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INTRODUCTION

Electrochemical impedance spectroscopy allows access
to the complete set of kinetic characteristics of electro-
chemical systems, such as rate constants, diffusion
coefficients, and so on, in a single variable-load exper-
iment. It is restricted to characteristics that describe
system behavior in the linear range of electrical excita-
tion, for example, when it can be approximated by ordi-
nary differential equations. It can be contrasted with
other methods where explicitly nonlinear properties are
investigated, such as cyclic voltammetry.

A requirement for linear behavior is a voltage excita-
tion below 25mV for experiments at room temperature
or less thankBT/e, in general, where theV(I) dependency
of charge-transfer reactions can be approximated as
linear. Some relevant parameters remain constant over
a wide range of conditions, however, and, once found
under linear conditions, can then be applied to model
much wider range response. Example of such para-
meters would be the ohmic resistance of electrolytes
or the thickness of passivating films on an electrode.

While impedance spectroscopy shares the variable-
load experimental method with many other linear-exci-
tation electrochemical techniques, it also involves the
transformation of time-domain signals and response to
the frequency domain and the calculation of the relevant
impedance, a complex quotient of voltage divided by
current. It thus involves impedance calculation from the
results of time-domain excitation of the system at fixed
frequencies. Although “impedance” is often character-
ized as “complex impedance,” this is unnecessary since
it is an intrinsically complex quantity. Its behavior over a
range of frequencies forms an impedance spectrum,
leading to impedance spectroscopy.

Model creation and visualization by approximation
with discrete circuit elements when possible can greatly
simplify treating otherwise intractable complex systems
involving multiple different processes. Further analysis
is then aimed at deriving system parameters from an
experimental impedance spectrum, typically by devel-
oping a model function connecting the impedance spec-
trumwith appropriate system parameters. Suchmodels
are also usually much simpler in the frequency domain
than they would be in the time domain for the same
system, which can lead to parameter optimization even
for quite complex systems that is easily achievable with
existing computing systems.

Impedance spectroscopy is an extremely wide field
and its scope is described in detail in Barsukov and
Macdonald (2005), Stoynov et al. (1991), and Orazem

and Tribollet (2008). While another article in this work
discusses impedance spectroscopy of dielectrics and
electronic conductors, IMPEDANCE SPECTROSCOPY OF DIELEC-

TRICS AND ELECTRONIC CONDUCTORS, here we primarily deal
with its application to materials containing mobile ions,
althoughmuch of the present discussion is independent
of those specific elements in the material that lead to
dispersive behavior. The aim of this work is to provide a
basic introduction to the technique, such as its princi-
ples, mathematical approaches for developing model
functions for most common systems, analysis of the
experimental data to obtain system parameters, and the
basics of experimental implementation.

PRINCIPLES OF THE METHOD

Basic Concept of Electrical Impedance

The simplest relationship between voltage and current
for electric elements is the Ohm’s law, I¼V/R, where
element resistance R is dependent on neither I nor V and
can be found by simply applying constant current and
measuring resulting voltage across the resistor. How-
ever, nature contains not only energy dissipative ele-
ments but also energy storage elements. Current or
voltage dependence of such elements as capacitors and
inductors cannot be directly expressed by Ohm’s law,
because of time dependence (I¼C dV/dt, V¼L dI/dt)
and the relationship between voltage and current that
requires a differential equation. Finding parameter
values (in this caseCandL) require observing the system
under variable voltage and current conditions and over a
period of time, which makes system response analysis
complex, especially if multiple components are present.

Fortunately, there is an indirect way to apply Ohm’s
law-like treatment to time-dependent systems, because
all linear differential equations can be transformed into
the Laplace-domain where they become ordinary equa-
tions but in terms of “complex frequency” variables,
s¼Reþ io, where i ¼ ffiffiffiffiffiffiffi�1

p
(sometimes also denoted as

“j”) and o is the circular frequency, related to usual
frequency f as o¼2pf. For example, on taking the
Laplace transform L of i(t)¼C dn(t)/dt gives

IðsÞ ¼ �Cðnð0Þ�sLðnðtÞ; t; sÞÞ ð1Þ

Under the condition where there is no energy stored in
the system before the test, V(0)¼0, and writing the
voltage in the Laplace domain, L(n(t), t, s), as V(s), we get

IðsÞ ¼ CsV ðsÞ ð2Þ

This is equivalent to Ohm’s law, which becomes obvious
if we make a definition, Z(s)¼1/Cs that turns the equa-
tion into

IðsÞ ¼ V ðsÞ
ZðsÞ ð3Þ

Here, I(s) andV(s) are complexcurrent andvoltage,Z(s) is
the complexequivalent of resistance called “impedance,”



and s is the complex frequency. This simplification for
solving electric circuits and the definition of impedance
was first given by Oliver Heaviside in 1880.

