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Several theoretical models are fitted to an exact wide-frequency-range data set representing a new random-
free-energy, effective-medium expression for mobile-ion response at low temperatures. A continuous-time,
random-walk K1 model, indirectly involving a stretched-exponential temporal correlation function, led to the
best fit, much superior to those of two dielectric-dispersion models as well. Two types of approaches are
compared for analyzing 0.4Ca(NO3)2 ·0.6KNO3 (CKN) experimental data covering a very wide frequency
range: a simplified conventional approach, usually involving only some or all of the real part of conductivity,
denoted type 1, and an approach involving nonlinear least-squares fitting of full complex data over its entire
range, denoted type 2. The type-2 analysis uses a composite fitting model involving the K1 and involves 10
free parameters needed to well represent electrode polarization, conductive-system dispersion, nearly constant
loss, and limiting far-infrared vibrational effects. It confirmed that the latter were purely dielectric and led to
σ′′ and ε′′ boson peaks; included a mobile-charge explanation of the nearly constant loss region; and yielded
reasonable values of the K1-model fractional exponent, �1, and plausible values of a completely blocking
double-layer capacitance. The good type-2 fit parameter estimates were used to generate extrapolated model
response over a 20-decade range at complex conductivity and complex relative permittivity levels, as well as
their accurate slopes over that range. The maximum slope of the log-log σ′ curve failed to approximate well
the value of 2 usually inferred from data of the present type but instead led to a novel double peak with peak
slope values of about 1.6 and 1.7 before decreasing to zero at the limiting far-infrared plateau region of σ′
response. Nearly constant loss was found to be well described by the series combination of the bulk high-
frequency-limiting dielectric constant of the material and a translational ionic-motion constant-phase-element
expression, one whose inclusion was also needed for representing low-frequency electrode polarization effects.
Further, this combination should dominate the full response at sufficiently low temperatures.

1. Introduction and Background

In recent work, Schrøder and Dyre proposed an effective-
medium approximation (EMA) to a random-free-energy barrier-
hopping model (RBM) that yields an expression for its frequency
response under extreme-disorder conditions (low-temperature
limit).1 In that work, the RBM was solved by a new approximate
hopping model, here designated the MEMA, that involves the
“fat percolation cluster”, and it is stated that the MEMA provides
“an accurate description of the universal ac conductivity”. Here,
the appropriateness of this description is examined in some
detail.

Given that ref 1 provides much background information on
ion conduction in disordered materials and mentions that the
RBM well represents experimental conductivity data, it is
worthwhile to compare the MEMA model with others, such as
the Davidson-Cole (DCD, DC0, and DC1), KD, K0, and K1
models, that have proved useful in fitting and analyzing
experimental data.2-8 The KD, K0, and K1 models involve,
directly or indirectly, a stretched-exponential (SE) temporal
response. The DCD and KD approaches are appropriate for data
involving dielectric dispersion, and the DC0, DC1, K0, and K1
approaches are appropriate for data involving dispersed ionic
conduction. When a bulk dielectric constant, εD∞, is included
in a composite model involving DC1 or K1, it is designated by
C in the composite model name; thus, for the K1 or DC1 model

in parallel with such an element, the results are designated CK1
or CDC1. For other models, C denotes the total high-frequency-
limiting dielectric constant ε∞.

It is also pertinent to compare the MEMA response with that
of relevant EDAE models, ones that are precursors of and
alternatives to the MEMA model. Here, EDAE stands for an
RBM model involving an exponential probability distribution
of activation energies, a box distribution. In 1985, the present
author published a comprehensive discussion of possible EDAE
frequency-response models for both conductive and dielectric
systems, including 3D complex-plane shapes and explicit
formulas for a range of ψ parameter values.9 This work involved
a generalized box EDAE with the slope of its top boundary
given by the parameter ψ ≡ 1 - φ, with zero slope for ψ ) 0.
It was later generalized in ref 10, and the EDAE response was
compared to that of a Gaussian distribution of activation energies
(DAE) in ref 11.

Contemporaneously and independently, in 1985, Dyre pub-
lished an article12 based on a continuous-time, random-walk
(CTRW) EMA model that led, after further approximation, to
the ψ ) 0 result of ref 9, a specific EDAE model. In 1988, he
further discussed this model, then called the random free-energy
barrier model,13 and later, it was named the macroscopic
percolation path approximation (PPA) model.14 Finally, in 1989,
in a work on conduction in disordered materials, the present
author further discussed the utility of the PPA, some of the
approximations leading to it, and its claim of universality.15* Tel.: 919-967-5005. E-mail: macd@email.unc.edu.
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The above background discussion indicates that the original
EDAE and its successors contain a lot of physics, but it should
be mentioned that the Dyre derivation of the PPA model
involves a somewhat different CTRW approach than the one
of Scher and Lax16 that led to the specific K1 model.4,17 The
statement in ref 13 that the magnitude of the dc conductivity is
usually quite wrong for the microscopic CTRW Scher-Lax
model was earlier countered by them in ref 18, but it was not
until 2002 that this model was generalized and shown to be
made fully consistent by the addition of a high-frequency
extension to it.17 With the selection of a specific stretched-
exponential temporal correlation function, it was then shown17

to be isomorphic with a macroscopic K1 model of 1973.19 An
important article that appeared in 1989 compared theoretically
and experimentally most of the important analysis models for
conducting materials then existing,20 and this work and refs 1
and 14 provide detailed analyses of the physicochemical content
of many of the various models still competing for status in this
area.

