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1. INTRODUCTON AND BACKGROUND

Impedance spectroscopy, or more generally, immittance spec-
troscopy, the analysis of experimental electrical response data in
the frequency and/or temporal domain, has proved very power-
ful in helping to elucidate the various electrical processes present
in amaterial that lead to the observed response. To adequately do
so, however, one requires a computer program, such as LEVM,1

that may be used to fit a given model with the data, preferably
using complex nonlinear least squares (CNLS) in the frequency
domain. Two quite different general models have seen most use
so far and have proved most appropriate, especially for materials
containing mobile ions. They are of one-dimensional character
and apply to a cell with two identical electrodes. One such model,
the Kohlrausch semiuniversal UN one, involves hopping and
trapping of mobile charges and is usually based on a continuous-
time random-walk (CTRW) procedure.2�4 Another one, a
continuum approach discussed below, considers ordinary or
anomalous diffusion and involves a mean-field approximation.
They both may be applied with varying success for ionic or
electronic conduction in such materials as single-crystal solids,
disordered materials such as glasses, some polymers and gels,
supercooled liquids, and even photoconductors. Here, we deal
with materials exhibiting either ionic or electronic conduction.

Because many experiments involve incompletely blocking
electrodes, one needs to consider boundary conditions that
range from complete blocking to very rapid electrode reactions,
which, in the limit, lead to fully transparent nonblocking

behavior. In the present work, we consider the response of the
diffusional Poisson�Nernst�Planck (PNP) model for three
somewhat different partial-blocking boundary condition expres-
sions and also discuss its relation to an important CTRW model
for analyzing conductive systems.

The first PNP impedance response model that properly
included satisfaction of the Poisson equation appeared in
19535 and involved completely blocking electrodes. In 1954,
partial-blocking effects were included by Friauf6 by using the
Chang�Jaffe (CJ) boundary conditions.7 A more complete
CJPNP theoretical model appeared in 19738 and a very general
one in 1978.9 In addition, some CJPNP full- and zero-blocking
effects were demonstrated earlier in 1971.10 Generalizations of
the fully blocking PNPmodel to include anomalous diffusion, the
PNPA one, appear in refs 11 and 12 and will also be used and
extended here to partial-blocking boundary conditions for fitting
experimental data involving electrode reactions. Here, using the
CJPNPmodel of ref 9 for only negative charges mobile (the one-
mobile case), we first discuss the effects of the CJ boundary
conditions and compare the results with those following from
two other response models, the GPNP one and an ohmic one,
the OHPNP. The CJPNP and GPNP models, and their anom-
alous diffusion (fractional exponent) generalizations, the CJPNPA
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and GPNPA ones, have been used to fit experimental data in
refs 11 and 12 but without explicit comparison of boundary condi-
tions. Ohmic and some other partial-blocking boundary condi-
tions were described in 2005 along with earlier references,13 and
ohmic boundary conditions were used with the PNP equations5

in 2007 to independently develop the OHPNP model.14 For
simplicity, we shall hereafter take model names such as the
CJPNP one to implicitly include the possibility of anomalous
diffusion and only refer to names such as the CJPNPA when the
distinction between ordinary and anomalous diffusion needs to
be made explicit.

Experimental data viewed at the impedance or complex
resistivity immittance level often show two real-part plateaus at
low and mid frequencies. Although generation�recombination
(GR) effects even with completely blocking electrodes can lead
to two such plateaus for a limited range of incomplete dissocia-
tion of charges,11 there is still no DC conduction because the real
part of the conductivity continually decreases as the frequency
decreases toward 0. Further, no separate low-frequency GR
plateau appears for either full dissociation or for very small
dissociation. Here, therefore, we consider partially blocking
electrode situations that do lead to DC conduction and to two
plateaus not associated with GR. The two two-plateau situations
may be readily distinguished by considering the real-part re-
sponse of the admittance or conductivity at low frequencies; only
for the partial-blocking situation will a low-frequency conductiv-
ity plateau appear. We therefore consider here only the partially
blocking situation for those small-dissociation GR conditions
that do not themselves lead to two plateaus,11 thus not including
three or more possibly distinct plateau situations.15

We first summarize impedance-level expressions for the three
partial-blocking models. Then, these results are used to obtain the
zero-frequency responses of the CJPNP and GPNP models at the
impedance and dielectric constant immittance levels. These re-
sponses are then used to establish first an exact relation between
the GPNP boundary parameter, G = GP � 1/RP, and the normal-
ized dimensionless CJ reaction rate parameter, F2. Its symbol
should not be confused with that for resistivity, and it is used here
for historical continuity since its definition in 1973.8,9 Another
important relation is established between F2 and the normalized
limiting-low-frequency dielectric constant or dielectric strength.
Tabular and graphic comparisons of CJPNP and GPNP exact
model responses are followed by a discussion and illustration of the
use of the CJPNPA and GPNPA models in fitting and analyzing
experimental data sets. Finally, these continuum system results are
comparedwith ones using the important conductive system Scher-
Lax CTRW hopping model,2 extended by the specific choice in it
of a stretched exponential correlation function in the temporal
domain (see refs 4 and 16 and earlier publications cited therein),
and overall Conclusions appear in section 4.

Although we assume here that specific adsorption is absent, eq
(B37) in ref 9 shows how F2 may be generalized to the complex
form in the presence of such adsorption. Note that the present
PNP models, fully or partially blocking, do not include effects
arising from the Stern compact layer at the electrode. Such effects
are associated with the finite size of mobile ions and those of
solutionmolecules in the case of supported electrolytes, and their
size is taken zero here and earlier because the capacitance of
the Stern layer is nearly always much greater than that of the
diffuse double layer, and its effects are thus negligible in most
immittance spectroscopy data. We thus treat a small-signal,
unbiased Gouy�Chapman situation here.13,17,18

2. BOUNDARY CONDITIONS AND RELATED MODEL
EQUATIONS

2.1. Normalization. For simplicity and clarity, it is convenient
to express PNP equations and results in terms of normalized
dimensionless quantities insofar as practical, as recently demon-
strated in refs 11 and 12. Important bulk quantities are the high-
frequency-limiting PNP conductance or conductivity quantities,
G∞� 1/R∞ or σ∞� 1/F∞, respectively, applied for raw data or
models or for specific data or models, as described in Appendix
A.1 of ref 9. They are independent of electrode effects. The
normalized total admittance (or conductivity) is YTN � YT/G∞,
and as discussed in refs 9, 11, and 12, it is particularly useful to
divide the full response into a normalized low-frequency inter-
face part, YiN � Yi/G∞, and a bulk high-frequency one involving
R∞ in parallel with the high-frequency, mostly dipolar, bulk
capacitance C∞ � Cg, leading to the Debye time constant τ �
τD � R∞C∞.
Further, define the normalized frequency parameter S � iωτ.