Conveniently, having the expression for impedance of
simple element (ZR(s)¼R, ZL(s)¼ sL, and ZC¼1/sC), we
can derive the impedance of any complicated circuit,
remembering that the combination of impedances in a
circuit follows the same rules as combination of resis-
tors. So instead of first making a very complex differen-
tial equation and then applying the Laplace transform to
it, we could define equations directly in the Laplace
domain, by following a simple rule that for serial ele-
ments the impedances add up and for parallel elements
the admittances Y (defined as Y(s)¼1/Z(s)) add up. Let
us use an example of a circuit shown in Figure 1.

Firstwefind impedance of sectionR1 andC1,whichare
in series. The impedance of this section will be Z1(s)¼R1

þ1/C1s.Theimpedanceofaninductiveelementparallelto
it isZ2(s)¼L1s. Nowwecan turnbothof these impedances
into admittances so thatwe canuse the rule about adding
parallel admittances: Y1¼1/Z1¼1/(R1þ1/C1s) andY2

¼1/L1s. Now we get the admittance of the total circuit as
the sum of the parallel section admittances as Y¼Y1þY2

¼1/L1sþ1/(R1þ1/C1s). Now converting it back to
impedance as Z¼1/Y, we get the impedance for thewhole
circuit:

ZðsÞ ¼ 1
1

L1s
þ 1

R1 þ 1

C1s

ð4Þ

Measuring Impedance Values

In many practical cases, there is a need to solve an
inverse problem.We have an actual electrical circuit but
the values of theparameters of the circuit are not known.
Since we know the relationship between the impedance
function Z(s) and the parameters, we could find the
parameters if the impedance function is also known.
How can we find it experimentally?

Thefirst thought is that sincewehave the relationship
Z(s)¼V(s)/I(s) we could experimentallymeasure I(s) and
V(s), whichwould give us the desired function. Indeed, it
is possible to collect a set of time domainmeasurements
of i(t) and n(t), and then use a Laplace transform to
convert the data to Laplace domain.However, this trans-
formation requires large data amounts and computing
power and is prone to high noise sensitivity and integra-
tion problems; so this direct method is only practical for
simpler systems.

Historically, an approach that employs periodically
repeating excitation n(t) has been used instead, which
does not require data collection at multiple time-points
and was, in fact, used long before computers existed.
This method benefits from the fact that after periodic
excitation has been applied for a time much more than
the time constant of the system under test, the expo-
nential components of the response function i(t) decline
and become negligible. This means that if input n(t) is a
sinusoid, the response will also be a sinusoid, although
changed inmagnitude and shifted inphase. For a single-
frequency sine wave applied as an excitation to a circuit

nðtÞ ¼ VmsinðotÞ ð5Þ

where the circular frequencyo � 2pf is defined from the
base frequency f, and after the stabilization time the
response current will be observed as

iðtÞ ¼ Imsinðot þ yÞ ð6Þ

Here y is the phase difference between the voltage and
the current in radians (from 0 to 2p). Since both magni-
tude and phase can be measured directly using analog
equipment, this approach already allowed impedance
measurements in the eighteenth century.

Toconnect thephaseand themagnitudeofa sinewave
with the impedance function we discussed in the previ-
ous section, we can take advantage of the periodicity of
bothsignalsanduseFourier transformation to transform
both input n(t) and response i (t) into the frequency
domain, I(io)¼F (i (t)), whereFdenotes the Fourier trans-
formation. Since Fourier transformation deals with peri-
odic functions, it does not contain a real part in its
transform variable and so complex frequency will be just
io. It is the same frequency as used inEquations 4 and 5.
ApplyingFourier transformation to these equations gives
V (io) and I (io) as Vmp and Imp exp(iy), respectively. Since
Fourier transformationhas the sameproperty asLaplace
transform of transferring differential equations into lin-
ear equations (only for periodic signals), it alsomaintains
the Ohm’s law-like relationship between excitation and
response, I(io)¼V(io)/Z (io).