In section 2, exact wide-frequency-range MEMA data are
fitted by a variety of its precursor models, by the K1 model,
and by two dielectric-system dispersive models. Section 3
compares the efficacy of a simplified model and of a full model
for fitting supercooled calcium potassium nitrate (CKN) over a
15-decade frequency range. Section 3.1 defines the two types
of models, designated type 1 and type 2, and discusses exact
and approximate log-log frequency-response slopes and the
disadvantages of log-log plots of data and model responses.
Section 3.2 deals with the alternatives of fitting data with
conducting-system or dielectric-system dispersed response
models, and section 3.3 discusses the results of full fits of CKN
data at two temperatures using composite conducting-system
models that include the K1. Section 3.4 uses the results of
section 3.3 to present extrapolated, 20-decade, complex-
conductivity frequency-response results for CKN at 342 K and
their detailed slopes over the full range. Finally, section 3.5
compares and discusses various definitions for nearly constant
loss as they apply to CKN.

2. Comparison of Model Predictions

The simplified ψ ) 0 EDAE response model, the PPA, can
be written in normalized form as

where σ0 is the dc conductivity and ωj ≡ ωτ∞. In ref 13, Dyre
showed that the σ′(ω) predictions of eq 1 fitted several different
experimental data sets reasonably satisfactorily, and in ref 15,

the PPA was well fitted by a K0 model. The new MEMA
expression1 is given in normalized form by

where here, ωj ≡ ωεV∆ε/σ0, with εV as the permittivity of a
vacuum.

It is noteworthy that both eqs 1 and 2 lead to fractional-
exponent log-log slope values that reach unity at infinite
frequency. At a finite specific frequency, it is the power-law
slope at that frequency of a log-log representation of σ′(ω) or
σj′(ωj ). For simplicity, log-log slopes will be called just slopes
hereafter.

Even though the MEMA conductivity data1 extend to a
normalized frequency of 1010, transformation of the data to the
dielectric level shows no finite-length high-frequency plateau
for ε′(ωj ), although the magnitude of its slope continually
decreases as the frequency increases. This suggests that the
MEMA model might involve a nonzero ε∞ value only in the
infinite-frequency limit. Nevertheless, fitting this set with other
models that include a nonzero ε∞ value (represented by the letter
C in the model name or an intrinsic part of the K1 model) leads
to appreciably better fits than those without it. In the K1 model,
a purely ionic effective dielectric quantity, εC1∞, is present and
is calculated from fit estimates of σ0 and the mean value of the
K1 characteristic relaxation time, τ0.4,17

Table 1 summarizes the results of full complex-nonlinear-
least-squares (CNLS) fits with proportional weighting, using the
LEVM computer program,21 of the MEMA data at the conduc-
tivity level for several different models. Not included are fit
results for the CDC0 Davidson-Cole model and the CK0 model
because these models led to fits as poor as or worse than that
of the PPA model. Although no closed-form mathematical
expression is available for the K1 model except for some values
of its fractional exponent, �1, such as 1/3, 1/2, 2/3, and 1, the free
LEVM program allows response values to be calculated for 0
< �1 e 1 for simulation and fitting. Its accuracy is greatest in
the range 0.1 < �1 < 0.9. Fittings of data sets for many different
materials involving a single mobile charge carrier using the K1
model have led to estimates of �1 very close to 1/3, nearly
independent of temperature and mobile charge concentration.3,4

When �1 is fixed at this value, the K1 model is called the UN
model, a semiuniversal one.

For the fits of rows 1-3, σj0′, the normalized dc conductivity,
was fixed at unity. Further, the MEMA data involve an ε0′ value
of unity as well. As the Table 1 results show, the model that
fits the MEMA data best here is the K1, whose results are also
shown in Figure 1. Note that the fractional-exponent slope value
at a normalized frequency of 1010 is about 0.91 for the PPA

TABLE 1: LEVM CNLS Proportional-Weight Fits of a Normalized 1000-Point MEMA Data Set1 with Various Fitting
Modelsa-d

no. model 100SF PDRMS τj0

fractional
exponent εC1∞ or ε∞ ∆ε ε0

σ′′ two
slopes?; NFP

1 EDAE-PPA 45.7 0.014 0.313 1 F 0 0 0.156E N; 1
2 EDAE 32.9 0.014 0.511 0.905 0 0 0.243 N; 2
3 K1 12.1 0.007 3.23 × 10-7 0.880 6.48 × 10-3C 0.932C 0.939E Y; 2
4 RCKD 20.5 0.036 7.61 0.718 8.67 × 10-3 0.991 1 E Y; 3
5 RCEDAE 19.2 0.032 22.2 0.718 9.83 × 10-3 0.990 1 E N; 3

a Here, the letters F, C, E, NFP, Y, and N stand for fixed, calculated, extrapolated, number of free parameters, yes, and no, respectively.
b The normalized dc conductivity, σj0, is fixed at 1 for all fits. c Rows 1-3 are conductive-system fits, and rows 4 and 5 are dielectric-system
fits. d The high-frequency-limiting exponent of σ′ is unity for the PPA and MEMA models; φ ) 1 - ψ for the EDAE fits of rows 1, 2, and 5;
φ ) 1 - �1 for row 3; and φ ) 1 - �D for row 4, where φ is a free EDAE slope parameter.

σ(ω)/σ0 ≡ σ̄ ) iω̄/ln(1 + iω̄) (1)

ln(σ̄) ) (iω̄/σ̄)[1 + 2.66(iω̄/σ̄)]-1/3 (2)

9176 J. Phys. Chem. B, Vol. 113, No. 27, 2009 Macdonald
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model and 0.88 for the MEMA model, remarkably close to the
values from the EDAE and K1 fit results, respectively.

