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a b s t r a c t

Because of the past and continuing wide usage of the 1973 original modulus formalism (OMF) model for

analyzing dispersive frequency-response data of ion-conducting materials, it is important to discuss and

demonstrate its theoretical and experimental inadequacies to help avoid its future use and to describe

and illustrate important alternatives to it. The OMF fits data with a K1 response model alone, one

indirectly derived from stretched-exponential temporal behavior, while the corrected modulus

formalism (CMF) involves the composite CK1 model, one that includes in addition a separate free,

parallel bulk dielectric parameter, eDN. The crucial error of the OMF approach is its identification of a

high-frequency-limiting dielectric constant intrinsic to K1 response and associated entirely with

conductive effects, with the full high-frequency-limiting dielectric constant of the material, eN, one that

must include the non-ionic, primarily dipolar quantity eDN. Comparison here of OMF fitting results with

those of the CMF CK1 model for both an experimental data set and an exact one derived from it

demonstrate the incorrectness of the OMF and the virtues of the CK1 alternative. The OMF fitting

approach, but not the CMF one, leads to crucial inconsistency between the estimates of its b shape

parameter for fits of the data expressed at all immittance levels except those of s0 and e00, where it yields

the same results as the CK1. Its incorrect b estimates, extensively used in the Ngai coupling model

and interpreted as being associated with ion–ion correlations, also lead to erroneous ‘‘excess wing’’

effects in plots of the imaginary part of the data and fit at the modulus level. Further, OMF modulus-

level fits yield non-physical estimated values of the characteristic relaxation time of the K1 model.

Finally, some possible alternatives to the CK1 model are discussed for situations involving dielectric-

system dispersion.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The present subject is important because it deals with gaining
understanding of the frequency response of ion-conducting
materials of practical value, and because it discusses and corrects
an incorrect fitting model for it originally proposed in 1973, the
Mohnihan modulus formalism [1]. This model has been so widely
employed since then that as many as a thousand or more
published papers, many by Ngai and co-authors, have used this
approach for the analysis of conductive-system frequency-
response data. Note that the electric modulus, M(o), is a
dimensionless complex quantity and is the inverse of the relative
permittivity, e(o). A list of acronym and fitting model definitions
is included below.
ll rights reserved.
In a paper published in 2000, 17 references were cited in
support of the wide practice of the original modulus formalism
(OMF) [2]. Nevertheless, the OMF model is wrong, and thus all
results and physical conclusions based on its application are
correspondingly incorrect. How is it possible that such an
endemic but erroneous model, one that has virtually become
the standard fitting approach, can continue to be so widely used,
especially for the more than 14 years since it was shown to be
erroneous [see Refs. [3–6] and references therein]? A main cause
is that the originators and subsequent users of the OMF since 1994
have never discussed these previously published reasons for its
failure in any of their publications, including two recent ones in
which they responded to criticisms of the modulus formalism
[7,8]. Had these responses discussed the earlier criticisms of the
OMF cited above, their authors would have needed to accept or
disprove the identification of errors in it. That they have done
neither suggests that they were unable to counter the errors
so identified.

www.sciencedirect.com/science/journal/pcs
www.elsevier.com/locate/jpcs
dx.doi.org/10.1016/j.jpcs.2008.12.012
mailto:macd@email.unc.edu
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Nomenclature

C a capacitance or dielectric constant in parallel with
part of a composite model

CK1S K1 model with a capacitance C (representing eDN) in
parallel with it and a constant-phase function in
series with the combination

CMF corrected modulus formalism: e.g., the CK1 fitting
model

CNLS complex nonlinear least-squares fitting of data
CSD conductive-system dispersion involving mobile

charges
CUNS the CK1S model with b1 fixed at the value of 1/3
DCk Davidson–Cole models for k ¼ D and 0
DRT distribution of relaxation times
DSD dielectric-system dispersion involving dipoles

k k ¼ D: DSD model; k ¼ 0: usual CSD model; k ¼ 1:
transformed CSD model

Kk Kohlrausch stretched-exponential fitting models for
k ¼ D, 0, and 1

LEVM the name of a CNLS fitting program (Ref. [20])
OMF original modulus formalism: the K1 model without a

parallel C
PDRMS RMS value of the RSD values of all the free parameters

of a fit
PWT, UWT proportional weighting for a CNLS fit or unity

weighting
R a resistor in parallel with part of a composite model
RCKDS composite model with R and C in parallel with the

DSD KD model and the result in series with a
constant-phase element

RSD relative standard deviation of an estimated parameter
value
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In Ref. [7] of 2003, its authors addressed ‘‘conflicting points of
view’’ that ‘‘demonstrate the diversity of ideas in research on the
dynamics of ions,’’ but unfortunately, they ignored all prior
published work of the present author that showed the OMF
incorrect, certainly a conflicting point of view! Later, in 2005 Ref.
[8], entitled ‘‘Comments on the electric modulus function,’’ was
devoted to presenting arguments in favor of the OMF and
correcting ‘‘several misunderstandings and misrepresentations’’
of it. Again, no mention was made, however, of either theoretical
or experimental facts that prove the OMF to be not just
inadequate but incorrect.

Nearly all the authors (but see note in Ref. [8] listing) of the
above publications supporting and justifying the OMF were aware
of the earlier work that identified its failures and discussed valid
alternatives to it, yet they ignored them. Science is based on a
system of checks and balances and is diminished when checks are
ignored. It is, of course, insufficient to just show that some idea or
model is wrong; one needs to demonstrate valid alternatives. This
has been done and led to an apparently minor yet crucial change
in the interpretation of the OMF and to alternatives to its use for
fitting and interpreting immittance data [3–6]. The result has
been termed the corrected modulus formalism (CMF). Demon-
stration and discussion of the failure of the OMF and of the
strengths of the CMF are summarized later herein.

