
Journal of
www.elsevier.com/locate/jelechem

Journal of Electroanalytical Chemistry 602 (2007) 255–262

Electroanalytical
Chemistry
Deconvolution of immittance data: Some old and new methods

J. Ross Macdonald a,*, Enis Tuncer b

a Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA
b Applied Superconductivity Group, Fusion Energy Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6122, USA

Received 26 September 2006; received in revised form 29 December 2006; accepted 11 January 2007
Available online 14 January 2007
Abstract

The background and history of various deconvolution approaches are briefly summarized; different methods are compared; and avail-
able computational resources are described. These underutilized data analysis methods are valuable in both electrochemistry and immit-
tance spectroscopy areas, and freely available computer programs are cited that provide an automatic test of the appropriateness of
Kronig–Kramers transforms, a powerful non-linear-least-squares inversion method, and a new Monte Carlo inversion method. The
important distinction, usually ignored, between discrete-point distributions and continuous ones is emphasized, and both recent para-
metric and non-parametric deconvolution/inversion procedures for frequency-response data are discussed and compared. Information
missing in a recent parametric measurement-model deconvolution approach is pointed out and remedied, and its priority evaluated.
Comparisons are presented between the standard parametric least squares inversion method and a new non-parametric Monte Carlo
one that allows complicated composite distributions of relaxation times (DRT) to be accurately estimated without the uncertainty pres-
ent with regularization methods. Also, detailed Monte Carlo DRT estimates for the supercooled liquid 0.4Ca(NO3)2 Æ 0.6KNO3 (CKN)
at 350 K are compared with appropriate frequency-response-model fit results. These composite models were derived from stretched-
exponential Kohlrausch temporal response with the inclusion of either of two different series electrode-polarization functions.
� 2007 Elsevier B.V. All rights reserved.
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1. Background

Both electrocatalysis and immittance spectroscopy data
usually involve distributions of relaxation times or activa-
tion energies, but because methods of estimating such dis-
tributions, called deconvolution or inversion, are thought
to be difficult to apply or not readily available, such tech-
niques for aiding in understanding physico-chemical pro-
cesses present in materials are often underutilized. A list
of acronym definitions, including ones for fitting models,
is included at the end of the present work.
0022-0728/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Deconvolution is a procedure for transforming data,
usually in temporal- or frequency-domain form, to the
relaxation-time, s, realm. It allows one to re-express the
data in terms of an overall distribution of relaxation times
(DRT). Such a DRT may represent a single relaxation/dis-
persion physical process or may show individual DRT
regions representing several such processes. In the latter
case, mean relaxation times for some or all of the processes
may be identified, depending on their degree of overlap,
directly from a plot of the results. In addition, DRT anal-
ysis also provides estimates of specific Debye-type relaxa-
tion times and individual strength parameters. Such
analysis can also lead to the estimation of distributions of
activation or adsorption energies often present in solid or
liquid materials and especially in electrochemistry. Further,
DRT analysis may be used to check the applicability of the
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Kronig–Kramers integral–transform equations for limited-
range data and to estimate the real or imaginary part of the
data when only the other part is available.

The DRT-estimation approach is superior to the model-
based one involving an explicit data-fitting expression
because DRT estimation requires no a priori assumptions,
but it is inferior in that it leads to less detailed information
about the processes present. In many situations it is thus
useful first to deconvolve the data and then use the results
to help decide on an appropriate fitting model and to esti-
mate initial values of some of the parameters of such a spe-
cific fitting model. Fitting the data with such a model can
then yield more detailed information about the physical sit-
uation, especially when it involves one or more distributed
elements such as the constant-phase one [1].

Many approaches to DRT estimation, going back at
least to the 1907 work of von Schweidler and its 1913 gen-
eralization by Wagner [2], are summarized in Ref. [3]. Sum-
maries of relevant work from 1970 to 1995 appear in the
dielectric-data inversion work of [4]; in the 1988 work of
Kliem et al. [5]; and in a 1999 electrochemically oriented
chapter [6]. Until recently, there were two main techniques
used to estimate DRTs: regularization methods [6–8] and
parametric linear or non-linear least squares fitting (PLS)
[4,8,9]. The regularization approach has been evaluated in
detail in [6] and has been compared with the PLS one in
Ref. [8], where the latter was found to be appreciably supe-
rior for the situations considered. The only readily avail-
able free version of a computer program that includes
algorithms for both regularization and PLS is a part of
the LEVM complex-non-linear-least-squares (CNLS) pro-
gram described in Refs. [8,10]. A newly developed third
method is based on Bayesian statistics and involves a
Monte Carlo technique [11,12].