For simplicity, Figure 1 shows only 13 of the 1000 MEMA
data points. Note that, for perfect fits, the open symbols should
enclose the small solid-data-point symbols entirely symmetri-
cally.8 The three highest-frequency σj′(ωj ) K1-fit points deviate
progressively from such perfection as the frequency increases.
In addition, the row-3 K1-fit estimate of ε0′ is about 0.94 rather
than the value of unity of the data. The log-log σ′′(ωj ) data
curve involves two nearly straight-line regions, with that at lower
frequencies approaching a slope of unity in the zero-frequency
limit. It is noteworthy that the EDAE models of rows 1, 2, and
5 involve only a single virtually straight line.

The composite dielectric-response models of lines 4 and 5
require a frequency-independent dc conductivity in parallel
(denoted by R in the model name and here fixed at unity) and
a free parallel ε∞ parameter for adequate fitting. When model
elements are written together in the model name, with no
separation, the present convention requires them to be in parallel,
but when they are in series, they will be separated by a · symbol.
Thus, for the RCKD model, the R, C, and KD elements are all
in parallel. The fit results presented in rows 4 and 5 are discussed
in section 3.2.

When the MEMA data are restricted to their 644 lower-
frequency points, a maximum normalized frequency of 105 is
reached, together with a span of about 2.8 decades. One finds
that fits of this data set with all models except the K1 model
lead to 100SF values about one-half of those for the full data
set and to different parameter estimates, particularly to smaller
fractional exponent estimates. In contrast, those for the K1 model
remain very nearly the same, a highly significant result.

If an exact data set is fitted by a single model that is fully
appropriate for it, so that no systematic or random errors are
present, then fitting involving any non-zero-length part of the
data will yield perfect fits with the same very well determined
parameter estimates. Even for experimental data with random
errors, such behavior will be well approximated if the proper
fitting model is employed. We see from the results presented
in Table 1 that the K1 model yields not only the smallest values
of 100SF but also much smaller values of PDRMS, the rms value
of the relative standard deviations of the free parameters of a
fit. Even though the K1 model does not fit the MEMA data
well in the highest-frequency region, the present results show
that it is indeed close to being a useful and practical surrogate
for the MEMA model. This finding is valuable because the

MEMA model is impractical for CNLS fitting of experimental
data, whereas fitting with the CK1 model is straightforward
using the free LEVM computer program.

3. Illustration of Real-World Fitting Problems

3.1. Aspects of Modeling and Analyzing Experimental
Frequency-Response Data. Most experimental data are not
measured at such low temperatures that the low-temperature
limit modeled by the MEMA is necessarily a good approxima-
tion. In addition, within the usual experimental frequency-
response data window, most σ′(ω) results increase by only two
or three decades from their σ0 dc values, and many of them
involve a high-frequency-limiting slope very close to 2/3, as in
the UN model.4,22 For data extending to terahertz frequencies,
however, the slope can exceed 2/3 and can reach values near 2
before a zero-slope plateau appears.14,17

Further, data that extend to low enough frequencies usually
show significant electrode polarization effects involving partial
or complete blocking of mobile ions, and it is then often found
that a composite model involving a CUN and a series constant-
phase element (SCPE), denoted here by the characters SC in a
composite-model name and sometimes in earlier work by just
S, usually leads to good fits over the entire available frequency
region. CPE response, often associated with microscopically
rough electrodes, can be expressed as σSC ≡ εVASC(iω)γSC, with
0 < γSC e 2, and it reduces to an ideal capacitance for γSC )
1,22 a situation with no loss at all, either constant or variable.

In the literature, there are many references to slope values of
0, 1, and 2 for experimental frequency-response data, values
often characterized as “exact”. In fact, an ideal resistor can lead
to an exact zero slope for σ′(ω), and an ideal capacitor involves
a slope of exactly 1 for σ′′(ω), both apparent for conductive-
system Debye response (Db0), for which they are in parallel.
Although such ideal elements do not exist in nature, deviations
from their responses for real elements are usually small enough
to neglect. Nevertheless, exact conductivity-slope values of 0,
1, and 2 are generally present for other models and for
experimental data only as low- or high-frequency limiting
values, as discussed below.

An example is provided by the dielectric Debye response
model (DbD), one comprising a resistor and capacitor in series.
For specific quantities, consider a frequency-independent real-
part conductivity, σDb, in series with a frequency-independent
relative permittivity, εDb, whose time constant is τDb ≡ εVεDb/
σDb. The corresponding Debye response at the conductivity level
is then σSDb(ω) ) σDb(iωτDb)/(1 + iωτDb), which leads to a high-
frequency σ′SDb(ω) plateau with a slope of zero at infinite
frequency and to a slope approaching 2 for ωτDb , 1. Although
the slope reaches 2 only at zero frequency, when ωτDb < 0.1, it
will be difficult to distinguish the slope from 2.

There are two principal approaches to comparing data with
a theoretical response model. In the first, designated type 1 here,
one that is often employed to demonstrate the applicability of
a model, the model is compared with data in the form σ′(ω),
usually in a log-log plot, such as that part of Figure 1. In such
cases, it is often not stated how the comparison was made,
whether the real part of a CNLS fitting is being shown, or just
an NLS fit result, or neither. Usually, numerical estimates of
the values of the model parameters and their uncertainties are
unmentioned, and no statistical measure of the fit quality is
provided; rarely are other models used for fitting comparisons.
It is often deemed adequate to demonstrate that the model data-
point predictions are close to those of the data in the log-log
plot, then usually termed a good or excellent fit.

