 1/3, f30 + p!c "* 1 here. Even when the 
CKIE.L and CKOEl.# models yield comparable tits and nearly t.he same estimates for 
some common parameters, the former, with fixed f31 = 1/3, should be preferred 
because it yields not only a comparable fit with fewer free parameters but because 
it also leads to separate estimates of both CCI<><> and CD",,,. 

For the O~1F Kl EL 1110del, Co = C(l(h 11£, and e..."= CCIQ<> values were all calcu­
lated from the CNLS fit parameters, leading to estimates of about 233, 118, and 115, 
respectively. They thus agree less well with the CK1EL. and CKOEL tit results. The 
above A1(u.})fit results used proportional weighting, butM"(uJ) ·N.LS tits with either 
proportional or unity weighting led to closely similar estimates. The (310 and Yl.)C 

values estimated for these fits were about 0.604 and 0.607, respectively. Finally, an 
OMF'KIEL fit of the o'(o» part of the data, with electrode parameters fixed at their 
KIEL M(w)-fit values, led to Eo, Se, and Be><, estimates of about 175, 156, and 18.5, 
respectively. The last value is clearly an estimate of the CKI Be],,,,, quantity here. 
Further, the {310 estimate was 0.338, very close to the fixed value of 1/3 for the 
CK lEL fitti ng. The stark inconsistency between the OMP 1\;1(00) and o'(co) (3l0 esti­
mates, also observed in all other such published comparisons, is a clear indication 
of the failure of the OMP to take proper account of c[)oo. Therefore, it is a particu­
larly inappropriate fitting model and should not be used. 

Although the present data involve CSD rather than DSD behavior, it is of inter­
est to fit at the dielectric level with a DSD model, one that involves a Po parameter 
separate from the dispersion 1110del. 'The asymmetric E.DAE model, available in 
I...EV~l, is appropriate for this situation and involyes the bulk parameters LlE, e: To, 

and It:, where YE falls in the range 0 < )1: ~ 1. CNLS fitting using the .EDAEE.L model 
with proportional weighting led to estimates of the above quantities of 131, 109, 
9.11 x lO-6s, and 0.473, respectively. The prediction for Eo is therefore 240 and the 
estimate for Po was 1..73 x 105 ohm-ern. 

The standard deviations of parameters common to both the CKI EL and 
EDAEEL tits were appreciably larger for the latter than for the former even though 
their overall SF values were nearly the same. Not only does the EDAEELmodel 
involve two more free parameters than does the CKIEL one, but its separate treat­
rnent of fJo is inappropriate for a CSD situation. The present results clearly indicate 
that for the LLTO.5 CSD data, and probably for most such data, the CKI model with 
f3l = 1/3 is the most appropriate bulk fitting and analysis model. Its BNN p value 
was found to be 1.65, as was that for the EDAE fit, and that for the KO was about 
1.33. 

4.3 SOLID STATE DEVICES 

WilliaUl B. Johnson 
Wayne L .. Worrell 

In this section examples of several different applications of impedance spectroscopy 
(IS) will be presented. Four different devices have been chosen: solid electrolyte 

Barsoukov, EvgenijtEditor). Impedance Spectroscopy: Theory, Experiment, and Applications (2nd Edition). 
Hoboken, NJ, USA: John Wiley & Sons, Incorporated, 2005. p 282. 
http://site.ebrary.com/lib/uncchlDoc?id=10114201&ppg=302 