In the rest of the present work, recent DRT anal-
ysis methods are considered, compared to earlier ones,
put in historical perspective, and their usefulness eva-
luated.

2. Least-squares deconvolution methods

The regularization method, essentially a non-parametric
approach, involves a regularization parameter whose value
is chosen to ameliorate inversion problems by a kind of
smoothing process, one that necessarily introduces some
inaccuracy in DRT estimation. Here emphasis is on the
PLS approach for estimating an unknown DRT, g(s) or
a transformation of it [13]. It involves expressing the fre-
quency-response data, I(x), as an integral from zero to
infinity over g(s)/[1 + ixs], or temporal data, f(t), as an
integral over g(s)exp(�t/s) [3,4,13]. These integrals must
then be inverted to obtain estimates of g(s). For the usual
case of numeric data [4,8–10,13], the integrals are approx-
imated by finite sums of the forms

IðxÞ ¼
XM

m¼1

gm=½1þ ixsm�; ð1Þ
and

f ðtÞ ¼
XM

m¼1

gm expð�t=smÞ; ð2Þ

where gm is a strength parameter, sm the characteristic De-
bye relaxation time, and gm’s are often normalized by
transforming them to Gm � gm=

PM
m¼1gm, leading to

I(0) = 1.
It is often useful to write deconvolution equations in

terms of logarithmic variables. If one defines y ” ln(s/s0),
then we may write in terms of continuous variables (13),

IðxÞ ¼
Z 1

�1
F ðyÞdy=½1þ ixs0 expðyÞ�; ð3Þ

where s0 is an arbitrary, fixed relaxation time, and
F(y) ” sg(s). When raw data are used in deconvolution,
both sides of Eq. (3) should be multiplied by DU, where
DU ” U(0) � U(1), and U(x) = q(x) or e(x) for conduc-
tive or dielectric DRT situations, respectively. It follows
from Eq. (3) that when F(y) is normalized, the usual case,
then I(0) = 1, while when it is not, DUI(0) = q(0) �
q(1) ” q0 � q1 for a conductive system, one where q1 is
usually zero or negligible.

For dipolar dielectric frequency response, assumed to
involve dispersion associated with a distribution of dielec-
tric relaxation times, we shall denote the distribution as
FD(y), and I(x) will then represent the associated dielec-
tric-level normalized frequency response. For conductive-
system dispersion associated with mobile ions, assumed
to be representable by a distribution of resistivity relaxa-
tion times, we use FC(y), and I(x) is the normalized com-
plex resistivity level frequency response when FC(y) is
normalized. When the distribution involves data involving
more than a single relaxation process, a composite fre-
quency-response fitting model, such as one that accounts
for electrode polarization effects as well as bulk dispersion,
is usually most appropriate and its associated composite
distribution will be denoted as DUF(y).

In practice, PLS deconvolution generally starts with the
choice of a small value of M, the number of elemental
Debye responses in the fit of Eq. (1) or (2), and for succeed-
ing fits M is sequentially increased to a maximum value,
Mmax, with halting when a good fit is achieved. Mmax

should always be appreciably smaller than the number of
data points.

The rest of the present work deals with the important
case of DRT estimation using frequency-response data.
Note that when the I(x) of Eq. (1) involves impedance or
complex resistivity data, one deals with a sum of Voigt
response elements (each one equivalent to a resistor and
capacitor in parallel) and the DRT estimated from such
data is a distribution of impedance relaxation times, while
when complex dielectric data is deconvolved, one obtains a
distribution of dielectric relaxation times involving Max-
well elements (represented by a resistor and capacitor in
series) [4].
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When a least squares fit is used to estimate values of gm