Then, as shown for example in eq (24) of ref 9, YTN and YiN are
connected by YTN = S + 1/[1 + 1/YiN] � 1/ZTN. Next, define
P1� (1 + S)� p1

2 and q1�Mp1, where the important quantity
M is the ratio of one-half of the separation of plane-parallel
electrodes,L, and theDebye length,LD. Then, define the important
frequency-dependent diffusional quantity Q1 � [tanh(q1)]/q1,
whose zero-frequency value is justM�1 tanh(M), essentially equal
toM�1 forMg 5. The high-frequency-limiting dielectric constant
is designated ε∞; therefore, C∞ � (A/L)εVε∞, where A is the
electrode area and εV is the permittivity of vacuum. Here, as in
most previous theoretical calculations, A is usually taken of
unit size. Finally, for fully blocking conditions, set ZTNf Z0N,
YTN f Y0N, and so forth. In this case, relevant PNP equations
are12

Z0iN ¼ P1Q 1=½Sð1�Q 1Þ� ð1Þ
and

Z0N ¼ ðS þ Q 1Þ=ðSP1Þ ð2Þ
Note especially that dispersive diffusion effects only appear in
the above expression for Z0N through the quantityQ 1. When it
is 0 or negligible, the response is that of simple undispersed
conductive system Debye character.
2.2. Various Diverse Boundary Conditions, the Resulting

CJPNP, GPNP, and OHPNP Models, and a CTRW One. 2.2a.
Chang�Jaffe, Ohmic, and Other Related Boundary Conditions. It
has long been known that specific adsorption and double-layer
structure influence electrode reactions. Further, “Although PNP
equations constitute a well-understood and widely accepted
approximation, appropriate boundary conditions for them are
not so clear...”.13 Here, we summarize some boundary conditions
used in the past for PNP and other models to account for
Faradaic redox reactions at metal electrodes in the absence of
specific adsorption effects. Although double-layer structure is
complex and may involve discreteness-of-charge effects and
imaging,19 possible oscillations of potential arising from the
finite sizes of permanent dipoles and ions,20,21 and overscreening
effects,18 they are of negligible importance here.
Although a thorough and valuable summary of earlier work on

charge-transfer kinetics for electrochemical PNP models, includ-
ing inner-layer effects and an important generalization of the
Butler�Volmer (BV) equation, appeared in 2009,22 neither it
nor earlier work cited there directly considered impedance
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responses for mean-field PNP models such as those in refs 8 and
9 of 1973 and 1978 involving CJ boundary conditions. Further
discussion of these boundary conditions and comparison of their
small-signal impedance response consequences with those of the
BV equation for both unbiased and biased situations appear in
ref 23; see especially Figures 5�8 therein. For zero or small DC
bias, differences between BV and CJ impedance responses are
negligible.
Here, although we are concerned with liquids as well as solids,

we ignore Stern inner-layer effects and deal only with the
Gouy�Chapman diffuse double layer arising directly from the
solution of the two-electrode, one-dimensional PNP equations
without finite ion size effects.5 We nevertheless demonstrate a
surprisingly strong influence of CJPNP model partial blocking of
mobile ions at the electrodes on the double layer and thus on the
dielectric strength associated with such ions. The theoretical
results considered here involve small harmonic perturbations
around equilibrium in the absence of external DC bias, allowing
linearization. They may thus apply well to the results of usual
immittance spectroscopy measurements, and an aim of the
current analyses is to investigate the utility of the PNP model
and its anomalous diffusion extension, the PNPA,11,12 for fitting
such experimental data.
For identical electrodes and only negative charges mobile, we

need consider only appropriate boundary conditions at the
surface of one of the electrodes. They are then independent of
whether charges arrive there by ordinary or by anomalous
diffusion, processes that occur in the interface region of the
material but ones that do not influence high-frequency-limiting
bulk parameters. First, define e as the charge of the proton and
take the valence numbers of positive and negative charges to be
equal, with that for negative charges denoted by z2 and taken as
unity herein. As usual, in order to obtain linearized impedance
response, we divide all potentials, currents, and concentrations
into static and small sinusoidal parts, with the applied sinusoidal
potential taken to be smaller in magnitude than kBT/e, and thus
neglect higher-order harmonic terms. Here, kB is the Boltzmann
constant. DefineN0 as the static concentration of a neutral entity,
such as a molecule, that may dissociate here into an immobile
positive species and a mobile negative one whose equilibrium
concentration value is ne � nn. For small dissociation, the
magnitude of the sinusoidal quantity nn is much smaller than
that of N0.
The CJ boundary condition, described and used in refs 6�9,

may now be expressed as

I0 ¼ z2ek2n0 ð3Þ
where I0 is the sinusoidal current, k2 is the reaction rate constant
of the negative charges, and n0 is the value at the surface of the
electrode of the difference between the concentration there at a
given instant and its equilibrium (zero-field) value. It is con-
venient to replace k2 by the dimensionless rate parameters F2 or
H, where

F2 � ðL=2D2Þk2 � ðMLD=D2Þk2 � MH ð4Þ
and D2 is the diffusion coefficient of the negative charges. We
shall use F2 rather thanH in the following because then one need
not explicitly consider the value ofM. Note, however, that F2 is a
derived quantity that itself depends on L.
Although ohmic boundary conditions have been considered

for many years, their use with the PNP equations probably first

occurred in ref 14, a treatment followed here with helpful further
input from one of its authors, Professor G. Barbero. For an ohmic
boundary condition,14 we may write

I0 ¼ kaE0 ð5Þ
where ka is defined as the conductivity of the interface electrode
solution and E0 is the sinusoidal electric field at the electrode. It is
convenient in the following work to use the dimensionless
quantity

ΩC � ωCτD � ðeτD=εVÞka ð6Þ
in place of ka. As we shall see, the CJ and ohmic boundary
conditions and their resulting PNP equations are closely related,
as shown for example in the CJPNP eq (67) of ref 8, where small-
signal electrode fields and surface concentrations appear together
with rn/2 � F2.
There are no direct boundary conditions specified in the

GPNP and CTRW models, but being conductive system ana-
lyses, they lead to nonzero values of the DC conductivity, σ0, and
such values will be compared with those following from the CJ
and ohmic response models in the next sections. Such compar-
ison allows relations to be established between their DC quan-
tities and the CJ F2 one.
2.2b. CJPNPModel and Its Consequences.The CJPNPmodel

for only negative charged mobile ions follows from the relation
YiNCJ � Y0iN + F2. See ref 8 and eq (40) of ref 9, which also
includes arbitrary GR. Its fully blocking response is illustrated in
ref 11 and involves a complicated expression for YiN. In un-
normalized form, partial blocking here involves the addition of a
conductivity σ∞F2 in parallel with the full-blocking interface
conductivity expression. Further, it is straightforward to general-
ize the one-mobile, partial-blocking response from ordinary
diffusion to anomalous diffusion, the CJPNPAmodel, as demon-
strated for full-blocking in refs 11 and 12. Its arbitrary blocking
expression is instantiated in LEVM for generating or fitting one-
mobile data for any degree of charge dissociation, and it is used
for the present CJPNP and CJPNPA calculations and compar-
isons. Although it is too complicated to list here, there is a useful
alternative for the CJPNP situation.
As shown in ref 9, the form of the response for a completely

blocking and completely dissociated situation with equal mobi-
lities for the positive and negative charges is quite simple.
Further, for full or sufficiently small dissociation, where no GR
plateau appears, the form of the normalized response equation is
the same because then only the values of F∞ and LD vary with the
amount of dissociation and with the value of the mobility ratio,
Πm � μn/μp, here taken as 10