Substituting the values for complex current and volt-
age for a single sine wave into this equation, we obtain
the desired equation for the impedance Z(io) from the
magnitude of sine waves Vm, Im, and the phase shift y,
measured using analog means

ZðioÞ ¼ V ðioÞ=IðioÞ ¼ Vm ImexpðiyÞ ð7Þ

Tohelpunderstand the notationsused in the impedance
literature, we should mention that complex numbers,
historically, have also been represented as phase angle
and modulus. When a complex number is graphically
representedasapoint in theXYcoordinate systemwhere
X¼Re(Z) and Y¼ Im(Z), the phase y will be the angle
between the X-axis and the vector, and modulus |Z|
will be the length from the center to the point
with coordinates X and Y. This defines the relationships
y¼ tan�1(Im(Z)/Re(Z)) and |Z|¼ [Re(Z)2þ Im(Z)

2]1/2.

R1
C1

L1

Figure 1. Example of a serial/parallel circuit.
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Impedance Spectrum

What can be expected from the values of Z(io) obtained
from the experiment, in particular how will they depend
on the circular frequency o? This can be easily checked
using the equations for Z(s) that we derived in the first
section, now substituting io instead of s. For the base
elements, ZR(s)¼R, ZL(s)¼ sL, and ZC¼1/sC becomes
ZL(io)¼ ioL and ZC¼1/ioC.

The samesubstitutionapplies formore complex func-
tions. For example, the function for the circuit used in
Figure 1 becomes

Z ðioÞ ¼ 1
1

L1ðioÞ þ
1

R1 þ 1

C1ðioÞ

ð8Þ

To analyze the properties of an unknown system, it is
useful to graphically represent impedance functions at
multiple frequencies. This is known as an impedance
spectrum. Since we are dealing with complex numbers
Z (io)¼Reþ i Im, we need to visualize not only the real
part but also the imaginary part. The most commonly
used plots for this purpose are Bode plots, where Re(o)
and Im(o) are plotted separately versus ln(o) or log(o), or
the so-called Nyquist plot (actually a misnomer; see
Barsukov and Macdonald, 2005), where �Im(o) versus
Re(o) is plotted, while frequency is implied (higher fre-
quency is on the left). The scales of the X- and Y-axes
should be the same to avoid distortion of the elements
shape.

A Nyquist plot allows one to identify the elements
present in the circuit from the shape of the profile. The
basic elements will appear on Nyquist plot as follows:
resistor as a shift on the X-axis, capacitor as a vertical
line in a direction of increasing of �Im, inductor as a
vertical line in a negative direction (increasing Im ), and
resistor in parallel with a capacitor as a semicircle.
Inductive effects are rarely observed in electrochemical
systems below frequencies of 10kHz. An example circuit
that exemplifies all of the elements common in electro-
chemistry is given in Figure 2.

Using the rule for adding serial impedances, we get
Z1(s)¼Rserþ1/Csers for Rser and Cser.

For the parallel combination R1 and C1, we use
the rule about adding the admittances to find its admit-
tance Y2(s)¼1/R1þC1s. Converting back to impedance
Z2(s)¼1/Y2(s)¼1/(1/R1þC1s).

Finally, adding Z1 and Z2, which are in series with
each other, we get the total impedance as given in

Equation 9. To calculate the impedance values at differ-
ent frequencies, we will assume periodic excitation and
substitute s¼ io.

ZðoÞ¼Z1ðoÞþZ2ðoÞ¼Rserþ1=Cserioþ1=ð1=R1þC1ioÞ
ð9Þ

For a numerical example, we can use values of para-
meters Rser¼0.05O, R1¼0.1O, Cser¼10 F, and C1

¼0.01 F. The range of frequencies f is from 0.1Hz to
100kHz, where o¼2pf.

Usually, a logarithmic distribution of frequencies is
used to give enough points to cover different processes
that might be far apart in terms of the direct frequency
range.