An example of the entrenched and continuing support of the
OMF is a recent negative comment of a reviewer who said, the
OMF and CMF ‘‘are just different representations of the data, and
no physics (is) at stake.’’ The actual situation is that the OMF is a
theoretically invalid model which leads to inconsistent data-
fitting results; the CMF is a valid model that usually provides the
best fit of experimental data compared to that of other models;
and the interpretation of the physics implicit in the OMF is wrong
and that in the CMF is correct! Had this reviewer’s assessment
been in fact correct, work pointing out the failure of the OMF and
reasons for replacing it by the CMF would not have resulted in
earlier published papers. Such ignorance, probably closely allied
to the continuing failure of OMF supporters and users to cite
contrary work, is an example of the need for further convincing
examples and discussion of these matters. Thus, the present work
includes new comprehensive fitting and model comparison
results both for experimental data and for synthetic data
generated from the latter.

In Section 2, some relevant common misconceptions are briefly
summarized, and then in Section 3 a general time-to-frequency
transformation is defined. Although it involves an arbitrary
temporal correlation function, it nevertheless leads to a crucial
distinction between the OMF and the CMF. The conventional
choice of a definite form for the correlation function, a Kohlrausch
stretched-exponential, leads in Section 4 to several distinct but
related frequency-response models, the KD, K0, and K1 ones, and
identifies the theoretical difference between OMF and CMF fitting
models. Section 5 presents and discusses CMF and OMF fitting
results for a representative experimental data set, as well as fits of
synthetic data derived from it. Then Section 6 discusses and
compares a dielectric-oriented fitting model alternative to the
conductive-system CK1 one. In Section 7, crucial reasons are
summarized why the OMF is incorrect and should be replaced by
its corrected version, the CK1.
2. Some common misconceptions

There is an important distinction between just fitting data with
any model at the electric modulus level and applying the OMF at
this level. Unfortunately this distinction has not always been
made clear [e.g., 2,8]. Thus, modulus-level fitting need not be
assumed to be the same thing as OMF fitting, and the frequently
used shortcut for identifying the OMF, the electric modulus, is a
misnomer in this context.

Another potential stumbling block is the frequent character-
ization of the frequency response of materials dominated by
mobile-charge conduction as dielectric relaxation ones [e.g., 2,7].
First, although ‘‘relaxation’’ is often taken as a general term, it is
best restricted here to mean decaying response involving only a
single relaxation time, i.e. separate Debye response or the
characteristic relaxation time of a dispersive response model. In
the usual case, the decay can be characterized as involving many
such relaxation times, leading to dispersive behavior involving a
distribution of individual relaxation times (DRT), usually taken to
be continuous rather than discrete [3,6,9]. In such cases, Debye
relaxation is the limit of dispersive response and involves a single
discrete delta function DRT. The problem of discrimination
between dielectric and conductive dispersive effects is discussed
in Section 6.

In dielectric dispersion situations, the associated DRT involves
dispersion of the dielectric-system physical processes, such as
dipole rotation and vibration. In contrast, for dispersive con-
ductive-system (CSD) situations, those the OMF was derived to
represent, the associated DRT involves dispersion of the basic
conduction process, such as ion hopping. Although the frequency
response arising from such dispersion may be analyzed at the
dielectric immittance level rather than at the complex resistivity
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level, it is clearly inappropriate to characterize it as dielectric
relaxation or dispersion, but instead to identify it as conductive-
system dispersion, a more appropriate description than
‘‘conductivity relaxation’’ used, for example, in Refs. [1,7,8,10,11].
Here, I shall use the terms ‘‘dielectric constant’’ and ‘‘permittivity’’
interchangeably and usually take the ‘‘relative’’ modifier to be
understood when appropriate. The bulk high-frequency-limiting
relative permittivity of a material, not associated with charge
hopping and diffusion, will be denoted here by eDN, a dimension-
less dielectric quantity arising from induced and permanent
dipoles and vibratory and electronic effects.
3. General transformations

Before defining the OMF and the CMF it is desirable to
summarize the general transformations that lead to these
models. We may start with the ordinary one-sided Fourier
transformation of the time derivative of a temporal correlation
function, fk(t):

IkðoÞ ¼
Z 1

0
expð�iotÞ �

dfkðtÞ

dt

� �
dt, (1)

where k ¼ D or 0 [4,9,12]. The quantity Ik(o) is a normalized
frequency-response function that satisfies Ik(0) ¼ 1 and Ik(N) ¼ 0.
When k is set equal to D in order to denote dielectric-system
response [6,9,12], �dfD(t)/dt is the normalized transient decay
current of a dielectric dispersion system after being fully charged.
As usual, we shall use o�2pn for theoretical quantities and n for
discussing data and fitting results.

The full dielectric-system frequency response may then be
written as eD(o) ¼ eD(N)+DeDID(o), where in general De�e0�eN
and the high-frequency-limiting dielectric constant eD(N) is
denoted eDN and taken frequency independent in the available
experimental range. Dispersive response, involving the ID(o)
function, may be modeled in terms of a DRT, and for the k ¼ D

choice in Eq. (1) a distribution of dielectric relaxation times is
involved [9,12].

Alternatively, when k ¼ 0, one deals with conductive-system
dispersive response, and the motion of mobile charges leads to a
decay, at constant dielectric displacement, of the macroscopic
electric field, E, represented by E(t) ¼ E(0)f0(t) [1a,8,10].
Here, f0(t) is the mobile-charge correlation function, defined
more explicitly below for a microscopic hopping model [13],
and the I0(o) of Eq. (1) is then the corresponding normalized
frequency response [4,6: p. 638]. Now define r0(o), the resistivity
frequency-response function, and make the usual assumption
that r0

0(N) is zero or that it is so small that its effects are
negligible in the available frequency range. Then we may
write r0(o) ¼ r0

0(0)I0(o), and the associated electric modulus
quantity is given by M0(o) ¼ ioeVr0(o), where eV is the
permittivity of vacuum, and we shall just write r0�1/s0�r00(0)
hereafter.

Because I0(o) is defined at the resistivity immittance level for
the k ¼ 0 choice, rather than at the dielectric one for the k ¼ D

choice, its DRT representation involves a distribution of resistivity,
not dielectric, relaxation times [6]. In the OMF analysis [1a], its
results, expressed at the complex M level, are characterized as
‘‘conductivity relaxation’’ rather than the more appropriate term
‘‘resistivity dispersion.’’ Note that if the same functional form for
fD(t) and f0(t) is used for the k ¼ D and k ¼ 0 situations, the
resulting ID(o) and I0(o) responses will be of exactly the same
form but defined at the dielectric and resistivity levels, respec-
tively [6].