Figure 1. Log-log comparison of normalized MEMA conductivity
data1 with K1 model fit results. Only 13 fit points are shown for each
curve. The best CNLS fit was found with the normalized dc conductivity
fixed at unity, and the effective vacuum permittivity was also set to
unity for transformation to other immittance levels.

Frequency Response of Ion-Conducting Materials J. Phys. Chem. B, Vol. 113, No. 27, 2009 9177
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However, log-log plots are noted for their ability to gloss
over and hide small deviations, a defect somewhat ameliorated
by the procedure used here in Figure 1.8 Examples appear below.
Further, presentation of a log-log σ′(ω) fit plot alone does not
make it clear whether corresponding σ′′(ω) fit results were also
obtained from either a CNLS or NLS fit. If not CNLS, ε(ω)
fits are unavailable to estimate dielectric parameter values.
Finally, CNLS fitting of data by a plausible physical model that
itself satisfies the Kronig-Kramers transform relations might
allow one to assess whether the data also satisfy these relations
when random errors are minimal. In summary, type-2 analyses
use CNLS fitting; provide model parameter estimates and their
uncertainties, measures of fit quality; and often include com-
parison of the adequacy of two or more models of interest, as
in the present work.

3.2. The Maxwell Alternative. In a recent article, fits of a
0.35Li2S ·0.65GeS2 258 K data set were carried out to compare
the appropriateness of fits with a conductive-system CUN ·SC
model and a dielectric-system RCKD ·SC model.23 This work
also demonstrated the incorrectness of the use of the K1 model
alone for data fitting, as in ref 19. The RCKD ·SC model
involves a nondispersed parallel dc resistivity associated with
mobile ions (R); the usual parallel ε∞ limiting dielectric constant
(C); and the KD model, one involving a distribution of dielectric
relaxation times.6 Although it might seem strange to fit data
usually taken to involve only dispersion arising from a distribu-
tion of resistivity relaxation times instead with an approach
involving only dielectric dispersion, Maxwell’s equations
preclude discrimination between conductive and displacement
currents by external measurements.8,24 Further, the fits led to
the large value of ε∞ ≈ 42.6, one that might involve ion pairs,
structures that contribute little or no long-distance hopping
response at constant temperature.

The above comparison showed that both dielectric and
conductive composite models yielded good fitting results that
varied very little with which of the four immittance levels was
where fitting was carried out, an important criterion for
appropriate models. Further, although the RCKD ·SC fits led
to slightly smaller SF values, they involved two more free fitting
parameters than did the conductive-system CUN ·SC fit, and
most important, the estimated relative standard deviations of
two of the five RCKD ·SC parameters were appreciably larger
than those of any of the three CUN ·SC ones. These results,
although not conclusive, suggested that the assumption of
resistivity dispersion was superior to that of dielectric dispersion
for that data set. Table 1 presents a similar comparison between
the K1-fit results of the MEMA data and the dielectric-system
RCKD and RCEDAE fits of rows 4 and 5. Here, as expected,
both the SF and PDRMS results for the latter fits are much
inferior to that using the K1 model.

3.3. Alternate Analyses of Very Wide Range CKN Data.
Recently, two analyses of supercooled 0.4Ca(NO3)2 ·0.6KNO3

(CKN) data sets have appeared in the literature.7,25 Although I
was unfortunately unaware of the analyses of ref 25 and its
predecessors26,27 when writing ref 7, the analyses of ref 7 are
completely independent of the earlier work, thus involving both
negative and positive features. The data sets used in the earlier
works were generated by the group of Professor K. Funke, and
those analyzed in ref 7 were kindly provided by Dr. P.
Lunkenheimer. Both data sets involved a range of temperatures
above Tg ≈ 333 K, and special attention and analysis were
devoted to the 353 K results of ref 25 and to the 342 K results
of ref 7. Here, we thus compare some of the type-1 353 K
analysis results with updates of the type-2 342 and 361 K results

of ref 7. Although the identity of the mobile ions in CKN was
not discussed in ref 25, earlier work cited in ref 7 identified
those with the largest mobilities as NO3

- and K+, with
dynamical heterogeneity present.

Figure 2 shows the results at the conductivity level of a type-2
fit of the nearly 15 decade 342 K data set, and specific fit results
are summarized in Table 2. Two slightly different composite
models were used for fitting, with these models defined in the
Table 2 footnote. Many parameters are needed in such models
in order to properly represent the many physicochemical
processes present in such an extended data set. Model B,
expressed by [C(Ri ·K1)] · [GP(SC ·Rpl) ·CS], is a simplification
and improvement of the model used in ref 7 (10 free parameters
here rather than 11). Because only wide-range resistivity- and
electric-modulus-level plots were included in ref 7, here, we
concentrate on complex conductivity and relative permittivity
plots. For simplicity, the symbols in the names of models A
and B are expressed in terms of resistors, capacitors, and fitting
models, but they are explicitly defined in specific form in column
3 of Table 2.

The full meaning of the model-B name is a capacitance C in
parallel with the series combination of a resistor Ri and the K1
fit model, all in series with a conductance GP, itself in parallel
with the series combination of the SC CPE model and a plateau
resistance Rpl, and finally a blocking capacitance CS in series
with the rest of the model. Model A differs from model B only
in its Debye DbD element, one that represents vibrational effects
above about 10 GHz and leads to a high-frequency-limiting
plateau in σ′. The series elements CDb and RDb of model A are
closely equivalent to the model-B C (εD∞) and Rpl elements,
but the placement in model B of this resistance differs from
that in model A.