It can be seen that Rser is causing the high frequency
portion of the spectrum (on the left) to intercept with
X-axis at 0.05O, where imaginary portion becomes zero.
Parallel R1 and C1 are causing the semicircle, whose
right side again approaches zero imaginary part at lower
frequencies with real value close toRserþR1. Finally, the
curve goes vertical due to the serial capacitanceCser that
is very large and, therefore, shows a noticeable effect
only at low frequencies (right of the graph). Note that
such simple considerations allow to estimate the values
of circuit elements from just looking at the Nyquist plot.
However, that is not always possible for more complex
circuits where time constants of different elements can
overlap. This topic is discussed in the data analysis
section.

Applications of Impedance Spectroscopy to Electrochemical
Systems

Electrochemical processes are in general nonlinear,
which means they cannot be described by linear

S1

R1

S1

C1

Rser
Cser

Figure 2. Example of a serial/parallel circuit.
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Figure 3. Impedance spectrum of the circuit in Figure 2 in the
frequency range from 100kHz to 0.1Hz.
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differential equations or expressed as electric elements
like resistors, capacitors, and inductors. Nonlinear sys-
tems cannot be solved by Laplace transformation and
the concept of impedance is generally notwell defined for
them.

In spite of this limitation, all merits of the above-
mentioned formalism can still be applied to electrochem-
ical system provided that voltage changes during elec-
trochemical processes are small. Analysis of the
Butler–Volmerequation that is central inelectrochemical
kinetics shows that at voltage changes below the thermal
voltage value kBT/e (about 25mV at room temperature),
the relation between current and voltage is linear. There-
fore, analysis of electrochemical processes at small volt-
age changes can be replaced by analysis of equivalent
electric elements. In particular, the relationship between
voltage and current for simple electrochemical charge-
transfer reaction becomes similar to Ohm’s law, where
the resistive element that corresponds to charge transfer
is known as “charge-transfer resistance.”

Other processes important in electrochemistry
such as concentration polarization in adsorption and
diffusion processes can be approximated through
combinations of capacitors and resistors. Finally, elec-
trochemical systems can exhibit actual physical capac-
itance across some films deposited at the electrodes
and resistances (such as electronic and ionic resis-
tance of porous electrodes). An overview of most of the
important electrochemical processes that can be ana-
lyzed by impedance spectroscopy is given in subse-
quent sections. Furthermore, the Macdonald website
(Macdonald, 2011) contains an extensive list of refer-
ences dealing with complex nonlinear least squares
(CNLS) analyses of a wide variety of solid and liquid
materials; see the downloadable guide to electrochem-
ically oriented publications listed there.

In addition to linearity conditions assured by small
voltage excitation, several other requirements are
needed to be preserved during an experiment in order
to satisfy the assumptions of impedance spectroscopy.
They include the following.

1. “Steady-state” requirement, whichmeans that the
system should not change during the measure-
ment. For example if the system under test is a
battery, its state of charge should not change
during test, a result that can only be achieved if
there is no bias current flowing between the elec-
trodes that is not caused by a small excitation.
Also, there should not be any other changes that
can affect system response, such as change of
temperature, pressure, and so on.

2. “Causality” means that the response should be
reflecting only the excitation and no other effect,
such asmemory effects, fromsomepriormeasure-
ments.
Satisfying all the conditions can be checked by

the absence of any additional frequencies of
response sine waves except those of the excitation
sine waves. This will be discussed in themeasure-
ment section.

PRACTICAL ASPECTS OF THE METHOD AND METHOD
AUTOMATION

Basics of Measurement Apparatus

Impedance spectrum can be measured by modulating
the voltage or the current signal and measuring voltage
or current response, correspondingly. The device used
for modulating voltage signal is called a “potentiostat”
and for modulating current signal is called a
“galvanostat.” In most cases, electrochemical systems
have their own potential between the electrodes, so it is
very rare that voltage excitation is overlaid over a zero
voltage difference.

Potential between electrodes reflects the state of
electrochemical system; therefore, it is convenient to
enforce certain potential that activates a process of
interest. To isolate effects on just one electrode, typi-
cally a three-electrode configuration is used, where
potential between electrode of interest (working elec-
trode) and reference electrode is measured. Reference
electrode potential difference from standard HþH2

electrode is known beforehand, which allows to com-
pare the potential of working electrode with the stan-
dard half-cell potentials available in reference
literature for various electrochemical redox couples.

