JOURNAL OF APPLIED PHYSICS 99, 074106 (2006)

Comparison of methods for estimating continuous distributions

of relaxation times

Enis Tuncer®
High Voltage and Dielectrics, Applied Superconductivity Group, Fusion Energy Division,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6122

J. Ross Macdonald
Department of Physics and Astronomy, University of North Carolina, Chapel Hill,
North Carolina 27599-3255

(Received 5 July 2005; accepted 20 February 2006; published online 5 April 2006)

The nonparametric estimation of the distribution of relaxation-time approach is not as frequently
used in the analysis of dispersed response of dielectric or conductive materials as are other
immittance data analysis methods based on parametric curve fitting techniques. Nevertheless, such
distributions can yield important information about the physical processes present in measured
material. In this paper, we apply two quite different numerical inversion methods to estimate the
distribution of relaxation times for glassy LijslaysTiO5 dielectric frequency-response data at
225 K. Both methods yield unique distributions that agree very closely with the actual exact one
accurately calculated from the corrected bulk-dispersion Kohlrausch model established
independently by means of parametric data fit using the corrected modulus formalism method. The
obtained distributions are also greatly superior to those estimated using approximate function
equations given in the literature. © 2006 American Institute of Physics. [DOI: 10.1063/1.2188053]

I. BACKGROUND

Broadband dielectric (also known as immittance or im-
pedance) spectroscopy is widely used to characterize materi-
als and to help understand the mechanisms involved in such
challenging areas of condensed-matter physics as conductiv-
ity, molecular relaxation, liquid-glass transition, etc.' In this
experimental technique an electrical property of the material
is recorded as a function of probing field frequency v. Data
may be expressed at one of the four specific immittance lev-
els: (i) the complex resistivity p(w), (ii) the complex modu-
lus M(w)=1weyp(w), (iii) the complex permittivity &
=[M(w)]"!, and (iv) the complex conductivity o(w)
=1wepe(w)=[p(w)]™". Here, w is the angular frequency w
=27y, &, is the permittivity of free space, and 1=v-1.

Once a data set is acquired, it may be expressed at an
appropriate immittance level and then analyzed to obtain
valuable information about material processes. Often em-
ployed procedures that have been used to analyze frequency-
response data are (a) using the Kohlrausch-Williams-Watt
(KWW) approached derived from stretched exponential be-
havior in the time domain,>* (b) the Havriliak-Negami em-
pirical expression,4 and (c) estimation of the distribution of
relaxation times (DRT) inherent in the data,>”~° an approach
not as commonly employed as the other two. Unlike the
KWW analysis of (a), procedure (b) is a data fitting method
that does not lead to added understanding of the physical
processes presented in the experimental material. On the
other hand, KWW analyses involve fitting models whose pa-
rameters are all of physical significance. Although they are
useful for comparing fit parameters for various materials at
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different state variable levels they are less appropriate for
data involving several DRTs associated with different physi-
cal processes.

The DRT approach of (c) is an elegant method for inves-
tigating the contributions of relaxing units to the total relax-
ation and for determining the influence of state variables on
the relaxation. In the presence of different processes or broad
relaxations, the DRT approach is superior to the parametric
ones since (1) no a priori assumptions are needed, i.e., a sum
of empirical expressions, etc., (2) the actual distributions in a
given data set are initially unknown, (3) a DRT can be re-
lated to various physical parameters of the system, (4) and
when there are two different overlapping relaxations present,
their dependencies on state variables would be easy to iden-
tify and to observe the influence of the state variables on the
distributions. A specific case of importance might be the
need to separate electrode effects from the bulk response of
the material. Frequently, the calculated long-time distribution
spectra can be reliably assigned to electrode effects because
a break in the slope of the response is evident where it be-
gins. Then, the estimated part of the distribution associated
only with electrode polarization can be used to generate its
associated frequency response for subsequent comparison
with a specific model. Alternatively, it can be eliminated
from the estimated distribution and the remainder used to
generate the bulk response.