40 or greater. Then we find, being
careful to avoid division by 0 in the zero limits of the frequency
and/or reaction rate, the following CJPNP partial-blocking
expression

ZTNCJ ¼ ½ðS þ Q 1Þ þ P1Q 1F2�=½ðSP1Þ þ P21Q 1F2� ð7Þ
which properly reduces to the fully blocking result, ZTN = Z0N, of
eq 2 when the F2 reaction rate is 0. Of course, for small
dissociation, we must include in the fitting model a GR param-
eter, kgr, discussed below, that determines the actual amount of
dissociation present. For most solids, full dissociation is physi-
cally most unlikely.
The predictions of eq 7 have been found to agree with those

following from the exact LEVMmodel used here to generate and
fit one-mobile data. In the zero-frequency limit, eq 7 leads to
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ZTNCJ(0) � FTNCJ(0) � FTNCJ0 = 1 + 1/F2 for any M value.
Although F2 is taken as a real quantity herein, it may be replaced
in eqs 4 and 7 by its complex analogue, eq (B38) of ref 9, which
includes the possibilities of ordinary electrode reactions, such
reactions and specific adsorption, and specific adsorption alone.
In the present situation, different behavior may appear de-

pending on the order in which the frequency, ν, and F2 are set
to 0. When the value of F2 goes to 0, at zero frequency, ZTNCJ(0)
becomes infinite. However, in actuality, one never experimentally
reaches zero frequency, and eq 7 shows that as F2 approaches 0,
the increase of ZTNCJ(ν) above its full-blocking value of 1 occurs
at lower and lower frequencies and eventually falls below the
available low-frequency experimental boundary, leading effec-
tively to full-blocking behavior, consistent in that limit with an
irrelevant parallel resistance of infinite size.
At the dielectric level, now define εCJN

0
(ν)� εCJ

0
(ν)/ε∞, with

εCJ
0
(0)/ε∞ � ε0NCJ. Because partial-blocking boundary condi-

tions (F2 > 0) affect the interface region and response, they will
influence the limiting normalized dielectric strength, ΔεNCJ(0)
� ε0NCJ � 1, where for the PNP with full-blocking ε0N =
M ctnh(M). We are particularly interested in the dependence
of ε0NCJ on F2. We can show both analytically and numerically
using LEVM that for the CJPNP model

ε
0
NCJð0Þ � ε0NCJ ¼ 1 þ ½M ctnhðMÞ � 1�=½1 þ F2�2

ð8Þ
a particularly important exact result that clearly reduces properly
for F2 equal to 0 or ∞.
The CJPNP and CJPNPA models may be parametrized in

various ways; here, the CJPNPA parameters used in the one-
mobile LEVM fitting program instantiation are N0, L, Πz, Πm,
kgr, ξ, F2, μn, ε∞, and ψ and are expressed in CGS units11 (see
also the LEVMManual pp 5�15 through 5�19]. Not all of them
are always free to vary, as discussed here and in section 3.3. In
particular,Πz andΠm, the valence number ratio and the mobility
ratio, are fixed here at 1 and 1045, respectively. The parameter ξ is
held fixed at a very large value, consistent with one-mobile
response, and ψ (0 < ψ e 1) is fixed at 1 for ordinary diffusion.
Here, N0 is the concentration of originally undissociated neutral
entities; L is the electrode separation; theKDL parameter used in
ref 11 is just the log 10 value of the ratio, kgr, of generation to
recombination parameters; and μn is the mobility of negative
charge carriers. It is also of course necessary to specify the absolute
temperature, T, but it is not a free parameter of the model. Finally,
M,R∞ or F∞, and the equilibrium charge concentration of negative
mobile charges, nn, are calculated from the other CJPNP parameter
fit estimates.
2.2c. OHPNP Model and Its Consequences. For the OHPNP

model,14 the normalized equation analogous to eq 7 is

ZTNOH ¼ ½ðS þ Q1Þ þ ΩCð1�Q1Þ�=½ðSP1Þ þ ΩCP1�
ð9Þ

a result that properly reduces to the full-blocking one whenΩC is
set to 0. Comparison of eqs 7 and 9 shows that they are only
consistent whenΩC = F2P1Q1, a frequency-dependent quantity,
and also |Q1| , 1, requiring M|q1|. 1. This inequality is most
stringent in the zero-frequency limit and then requires that
M .1. Because this condition is satisfied, however, for virtually
all experimental data, except possibly that of nanomaterials
where the present one-dimensional geometry may also need to

be replaced by a cylindrical or spherical one, the present data fits
are here carried out only with the CJPNP or CJPNPA models,
and the above expression for ΩC could be used to calculate
OHPNP relevant values if desired.
For nanomaterial impedance data sets with small M values,

however, it may be found that in some cases, ohmic boundary
conditions will be more appropriate than CJ ones. A short,
independent study by G. Barbero and M. Scalerandi that
compares frequency responses for CJPNP, GPNP, and OHPNP
models without including fits of experimental data has been
kindly sent to me by Professor Barbero and is relevant to some of
the results presented below in section 3.1. It has been submitted
for publication to Phys. Rev. E.
2.2d. GPNPModel and Its Consequences.The basic definition

of the partial-blocking GPNP model11,12 may be expressed as
YTNG� YTN +GPN, whereGPN�GP/G∞� 1/RPN. It therefore
differs from the CJPNP model by the appearance of a conduc-
tivity or conductance in parallel with the full-blocking response
rather than one in parallel with the interface part of the response
only. Although it is thus clearly less physically plausible than is
the CJPNP model, and as we shall see, although its partial-
blocking fits are simpler and yield less information than do
CJPNP ones, its fit parameters may be related to some CJPNP
ones; therefore, both models are useful. In normalized terms, its
response function is

ZTNG ¼ ðS þ Q 1Þ=½ðSP1Þ þ GPNðS þ Q 1Þ� ð10Þ

reducing to a completely blocked response when GPN = 0. If we
ensure that in the S f 0 limit, SGPN goes to 0 as |GPN|
approaches infinite size, then the resulting limit of ZTNG will
be RPN f ∞, the proper result. As usual, the transformation to
anomalous diffusion involves the introduction of fractional
frequency response terms in the interface part of the response.12

In the work of ref 12, it was stated that setting RPN equal to the
CJPNP low-frequency-limiting quantity ZTNCJ(0) � FTNCJ(0)
� 1/σTNCJ(0) = 1 + F2�1 would not only make the equivalent
GPNP quantity, ZTNG(0) t FTNG(0) � FTNG0