Because the PDRMS value obtained from model-B fitting is
appreciably better than that obtained with model A, we deal
only with the latter. Note that the epsilon estimates of rows
9-12 of Table 2 are those of the model without any electrode
contributions. Thus, ε∞ ) εC1∞ + εD∞, and ε0 ) εC10 + εD∞. The
main electrode polarization elements of models A and B are
those denoted by SC and CS.

If we specify values of the statistical fit measures SF and
PDRMS in the form S/P, then for model-B fits with the usual
K1 model or with the K1 model replaced by the DC1, DC0, or
EDAE, one finds the values 0.045/0.026, 0.056/0.045, 0.085/
0.064, and 0.084/0.047, respectively. These results demonstrate
the superiority of the present model-B choice involving disper-
sive K1 response. Its SF value of 0.045 is satisfactory for a fit
covering nearly 15 decades of relatively noisy data.

Figure 2. Log-log plots of real and imaginary 342 K CKN
conductivity data parts versus frequency compared with the composite
model-B CNLS fit results summarized in Table 2. Here and elsewhere,
σn is 1 S/cm, and νn is 1 Hz.

9178 J. Phys. Chem. B, Vol. 113, No. 27, 2009 Macdonald
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It is of interest to compare the results of replacing the K1
expression in model B with the UN one, where �1 is fixed at
1/3. For the 342 and 361 K data sets, the S/P results are 0.048/
0.035 and 0.036/0.044, respectively. Because the 361 K �1

estimate is already very close to 1/3 with the K1 model, its UN
fit results are little changed, with a slightly smaller εC1∞ estimate
of 0.965. For the 342 K data, however, the replacement leads
to an appreciably larger estimate of τC10 and to the much larger
εC1∞ value of 8.77, emphasizing the greater appropriateness of
the K1 choice for this temperature.

Incidentally, in refs 25 and 26, it is stated that the CKN data
sets presented there are consistent with those of Lunkenheimer
and his group, the ones used here.7 In fact, however, the 343
K27 and 353 K25,27 σ′(ω) data plots show no trace of the
relatively small jog apparent at about 1 Hz in the corresponding
Figure 2data curve. It is associated with the GP (σP) term in the
model, one comparable in size to the K1-model dc conductivity
σC10 ) 1/FC10. Although the jog is invisible in a log-log plot
of the present 361 K data (not included here), Table 2 shows
that σP is still well determined at that temperature. There is no
analog of this quantity in the modeling approach of ref 25.
Unlike the present analysis, that of ref 25 includes no account
of electrode polarization and no plots of σ′′(ω). As demonstrated
in Figure 2, such effects are much more evident in σ′′(ω)
log-log response curves than in σ′(ω) ones. Further, as
discussed in the following section, they can play a role not only
at low frequencies but in modeling at higher frequencies as
well.28

It is significant that, for the present 342 K CKN data set,
involving a σ′(ω)/σ0 span of more than nine decades, a CK1 fit
of a limited-range, modulus-level part of it, extending a few
decades beyond the peak of its M′′ response, led to a �1 estimate
of only about 0.16,7 reminiscent of the row-3 K1 fit of MEMA
data shown in Table 1. However, the present Table 2 fits of the
full data sets involve very well determined estimates of �1 of
about 0.29 for 342 K and increasing to about 0.32 at 361 K,
nearly the UN value of 1/3. The approach toward 1/3 at higher
temperatures might be a consequence of changes in microscopic
heterogeneity. These results suggest that, when fits of limited-
range experimental data yield �1 estimates below about 0.2, such

values should be suspect and not necessarily related to the
extreme-disorder RBM behavior described by the MEMA
model.

The main part of the ref-25 analysis model is termed the
MIGRATION concept (MC). Here, MIGRATION stands for
“mismatch-generated relaxation for the accommodation and
transport of ions”. Like nearly all conductive-system models,
it involves both forward and backward hopping.29 Also, like
RBM models, in the absence of a high-frequency plateau, it
leads to a σ′ slope that reaches a limiting infinite-frequency value
of 1. Usually, however, it involves an approach to a zero-slope
plateau.

It is interesting that the 353 K log-log type-1 σ′(ω) MC
approach shown in Figure 4a of ref 25 appears good up to nearly
10 GHz, the end of the hopping part of the data, equivalent to
the part up to about 1 GHz in the present plot of Figure 2. The
higher frequency part of the data in Figure 4a of ref 25, identified
as vibrational response, appears to be fitted there by a line of
slope 2. Finally, although it is concluded in ref 25 that no NCL
behavior is present in CKN, for some other materials it was
found necessary to add to the MC a nontranslational empirical
expression with slope near 1 to represent the data between its
vibrational segment and hopping region.27,30 These results and
conclusions are further discussed in the next section.

All analysis models are necessarily idealized and thus
approximate. In addition, there are empirical elements in both
the MEMA and MC models. Although the extended Scher-Lax
CTRW model, in the form of the K1,17 is a Hartree approxima-
tion to the RBM, as already mentioned, it has, perhaps uniquely,
been derived by both macroscopic and microscopic approa-
ches,17,19 and it has also been found to fit data for a wide variety
of materials better than other models in type-2 fits.