Instead of setting k ¼ 1 in Eq. (1), Moynihan and his co-authors
[1] derived expressions for k ¼ 1M response by transforming I0(o)
with the relation:

MC1ðoÞ ¼ M0C1ðoÞ þ iM00C1ðoÞ ¼ io�Vr0I1ðoÞ � ½1� I01ðoÞ�=�Z , (2)

with eZ identified as eDN and later written as just eN, the full high-
frequency limiting dielectric constant. These authors, and all
subsequent users of the OMF, have written Eq. (2) with just the
I01(o) ¼ I0(o) of Eq. (1) and have not employed the I0(o) function
as the basis of a separate fitting model. Here, however, I0(o) is
designated I01(o) in Eq. (2) to make the point that estimated
values of the characteristic dispersion shape parameter and other
parameters of the I0(o) response model must be obtained from
fitting with the above MC1(o) model or with its resistivity level
form rC1(o)�r0I1(o), not directly with the k ¼ 0 model. The
C subscript in Eq. (2) specifies conductive-system rather than
dielectric-system dispersion (DSD), but for simplicity it will often
be omitted hereafter.

Although general relations equivalent to the macroscopic OMF
ones appeared ten years before it [14], of particular importance is
the pioneering 1973 continuous-time-random-walk stochastic
microscopic model of Scher and Lax [13], slightly extended later
in Ref. [15]. Its general temporal correlation function, f(t),
equivalent to the k ¼ 0 choice f0(t) function, is identified in Ref.
[13] as the waiting time distribution for a hop, the probability that
a mobile charge remains fixed in the time interval 0 to t.

The extended version of the Scher–Lax response model is fully
isomorphic to that of Eq. (2) with the eZ quantity of Eq. (2) given
by [4,6,15]

�0C1ð1Þ � �C11 ¼ ðs0=�V Þhti01 ¼ �Mahxi01 ¼ ½gNðqdÞ2=6ðkB�V Þ�=T,

(3)

with x�t/t0, and the Maxwell limiting dielectric constant quantity
is eMa�s0t0/eV. Here t0 is the characteristic relaxation time of the
I0(o)-model response function and /tS01 is the mean of t over its
DRT, with its shape parameter value determined from fitting with
the Eq. (2) model; The quantity N is the maximum mobile charge
number density; g is the fraction of charge carriers of charge q

that are mobile; d is the rms single-hop distance for a hopping
entity, and kB is the Boltzmann constant.

The high-frequency-limiting effective dielectric constant, eC1N,
defined in Eq. (3), is obviously associated entirely with mobile-
charge effects, and for ionic conduction it is likely to arise from
the short-range vibrational and librational motion of caged ions.
For the OMF situation, however, the result corresponding to that
of Eq. (3) is [e.g., 1,2,8,10,11,16]

�Z ¼ �1 ¼ ðs0=�V Þhti0 ¼ �Mahxi0. (4)

A principal and crucial difference between the OMF response
model [1], including a great deal of later work using it of Ngai and
co-authors and others, and the CMF model is the appearance in
Eqs. (2) and (4) of eZ ¼ eN for the OMF and eZ ¼ eC1N in Eqs. (2)
and (3) for the CMF. It is clear from Eq. (3), however, that the
effective dielectric constant quantity eC1N is a consequence only
of conductive response, is zero in the absence of mobile charges,
and does not include any bulk dipole dielectric effects, as, on the
contrary, does the eN of the OMF [1b]. This trivially appearing
difference, associated just with different definitions and inter-
pretations of the eZ of Eq. (2), has far reaching consequences, as
discussed in the next sections.

For completeness, it should be mentioned that Ngai and León
[16] derived in 1999 a type of approximate isomorphism between
the OMF and Scher–Lax models that required the introduction of
two different time constants, a consequence of their conventional
use of the OMF eN instead of eC1N. Its results were summarized in
Ref. [8] of 2005 without reference to the 2002 work of the author
[15] which led, as above, to full isomorphism without the need for
two separate time constants.
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4. Specific transformations and models

It will not have escaped the attention of the reader that no
specific frequency-response models were fully defined in the last
section. To do so, one must specify a form for fD(t) or f0(t). In the
1973 OMF treatment [1a], the authors followed the earlier
dielectric-system fD(t) choice of Williams and Watts [12,17] and
used in Eq. (1) the Kohlrausch stretched-exponential function:

fkðtÞ ¼ exp½�ðt=t0Þ
bk �; 0obkp1, (5)

with k ¼ 0 and bk just written as b. Here bk is the shape parameter
and t0 is the characteristic relaxation time of the response
function. Stretched-exponential behavior has been derived from
many different theoretical assumptions, including the defect-
diffusion random-walk model [18,19], and it has been experimen-
tally observed for variety of materials such as polymers, ionic and
molecular glasses, and super-cooled liquids.

For conductive-system situations, Eqs. (1) and (5) lead to a
normalized I0(o) function whose full response, r0(o) ¼ r0I0(o), is
called the K0 model when, as usual, rN is negligible) [6,15].
Alternatively, for the k ¼ D dielectric situation, the use of a
stretched-exponential fD(t) form leads to eD(o) ¼ eD(N)+
DeDID(o). The dispersed part of this response, the KD model, is
just DeDID(o) [6,9,12].

Although the Kohlrausch I0(o) and ID(o) functions are the
same in form, they apply at different immittance levels, as implied
above, and they cannot be expressed in closed form except for
values of their bk shape parameters of 1/3, 1/2, 2/3, and 1.
However, the free LEVM complex-nonlinear-least-squares (CNLS)
computer program allows simulation and fitting of data using
very accurate approximations for arbitrary values of bk [20]. It is
important to note that since both the I0(N) and ID(N) parts of the
K0 and KD models are zero and thus lead to zero values of the
high-frequency limiting dielectric constant, eN, data fitting with
these models should include the addition of a free capacitative
parameter, C, in parallel with them. The resulting composite
models will be denoted by CK0 and CKD, respectively.