with the sm parameter values fixed, usually uniformly on a
logarithmic scale, the estimation problem is linear and
readily carried out. Define it as PLLS. In contrast, when
both types of parameters are free to vary, the most accurate
approach [4,8], the situation is non-linear and CNLS must
be used for full complex data. This inversion process is usu-
ally appreciably more difficult and is here designated by
PNLLS. Both PLLS and PNLLS fitting of real-part, imag-
inary-part, or full complex data usually involve data
weighting, and many choices are included in the LEVM
deconvolution algorithms [10]. Although the authors of a
recent PLS DRT analysis approach mention that their
inversion program was written ‘‘in house,’’ it is neither fully
described nor stated to be available for use by others [14].
Further, their approach is characterized as involving non-
linear regression but it seems to involve only PLLS rather
than PNLLS, as discussed below.

3. Recent DRT analyses and comparisons

3.1. PLS inversion approaches

The 2002 PLS publication of Ref. [14] stated that meth-
ods of obtaining information about DRTs were not well
developed and proposed ‘‘a method for identification, from
impedance spectra, of the distribution of time constants
associated with activation or relaxation processes.’’ Their
approach, although not so mentioned, is just a version of
the PLS one described much earlier by others and instanti-
ated in the PLLS and PNLLS approaches included in the
widely used LEVM program and its predecessor, the
LOMFP program of 1988. Further, Ref. [14] work is a fol-
low-on of the 1992–1995 work of Agarwal et al. [15], where
the deconvolution approach described in their 1992 publi-
cation was named the ‘‘measurement model’’ and originally
used the LOMPF fitting program. It is pointed out in Ref.
[15] that a good-fit value of Mmax leads to estimates of fit-
ting residuals (termed stochastic error structure there) and
thus may be helpful in choosing appropriate weighting for
subsequent fits of the data.

Recently, Farag et al. [16], in a follow-up of the work of
Ref. [5], also tackled the problem of data inversion using an
iterative numerical technique different from and less accu-
rate than the CNLS procedure used in LEVM [10]. Their
method starts with the assumption of a box-like DRT,
requires smoothing, and iterates toward a final approxi-
mate distribution.

It is worth noting that the two main features of a PLS
(or measurement model) approach: that fitting data to a
physically realizable, practical model such as that of Eq.
(1) would automatically ensure satisfaction of the Kro-
nig–Kramers (KK) integral–transform relations, and
implying that any such model could be used for this pur-
pose, appeared in Ref. [17] in 1987. Although these ideas
were thus current several years before the independent
introduction of the term ‘‘measurement model’’ and its
use of a specific circuit model of Voigt elements, as in the
1988 LOMPF fitting program, no such provenance was
mentioned in Refs. [14] and [15].

It is also noteworthy that in both Refs. [7,14] it is stated
that DRT estimation from experimental data is a mathe-
matically ill-posed problem, leading to great sensitivity to
experimental errors. But these authors made no distinction
between discrete and continuous DRTs and perhaps
implicitly assumed that the data involved only continuous
ones. In Ref. [4] it was shown, however, that there is a cru-
cial difference between the inversion of data involving a
continuous distribution of relaxation times and one involv-
ing a discrete distribution. Although in the numerical anal-
ysis both situations are approximated by a discrete set of
Debye relaxations, these two types of response can be
distinguished [4,18–20], and it turns out that inversion of
data associated with a discrete set of time constants is
not ill-posed, in contrast to the continuous DRT situation.
Extensive PNLLS DRT estimation and Kronig–Kramers
analysis carried out in Refs. [4,18–20] also considered anal-
ysis and identification methods for situations involving not
only a continuous DRT but also some discrete relaxation
points. In addition, the method used in Ref. [11] utilizes
a Monte Carlo Technique and overcomes the ill-posed
character of data inversion by estimating the distribution
of the relaxation times in each Monte Carlo step. This
novel implementation of the Monte Carlo method makes
the relaxation time axis essentially continuous and less sen-
sitive to initial-guess parameter values, unlike previous
techniques.

In 1995 Boukamp showed, in contrast to ordinary
PNLLS inversion, where both strength and relaxation-time
parameters are free to vary and all parameter estimates are
required to be positive for most data situations, that when
the sm relaxation parameter values were taken fixed and the
free strength parameters values were not restricted to be
positive, the resulting PLLS inversion procedure became
linear and simpler and its results, although not usually
physically plausible, could nevertheless be used to test for
satisfaction of the KK relations [21]. Such choices have
also been an implicit part of the LEVM fitting and inver-
sion program since its inception, and in 2004 Boukamp
made freely available his KKTEST PLLS program, one
that automatically evaluates data for KK appropriateness.
It involves about seven fixed sm values per decade and so
can well evaluate the quality of wide-range data.