Because the K1 and UN theoretical models have been found
to be so generally applicable for disordered solids and even
single crystals and supercooled liquids, it is worth mentioning
that they involve diffusion in a medium with randomly
distributed static trapping sites. Although the original 1973
microscopic Scher-Lax model16 involves a general correlation
function not specified there to be of SE form, an SE was a part
of the 1973 modulus-formalism macroscopic model19 and was

TABLE 2: LEVM CNLS Proportional-Weight Fit Results of CKN Dataa

model A model B

no.

fit quality
measures and model

parameters
actual parameter

symbols T ) 342 K T ) 342 K T ) 361 K

1 sF - 0.0449 0.0448 0.0363
2 PDRMS - 0.0486 0.0259 0.0421
3 CDb or C εDb or εD∞ 8.166|0.004 8.210|0.004 8.665|0.005
4 RDb FDb, Ω-cm 0.0772|0.013 - -
5 Ri Fi, Ω-cm 24.30|0.092 26.68|0.048 3.053|0.077
6 K1 FC10, Ω-cm 1.37 × 109|0.014 1.37 × 109|0.014 1.19 × 106|0.010
7 K1 τC10, s 6.18 × 10-6|0.102 4.86 × 10-6| < 10-4 1.44 × 10-8|0.035
8 K1 �1 0.294|0.016 0.286|0.005 0.319| < 10-4

9 K1, calc εC1∞ 0.519 0.467 0.969
10 K1, calc εC10 8.470 8.722 11.43
11 model ε∞ 8.685 8.677 9.634
12 model ε0 16.64 16.93 20.10
13 GP σP, S/cm 7.18 × 10-10|0.027 7.20 × 10-10|0.027 3.78 × 10-6|0.028
14 Rpl Fpl, Ω-cm - 0.0769|0.009 0.0345|0.030
15 SC ASC 1.35 × 103|0.040 1.36 × 103|0.039 1.02 × 105|0.083
16 SC γSC 0.891|0.002 0.891|0.002 0.720|0.004
17 CS εS ≡ CS/εV 1.21 × 106|0.044 1.21 × 106|0.044 8.43 × 105|0.043

a Nomenclature: AB indicates circuit elements A and B in parallel, and A ·B denotes those elements in series. P|U designates a parameter
value and its relative standard deviation (RSD) uncertainty. Model A is represented by [(Ri ·K1)DbD] · [GPSC) ·CS]; model B is represented by
[C(Ri ·K1)] · [GP(SC ·Rpl) ·CS]. SF is the RSD of fit residuals, and PDRMS is the rms value of the RSDs of the free fit parameters. The
dielectric Debye model (DbD) here involves CDb ·RDb.
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first introduced into the extended CTRW Scher-Lax model in
2002, thus making it isomorphic with the macroscopic K1 one.17

Meanwhile, in 1982, Grassberger and Procaccia showed that,
for diffusion in a medium with randomly disordered static traps,
asymptotic temporal SE behavior appeared with a � exponent
given by d*/(d* + 2), where d* is the dimension of the
configuration space in which diffusion occurs.31 Finally, this
same result, applied to the K1 model, was shown in 2005 to be
a simple consequence of topological constraint theory.4,32

As mentioned in ref 25, conductive-system data sets for many
materials have been found to satisfy a time-temperature
superposition principle that implies a temperature-independent
shape, mechanism, or model in the frequency domain. In the
hopping regime before any high-frequency plateau becomes
apparent, when the UN model is found to fit the data well, it
satisfies this requirement, and in addition, it is independent of
mobile-ion concentration over a wide range.3,4 Because CKN
undergoes an Arrhenius-to-fragile shape transition around 375
K,25,26 the MC model does not directly satisfy time-temperature
superposition over the full range from just above Tg to 393 K.

There is one parameter discussed in ref 25 common to both
MC and K1 fits, namely, ε∞. For the 353 K data set, its lower
and upper limits are stated to be 9.75 and 10.5. If one makes
the reasonable assumption that a linear interpolation between
the 342 and 361 K estimates of ε∞ listed in Table 2 is adequate,
one finds a value of about 9.23 at 353 K, somewhat below the
lower limit above, but probably more accurate than it.

Yet, the matter is actually more complicated here. The present
models include no n2 limit for εD∞, and thus, at sufficiently high
frequencies, that part of ε′(ω) associated with εD∞ begins to
decrease toward zero with a time constant of τpl ≡ εVεD∞Fpl.
Similarly, the εC1∞ contribution to ε′(ω) begins to decrease with
a time constant of τC1∞ ≡ εVεC1∞FI. For the 361 K data of Table
2, the frequencies corresponding to these quantities, νC1∞ and
νpl, are about 6.0 × 1011 and 6.1 × 1012 Hz, respectively,
whereas for the 342 K data, they are about 1.4 × 1011 and 2.8
× 1012 Hz. Thus, ε∞ ) εC1∞ + εD∞ first begins to decrease, and
then a decade higher, the contribution of ε∞ decreases as well.

These results clearly demonstrate that the so-called vibrational
response that leads to the plateau in σ′(ω) and to its low-
frequency flank with a slope near 2 involves dielectric Debye
response leading to the above expression for τpl, with εD∞ and
Fpl in series. Thus, it properly does not involve ε∞, a quantity
that includes ionic effects when εC1∞ is nonzero. Here, εD∞ is a
purely dielectric quantity closely proportional to temperature
and probably involving induced dipoles but not ions or even
ion pairs. In contrast, the thermally activated quantity σpl ≡ 1/Fpl

is exactly the final σ′(ω) plateau value. In ref 33, the authors
consider disorder-induced far-infrared absorption in amorphous
materials, a citation used in ref 25 to justify a slope of exactly
2 on the low-frequency flank, although it was specified as e2
in ref 33. Further, they found that the flank response was
temperature independent for most amorphous materials studied,
not exactly the situation here for a supercooled liquid. They
also suggested that their real-part conductivity data involved
vibrational (possibly phonon) modes. The increase of both εD∞
and σpl with increasing temperature possibly suggests a corre-
sponding increase in the number of effective modes.