Finally, once the I0(o) response function is available, one may
use Eq. (2) to calculate I1(o) and its full resistivity-level model
response, r1(o) ¼ r0I1(o), denoted the conductive-system OMF
K1 model but not so named in Ref. [1a]. Alternatively, if the I0(o)
DRT is known and/or is accurately calculable, as in LEVM, one can
readily transform it to the DRT of I1(o) and then calculate I1(o)
from it [6,12,21: see Eq. A.2].

The K1-model I1(o) normalized response function, when it is
calculated from Eq. (2) with I0(o) derived from Eq. (1) using the
stretched-exponential f0(t) of Eq. (5), is clearly only indirectly
associated with stretched-exponential temporal response. The
actual f1(t) response associated with the K1-model frequency
response may be calculated either from its DRT or from its I1(o)
response [4,12], and it approaches such a form only asymptotically
in the limit of long times [22]. Further, as demonstrated in Ref.
[23], the log–log slope of its normalized s0(o) response
approaches its high-frequency limiting value appreciably slower
than does equivalent K0-model response. Constraint theory shows
that for charge motion in three dimensions for a macroscopically
homogenous material with charges of a single-type mobile,
the K1-model b1 shape parameter should be exactly 1/3 [23].
When it is, the resulting quasi-universal model is denoted as the
UN one [6,23].

It is worthwhile to explicitly distinguish between OMF and
CMF models since they both involve the K1. Specifically, the OMF
involves K1 response interpreted using the eZ�eN of Eq. (4)
and uses the K1 model alone for fitting. In contrast, the CMF
involves the K1 model interpreted using the eZ�eC1N definition of
Eq. (3) and always requires for fitting a parallel capacitative
parameter, denoted by C and representing eDN. Because of their
importance, these distinctions are described in more detail in the
next paragraph.

When the CMF K1 effective conductive-system dielectric
constant eC1N is not negligible, the full high-frequency-limiting
dielectric constant is given by eN ¼ eC1N+ eDN. Since the CMF K1
model alone does not involve the endemic dielectric quantity eDN,
when fitting with the K1 one must include a separate free
parameter to represent the latter, and the resulting composite
model is then denoted the CK1. No such free parameter is needed
with OMF K1 fitting since the original assumption of this model is
that the eN ¼ eDN of Eq. (4) ‘‘contains all the ordinary contribu-
tions to the relative permittivity of the material except those
connected with the long-range ionic diffusion process’’ [1b].
Although the creators and subsequent users of the OMF do not
recognize the existence of eC1N, OMF fitting with the K1 alone
nevertheless leads to an estimate of eN and so may implicitly
involve eC1N! The somewhat subtle differences between the OMF
and the CMF response models mentioned above are at the heart of
the incorrectness of the OMF model and its fitting results.
5. Representative CMF and OMF fitting results

In order to illustrate and justify some of the results and
conclusions about the OMF and CMF data-fitting approaches
described above, a frequency-response data set for the fast-ion
material 0.35Li2S �0.65GeS2 at 258 K, kindly supplied by Professor
Steve Martin [24], has been analyzed in various ways and the
results are presented in Tables 1–3 and in Figs. 1 and 2. It should
be noted that the work of Ref. [24] makes use of the OMF but
suggests some weaknesses of it. Since this data set showed
appreciable electrode effects in the low-frequency region, a series
constant-phase element was needed as part of a composite model
to obtain good fits. Its form, expressed at the complex conductiv-
ity level, is sSC(o)�eVASC(io)gSC, with ASC frequency independent
and gSC usually less than unity. Note that when gSC ¼ 1, eVASC is a
specific capacitance. The sSC(o) response function will be denoted
here by S, so a composite fitting model including the CK1 and a
series constant-phase element is denoted by CK1S [25–27].
Similarly, the dielectric-system CKD model becomes CKDS [28].

One important test of the adequacy of a fitting model is to
compare the values and uncertainties of the estimated values of
the free parameters of the model for full CNLS fits with the data
expressed at different immittance levels. In the absence of
systematic and random errors the results should be independent
of the fitting level. Much of the present work involves fitting with
proportional weighting (PWT) which treats large and small data
values equally [20]. Independent of the presence of systematic
and random errors the use of such weighting leads to identical
parameter estimates for M and r level fits and, separately, for s
and e ones, so only fits at two of the four immittance levels
are necessary for such comparisons. Table 1 presents the results
of comparisons for the CK1S, CUNS, and RCKDS models. The
R symbol of the RCKDS composite model denotes the presence of a
frequency-independent r0 resistivity in parallel with the rest of
the model.

In the present tables, 100SF is the percent relative standard
deviation (RSD) of the residuals of a fit; when it is less than 3% the
fit is good, and it is very poor for values of 10% or more. The
quantity PDRMS is the root mean square of the relative standard
deviations of the parameters, with the RSD of the t0 parameter
generally the largest of these values. For good fits both SF and
PDRMS values should be small. The subscript k of bk may be D, 0, 1,
or 1M (for OMF fits such as those using the K1 and K1S models).
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Table 1
LEVM CNLS fits of 0.35Li2S �0.65GeS2 76-point frequency response data at 258 K with various CK1S, CUNS, and RCKDS composite models, all with proportional weighting

(PWT).

Fit model levels 100SF PDRMS 10�6r0 RSD 107t0 RSD bk RSD eC1N or De RSD eDN RSD eN RSD 10�6ASC RSD gSC RSD