Orazem and his co-authors state, in their 2002 Ref. [14]
work, that an important objective was to study the effect on
deconvolution results of adding 1% stochastic noise to the
impedance data they considered. Unfortunately, they were
evidently unaware that the effects of both 1% and 4% noise
was studied much more comprehensively in 2000 [8,9]. In
addition, they examined the effects on DRT estimation of
truncating their data at low frequencies with or without
1% errors. Again, they did not refer to an earlier detailed
study of such truncation effects [9], where no errors, 1%
ones, and 4% ones were added and the resulting relative
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Fig. 1. Unnormalized distributions of relaxation times derived from
synthetic frequency-response data using methods I and II [22], compared
to the known unnormalized KD distribution, shown as a thick solid line.
Method-I DRT results are shown for inversion using only the real part of
the data (open square symbols) and for only the imaginary part (open
circle symbols). The symbol sizes are proportional to the individual
estimated uncertainties of the fit points. The method-II results, shown as
solid-stair lines, used the full complex data. The vertical dashed line shows
the position of the characteristic relaxation time of the KD model, 2.63 ls.
The inset compares the known bulk-model distribution to that derived
from the raw experimental data using method II.
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fitting errors present in the estimated DRT results were
presented for some of the inversions. In 2001 Tuncer and
Gubanski [11] also investigated the influence of 5% mea-
surement errors on their Monte Carlo method and showed
that unique distributions could be recovered even if the
data contained large errors.

3.2. Discussion and illustration of the utility of several

different deconvolution methods

3.2.1. Comparison of two inversion methods for a dielectric

situation

A limitation of the usual PLS inversion procedure
instantiated in LEVM [10] is that the maximum value of
the M in Eqs. (1) and (2) is currently restricted to 19.
The results cited in Ref. [14] involve even smaller values.
Although M = 19 or less is quite sufficient for DRTs repre-
senting a single physical process, it may limit the resolution
of inversion results for multiple-process data, such as the
simultaneous presence of bulk dispersion response and that
associated with electrode polarization and adsorption
processes. It is therefore fortunate that an alternate non-
parametric deconvolution approach has been recently
developed [11], one that does not involve an upper limit
to M and also avoids the uncertainties associated with
the choice of the regularization parameter in deconvolution
using regularization, even though this method can also deal
approximately with multiple-process data.

The 2001 work of Tuncer and Gubanski [11] provided
an alternative to allowing relaxation times to be free vari-
ables for ill-posed continuous-distribution inversion situa-
tions. In this essentially non-parametric method, a Monte
Carlo procedure based on constrained least squares is used
to closely approximate the time or frequency axis as contin-
uous. In this method, Eq. (1) is solved with fixed relaxa-
tion-time values, randomly selected from a log-linear
range. This procedure converts the non-linear problem to
a linear one with only the gm parameters as unknowns.
The set of fixed relaxation times is varied in each Monte
Carlo step. Finally, the weighted distribution of gm vs. sm

yields DUF(y).
For the present data deconvolutions, 66 pre-assigned s

values were used with 215 Monte Carlo steps, resulting in
2,162,688 final sm values, close to continuous. A recent
comparison between the inversion of continuous distribu-
tions by the PNLLS approach (Method I) and that of
Ref. [11] (Method II) shows the strengths and weaknesses
of both methods [22]. One of its main results is replicated
in Fig. 1.

In the present work, we shall be primarily concerned
with two different but closely related frequency-response
bulk models, both involving a shape parameter b that sat-
isfies 0 < b 6 1. These two models, discussed in detail in
Ref. [23], are the conductive-system K1 one, where we set
FC = F1 and b = b1, and the dielectric-system KD one,
involving the FD DRT and a bD shape parameter. Both
models also involve a dc resistivity, qC0 or qD0, and a char-
acteristic time constant sC0 or sD0. The KD model is a one-
sided Fourier transform of stretched-exponential temporal
response and the K1 is derived from such response but
involves a different DRT [23]. In this section, we deal with
a dielectric-response system and in the next with a conduc-
tive-system one.