For example, to observe process of metal dissolution,
potential needs to be set in the range close to the equi-
librium potential Eeq of Me/Menþ couple, otherwise pro-
cess would be too slow to be noticeable (impedance will
be close to infinite). Equilibrium potential Eeq can be
found from standard half-cell oxidation potential E0

given known concentrations of active species as defined
by Nernst equation (Equation 18).

Typically, potentiostats are capable to provide both
the constant “bias” potential (e.g., 1.6 V) between the
working and reference electrodes and variable voltage
excitation of�25mV. Ideally, the current caused by bias
potential should be low so that the system does not
changes fast enough to have different parameters over
the duration of impedance spectra measurement. For
example, if there is an active corrosion current, surface
area could change enough to cause different effective
charge-transfer resistance. To achieve small currents,
bias potential can be set at Eeq and then slowly ramped
up until noticeable current starts. In galvanostatically
controlled experiment, bias current can be set, which
eliminates the need of searching for optimal potential.
However, there is an additional caveat, since excitation
is done by variable current, voltage response might turn
out to be outside of linearity rage of less than 25mV, so
variable excitation level needs to be adjusted.

Overview of Available Measurement Systems

Although we have seen in the section “Principles of the
Method” how to obtain impedance values from compar-
ing magnitude and phase of excitation versus response
sine waves, currently it is more common for electroche-
mists to use automated measurement systems. The
most common system includes a signal generator to

4 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY



generate a sine-wave excitation of a required frequency,
a potentiostat or a galvanostat, that amplifies the signal
and forces the required voltage or current across a mea-
surement system, and an analyzer that obtains phase
and magnitude signal of a resulting response.

Such systems are widely commercially available. The
field is dominated by Solartron Analytical with their
“frequency response analyzer” (FRA) combined with a
potentiostat. Control software allows one tomake a scan
ofmultiple frequencies to obtain a spectrum. The details
of their system can be seen at http://www.solartrona-
nalytical.com/Pages/1260AFRAPage.htm (Solartron
Analytical). Other competing systems providers include
Novocontrol, Hewlett Packard/Agilent, Gamry Instru-
ments, Ametek Princeton Applied Research, Autolab,
and ZAHNER-Elektrik.

FRA-based spectrometers provide high-quality
impedance spectra but share common disadvantages,
such as the requirement for a complicated signal gen-
erator or phase-sensitive detector and long measure-
ment times for exploring a wide frequency range. The
latter occurs because the impedance at each frequency
is measured sequentially and the excitation for each
frequency should be applied at least for two periods to
prevent transient effects.

Accordingly, the time increase for the sequentialmea-
surement is excessively large if low-frequency data need
to be measured. A method using a perturbation signal
consisting of multiple sine waves and analysis of the
response by fast Fourier transformation (FFT), which
removes the necessity for a phase sensitive detector and
allows a fastermeasurement, has been proposed in Pop-
kirovandSchindler (1992).Withthismethod, impedance
dataatmanydifferentfrequenciescanbeobtainedsimul-
taneously. Therefore, the total measurement time is
equal to the time required for the lowest frequency mea-
surement. This approach also allows one to check for the
absenceof “additional” frequencies in the response spec-
trum, whose presence would indicate nonlinearity or
nonstationary behavior of the system under test.

Another approach suitable for “self-made” systems
due to its simplicity, that is based on Laplace transfor-
mation and does not require a frequency generator
because a simple pulse excitation can be used, is
described in Barsukov et al. (2002).

Impedance Spectra Analysis Systems

It is important to understand that there is no fully
automaticway to obtain systemparameters from imped-
ance spectrum, with the exception of some most simple
systems such as electric conductivity measurement of a
block of conducting material. Even when using a com-
mercially available impedance spectrum analysis soft-
ware, it is necessary to understand the basic principles
of impedance spectraanalysis that is outlined in thenext
section. Given such familiarity, it is possible to shorten
the development time by using commercial or public
domain programs rather than developing your own.
Most commercial programs are based on the open-
source code in LEVM (Macdonald and Potter, 1987).