As an example, the dynamic complexity of the relax-
ation system can be determined by estimating its DRT and
thus establishing whether it is intrinsicly broadening (homo-
geneous) or a distribution of responses (heterogeneous).'® A
distribution may be characterized as either discrete (com-
posed of individual points) or continuous, and DRT analysis
can unambiguously distinguish between these two
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possibilities.6’8 Recently, nonresonant spectral hole burning
technique has been employed to resolve distinct continuous
distributions experimentally in order to identify multiple re-
laxing domains in materials."!

In this paper, we compare the results of two different
DRT inversion methods for analyzing a set of experimental
frequency-response data that involves a continuous distribu-
tion. We also compare the accuracy of two equations for
estimating appropriate distribution functions proposed by
Bottcher and Bordewijk.5 Although estimation of discrete-
point distributions is not an ill-posed mathematical problem,7
distribution estimation of continuous distributions, the usual
situation, is ill posed. It is therefore particularly important to
assess the utility and power of different DRT estimation pro-
cedures for a well-defined data situation.

Il. NUMERICS

Experimental data, with M=52 points, for the
LigsLay sTiO5 (LLT) glass at 225 K,"” expressed at the com-
plex resistivity and dielectric levels, were found to involve
an appreciable component associated with electrode polariza-
tion effects. LLT conducts by ionic hopping and involves a
finite dc resistivity, op=0(0). Further analysis of data for
this material over a range of temperatures established that
both o) and the characteristic relaxation time of the disper-
sion of the bulk material, 7y, were thermally activated with
Toy and 7, having the same activation energies.13 This analy-
sis assumed that the data involved conductive system rather
than dielectric-system behavior and involved K1 KWW
Kohlrausch-model response.

Such behavior indicates that it is most appropriate to
identify the bulk dispersive response of this material with a
conductive-system dispersion of resistivity relaxation times,
rather than with a dielectric-system distribution of permittiv-
ity relaxation times, one where o, would be naturally inter-
preted as a leakage conductivity unrelated to the bulk dielec-
tric dispersion process. Since conductive-system response
has already been analyzed for this data set,” and since it has
been shown by data fitting that it may often be difficult to
discriminate between fits of conductive-system and
dielectric-system models when only a single data set is
available,” we have elected to compare the two different
DRT estimation procedures by determining their dielectric-
system DRTs from the present data expressed at the complex
permittivity level.

The two analysis methods considered here will be des-
ignated I and II. Method I involves a weighted nonlinear
least-squares approach for estimating dielectric distribution
strength points, g;, at corresponding relaxation-time values
7;, with 1<i<N." 1t allows either discrete or continuous
DRTs to be estimated in terms of the {g;, 7;} values and their
uncertainties, with the set of 7;’s either taken fixed or free to
vary. Better results are nearly always obtained with 7;’s taken
free, as in the present work. In addition, the data may be in
temporal response form or in the frequency domain involv-
ing complex response or either its real or imaginary part.14
An extensive fitting and inversion program named LEVM that
includes method 1 is available for free downloads."> Method
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IT is based on a constrained least squares with the Monte
Carlo procedure.8 It leads to delta sequence distributions'®
when applied to discrete DRTs.? Recently, a method rather
similar to that of II has been independently proposed, one
that uses nonparametric Bayesian statistics for solving simi-
lar inversion problems.17

Since we are interested in the dielectric DRT for the
dispersive bulk relaxation process, it is important to elimi-
nate the contributions to the data arising from partly blocking
electrode effects before estimating the DRT. To do so, a
KWW response model, the KD, involving a stretched-
exponential shape parameter Bp, a characteristic relaxation
time 7, and a Ae strength parameter, was used for fitting the
original full data with inclusion of free parameters to model
the electrode effects, the high-frequency-limiting bulk di-
electric permittivity, €., and 0'0.18 The fit was excellent and
yielded the following rounded estimates for B, 7y, Ag, and
€51 0.547, 2.63 ws, 137, and 112, respectively.