CK1S 2.14 1.04 2.12 0.337 13.26 28.84 42.10 1.73 0.839

M,r 0.078 0.0026 0.185 0.025 0.039 0.0065 0.0022

CFK1S 2.13 1.04 2.12 0.337 13.26 28.84F 42.10 1.73 0.839

M,r 0.011 0.0025 0.024 0.0039 0.0065 0.0021

CK1S* 2.14 1.04 2.12F 0.344 14.35 27.82 42.17 1.73 0.839

M,r 0.0041 0.0025 0.0012 0.0053 0.0065 0.0021

CUNS 2.13 1.04 1.97 1/3F 12.78 29.28 42.06 1.73 0.839

M,r 0.0056 0.0025 0.0083 0.0053 0.0065 0.0021

RCKDS 1.58 1.05 192 0.430 124.6 – 42.59 1.72 0.842

M,r 0.022 0.0019 0.057 0.0087 0.015 0.0031 0.0048 0.0016

CK1S 2.07 1.05 2.49 0.344 14.30 27.88 42.17 1.71 0.841

s,e 0.068 0.0024 0.160 0.022 0.041 0.0042 0.0017

CFK1S 2.06 1.05 2.49 0.344 14.30 27.88F 42.17 1.71 0.841

s,e 0.019 0.0024 0.041 0.0065 0.0042 0.0016

CK1S* 2.06 1.05 2.49F 0.344 14.30 27.88 42.17 1.71 0.841

s,e 0.0053 0.0024 0.0012 0.011 0.0042 0.0016

CUNS 2.08 1.05 1.97 1/3F 12.74 29.37 42.11 1.71 0.842

s,e 0.0066 0.0025 0.0085 0.011 0.0042 0.0016

RCKDS 1.43 1.05 182 0.430 123.0 – 42.65 1.71 0.844

s,e 0.018 0.0017 0.046 0.0073 0.012 0.0047 0.0029 0.0012

In the CK1S model, the letter C represents the free eDN parameter, but this parameter is fixed at its free-fit value for the CF K1S fits, and those designated CK1S* involve

values of t0 fixed at their free-fit values. Here RSD denotes the relative standard deviation of a free-fitting parameter, and the letter F, as in 1/3F, indicates that the value is

fixed during fitting. The subscript k in bk is either 1 or D here, depending on the model type.

Table 2
LEVM CNLS and NLS fits of 0.35Li2S �0.65GeS2 76-point frequency response data at 258 K with various Kohlrausch-derived composite models.

Row number Fit model Level Weight 100SF PDRMS RSD of t0 bk or b1M eC1N eDN eN

1 CK0S M PWT 2.74 1.1�10�2 0.537 – – 43.62

0.0066

2 CK1S M PWT 2.14 0.185 0.337 13.26 28.84 42.10

0.078

3 K1S M PWT 3.01 1.1�10�2 0.473 – – 43.85

0.0069

4 K1S M UWT 96 6.8�10�3 0.501 – – 46.88

0.293

5 K1S s0 PWT 1.34 0.365 0.357 16.50 – –

0.165

6 K1S s0 UWT 3.74 0.399 0.325 12.52 – –

0.182

7 CUNS/K1S M PWT 1.50 5.3�10�3 0.473 – – 43.85

0.0034

8 K1S3/CUNS M PWT 1.50 5.7�10�3 1/3F 12.80 29.30 42.10

0.0039

For row-7, an exact data set calculated from the CUNS fit parameters of Table 1 was fitted by the OMF K1S model, and for row-8 a row-3 exact K1S data set was fitted by the

CUNS model.
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The RSD estimates for the two Table 1 CK1S t0 fit results are
particularly large, arising from a very high correlation between
the t0 and b1 parameters. To further investigate this behavior, for
each separate level fitting, two more CK1S fits, in which one
model parameter is fixed at its originally estimated value, as well
as a CUNS fit, where b1 is fixed at 1/3, are included. The principal
effect for all three of these fixed-parameter fits is a great reduction
in the RSD values of the remaining CK1-model free parameters,
without much change in their estimated values, thus providing
more confidence in these values. The CK1S b1 estimates of 0.337
and 0.344 are so close to 1/3 that the CUNS-model fit is the most
appropriate model for representing the present data at any
immittance level.

Although the 100SF values in Table 1 indicate that the present
fits are good but not exceptionally good, comparison of parameter
values and RSDs for the M, r and those for the s, e level fits
nevertheless shows that they are quite stable and adequately
consistent. Thus fits for either level may be used for data
interpretation. The RCKDS results are discussed in Section 6.

Table 2 presents fit results for conductive-system composite
models involving Kohlrausch-derived parts. The CK0S-model fit
results are comparable to those of the CK1S and CUNS models in
Table 1 but lead to a much larger b0 estimate and to no separate
eC1N and eDN estimates. Even though the OMF K1S model has the
same number of free parameters as the CMF CUNS one and one
less than the CK1S model, the 100SF value of the latter is
somewhat smaller than that of the comparable row-3 OMF
fit result. Further, the b1M OMF estimates of rows 3 and 4 are
much larger.

Finally, the OMF K1S fits of rows 3–6 show the expected large
difference between the b1M M-level fit estimates and the s0 ones.
As expected, the s0 values are close to 1/3. Further, although all



ARTICLE IN PRESS

Table 3
LEVM CNLS and NLS OMF K1-model fits of exact CUN-model 121-point, 0.1–1011 Hz, frequency response data calculated from the CUNS-model fit parameters of Table 1,

row 4.

Row number Fit model Level Weight 100SF RSD of t0 b1 or b1M eC1N eN

1 CUN M PWT Exact Exact 1/3F 12.78 42.06

2 K1 M PWT 10.92 1.5�10�2 0.425 – 41.42

3 K1 M UWT 20.70 7.2�10�3 0.449 – 42.66

4 K1 M0 PWT 1.55 9.5�10�3 0.462 – 42.73

5 K1 M0 UWT 21.73 9.3�10�3 0.446 – 44.55

6 K1 M00 PWT 10.80 1.7�10�2 0.398 – 45.62

7 K1 M00 UWT 25.86 1.2�10�2 0.460 – 43.03

8 K1 s PWT 12.44 3.5�10�2 0.420 – 37.11

9 K1 s UWT 70.43 3.4�10�4 0.338 – 42.06

10 K1 s0 PWT 3.98�10�8 8.2�10�8 1/3 12.78 –

11 K1 s0 UWT 3.59�10�6 1.9�10�5 1/3 12.78 –

12 K1 s00 PWT 1.23 1.6�10�2 0.462 – 42.98

13 K1 s00 UWT 65.56 3.0�10�3 0.352 – 42.08

14 K1 r UWT 17.88 1.1�10�2 0.467 – 41.71

15 K1 r0 UWT 25.30 1.5�10�2 0.467 – 41.89

16 K1 r00 UWT 5.09 1.8�10�2 0.466 – 41.08

17 K1 e UWT 16.59 8.8�10�3 0.459 – 42.08

18 K1 e0 UWT 1.37 1.4�10�2 0.463 – 43.27

19 K1 e00 UWT 7.17�10�8 1.5�10�7 1/3 12.78 –

Fig. 1. CNLS fits of 0.35Li2S �0.65GeS2 frequency-response data at 258 K. (a) M00

results of CK1S-model fit, rows 1 or 2 of Table 1, at the M level with proportional

weighting (PWT); exact CUN response (no series elements) and exact UN-model

response (no parallel bulk dielectric parameter, eDN). (b) Same results as in (a) but

at s00 level; comparison at the e0 level of exact CUNS response and that of CUN. The

normalization quantity nn is 1 Hz and s0 is 1 S/cm.