0
, agree with the

CJPNP value, but it would ensure that GPNP fit results of
CJPNP data would yield excellent agreement over the full
frequency range. This conclusion was based only on results for
F2, 1, however, and it has been found, as demonstrated herein,
that it begins to fail for F2 g 0.01.
In its simplest realization, the GPNP, when expressed at the

impedance level, involves a midfrequency normalizing resis-
tance parameter, R∞G, and the parameters GP, τD or ε∞, and
MG, not necessarily equal to the full-blockingM of the CJPNP
model. For comparison with the CJPNP, one would fix GP at
the valueG∞/[1 + F2

�1], leading to R0G = R∞(1 + F2
�1), where

R0G is the height of the low-frequency plateau and is necessarily
equal to that of the CJPNP model when the GPNP is used to fit
CJPNP data. In actual practice, the values of the GPNP
parameters are taken as free to vary in fits of experimental or
of synthetic data calculated from a fit model. Limitations of the
GPNP model for fitting exact CJPNP data are illustrated in
section 3.1.
2.2e. Composite UN Model and Its Consequences. Much

temporal response data for conductive solids have been found to
be of stretched exponential character with aβ fractional exponent
that is restricted to 0 < β e 1. Fourier transformation to the
frequency domain leads to an impedance spectroscopy model
called the K0 model and indirectly to the related K1 model,
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involving exponentsβ0 andβ1, respectively. See, for example, refs
3, 4, 16, and 24 and the Website http://jrossmacdonald.com,
where virtues of the K1 and of its semiuniversal UN version
(β1 fixed at 1/3) are summarized. Unlike most conductive system
models, the CTRW K1 and UN ones lead to a nonzero high-
frequency-limiting capacitance whose dielectric constant symbol
and definition is εC1∞�β1

�1Γ(β1
�1)εMa, whereΓ is the gamma

function, and for the UN model, εMa � τUN/(FUNεV), and thus
εC1∞ � 6εMa. Here, τUN is the characteristic relaxation time of
the UNmodel, and FUN would be the DC resistivity of the UN if
it were alone. Thus, it might be possible to relate FUN to the
CJPNP boundary condition reaction rate F2. In addition, a
separate parallel capacitance, C, is a necessary part of the full
K0 and K1 models and represents the primarily dipolar bulk
contribution to the high-frequency dielectric constant, ε∞. Then,
the K1 andUNmodels are designated theCK1 andCUNones. A
particularly important strength of the CUN model with only its
three free parameters is that it is found to fit well a variety of
experimental data sets for variations inmobile ion concentrations
and temperature over wide ranges. In general, no useful closed
frequency response expressions for the K0 and K1 models exist,
but they may be accurately calculated numerically using the
LEVM program.
Some data sets require for good fitting a more complicated

composite UN model, and we shall here be particularly con-
cerned with the [C{UN 3R∞}] 3DC and [C{UN 3R∞}] 3DB
ones. The 3 symbol denotes a series connection; DC designates
the Davidson�Cole model,11 and DB is a Debye model, both
defined at the impedance or complex resistivity level. For specific
data, as in theUN fits discussed later, theUNdirectly involves the
free parameters FUN and τUN, and β1UN is fixed at 1/3. In
addition, the free parameters C and R∞ of the model lead to
ε∞UN and F∞UN. Those of the DC or DB (the DC with its
fractional exponent γDC = 1) are designated FDC, τDC, and γDC.

3. TABULAR, GRAPHICAL, AND FIT COMPARISONS OF
MODEL BEHAVIORS

3.1. Tabular and Graphical PNP Comparisons Using Exact
Synthetic Model Data. Table 1 contains F2-dependent results
for both the GPNP and CJPNP models based on an accurate
CJPNP data set. Except for very large or small reaction rates, both
a low-frequency FTN

0
(ν) plateau and a midfrequency one appear,

as shown in the following sections graphically and analytically.
For the CJPNP model, the table shows the dependence on
reaction rate of the low- and high-frequency limits of the
normalized data at the resistivity and conductivity levels. In
normalized terms, the real part of the resistivity in the midfre-
quency plateau region is unity for all rates and therefore is not
included in the table. Since the high-frequency-limiting dielectric
constant, ε∞, is also independent of F2, its normalized value of
unity is also not included in the table. Particularly noteworthy,
however, is the decrease in the low-frequency-limiting normal-
ized dielectric constant, εNCJ

0
(0), as the rate increases. It is exactly

described by eq 8. Evidently, the dielectric strength decreases to
0 as the reaction rate becomes large and the diffuse layer is
progressively diminished, while no such change occurs for the
GPNP model when the value of its M parameter is held fixed,
which is not the case when fitting the CJ data. Finally, no tabular
results are shown for the OHPNP model because they are
virtually identical with the CJPNP ones for the M = 104 value
involved in the present comparisons.
The first line in the table, where F2 is 0, is for full blocking and

involves no F2 and thus no partial-blocking plateau. As the results
in the table show, not all of the GPNP fit results are identical to
those for the CJPNP. They are, nevertheless, closely the same for
F2 e 0.01, and such results led the authors of ref 12 to an
erroneous identification of their full equality, independent of F2.
Particularly interesting is the F2 dependence of the GPNP effective
F∞GN parameter, closely described by (1 + F2) for F2 < 10.

Table 1. Comparison of Reaction Rate Effects of Two Boundary Conditions for the PNP Response Model with Only Negative
Charges Mobile, the GPNP and CJPNP Onesa

GPNP Model Fits of CJPNP Data CJPNP Model Exact Data Values

F2 FTNG0
0

F∞GN MG/M FPN FTNCJ0
0

FTNCJ
0

εTNCJ
0

ν = 0 ν = 0 ν = ∞ ν = 0

0 none 1 1 1 0 1 0 1 M

10�4 104 1 1 10001 10001 10�4 1 M

0.01 101 1.010 1/1.02 101.04 101 1/101 1 M/1.02

0.1 11 1.100 1/1.21 11.005 11 1/11 1 M/1.21

0.5 3 1.500 0.4445 3.001 3 1/3 1 M/2.25

1 2 2.000 0.2502 2.001 2 1/2 1 M/4

2 1.5 3.000 0.1112 1.501 1.5 1/1.5 1 M/9

10 1.1 10.95 1/119.5 1.100 1.1 1/1.1 1 M/120

25 1.04 25.27 1/672 1.040 1.04 1/1.04 1 M/633

100 1.01 87.52 1/5276 1.010 1.01 1/1.01 1 M/5050
aResults in normalized form are presented for GPNP fits of exact CJPNP specific data. Normalization is denoted with a subscript N. Thus, FTN

0 � FT
0
/

F∞, where the subscript T denotes a total, not interface, quantity, and 1/F∞� σ∞ is the real part of the high-frequency-limiting conductivity. The G of
the GPNP model is here a conductivity, FP � 1/FP, in parallel with the full complete-blocking PNP response. As shown in the text, for CJ boundary
conditions involving the dimensionless reaction rate F2, FTNCJ