In its inset, Fig. 1 shows method-II deconvolution
results using full experimental frequency-response complex
data [22], expressed at the dielectric level. Although this
experimental data set actually involved dispersion arising
from mobile ions best described by a K1 model, parameters
estimated from fitting it with a composite KD model that
also included a series electrode-polarization function
[4,10,23,24] were used to generate complex dielectric-level
KD-model synthetic data over a wide frequency range.
The fit led to a bD estimate of about 0.55. The resulting
nearly exact synthetic data set was then deconvolved to
estimate the DRT of the dispersed response, taken to be
of dielectric character. Method I and II inversion results
are compared to the exact FD KD-model DRT in the main
part of Fig. 1. It is worth noting the little-known fact that
the K1 and KD DRTs are of exactly the same form when
b1 = bD [23].

Since the true DRT may be accurately calculated
directly for a known KD frequency-response model [10],
the resulting FD response is used here as a standard with
which to compare the results of applying methods I and
II. Experimental data at the complex dielectric constant
level may be represented by e(x) � e(1) = DeI(x), where
De ” e(0) � e(1), and I(x) is defined in Eq. (3). Direct
deconvolution of such data then leads to the unnormalized
DeF and DeFD DRT estimates shown in the figure.
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The results in Fig. 1 demonstrate that both methods
quite accurately estimate the true DRT in the absence of
systematic and random noise in frequency-response data.
It is clear that the method-I real-part inversion leads to
much more accurate DRT estimates in the region to the
right of the peak than does the imaginary-part inversion.
Both method-I estimates are more accurate than is the
method-II one for s values less than the peak one. But note
that method-II yields an approximate extrapolation of the
DRT by as much as a decade beyond the low-s limit of the
method-I DRT estimates. The method-II inset of Fig. 1
shows inversion results using the full experimental data,
again compared to the true bulk DRT. It is evident that
an added distribution appears with a peak near 100 ls, well
beyond the bulk DRT response. This distribution is clearly
associated with partially blocking electrode-polarization
effects, in agreement with the composite-model frequency-
response fitting of the data.

3.2.2. The differential impedance analysis (DIA) method

This approach involves a deterministic model with
numerical differentiation of the real and imaginary parts
of impedance data [7,25]. Since such differentiation can
itself lead to ill-posed results for noisy data, the DIA pro-
cedure involves the use of spine-fitting for smoothing when
appropriate. It seems to be most appropriate for analyzing
data involving discrete distributions of relaxation times
and involves a ‘‘spectral transform,’’ one that shows spec-
tral peaks.

Most experimental data response is best analyzed by
assuming that it arises from the presence of one or more
distributed circuit elements, ones that involve a continuous
DRT, as discussed and illustrated in Section 3.2.1. DIA
analysis has apparently not been used to estimate a contin-
uous DRT from exact or noisy synthetic data and to com-
pare it with the exact DRT that led to the data. In spite of
uncertainties associated with numerical differentiation and
with how much smoothing to use, the method has been
shown to lead to useful DRT estimates for various syn-
thetic and experimental data sets [25], but it is not clear
how well it could be adapted to take proper account of
the presence of parallel and series additions to a main bulk
response model involving a continuous DRT. The impor-
tance of such distorting effects and their removal are illus-
trated for a composite-response model in Section 3.2.3.2.

3.2.3. Frequency-response fitting and inversion of limited
data

Here we consider both frequency-response fitting and
inversion of limited-range data for the supercooled liquid
0.4Ca(NO3)2 Æ 0.6KNO3 (CKN) at 350 K. Although it is
conventional to consider that the response of this material
is dominated by ionic conduction, we shall also demon-
strate how well the data can be fitted by assuming dielectric
rather than resistivity dispersion. In both cases, it was
found that good fits were only possible using a composite
model that included bulk-dispersion response associated
with either K1 or KD and a series model S. All fre-
quency-response fitting models used herein are defined in
the list of acronyms at the end of this work.
3.2.3.1. Frequency-response data fitting. Fig. 2 shows results
of conductive-system CK1S fits of the frequency-response
data. The symbol C denotes a specific capacitance that
models the bulk high-frequency-limiting dipolar dielectric
constant eD1. It is in parallel with the K1 model, and the
result is in series with a response model S, usually repre-
senting electrode polarization. Two different functions were
used here for S: a series constant-phase element, SCPE,
expressed at the conductivity level as rSC � eVASCðixÞcSC ,
and a series Cole–Davidson (CD) model, expressed at the
resistivity level as qCD � q0S=½1þ ðixs0SÞ�cS . The S parame-
ters are all frequency independent, and eV is the permittiv-
ity of vacuum.