Fig. 2. Exact extrapolated data and responses calculated from the parameters of

the CUNS fit of row-4, Table 1. (a) Comparison of CUN and UN M00-level responses

and also those of OMF K1-model fits to the CUN data using unity weighting (UWT).

(b) Comparison of CUNS and CUN s0-level responses (the same here as UNS and UN

ones); e0-level comparison of CUN and UN responses, and that of a K0-model PWT

fit to exact UN data.
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the e estimates of these fits are actually calculated using fit
parameter estimates in Eq. (3) and so are what CMF users would
call eC1N and OMF ones would call eN, their values have been
placed in appropriate columns in the table. Incidentally, for the
present temperature a b1M estimate cited in Ref. [24b] and called
bs was 0.48, in good agreement with the estimates in rows 3 and 4.
The inconsistency between M-level and s0-level b1M estimates for
either PWT or unity weighting (UWT), the crux of the failure of
the OMF approach, is further demonstrated by results presented
in Table 3.

It is of interest to compare how well exact CMF synthetic data
calculated from Table 1 CUNS-model fit parameter estimates is
fitted by the OMF K1S model, and vice versa. Results are presented
in rows 7 and 8 of Table 2. Comparison of row-7 results with row-
3 ones and of row-8 results with the CUNS ones of Table 1 shows
close agreement between the corresponding parameter estimates.
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In Table 3 we follow the same procedure, using a wider frequency
range and omitting the constant-phase element part of the
response in order to generate exact data and bare-bones OMF
fitting results for all immittance levels.

The solid data lines in Fig. 1 were plotted using all the
data points, but to avoid congestion only every fifth point is
shown as a small solid circle. CK1S-model fit points are depicted
by open circles. The accuracy of the fits is demonstrated by the
degree to which the open circles encircle the data points
uniformly [28]. Here, only the lowest-frequency M00 point
shows a small deviation. Note that although Fig. 1a results
show that electrode effects play only a small role at low
frequencies for the M00 results, the s00 results of 1b show dominant
low-frequency electrode effects, very well fitted by the series
constant-phase element S-part of the CK1S model. Although such
effects play too small a role at high frequencies to be resolved on
the present log–log plot, they are often found to be important in
this region [25–27].

Below about 1 KHz the CUNS e0 response curve of Fig. 1b shows
an increase of several orders of magnitude as the frequency
decreases. Comparison between the CUNS and the CUN responses
demonstrates that this growth is entirely due to the series
constant-phase element, S; thus it is unrelated to the dispersive
UN bulk response and is therefore most likely associated with
processes at the electrodes, possibly with fractal behavior [29]
and specific adsorption [30]. The much smaller dispersive CUN
and UN responses are presented on an expanded scale in Fig. 2b.
In addition, the results of a CNLS K0-model proportional-
weighting fit to the exact UN data demonstrate in this figure
that eC0N is zero for this model. For this fit the b0 estimate was
about 0.59.

Because OMF data fits usually involve only M or M00

immittance-level data and often use the results listed in Table 2
of Ref. [1a] to estimate approximate b1M values from the width of
a M00(o) curve at half-height, it is worthwhile to compare accurate
OMF K1-model fit results for all 12 immittance levels using both
PWT and UWT. Since the CUNS-model fit results in the fourth row
of Table 1 represents the data very well, we may use its parameter
estimates in LEVM to generate exact CUN extended-range
response data, as shown in row 1 of Table 3. It thus well
represents the original experimental data with all electrode
effects removed.

Table 3 shows the results of PWT and UWT K1-model fits to the
row-1 CUN data set. Only 18 rather than 24 fits are required
because, as already mentioned, with PWT the results for data
expressed at the r(o) and M(o) levels are exactly the same, as are
those expressed at the s(o) and e(o) levels. The results in Table 3
show variation in b1M estimated values over a range from about
0.40 to 0.47, omitting the values of rows 9, 10, 11, 13, and 19. The
1/3 fit estimates of rows 10, 11, and 19 each involved six or seven
correct decimal-place values, as expected from the row-1 exact
value. The b1M values of rows 9 and 13 were surprisingly close to
1/3. It is clear that the fits leading to the correct b1M ¼ b1 values of
1/3 are entirely inconsistent with all the others.

Comparison of b1M estimates for comparable K1S fits of Table 2
with the K1 ones of Table 3 indicates that the presence of
electrode effects and a restricted frequency range for Table 2 data
lead to somewhat larger values of b1M than those for the exact
CUN data of Table 3. Of course, fitting with CMF models obviates
these OMF model discrepancies.