0
(0) � FTNCJ0

0
= (1 + F2�1), and the same value is then produced for the FTNG

0
(0) �

FTNG0
0

quantity of the GPNPmodel. Here, εN� ε0(ν)/ε∞, with ε∞ the high-frequency-limiting bulk dipolar dielectric constant of thematerial. Although
the value ofM is for the tabular results, rounded values were calculated withM = 104, so that to good approximation εNCJ

0
(0)=MCJE =M/(1 + F2)2, an

effective dielectric strength CJ expression. The unnormalized GPNP fit parameters are F∞G, MG, ε∞G, and FP All normalized CJPNP and GPNP
parameters involve the CJ bulk parameter F∞.
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Although the normalized midfrequency plateau height, that of
F∞, is unity for the exact CJPNP data, its GPNP estimate is
clearly appreciably different except in the small reaction rate
region.
The GPNP parameter values arising from its fitting of CJPNP

data show appreciable similarities with the limiting CJPNP data
values. For example, for F2 e 10, the MG values are essentially
identical to the Meff CJPNP εNCJ

0
NCJ ones of column 9 of the

table. Further, for F2 < 0.01, all of the GPNP and CJPNP
predictions are virtually identical. The increasing disagreement
between themodels for F2g 10may arise in part from inaccuracy
in the calculations, but it is insignificant because the low-
frequency resistivity plateau begins to be indistinguishable from
the midfrequency one in this region. The actual relative standard
deviations of the GPNP fit residuals, SF, a measure of goodness-
of-fit, varied from about 10�8 for very small reaction rates to 10�3

for F2 = 100. In contrast, fits of experimental data with appro-
priate models rarely lead to SF values less than 0.01 or 1%.
Figure 1 compares exact CJPNP reaction rate responses at

resistivity and conductivity levels. We see that for RR� F2 = 10,
the real-part responses are nearly indistinguishable from those of
the horizontal midfrequency plateaus. The situation is different,
however, for the imaginary-part responses. The left-side resistiv-
ity peak keeps increasing as F2 decreases, while the conductivity
approaches a limiting response not appreciably different from
that shown for F2 = 0.01. By the time F2 reaches 100, however, no
low-frequency peaks for either resistivity or conductivity remain,
and the decreases from the higher-frequency responses continue
monotonically on straight lines as the frequency decreases below
105 Hz.
Results for the midrange reaction rate value of 1 shown in the

table are also presented graphically in Figure 2 and are extended
there to show both normal and anomalous diffusion responses.
The GPNP fit result of the CJPNP model data for this reaction
rate value was indistinguishable from the CJPNP response shown

in the figure, and the relative standard deviations of the GPNP
parameter estimates were of the order of 10�6; therefore, these fit
results are not included here. Instead, the GPNP and GPNPA fit
results presented in Figure 2 were carried out with all parameters
again free, except for the M one, held fixed at the full-blocking
CJPNP value of 104, a value following from the CJPNP fit and
independent of its ψ and F2 values. When ψ < 1, however, there
is actually no low-frequency-limiting value of M because then,
ε(ν) continues to increase as the frequency decreases. Never-
theless, the ψ estimates for the rather poor GPNP and GPNPA
fits with the value of M fixed as above were about 1.1 and 0.89,
respectively. Because the high-frequency bulk Debye semicircle,
which partially appears on the left of Figure 2b, is very nearly
independent of ψ and F2 values, most of it is not shown in the
figure in order to allow greater resolution of the low-frequency
interface responses at the right.
It follows from the table and the above results that the GPNP

model may be used with confidence to fit data that might arise
from CJ boundary conditions if F2 e 10 and if it is established
that an observed low-frequency F0(ν) plateau arises from DC
conduction and not from a complete blocking situation with
partial recombination (see ref 11 and earlier references cited
therein). Although both processes may lead to two resistance-
level plateaus, this recombination situation involves no DC
conduction, and thus, no low-frequency-limiting plateau appears
in the conductance data.
The GPNPmodel is appreciably simpler than the CJPNP one,

and fits with it yield correspondingly less information because of
its fewer parameters than the CJPNP one. It is therefore of
interest to discuss what one can learn from a GPNP fit if one
assumes that the actual data being fit is best represented by the
CJPNP. As the table results show, except for F2 < 0.01, GPNP fit
estimates of MG and R∞G do not represent the full-blocking M
and R∞CJPNP values well. It is worth emphasizing that the small
εNCJ
0

(0) values shown in the last column of the table are not

Figure 1. Resistivity (black lines) and conductivity (red lines) CJPNP
model exact responses for four different values of the dimensionless
reaction rate (RR � F2). (a) log�log real parts; (b) log�log imaginary
parts. Here and elsewhere,Fn� 1 ohm�cm;σn� 1 S/cm; andνn� 1Hz.

Figure 2. Resistivity-level plots, all derived from exact CJPNP and
CJPNPA model data (solid lines) with a dimensionless reaction rate
parameter of F2 = 1.ψ = 1 for the PNP plots and 0.8 for the PNPA ones.
Shown are exact CJPNP and CJPNPA responses and GPNP and
GPNPA model fits (dashed lines) of their data with M fixed at the CJ
full-blocking value of 104. (a) Linear log frequency plots and (b)
linear�linear resistivity complex plane responses.
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fitting values but represent the actual effectiveM values of the data
(operationally defined as the ratio of the low-frequency-limiting
dielectric constant to the high-frequency-limiting one, ε∞).
Thus, for M = 104, for example, the actual low-frequency-

limiting dielectric constant predicted from eq 8 of the CJPNP
model is only about 1.98ε∞ for F2 = 100, resulting in a dielectric
strength parameter value of only 0.98ε∞. Therefore, even for
direct CJPNP fits of appropriate experimental data, it is clear that
for F2 > 0.01, estimates of the effective M directly from the data
will need correction to obtain the value implicit in the model. In
this case, however, actual CJPNP LEVM fits, when available,
yield a direct estimate of the full-blocking M values as well as
those of F2. The decrease in Meff with increasing reaction rate
requires a physical explanation, and Dr. F. R. Hamou has
plausibly suggested that as larger proportions of the available
charge at an electrode react, less remains to contribute to the
double-layer capacitance. It is worth noting that in ref 25, the
definition of a long-time, mean-square length quantity (their eq
31) related to the displacement of mobile ions involves the
dielectric strength parameter and thus the low-frequency-limit-
ing dielectric constant. The analysis involves diffusion of mobile
ions, and it seems likely that their results should depend, as in the
present eq 8, on electrode reaction rate. Luckily, in many cases,
the rate for partially blocking electrodes may be too small to
significantly influence their expression.
The present results show that when the underlying data are of