Table 1 fitting results show that although the row-4
CK1CD-model fit is the best, it is not substantially better
than those of the other two composite models. Note that
the K1 model involves an additional high-frequency-limit-
ing dielectric constant, eC11, arising entirely from charge
motion and readily calculated from K1-model fit results
[23]. It follows that for such fits the full frequency-limiting
dielectric constant is e1 = eC11 + eD1. When no free
parameter representing eD1 is included in a K1 fit, so the
bulk fit model is that of K1 rather than CK1, the resulting



Table 1
Parameter estimates for 350-K CKN frequency-response data. The composite fitting models involved K1 and KD bulk models with added SCPE or CD
series electrode polarization functions

# Model 100 SF qC0 (X cm) sC0 [sD0] (s) b1 [bD] eC11 [De] eD1 [e1] 10�6q0S (X cm) ASC [103s0S] (s) cSC [cS]

S = SCPE

1 CK1SCPE 5.8 4.92 · 107 9.7 · 10�9 0.212 0.169 8.82 – 9.26 · 104 0.728
2 K1-DRT (unnorm.) – 1.73 · 1012 5.1 · 10�8 0.209 – – – – –
3 K1-UWT M00 fit – 4.92 · 107 (fixed) 2.90 · 10�5 0.643 – [9.20] – – –

S = CD

4 CK1CD 5.1 4.82 · 107 2.6 · 10�8 0.232 0.230 8.78 7.06 [9.58] [0.754]
5 K1-DRT (unnorm.) – 1.26 · 1012 1.4 · 10�7 0.229 – – – – –
6 K1-UWT M00 fit – 4.82 · 107 (fixed) 2.87 · 10�5 0.647 – [9.25] – – –
7 CKDCD 5.4 4.83 [3.0 · 10�4] [0.414] [13.5] [9.26] 7.25 [9.69] [0.745]

Complex non-linear least squares fits were carried out using proportional weighting for all but rows 3 and 6, where unity weighting of the M00(x) data was
employed. SF, the relative standard deviation of the fit residuals, is a measure of the goodness of fit. Data were fitted at the complex resistivity level for the
CK1SCPE and CK1CD fits and at the complex dielectric level for the CKDCD one. The K1-DRT results are for the unnormalized conductive-system
DRTs estimated using the Monte Carlo inversion method. Square brackets are used to allow easy discrimination between situations.
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Here and elsewhere sn = 1 s.
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still widely used but erroneous 1973 original modulus for-
malism approach of Moynihan et al. [26] leads to a eC11
estimate of e1, as shown in rows three and six of the table,
thus inconsistent with a purely conductive-system model
[13,23,27]. Note the vast high-frequency differences shown
in Fig. 2 between the K1 and CK1 responses, both calcu-
lated from the appropriate CK1SCPE-fit parameter
estimates.

Although Fig. 2 shows only a very small difference
between the M00 responses of the CK1SCPE and CK1CD
models at high frequencies, there is a large difference in
their low-frequency M 0 responses, even though both led
to equally good fits of the data in this region. Had the data
extended to lower frequencies by even a relatively small
amount, discrimination between the two series response
models would have been greatly improved.

Particularly interesting are the high-frequency M00 differ-
ences between the data, well represented by the full com-
posite-model fits, the CK1 and K1 responses calculated
from the full CK1SCPE fit, and the K1-UWT fit line.
Clearly, the CK1 part of the response is inadequate here
without a series-response contribution and shows an excess
wing, but the excess is far greater for the direct fit of the K1
model alone using unity weighting instead of proportional
weighting; also see row-3 in the table. Such UWT fitting,
carried out for M00 data extending only to 105 Hz, empha-
sizes the largest M00 values and is closely equivalent to
results that would be obtained using the Moynihan original
modulus formalism [26].