The precise fit values of these parameters were then used
in LEVM, omitting those of o and the electrode ones, to
generate a set of M=300 data points representing just the
bulk part of the Kohlrausch response to eight significant fig-
ures or better. This data set is used below to estimate its DRT
by the methods mentioned above. In addition, given only
values of Bj, Ae, and a set of logarithmically distributed
values of 7 for the range from about 0.96 ns—10 ps, LEVM
was employed to calculate highly accurate values for the KD
DRT comparison with the inversion estimate.

The complex dielectric permittivity may be expressed in
terms of a general DRT formalism,

o) = o +(5,~ 5.) J sndnr (1)

1+iwT

where £,=¢&'() and e,=¢'(0) (the quantity Ae=¢g,—¢., is
defined as the dielectric strength), and g(In 7) is the distribu-
tion function. For a delta sequence distribution'® Eq. (1)
leads to simple Debye response.19 Both applied methods I
and IT are based on Eq. (1) and are further described in Refs.
7 and 8, respectively.

In Fig. 1, the complex dielectric permittivity raw data for
LLT are presented without transformation. As evident in the
inset of Fig. 1(a) the data include two different processes,
with the right spur part representing low-frequency electrode
polarization effects. The dashed vertical line (- - -) in the
inset indicates the approximate crossover position (shown at
40 krads™") from bulk dielectric-system dispersion to con-
ductivity and double-layer effects.' Since all the open-circle
fit points in the figure enclose their corresponding solid data
points symmetrically, one may conclude that the fit is excel-
lent.

After we remove the contributions of the Ohmic conduc-
tivity and electrode effects to the raw data, as described
above, the pure dielectric-system dispersion is obtained and
is presented in Fig. 2 and denoted by &, This data set,
implicitly involving the KD-model DRT, was next used to
estimate the DRT by the inversion methods I and II. Some of
these results are shown in Figs. 3 and 4. The thick solid line
is that of the KD DRT with B,=0.546 57. Note that the data
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FIG. 1. (a) Real and (b) imaginary parts of the raw dielectric permittivity of
LLT at 225 K. The solid line and solid points shows the full data, including
electrode effects and that associated with Ohmic conductivity. The open-
circle symbols show the predictions of a full complex nonlinear least-
squares fit of this data set. The subscript R in the axis labels indicates that
the data are presented without any transformation (raw data). The inset
shows the same data plotted at the complex resistivity level, and the arrow
in the inset indicates the direction of increasing frequency. The vertical
dashed line shows the division between the two types of response present
and defines the critical radial frequency ..

of Fig. 2 contain neither systematic nor random errors and
thus allow comparison of the utility of methods I and II
without such confounding factors. It is striking that the two
methods both yield very accurate estimates of the exact DRT.
The precision of the estimates obtained by method I using
the real part of the data (Fig. 3) is the best of the results
shown and is remarkably small, especially for the points at
and to the left of the peak. We should also remember that
increasing the number of randomly selected 7 values used in
method II improves the DRT estimates; ~25 0007 values
were used in the present work.

Method II selects random 7 values over a wider range
than those defined by the range of the original frequency
window. The range of the original data (eg) is about
2 krads™' < <200 Mrads™!  corresponding to 5 ns
<500 ws, somewhat smaller than the 7range following from
the exact data of Fig. 2, as defined above.

In order to illustrate the utility of method II, its DRT
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FIG. 2. (a) Real and (b) imaginary parts of the dielectric permittivity of LLT
at 225 K after elimination of the contributions of Ohmic conductivity and
electrode polarization effects and generation of virtually exact KD-model
data using LEVM. The axis identifiers are shown with a subscript mce denot-
ing subtracted Ohmic conductivity and electrode effects.
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FIG. 3. Various estimates of unnormalized distribution of relaxation times
following from the data presented in Fig. 2. Here the implicit scaling factor
for these distributions was Ag. The thick solid line is the unnormalized
KD-model distribution. Method I open-square symbols show points esti-
mated using the real part of that data and the open-circle ones show those
obtained from the imaginary part. The sizes of the symbols were determined
by the estimated uncertainties of the fits. The many solid-stair lines show the
results of method II estimation procedure using the full complex data. The
vertical dashed line here and in Fig. 4 shows the critical time constant. For
comparison, the inset presents method II estimates using the raw data of
Fig. 1.