CJPNP type, the ratio of the GPNP fit estimate of FP to that of
F∞G is just an estimate of F2. One can then use this estimate to
obtain an estimate of the CJPNP F∞ quantity from the expres-
sions for either of the above resistivities, an approach likely to be
better than a direct estimate from themidfrequency data, because
fit estimates are least-squares-averaged quantities. Further, such
fit calculations can still yield a useful estimate of F2 even when the

data do not extend to low enough frequencies for the limiting-
low-frequency plateau to fully appear. Then, forM. 1, it follows
from eq 8 thatM = (1 + F2)2MG, but eq 8 itself should be used
for small M. When only GPNP fit estimates are available, It is
important to use the corrected M value in calculating the one-
mobile Debye length, LD � L/2M � [ε∞εVkBT/(nne

2)]1/2, in
order to then obtain an appropriate estimate of nn.
3.2. Fit Results for Experimental Data. It is difficult to find

experimental conductive system data sets whose dimensionless
reaction rates are of the order of unity or greater. Some examples
of typical σ0(ν) response curves are shown in Figure 1 of ref 26.
Many involve a constant plateau at low frequencies, possibly
indicating DC behavior, eventually followed by an increasing
spur at high frequencies, often with a fractional power law
exponent value near 2/3, and some show a decreasing value at
sufficiently low frequencies as well, but they rarely include the
additional appearance of a very low frequency DC plateau. Wide-
range results may also eventually lead, however, to a second (or
third) rough plateau in the tera-frequency region [e.g., see ref 27],
but here, we consider only two-plateau response up to frequencies
of the order of 109 Hz or less.
Luckily, appropriate CaCu3Ti4O12 (CCTO) single-crystal

data sets with sputtered gold electrodes exist28 and have been
kindly provided by Dr. P. Lunkenheimer. They show two
plateaus up to the GHz region, ones whose heights suggest the
possible presence of significant reaction rates. Although their
responses were interpreted as possibly involving Schottky diode
formation at the electrodes, recent alternate fittings of a 140 K
data set with GPNPA and CJPNPAmodels led to good fits of the
data.12 Although no overt consideration of reaction rates was
included there, here, we present further-improved fits of the 140 K
set as well as those of an 80 K one, with detailed consideration of
the effects of different boundary conditions. It is worth noting that
an extension of Schottky barrier theory was presented in 1962,29

Table 2. Proportional-Weighting CNLS Fits of CCTO Specific Data Sets at the G(ν) and σ(ν) Immittance Levelsa

#/ISL, NP S/P, %

10�20N0,

10�12nn C F2

μn or

10�4 � [FUN]
ε∞ or

[ε∞UN]

ψ or ψG or

[β1UN]

(10�4FDC) or
M C

(106τDC) or

10�4F∞

(γDC) or

(10�4F∞G)

10+6σP or

[10�4F∞UN]

MG or

105 � [τUN]

1/F, 35 24, 49 1.07,� 0.105 31.4 72.2 0.831

2/σ, 35 24, 49 4.10,� 0.102 16.3 88.2 0.873

3/F, 28 16, 33 1.63,� 0.113 23.6 86.0 0.847

4/σ, 28 15, 31 2.87,� 0.107 18.6 101 0.870

5/σDC, 28 3.9, 11 2.38, 4.41 0.062 35.2 117 0.878 (3.32) (2.05) (0.772)

6/F, 18 2.9, 6.5 1.84, 3.88 0.114 21.9 174 0.879 359.2 7.360 8.200 1.393 293.3

7/F, 18 �,� 1.84 F,

3.88 F

0.114 F 21.9 F 174 F 1 F

8/F1, 18 16, 23 61.9, 22.5 0.119 3.54 199 1 F

9/σ, 18 2.4, 5.3 2.38, 4.41 0.114 19.2 171 0.885 386.8 7.376 8.215 1.387 315.8

10/σ, 18 �,� 2.38 F,

4.41 F

0.114 F 19.2 F 171 F 1 F

11/σ1, 18 15, 16 68.4, 23.6 0.122 3.62 217 1 F

12/σ, 23 1.7, 5.6 2.38, 10.42 0.0324 459 174 0.909 445.4 0.1304 0.1346 24.04 419.2

13/σ, 25 3.3, 2.7 [1.366] [143] [1/3] F (2.661) (637.8) (1 F) [0.1300] [3.16]
aHere, ISL designates the immittance spectroscopy level, and NP is the number of data points. All results are for T = 80 K except those of rows 12 ad 13
where T = 140 K. CJPNPAmodel fit results are in rows 1�4 and 6�12; CJPNPA 3DC is in row 5; and [C{UN 3R∞}] 3DB is in row 13. Davidson�Cole
and Debye parameter symbols are subscripted with DC; GPNPA model parameters involve G and P subscripts and appear in columns 7 and 10�12 of
rows 6, 9, and 12. The letter C designates a value calculated from fit parameters, and the letter F indicates that a parameter is fixed for generation of model
data or during fitting, as in rows 7, 8, 10, 11, and 13. Percentage values are listed for the goodness-of-fit parameters, S� SF and P� PDRMS. See section
3.3 for important corrections of some estimates in rows 9 and 12. Parentheses, brackets, and neither are used to distinguish different quantities in the
columns.
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but because it involved primarily static current�voltage response
but not impedance frequency response, the present CJPNPA
theory, which does so, should be more appropriate for zero- or
small-bias conditions, as in most small-signal immittance spec-
troscopy data measurements. Further, the earlier fit of the 140 K
data set led to so large an estimate of the mobility of the charges
that the conduction process was concluded to be electronic. In
this case, of course, the present neglect of inner-layer Stern effects
is fully justified.
Fitting of the 80 K set leads to an appreciably larger reaction

rate estimate than does the 140 K one; therefore, in Table 2, we
first summarize in some detail the steps that led to selection of its
best fitting models for the lower-temperature data and present
some of the results in Figures 3 and 4. In these figures, results
are keyed to appropriate rows in the table; thus R-1 designates
the first row of fit estimates. Column 2 of Table 2 includes
important S/P goodness-of-fit results, showing values of the
relative standard deviation of the fit residuals, SF, and of PDRMS,
the root-mean-square value of the relative standard deviations
of the free parameters of the fit, both expressed as percentages,
as in ref 12. Excellent fits yield values of these quantities near
or less than 1%. The G of the GPNPA model is a conductivity
σP � 1/FP.
The parameters of the CJPNPA model are summarized in

section 2.2b. Not shown in Table 2 are values of L, the electrode
separation, and those of kgr, the ratio of generation to recombina-
tion parameters. When N0 is taken as free to vary during fitting,
neither of these two parameters is found to be well determined
when also free because LEVM fits show that all three parameters
are very highly correlated with each other. However, when N0 is
fixed at its free-fit value, either of the others may be taken as free
to vary. We obtained an estimate of 0.297 ( 0.008 cm for L and
one of (8.17 ( 0.85) � 104 for kgr, but subsequent important
corrections of these results appear in section 3.3. TheN0 and L fit
values were found to be temperature-independent. Incidentally,
for good fitting of the two-mobile case with mobilities equal to

that of the one-mobile one, the L estimate would be twice as
large. The (logarithmic) value of KDL of about 4.9 indicates very
small dissociation,11 a result quantified by the estimated values in
the table of N0 and of nn, the actual concentration of mobile
negative charge.
The results of rows 1 and 2 of the table show that the CJPNPA