Note that the CK1 fit line deviates at higher frequencies
from its lower-frequency straight line above the peak of the
M00 response. Such response is characteristic of situations
where the ratio eD1/eC11 is very large, as it is here, and
K1 response then only dominates at the higher frequencies
[23], adding to the difficulty of accurate data analysis.
3.2.3.2. Monte Carlo estimation results. Fig. 3 shows the
results of a Monte Carlo inversion of the original data as
well as inversions of synthetic data. For these unnormal-
ized results the Dq values are those of qC0 in Table 1.
The vertical dotted lines are the limits of the original fre-
quency data converted to the s domain. The two inversions
of synthetic data used data calculated from the estimated
parameters of the Table 1 CK1SCPE and CK1CD fits of
the original data with 261 points extending from 0.1 Hz
to 1012 Hz. Their s range is thus about 1.59 · 10�13

6

s 6 1.59 s. We see that when the DRT strength parameters
are less than about 10�5 of their peak values, the results
become more and more noisy.

Most interesting are the differences apparent for s >
10�3 s. Clearly, neither the SCPE nor the CD model well
represents the response associated with the original data
at this end of the range. But the DRT response estimated
from the original data in the range beyond the vertical cut-
off line is itself likely to be very uncertain. One can only
suggest that a series response model different from either
of the present ones might be more appropriate, and that
only analysis of new data extending a decade or two higher
in frequency could likely resolve the matter.
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Fig. 4. Comparison of DRT responses for wide-range synthetic data
derived from the CK1SCPE-model fit of the original data with deconvo-
lutions involving data generated using fewer parameter estimates of that
fit.
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Fig. 4 shows deconvolution results only for synthetic data.
The dissected CK1, K1CD, and K1 DRT curves were all cal-
culated using frequency responses derived from the full-fit
CK1CD estimated parameters. Note that the unnormalized
K1 response designated K1 F1 in the figure is that denoted
DqF1 in Section 2. The K1-DRT results of rows 2 and 5 of
Table 1 show parameter estimates obtained by fitting the
upper parts of the K1 inversion curves with the nearly exact
K1 DRT model [10]. Although the b1 estimates are close to
the original frequency-response fit ones, the DRT-fit sC0 esti-
mates are appreciably different. This is because for the pres-
ent small values of b1 there is a high correlation between b1

and sC0 estimates, and the uncertainties of the latter become
very large for the frequency-response fits.

The narrowness of the CK1CD peak region compared
to that for the K1 alone arises because the response of
the former is dominated at s values below about sT ” 10�3 s
by nearly Debye response associated with the parallel com-
bination of qC0 and eD1. It is consistent that the CK1 line
follows the CK1CD response for s < sT and the K1 line for
s > sT, while the K1CD line changes from K1 to CK1CD
response near sT. Finally, comparison of Fig. 2 results with
those of Fig. 4 suggest that the full widths of comparable
peaked frequency-response and DRT curves at half-height
are closely related. It is clear that the present DRT inver-
sion estimates usefully complement those obtained directly
from PNLLS fits of experimental frequency-response data.

4. Acronym definitions
General

CNLS complex non-linear least squares
DIA differential impedance analysis [7,25]
DRT distribution of relaxation times
KK Kronig–Kramers transform relations
LEVM CNLS fitting and inversion program [10]
PLS parametric least squares
PLLS parametric linear least squares
PNLLS parametric non-linear least squares
PWT proportional weighting [10]
UWT unity weighting [10]
Single and composite frequency-response fitting models

CD Cole–Davidson response function defined at the
impedance level (see Section 3.2.3.1)

K1 conductive-system Kohlrausch frequency-response
model (see Section 3.2.1)

KD dielectric-system Kohlrausch frequency-response
model (see Section 3.2.1)

CK1 K1 model in parallel with a capacitance, C
CK1CD CK1 model in series with a CD one
CK1S CK1 model in series with a electrode-polarization

model, S
CK1SCPE CK1S model with S defined as a constant-

phase-angle element
SCPE series constant-phase element (see Section 3.2.3.1)
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