Popular programs include Scribner’s ZView, EChem
Software ZSimWin, Dr. Boukamp’s Equivalent Circuit,
and Kumho’s MEISP (MEISP, 2002).

DATA ANALYSIS AND INITIAL INTERPRETATION

Obtaining Model Parameters from the Impedance Spectrum

Let us consider the simplest case where the structure of
the circuit is known but the values of the elements are
unknown. How can we find the values given the imped-
ance spectrum measured at the circuit terminals?
Before attempting to find parameters, we have to ensure
that the impedance spectrum was taken in a frequency
range thatmakes all the circuit elements “visible” on the
spectrum, for example, their impedances are not
negligible.

This is a very important requirement since large
capacitors, for example, would not appear in the high-
frequency spectrum because their impedance values
would fall below the noise level. Consider Figure 3. If
we would have measured the impedance spectrum only
until the frequency before the vertical line starts, we
would not even know that capacitor Cser existed, and
certainlywewouldnotbeable to obtain its value fromthe
fit. If we measured at frequencies above 100kHz, we
would not see any circuit elements except Rser, because
the impedance would show only a real part and look like
a “dot” on the X-axis of the Nyquist plot at 0.05O. For
parallel RC elements, it is useful to know approximately
what time constant, t¼RC, is expected for it, and make
sure that the 1/t is within the frequency range of the
experiment. In the case of physical systems, it is usually
known from prior art in what frequency range a process
is to be expected to appear; for example, a charge-trans-
fer reaction or electrochemical double-layer RC element
is typically between 1kHz and 0.1Hz and diffusion
effects often appear below 0.1Hz. Examples of typical
frequency ranges are given in Appendix II discussing
distributed elements.

Once it is assured that thespectrumactually contains
information about the parameters, this problem can be
considered as a parameter optimization problem in the
form

Z ¼ fZ ðo;PÞ ð10Þ

where Z is a vector of complex impedance values that
corresponds to circular frequency values in vectoro, fZ is
the complex function of circular frequency (e.g., the
function Z(io) detailed in Equation 8), and P is a vector
of function parameters to be optimized. Typically, such
optimization problems can be solved using a suitable
nonlinear least-square fit algorithm.Most popular is the
Levenberg–Marquardt algorithm. Care should be taken
while using a version of the algorithm that supports
complex function values, the CNLS approach. Many
mathematical packages such as Mathcad or Mathema-
tica support such complex optimization. There are also
stand-alone programs specially developed for
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immittance (either impedanceoradmittance) datafitting
such as LEVM (Macdonald and Potter, 1987).

Unfortunately, nonlinear fitting is, in general, an ill-
posed problem and is not guaranteed to converge to the
global minimum or to converge at all. Convergence is
largely dependent on the closeness of the parameter
initial guesses to final values. Some other optimization
choices such asweighing of outliers and different criteria
for optimization also affect convergence. For details on
suchchoices,refer toMacdonaldetal. (1982).Meanwhile,
let us consider some ways to find a good initial guess.

Manually, such a search would be similar to param-
eter estimation fromNyquist plots, as demonstrated, for
example, in Figure 3. Serial resistance can be estimated
from the real part of the “left,” high-frequency edge of the
spectrum, while “width” of each semicircle gives an
estimate for resistor values associated with that partic-
ular RC couple. The sum of all resistors in the circuit
usually adds up to the real part of the low-frequency
edge. Once resistor values are estimated, capacitor
values can be found by taking the points in the middle
of corresponding semicircles and finding which fre-
quency fmid corresponds to these points. The time con-
stant t of the RC couple will be t¼1/fmid, and from it,
C can be estimated as C¼ t/R.

For simpler circuits that consist of just multiple RC
couples connected in series, this finding of initial
guesses can be automated. After substitution of C¼ t/R
into the impedance equation for an RC couple, we get an
equation that is linear with respect to R:

ZðoÞ ¼ 1=ð1=R þ ioCÞ ¼ Rð1=ð1þ iotÞÞ ð11Þ

Optimization of a sumof any number of linear equations
is a linear regression problem that is guaranteed to
converge. This allows us to assign fixed values of t[index]
that are logarithmically distributed along the frequency
range of the spectrum, and find an estimate ofR[index] for
each RC couple by linear regression. After that, a non-
linear fit, where both R and t are free, may be performed
to find final values.