model alone leads to exceptionally poor goodness-of-fit values
when fitting the full data set. Although the row 1 F0 fit shown in
Figure 3a appears good up to a frequency of about 3 � 106 Hz,
the results in Figure 3b and those shown in Figure 4 still show
large discrepancies, and it is evident that a different measuring
apparatus was used to obtain results above 3 � 106 Hz than for
those at smaller frequencies. Because of this evident mismatch,
the fits of rows 3 and 4 were carried out without the top seven
data points. As evident, the fits are considerably improved but still
very poor. In an effort to account for the remaining spur in σ0(ν),
the composite model CJPNPA 3DC, involving a Davidson�
Cole model in series with the CJPNPA one, was then used; see
R-5 in the table and its results shown in Figure 4. The fit is
evidently much improved and will be further discussed below.
In R-6 and R-9, CJPNPA and GPNPA fit results, with five free

parameters each, are shown for a data set that does not include
the right σ0 spur shown in Figure 4a, and thus, it extends only to
1.3� 104 Hz. Although the SF values are exactly the same for the
two models, the PDRMS values are smaller for the GPNPA fits
because they do not include the more uncertain N0 parameter.
When it is held fixed, the R-9 PDRMS value reduces to 1.4%,
comparable to that for the GPNPA fit of the same data.
Comparison of the R-5 and R-9 CJPNPA parameter estimate
values shows that not only is the latter fit appreciably better than
the former one, but also, its F2, μn, and ε∞ parameter estimates
are considerably different and better-determined. Therefore, it is
reasonable to conclude that here, the estimates of CJPNPA
parameter values from a limited data fit are more appropriate
than are those obtained from a particular composite model fit of
extended-range data.

Figure 3. CCTO 80 K data and CJPNPA fits and responses, each
designated by row number in Table 2.(a) Log�log real part resistivity
data and fits; (b) log�log imaginary part resistivity data and fits.

Figure 4. CCTO 80 K data and CJPNPA fits and responses, each
designated by row number in Table 2.(a) Log�log real part conductivity
data and fits; (b) log�log imaginary -part conductivity data and fits.
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In Figures 3 and 4, the results of fitting of the 18-point data sets
are shown by open red circles. The closer they each symme-
trically encircle a black data point, the better the fit at that
frequency. Small discrepancies are evident in the plateau region
of Figure 4a, for example, but the agreement is generally good.
Note that the agreement between the R-6 and R-9 parameter
estimates is also generally good except for the M and MG

parameters, but the conductivity fits are somewhat better than
the resistivity ones listed in the table. It follows from the R-6 and
R-9 results that the calculation of F2 values from the product
F∞GσP agrees with the CJPNPA estimates to three or more
significant figures. Further, the estimation ofM fromMG and F2
estimates agrees within about half of the standard deviation of the
MG estimate. Thus, good estimates of relevant CJPNPA param-
eter values follow here from simpler GPNPA fits.
The fits in R-8 and R-11 of the table are like those of R-6 and

R-9, except that the value of ψ was fixed at 1, thus leading to
CJPNP rather than CJPNPA fits. We see that the fits and their
corresponding parameter estimates are very poor, underlining
the need to account for anomalous rather than normal diffusion
for this data set. The R-7 and R-10 results shown in the table and
in Figures 3 and 4 are not fits but were calculated using the
CJPNPAmodel with all of the parameter estimates of the R-6 and
R-9 fits being the same, except withψ again fixed at 1. The green
dashed lines in the figures show the resulting differences between
CJPNP and CJPNPA model predictions for these parameter
choices.
It is important to compare CCTO data fit results at T = 80 and

140 K. The results for the latter in R-12, appreciably improved
over the one whose partial results are mentioned in ref 12, should
be compared with those in R-9. It is particularly satisfying that the
N0 estimates are the same here and thus temperature-indepen-
dent within their uncertainties. This is not so, of course, for the
kgr and nn estimates. The R-12 kgr fit estimate was (4.56( 0.44)
� 105, and it is straightforward to show from the analysis in ref 11
that for small dissociation nn = [kgrN0]

1/2, a result fully
consistent numerically with the fit results. We expect both nn
and kgr to be thermally activated and thus to trump the effects of
just a direct change in temperature. Further, from the definition
ofM, it follows that one would expect M140/M80 = [80(nn)140/
140(nn)80]

1/2 for temperature-independent ε∞, again well-satis-
fied by the present results. Note, however, that these M values
both apply for ψ = 1.
Next, one can ask whether a CTRW hopping model such as

those described in section 2.2e can fit the present 140 K data as
well as or better than the continuum CJPNPA one. Upon fitting
with the [C{UN 3R∞}] 3DC model, the S/P values were 3.0
and 2.5, comparable to the corresponding CJPNPA results
in R-12 of Table 2, and the γDC estimate was 0.905, very close
to the ψ estimate listed in R-12. Alternately, for the simpler
[C{UN 3R∞}] 3DB model of R-13, the results were 3.3 and 2.7.
A very poor fit was obtained, however, with just the C{UN 3R∞}
model. For a full composite K1model fit, the results were 3.3 and
14.4, with the τUN parameter very poorly estimated and a β1
estimate of 0.30( 0.02. In contrast, a full composite K0 fit led to
S/P values of 3.0 and 7.2 and β0 = 0.903.
Results for the [C{UN 3R∞}] 3DB model fit with six free

parameters are shown in R-13 for comparison with comparable
ones in R-12. Clearly, some of the parameters and parameter
values in R-13 are related to those in R-12. Both models involve
separate ε∞ parameters, and their estimates are comparable.
A crucial difference in their F∞ parameters, however, is that

although their estimates are virtually identical, the CJPNPA one
of R-12 is an integral part of the model, while the F∞UN one of
R-13 is a separate series resistivity, not a direct part of the UN
model itself. The presence of such a parameter is further
discussed in ref 16, and for both models, its inverse is an estimate
of the high-frequency plateau quantity σ∞.
Finally, the sum of the R-13 FUN and FDC resistivity values is

about 4.03 � 104 ohm�cm, equal to the CJPNPA F∞/F2 value
from R-12, the height of the low-frequency plateau above the
midfrequency one. Note especially that this boundary value
result is here the sum of contributions directly from the UN
model and from the Debye one. From its value and the estimated
value of the independent series resistivity F∞UN, one can
immediately obtain an excellent estimate of the CJPNPA elec-
trode reaction rate, however, using only the fit results of the full
composite UN model.
At the dielectric level, the ε0(ν) data value continually in-