Because Arrhenius behavior was found for the temperature
range of the present data,25 we can use the 342 and 361 K results
listed in Table 2 to obtain preliminary approximate estimates
of activation energies. For FC10/T, τC10, 〈τC10〉, Fi, FP, Fpl, ASC,
and TεC1∞, one obtains the following activation energies in
electronvolts: 4.26, 3.26, 3.79, 1.19, 5.14, 0.44, -2.38, and

-0.33, respectively. Although the series quantities FC10 and FP

are somewhat comparable in size, the appreciable difference in
their estimated activation energies suggests that they might
involve mobile charge species in different ways.

Because FC10 is so much larger than Fi here, the expression
for TεC1∞ that includes ∆F (ref 6, eq 6) reduces here to the usual
expression

with high accuracy, where 〈τC10〉 ≡ [τC10/�1]Γ(1/�1) and Γ is
the Euler gamma function. In many thermally activated situa-
tions with a single species of mobile charge, one finds that the
two temperature-dependent terms on the right side of eq 3 have
equal activation energies and then TεC1∞ is not thermally
activated and depends directly on the mobile charge density,
nearly temperature independent if fully dissociated. Here,
however, with two or more species of mobile charge, TεC1∞
exhibits an activation energy about equal to the difference
between those of eq 3 within their likely uncertainties.

A final anomaly is the relatively large decrease in the blocking
specific capacitance, CS, with increasing temperature apparent
in Table 2. Its model-B value is about 0.1 µF/cm, not
unreasonable for a double layer. Simple double-layer capacitance
is proportional to the square root of the mobile charge number
divided by the absolute temperature. The decrease associated
with the direct change from 342 to 361 K amounts to only a
factor of about 0.97, leaving a factor of about 0.5 to be explained
if the remainder is attributed to a decrease of mobile charge.
Although many more complex expressions for double-layer
effects are available (e.g., ref 34), they do not lend credence to
such a decrease.

3.4. Extended-Range 342 K CKN Responses and Slopes.
The results in Table 2 and the discussion in section 3.3 illustrate
how much more can be learned from a full type-2 data analysis
than from a conventional type-1 approach. However, even when
a good type-2 fit of an available data set has been obtained,
there is still more to be learned. A CNLS fit of data filters and
smoothes noise; thus, the fit model and its estimated parameters
can be used with a new extended-range data set to calculate
the exact response of the model over a wider extrapolated range.

Although all extrapolation is necessarily somewhat uncertain,
extrapolation a few decades beyond the original data range at
both ends can lead to new insights about responses intrinsic in
the model, and probably in the data as well, ones not evident
for the original data range. Further, because of the smoothing
effect of model fitting, one can readily calculate the associated
slope response over the new range even when the original data,
such as the present CKN data sets, are noisy and preclude
meaningful slope calculation by point-to-point numerical dif-
ferentiation. Slope results are shown in Figure A.4 of ref 35,
and derivatives of the data were employed for slope and
parameter estimation in ref 36.

Figure 3 shows exact, extrapolated model-B 342 K CKN σ′
log-log frequency response over the range from 10-5 to 1015

Hz compared to the limited-range original data points. The
extended-range data involved 10 points/decade. In addition to
the full model response, those of various parts of the full
composite fitting model are included in the figure as well. In
particular, we see that addition of the series Ri parameter to the
CK1 model leads to a response region with a slope approaching
2 until a plateau is reached.17 Further, the full model without
the series Ri and Rpl resistive parameters leads to excellent
agreement with the data up to about 1 GHz, thus including the

TεC1∞ ) (〈τC10〉/εV)/(FC10/T) (3)
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region between about 107 and 109 Hz with an apparent slope
near 1. This response is dominated by SC-model contributions
and is further discussed in the next section.

Comparison in Figure 3 of the extended-range response with
the original data points shows nothing surprising except possibly
the difference between the RiCK1 and full-model high-frequency
plateau positions. A similar plateau response appeared for the
MC-model 353 K CKN fit.25 Nevertheless, slope calculation
leads to some unanticipated results.

Figures 4 and 5 show full extended-range results for both
complex conductivity and relative permittivity and for their
calculated slopes. Because the original data points were included
in some of the earlier graphs, they are also shown in Figure 5a.
Although the slope results of Figures 4b and 5b are very similar
and related by a simple equation, they are both included here
to show limiting low- and high-frequency results. Note that the
ε′′ peak appearing at about 7 THz in Figure 5a is similar to
those for some other materials in the present frequency range
that have been identified as boson peaks.7 Such peaks in
vibrational spectra were ascribed by Elliott to phonon scattering
caused by intrinsic density-fluctuation domains in amorphous
materials.37

Unexpected results appearing in Figure 4b are that the σ′ slope
in the region from about 10 GHz to 1 THz fails significantly to
approximate the exact slope of 2 used in ref 25, and in addition,
there are two peak values in the slope before it begins to decrease
toward its zero plateau value. Evidently, the log-log σ′ curves of
Figures 2 and 3 have too little resolution to provide a hint of such
behavior. This is because the width of the data-point line in this
region is determined by the scatter in the positions of the points,
not primarily by their plotted size. The two peak slope values are
about 1.57 and 1.72 at frequencies of 5.3 × 1010 and 7.5 × 1011

Hz, respectively. They are not associated with the use of a limited
number of points because exactly the same results were obtained
with data involving 40 points/decade.