determined for the raw &5 data is shown in the inset of Fig. 3
with solid vertical lines and is compared to the actual distri-
bution. Note that the presence of electrode effects results in
an added distribution with a peak at 7=100 ws. In addition,
the distributions obtained from the &z and ¢, data sets are
nearly the same for 7<<10 us except for the presence of a
small peak of the e distribution estimate near 7~ 32 ns.
This could possibly be due to the raw data where no a priori
assumption is made of the presence of KD-model response
(emee)- Also note the effects of the relaxation-time cutoff for
fast processes at 7<<100 ps. Although method II generates
undesired values at much higher frequencies than those in
the frequency window, it predicts the DRT over as much as
one decade on either side of the frequency window. Since the
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FIG. 4. Comparison of several different normalized DRT estimates. Identi-
fications are the same as those in Fig. 3 for similar quantities. Shown are the
exact KD-model DRT, method I real ((J) and imaginary (O) data estimates,
the exponential smoothing of method II results (x), and approximate DRT
estimates calculated directly from the data of Fig. 2 using Eq. (2) (---) and
Eq. (3) (-+-). The inset shows method II estimates of DRT as well as esti-
mates using Egs. (2) and (3), which have been normalized to be unity at
their maximum. The solid line ( ) in the inset shows the actual DRT,
scaled by 1072, for comparison.
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present version of method I only allows estimation of a
maximum of 19 DRT points, it was not used to analyze the
present raw data set because of the large number of points
necessary to well define a wide, composite DRT, one that
includes both bulk and electrod polarization effects, as is the
case here.

To further emphasize the utility of the numerical inver-
sion methods for estimating a DRT, we compare our results
with those of Bottcher and Bordewijk5 in Fig. 4. They de-
rived approximate DRT expressions from the real and imagi-
nary parts of the dielectric permittivity and their derivatives
with respect to natural logarithm of angular frequency (In w).
Two such approximation distribution functions g are listed
below:

g1(ln ™) = 2¢"(w)(mhe) ™, (2)

g(nw™')=-Aelde' (w)/d In w, (3)

where the Fig. 1 data fit result for Ag, 136.93, is used along
with &, data set values. Clearly these expressions lead to
broader distributions and to far less accurate DRT estimates
than our inversion ones. In the inset of Fig. 4 method II DRT
estimates obtained from the raw data are again illustrated,
together with those following from the application of Egs.
(2) and (3).

Note that the main difference between Figs. 3 and 4 is
because of the numerical values calculated, which are the
actual results Agg(In 7) from the optimization by the meth-
ods in Fig. 3 and its normalized form g(In 7) such that
Jg(In 7)dIn 7=1 in Fig. 4, or Agg(In 7)/max[Aeg(In 7)] as
in the inset of Fig. 4. In situations where a particular polar-
ization process is not completely observed because of unin-
cluded relaxations, normalization would necessarily be in-
complete and estimation of the dielectric strength of the
relaxation Ae would yield an inadequate value. Therefore,
such a discrepancy as that evident on comparing the results
shown in the insets of Figs. 3 and 4 can readily occur, when
comparing such DRT esmimates. One way to avoid the dif-
ficulty is to express the data in Agg(In 7) form as in Fig. 3.

Finally, if several peaks or knees are present in the DRT,
it might be more appropriate to use a well-known distribu-
tion function, i.e., Lévy distribution, to identify each peak in
the results.® The utility of an assigned distribution for a par-
ticular process might then be more appropriate than using a
traditional polarization model based on lumped circuit ele-
ments, and could help one to better comprehend the dielec-
tric relaxation phenomena present.

lll. CONCLUSION

Two approaches for estimating a DRT in conductive and
dielectric systems are applied to experimental LLT dielectric
permittivity data at 225 K. Both methods are capable of
yielding well defined unique distributions for a given data
set.
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