Fig. 2b shows the effect on s0(n) at low frequencies of the series
electrode function included in CUNS response compared to that of
CUN. In addition, it demonstrates that the K0 model involves no
non-zero e0(N), and that the capacitance parts of the UN and CUN
models lead to the high-frequency limiting values of eC1N and
eN ¼ eC1N+ eDN respectively.
Fig. 2a illustrates the large high-frequency differences between
the UN and CUN M00(n) responses. In addition, this figure includes
response curves for Table 3 rows 6 and 7 K1 M00(n) PWT and UWT
fits to the CUN data. Note that both the PWT and UWT K1 OMF
curves fall below the exact CUN response curve at high
frequencies. In the past, such response, particularly that involving
UWT or its equivalent, always found with OMF fitting of
experimental data for ionic glasses at sufficiently high frequencies
[1a,8], has been characterized as ‘‘excess wing’’ behavior, but since
the OMF is an invalid fitting model, such usage is misleading and
should be rejected because no excess wing appears with CK1
rather than with K1 fitting. It is this failure of the OMF model to fit
extended high-frequency data that leads here to the very poor
100SF values of most of the K1 fits listed in Table 3. But even
for the restricted-range data of Table 2 the use of the OMF K1S
model leads to erroneous M-level b1M values, another indication
of its inappropriateness.
6. Comparison of and discrimination between conductive-
system and dielectric-system fitting models

A perennial problem with immittance spectroscopy analysis of
data from condensed-matter materials has been the need to
decide whether the data involve dispersed CSD response asso-
ciated with ionic motion or whether such response involves DSD
dipolar effects. Even when the material of interest exhibits
appreciable ionic conductivity, its response has sometimes been
characterized as dielectric and any dispersion present ascribed to
dipoles rather than to ions. Therefore the history and present
status of the matter needs attention.

In the absence of dispersion, any material of interest will
involve a dc conductivity s0, and a high-frequency-limiting bulk
permittivity eDN, leading to simple Debye relaxation response, of
conductive-system character when these elements are in parallel
and to dielectric-system behavior when they are in series.

In non-dispersive dielectric materials without impurity ions,
s0 will be very small and may fall below the lower measurement
limit. Usually, however, the presence of some thermally activated
impurity ions can lead to values within the available measure-
ment range by picking a high enough material temperature. Then
estimates of both s0 and eDN may be obtained by fitting the
frequency response of the system with an appropriate Debye
model: a simple instance of immittance spectroscopy.

The situation is different when dispersion is present [28,31,32].
Consider first that where only CSD is present. Then s0 is the low-
frequency-limiting conductivity value of the dispersive model
when, as in the usual case, the high-frequency resistivity limit is
zero or negligible. In this case a peak in the M00 response will
always be possible, even in the absence of any parallel
capacitance.

Alternatively, for DSD the low-frequency-limiting value of the
dispersion function alone is De, and a parallel capacitance,
represented by eDN is required for a peak in M00 response to
appear. One cannot distinguish between the two dispersion types
of dispersion from immittance measurements alone because
Maxwell’s equations ensure that both conductive and displace-
ment contributions to the total current appear together. Finally,
both conductive and dielectric dispersion effects may be simulta-
neously present in the data [28]. Even in this case, one would like
to establish whether the main dispersion is conductive or
dielectric in character.

Results of data fitting of exact synthetic data, published in
1999 [33], illustrate the problem of discrimination between
dispersive conductive and dielectric responses. It involved fitting
data calculated using a CSD CK1 model with a DSD one and the
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inverse problem of fitting exact DSD data with a CSD model.
Excellent fits were found in both cases, precluding the possibility
of an absolute choice.

Since 1973, it has usually been assumed that materials with
appreciable mobile-ion concentrations are of conductive-system
character and thus involve a distribution of resistivity relaxation
times [e.g., 1,6,8,15,23,26]. The OMF and CK1 models have been
widely used for the analysis of such materials, but even the CK1 is
inappropriate when the dispersion is actually of dielectric
character.

The latter assumption has been made in the work of Johari and
co-authors [e.g., 31,32] who fitted glasses, polymers, and ionic
melts with a model involving a frequency-independent s0

(associated with long-range ionic motion) in parallel with a
dispersive dielectric-level dipolar model, such as that of Davidson
and Cole [12]. They established that the DSD approach
was superior to the CSD OMF one, but they did not use CNLS
fitting or the CK1 model since the latter model was not then
available. Since their work, there has been little detailed attention
to the discrimination problem until recently [28,33], and a
choice based on ionic dominance or molecular character has
usually been made without any data-fitting comparisons of
dispersion possibilities.

It should be noted that although ion hopping is assumed to
lead to CSD response in materials with appreciable ionic
conductivity, in such circumstances the alternate Johari DSD
approach also involves dipoles, usually identified as arising from
ion pairs. It seems, however, that dispersed ion hopping, which
involves a DRT with very many different times between hops, is
likely to be more physically plausible than a DRT assumed to arise
from less-mobile-ion pairs.

Besides the generally excellent CK1 and CUN fits of data for
many ionic solids listed in Refs. [23,26,30], it was recently shown
in Ref. [34] that the CK1S model, plus additional CSD series
elements, well fitted fused-salt CKN data for several temperatures
up to frequencies of 1011 Hz and even predicted the observed
Boson peak present at about 3�1012 Hz. In contrast, the work of
Ref. [28] dealt with the discrimination problem by analysis of the
responses of the super-cooled liquids NMEC and glycerol above
their glass transition temperatures. Both these non-associated
viscous liquids exhibited appreciable ionic impurity conduction.

Therefore, their data sets for several temperatures were fitted
with both CSD and DSD composite-model approaches, as well as
combinations thereof. The best CSD model involved a series
combination of the CK1 and Debye models, with the latter
accounting for a very high resistivity r0 probably associated with
partial blocking of ions at the electrodes. A composite DSD, CSD
model was found more appropriate, however, and involved a
parallel combination of R, C, and a dielectric-level Davidson–Cole
model (DCD), all in series with a resistivity-level CSD Davidson–-
Cole model (DC0). Here the R element again represented r0, and
the DCD model response dominated that of the DC0 one.
Therefore, for these data sets both fitting results and physico-
chemical evidence made it highly likely that the main
a-dispersion was of dipolar character but did not strongly
discriminate between ion-pair dipoles and permanent and
induced molecular ones.

One approach that might help in unraveling the mystery of the
cause of observed dispersive behavior is to experimentally vary
the concentration of ions (mobile and immobile) at constant
measurement temperature when this is possible. For a sufficiently
small ionic concentration approaching zero, there will be no
conductive-system dispersion observable and any dispersion still
present must arise from a dipole DRT. Results shown in Table 2 of
Ref. [26] indicate that a reduction by a factor of 30 of the ion
concentration, x, in xNa2O(1�x)GeO2 fitted by a CSD model led to
a substantial reduction in eN toward eDN but to very little
change in eDN, as might be expected in the absence of ion-pair
dispersion.