We see from Figure 5b that the same double-peak slope
behavior is apparent for the dielectric loss response as well.
Very similar results, with somewhat smaller peak slope values,
are also present for the present 361 K data. Even though ε′′
boson peaks have been observed before, no slope calculations
of the present type have been included for the frequency region
of such peaks; thus, it must remain somewhat uncertain whether
the present double peak is real and possibly involves more than
a single type of phonon states, or whether it is an artifact
associated with the present composite fitting model and/or
recalcitrant scatter in the data. The presence of the double peak
for both temperatures seems to make it more likely, however,
that it is an inherent characteristic of CKN response.

3.5. Nearly Constant Loss Possibilities in CKN. Although
early work38 identified constant loss as a region of ε′′ indepen-
dent of frequency and thus corresponding to a slope of 1 for
the same region of σ′, when it was realized that such loss is
physically impossible for a dispersive response model,39,40 it
was thenceforth usually called nearly constant loss (NCL) and
often observed in the low-temperature region of the behavior
of a particular material.3,5,22,28,39-42 A more restrictive definition
of NCL25 is discussed below, and a recent summary of some of
its possible origins appears in ref 43. NCL is important because
its genesis has been the subject of much study and speculation,
and its eventual resolution can therefore shed valuable light on
material properties and behavior. One common explanation is
that NCL involves the limited motion of ions at high frequencies
caged by potential barriers where few if any ions escape the
cage to hop. Some earlier summaries of work on NCL appear

Figure 3. Log-log plot of exact σ′ frequency response calculated from
the parameter values of the model-B fit of 342 K CKN data over an
extended frequency range of 20 decades. The original data points are
included, as well as the individual responses of various parts of the
full model.

Figure 4. (a) Log-log plots of exact extended-range real and
imaginary model-B 342 K CKN conductivity responses versus fre-
quency. (b) Slopes calculated from the results in part a.

Figure 5. (a) Log-log plots of exact extended-range real and
imaginary model-B 342 K CKN dielectric constant responses versus
frequency. (b) Slopes calculated from the results in part a.
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in refs 25, 40, and 42, and in ref 42, it is suggested that NCL
involves contributions from coupled ionic and dielectric pro-
cesses and can thus involve interactions between vibrating or
hopping ions and dipoles of the bulk material.

For the 342 K CKN data and model-B fit, Figure 5a shows
an ε′′ NCL region of several decades between about 105 and
1010Hz, a region where considerable scatter of the data points
is evident. See also the comparison between σ′ data and fit for
this region in Figures 2 and 3. If one defines NCL as a region
of slope around 0 not exceeding (0.1, the region is, from the
results of Figure 5b, about 2.2 decades in length and, of course,
there is no non-zero-length region of zero slope present.

A CK1 · SC composite model fits the present NCL region
very well with only εD∞, FC10, ASC, and γSC included as free
parameters, leading to excellent SF/PDRMS values of 0.003/
0.04. Even without the FC10 parameter, the only part of the
K1 model included above, a reasonably good C · SC fit of
0.014/0.10 was found. Earlier work has shown that a
conductive-system model in series or parallel with a dielectric
one can lead to NCL behavior over many decades, for
example a CUN · SC model or one involving an effective-
medium dielectric model in parallel with a CK1 conductive-
system one.22,40,42 Here, we see that just a C · SC model leads
to an adequate fit of the NCL region, even though its three
parameter estimates differ a bit from the corresponding ones
in the model-B column of Table 2.

From the type-1 treatment of their 353 K CKN data, the
authors of ref 25 concluded that, because their MC model, a
conductive-system one involving translational motion of ions,
led to good agreement with the data over most of the response
region involving a σ′ slope near 1, this was proof that CKN
involves no NCL effect in the sense of Nowick, given that
Nowick’s definition of NCL held that it was unrelated to
translational ionic transport and did not contribute to dc
conductivity.25 It might be mentioned that the MEMA model,
which also involves response approaching 1 in the limit of high
frequencies, might also lead to as good agreement with the 353
K data as that illustrated for the MC model.

It should be remembered, however, that the 353 K MC analysis
took no account of electrode effects and probably did not involve
a CNLS fit of the full data or even of that part extending up to the
end of the apparent NCL region. Further, although two limiting
values of ε∞ are listed in ref 25, ones evidently not obtained from
CNLS fitting, they are larger than either the 342 or 361 K values
of Table 2. In addition, the ref-25 authors make no distinction
between ε∞ and the εD∞ bulk dielectric parameter, one here
involving induced dipoles and playing a crucial role in all parts of
the full complex response, especially those including the NCL
region as well as the vibratory one.

It would be interesting to see what results might be found if the
above MC problems could be remedied while using an extended
approach and full CNLS fitting. Until that happens, it seems most
reasonable to postpone any conclusion that CKN involves no NCL
of the restricted Nowick type. It is noteworthy, however, that, when
it was found that the MC model was unable to represent data for
other materials into the NCL region,27 the authors there used an
added empirical expression for this region that involved interacting
ions moving in a double-well potential cage.

In contrast, the SC model not only represents much of the
electrode polarization effects but also, and automatically, leads to
excellent fitting of the NCL region as well, a possibility perhaps
first demonstrated in 2002.28 The SC therefore plays a double role
here, one that involves mobile ions but not dc conductivity. Further,
because low-frequency electrode polarization effects are associated

with translational ionic motion, the SC-model’s representation of
NCL behavior is unlikely to involve caged ions. Finally, because
the activation energy of ASC is much smaller than that of σC10, as
the temperature decreases, the C ·SC part of the present composite
model will eventually dominate, and γSC will increase toward a
limit of 1, in agreement with observed low-temperature NCL
behavior for many materials.
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