creases as the frequency decreases.28 This behavior is modeled in
the CJPNPA by ψ < 1 and partially in the full composite UN
model by nearly all of its elements. It is significant that when the
parameters of R-13 are used to calculate its response at the
dielectric level, the response without F∞UN leads to a low-
frequency value of ε0(ν) appreciably greater than that of the
data. Then, as the frequency increases beyond the UN model
characteristic frequency νUND � 1/(2πεVε∞UNFUN), approxi-
mately 9.2 � 105 Hz here, ε0(ν) begins to reach the constant
value of 1.57 � 105, that of εC1∞ defined in section 2.2e. Most
previous UNmodel fits involved high-resistivity situations where
εC1∞ was found to be comparable to or smaller in size than
ε∞UN, but here, it is much larger and plays an important role over
the full frequency response region. It is significant that anom-
alous diffusion and composite hopping models can both fit the
present limited-range 140 K data set well. This suggests that
possibly a combination of the CJPNPA model and a UN one
alone might provide a good fit of partial-blocking conductive
system data, thus combining the effects of two disparate mobility
processes.
It is interesting and significant that when the R-12 CJPNPA fit

was used to generate synthetic data from its parameter estimates,
the fit of that data using the [C{UN 3R∞}] 3DB model of R-13
led to S/P values of 2.45 and 3.75%. These values are properly
comparable to those listed in R-13 obtained from fitting the
original experimental data used in R-12 where the anomalous
diffusion parameter estimate wasψ= 0.909. However, when the
R-12 fit parameters with ψ fixed at unity were used to generate
exact CJPNP data, its fit using the [C{UN 3R∞}] 3DB model led
to S/P values of 1.4 � 10�6 and 82%, a virtually perfect fit but
with the two free FUN and τUN parameters essentially undefined!
Thus, in this case, the UNmodel played no role in the fit, and the
Debye part dominated it.
3.3. Consequences of an Incorrect Value of L! Since the last

section was completed, I learned from the authors of the CCTO
work of ref 28 that the actual electrode separation, L, was 1.1 mm
rather than about 3 mm, and the area of each electrode was
0.166 cm2. I have also further investigated the effects of the
intercorrelations of the L, kgr, and N0 CJPNPA parameters.
Rather than just replacing the T = 80 and 140 K CJPNPA fit
results (R-9 and R-12 in Table 2, respectively) and discussion
with those for the correct L, taken fixed and temperature-
independent here, it is particularly instructive to compare
differences in the fit results. It is better to recognize, correct,
and learn from errors than just to bury them! First, we find that
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the goodness-of-fit values and the figures remain the same, as well
as all other parameter estimates, except those ofN0, kgr, nn, and μn.
Unity correlations between fit estimates of N0 and kgr were

avoided by consecutive fits with each parameter separately free to
vary until the best-fit combination was found. Although the
resulting new CJPNPA model estimate of N0 = 1.347 �
1022 cm�3, the concentration of neutral dissociable entities,
was temperature-independent, those of kgr were about 7.69 �
104 and 4.29 � 105 for 80 and 140 K, respectively, not very
different from those found for the larger L value. Similarly,
the corresponding estimates of nn and μn were 3.22 � 1013 and
7.59 � 1013 cm�3 and 2.63 and 63.0 cm2/(V s), respectively.
Thesemobility estimates are still sufficiently large to rule out ionic
conduction.
The large temperature-independent estimate of the concen-

tration N0 and the small estimates of nn deserve further physical
consideration. Upon being made aware of the present results, Dr.
Peter Lunkenheimer, a senior author of ref 28, suggested the
following: The edge-length of a cubic unit cell of CCTO is about
7.4 � 10�8 cm,30 and the cell contains six copper ions, resulting
in about 1.48� 1022 copper atoms per cubic centimeter, close to
the independent fit result of N0 = 1.347 � 1022 cm�3 and
justifying its observed temperature independence.
Because of the high correlations found between N0 and kgr,

their relative estimated standard deviations, even when fitted
separately, were each about 10%; thus, the structural value and
the present N0 estimate agree within one standard deviation.
Further, when a starting CJPNPA fit with N0 fixed at 1.48 �
1022 cm�3 was carried out using 140 K data, the resulting
common estimates of N0 and kgr were 1.4797 � 1022 and 3.80 �
105 cm�3, respectively, resulting in an unchanged estimate of nn.
Dr. Lunkenheimer has suggested that the very small dissociation
found here is likely because the charge carriers are probably
associated with small cation nonstoichiometry so that most
copper ions provide no mobile electrons. These matters are
further discussed in refs 31 and 32.

4. CONCLUSIONS

Comparison of the effects of three different boundary condi-
tions used with the full-blocking PNP ordinary or anomalous
diffusion model in order to model partial-blocking nonzero
electrode reaction rates shows that the responses of a PNP
model with Chang�Jaffe boundary conditions, the CJPNP, and
of a PNP model with ohmic boundary conditions, the OHPNP
one, are identical for ordinary impedance spectroscopy data.
Although the response of the simpler GPNP model with its
parameters consistent with those of the CJPNP one only leads to
full agreement with that of the CJPNP for very small reaction
rates, when the GPNP with free parameters is used to fit CJPNP
data, the fit is still nearly exact up to very large rate values.
Further, the GPNP fit parameter estimates may be readily
transformed to yield the corresponding CJPNP ones without
the need for fitting with the more complicated CJPNP model,
one which, however, leads to several more important parameter
estimates than does the GPNP.

In addition, as the reaction rate increases, the CJPNP model is
shown to lead to a progressive decrease in the low-frequency-
limiting dielectric constant and thus also in the dielectric strength
associated with mobile charge carriers. In the limit of infinite
reaction rates, and therefore zero-blocking and transparent
electrode behavior, the dielectric strength goes to 0 because all

mobile charges at the electrode are then reacting. The above
results have been verified by fitting CCTO single-crystal data
sets28 at two different temperatures. They show that the equi-
librium concentration of mobile charges is temperature-depen-
dent and very much smaller than the temperature-independent
concentration of neutral centers from which they dissociated.
Further, this concentration value was shown to agree very closely
with one independently derived from the structure of the CCTO
material, a further strong verification of the appropriateness of
the model. The estimated mobility of the negative charges is so
much greater than that expected for ions that these charges are
almost certainly electrons arising from nonstoichiometric effects,
and the ordinary Gouy�Chapman diffuse layers near the electrodes
following from the PNP models seem to lead to results superior to
those that invoke possible Schottky barriers at the electrodes.28

Finally, it is found that a composite CTRW UN hopping
model, the [C{UN 3R∞}] 3DB one, fits the present CCTO 140K
data nearly as well as does the continuum CJPNPA model.
Although the parameters of the UN model allow it to fit the data
in the limited low-frequency range of the CCTO data where
some anomalous diffusion increases are present in the low-
frequency dielectric constant data, it is found that the
[C{UN 3R∞}] 3DC model, which involves a fractional exponent
in its Davidson�Cole part, leads to a better fit when the data
extend to even lower frequencies. It appears, however, that even
the series combination of the UN and DC models is unlikely to
well fit such anomalous diffusion dielectric behavior if it con-
tinues to even lower and lower frequencies. If so, the usual
assumption that data arising from continuum and from discrete
hopping/trapping processes requires physically different analysis
models would be verified.
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