Finally, it is worthwhile to consider discrimination possi-
bilities for the fast-ion 0.35Li2 �0.65GeS2 fitting results summar-
ized in Table 1. Since results for M, r fitting are comparable to
those for s, e, I shall consider only the M, r ones. First, fits
with a DSD RCDCDS Davidson-Cole model led to 100SF and PDRMS
values of 2.37 and 0.026, respectively, appreciably larger than
those of the RCKDS fit in row 5 of Table 1. Secondly, it was not
found possible to obtain a viable fit for this data set that included
both DSD and CSD dispersion models in a composite model,
although that was possible for the molecular-liquid fits consid-
ered in Ref. [28].

Although the composite-model RCKDS fit of row 5 led to a
slightly smaller 100SF value than that of the CUNS in row 4, it
involves two more free parameters than does the CUNS. More
important is that the PDRMS of the RCKDS fit is far larger than the
CUNS one because two of the RCKDS parameter uncertainties are
large. Although these results are not definitive, they suggest that a
CSD model fit is more appropriate here than a DSD one. But the
large estimated value of eDN, over 42 here, nevertheless suggests
that it primarily arises from probably non-dispersed, ion-pair
effective dipoles.

Virgil said, Felix qui potuit rerum cognoscere causus (‘‘Happy is
the one who can know the causes of things’’). For the presently
discussed discrimination tasks, it seems that, thanks to Maxwell,
we are fated to remain unhappy!
7. Crucial inconsistencies of the original modulus formalism

From a theoretical point of view one might think that pointing
out that using purely conductive-system model parameters to
represent both conductive and dielectric effects, as in the OMF,
should be sufficient to invalidate such a model. One might
also think it reasonable that such a model should be invalidated
by the experimental demonstration of the irreconcilable incon-
sistency between b1M estimates obtained from M(o) and/or
M00(o) OMF K1-model data fitting and those found from such
s0(o) and/or e00(o) fittings. These expectations, reasonable as they
may seem, continue however to be entirely ignored by the
proponents and users of the OMF. A possible motivation
for ignoring and not responding to criticism is simple: Do not
respond if the criticism cannot be refuted because to do so
would require an admission that both the theory and its physically
based conclusions are erroneous, thus accepting that much prior
work is invalid.

It is therefore worthwhile to describe in more detail the several
crucial inconsistencies of the OMF approach, one of them not
explicitly mentioned previously. Since both the OMF and CMF use
the same K1 model, their only difference at the K1 level is their
interpretations of the eZ of Eq. (2). While there is no essential
difference in the calculations of the eC1N of Eq. (3) and of the eN of
Eq. (4), since both involve fitting estimates of the purely
conductive-system quantities s0 and t0, an eC1N estimate involves
such values following from a CMF CK1 or CUN fit, while the eN
of Eq. (4) follows from a K1 OMF fit, usually leading to quite
different and unacceptable OMF results, as demonstrated in the
foregoing sections.

One might argue that since OMF fits lead to reasonably good
estimates of eN, the OMF is a valid approach. But they also lead to
inconsistent estimates of b1M, to an excess wing, and to physically
improper t0 estimates, as discussed below. Although the presence
of an excess wing is recognized but not explained in Ref. [8], its
importance is downplayed there. The increase of b1M with
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increasing temperature and with decreasing concentration of
mobile ions has been cited by Ngai as evidence for ion-ion
correlation, and b1M estimates have been routinely used in his
coupling model [7,10,22,35]. Both this conclusion and its applica-
tion must, however, be rejected because of the crucial incon-
sistency of the OMF. The alternate use, in both the coupling model
and in a superior DRT cutoff model, of the CMF b1, whose value is
virtually independent of variations in the above exogenous
variables, is discussed in Ref. [35].

Finally, consider what happens as the relative concentration of
mobile ions in a given material decreases towards zero. There is
no problem with the CMF approach. As shown by Eq. (3), eC1N

goes to zero, and therefore eN properly approaches eDN, the C
quantity in the CK1 model [6,23,26]. These results are just as one
would expect: in the absence of mobile ions the capacitative effect
of the ions disappears and all that is left is the bulk dipolar
dielectric constant eDN. As shown in Fig. 7 of Ref. [6], as the
concentration decreases and the eC1N/eDN ratio approaches zero,
the dispersive K1 part of the CK1 model appears at higher and
higher frequencies relative to the dominant Debye response
involving the relaxation time r0eVeDN, response which itself
disappears at zero mobile-ion concentration.

The situation is different for the OMF, one where the eN of
Eq. (4) was defined in 1972 as eDN [1b], and no such quantity as
eC1N is ever defined or recognized. But Eq. (4) nevertheless
involves only mobile-ion quantities and so, taken literally, leads to
eN reaching zero in the absence of mobile charges, not to eDN. Of
course, this is contrary to the results of all experimental
measurements and is not what actually happens, even with the
OMF K1 model.

Instead, fits of experimental modulus data with the K1 alone
also lead to eN estimates approaching eDN as the ionic
concentration approaches zero. The OMF calculation of eN
involves the ionic-related quantities r0 and t0 and, in the absence
of any parallel parameter representing eDN as in the CMF,
K1-model fitting of data that intrinsically involves eDN, leads to
estimates of r0 and t0 that try to account for its presence. Since
most models lead to good estimates of r0 when any electrode
effects are adequately accounted for, it is primarily the t0 variable
that must adjust to allow a good fit. The Table 2 t0 estimates for
the CK0S (M), CUNS (M), K1S (M), and K1S (s0) fits are 5.44�10�6,
1.97�10�7, 1.82�10�6, and 3.27�10�7 s, respectively. One would
expect the CUNS and K1S (s0) values to be close since they are
both CMF fits, and although the t0 estimate for the latter fit was
poor, it agrees within about one of its standard deviations with
the CUNS one.

For comparison with the above t0 estimates, the t0p values
corresponding to the frequency of the M00 peak of the present data
and to that of its UN fit are 2.83�10�6 and 2.94�10�7 s,
respectively. The presentt0-fit results make it quite clear that,
just as OMF M-level b1M estimates are incorrect, corresponding t0

ones are wrong as well.
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