An automatic analysis that attempts to find the num-
ber and values of RC elements that can represent par-
ticular impedance spectrum is useful if a circuit for the
system under test is unknown. In this case, we could
start, for example, with 10 RC elements and keep reduc-
ing them until the sum of least square errors starts
increasing. The final number of RC elements and their
values gives an indication of how many distinct pro-
cesses are responsible for this impedance spectrum.
Such “distribution of relaxation times” analysis can be
done automatically in LEVM. An alternative method of
preliminary analysis of a spectrum of unknown system
known as “differential impedance analysis” is described
in Vladikova (2004).

A variation of the RC element-finding method can be
performed to find raw initial guesses not only for cir-
cuits that do not consist of multiple RC elements but
also for elements that can be associated with time
constants. Resulting values of RC time constants can
be assigned to time constants of actual circuit elements

that give a good initial guess for the nonlinear fit of the
actual system.

Such anapproach also allows reducing the ambiguity
of the results of the fit. For example, it is known that a
diffusion time constant should be lower than that of a
charge-transfer reaction. Assigning an initial guess from
the “low-frequency” RC element to a diffusion element
and that from high-frequency RC element to a charge-
transfer resistance or double-layer couple will force the
choices to be in the right frequency ranges. Note that a
nonlinear fit itself is oblivious to the physical meaning of
particular elements of the circuit and thus it might not
produce parameters that would make diffusion with a
smaller time constant than charge transfer, unless
“pushed” in right direction by assigning initial guesses.
Automatic initial guess finding with time constant order
assignment is implemented in MEISP (MEISP, 2002).

After optimization is performed, it is important to
verify that a fit reflects all features of the spectrum, for
example, no semicircle visible in the spectrum is
“ignored” by the fit line or two semicircles are not
described with just one by the fit. Other features such
as a 45� line or depressed semicircle that we will discuss
later should also be correctly represented. A plot of
residuals (differences between fit and actual data)
should look “randomly distributed” if fit is correctly
describing all features of the spectrum, and not have
biases such as systematic errors in either direction. This
is, unfortunately, an ideal not actually fully achieved in
most fitting of models to data sets. There is usually a
trade-off between model complexity and the degree of
reduction of systematic errors.

It is also important to verify that time constants for all
the processes have their expected position with respect
to each other, as discussed previously.

Discrete Elements

Many common electrochemical processes can be repre-
sented as discrete “equivalent” elements with analytical
solutions for their impedance versus frequency equa-
tions. Refer to Appendix I for a collection of frequently
used discrete elements. All equations are given for a unit
area of electrode surface except where noted otherwise,
so electric parameter units would be i¼A/cm2, R¼O
cm2, and C¼F/cm2.

Distributed Elements

Many electrochemical processes do not correspond to
simple elements such as resistors and capacitors
because they are described by differential equation
involving partial derivatives (e.g., diffusion or distribu-
tion of activation energies in the solid). However, they do
satisfy all the linearity conditions required to apply the
impedance spectroscopy approach, and impedance
equations canbederived for these processes by applying
the Laplace transform to the governing equations (see,
e.g., Barsukov and Macdonald, 2005, Chapter 2.1.3).

Such processes can be still used as elements of an
equivalent circuit along with resistors and capacitors,
since their impedance follows the same “additive” rule

6 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY



for serial connection. Some of these processes can be
represented by simple electrical circuits, but those of
more complex nature, such as diffusion, cannot be
represented with finite number of discrete elements
(although it can be represented as an infinitely repeated
chain-connected resistor or capacitor network, in elec-
tronics, known as a “transmission line”). They are com-
monly called “distributed” circuit elements. Appendix II
includes a collection of commonly used distributed ele-
ments. Some others are included for use as parts of
fitting models in the LEVM computer program and
are listed in its extensive manual (Macdonald and
Potter, 1987; Macdonald website, 2011).

Some Common Models for Fitting Impedance Spectroscopy
Data

Although nearly all impedance spectroscopy data sets
involve some constant phase element (CPE) power-law
behavior at low, high, or both frequency regions, such
data generally includemore than one dispersive process
and several time constants. Analysis and fitting models
more complex than a CPE function or a single transmis-
sion line are thus frequently required. Since Maxwell’s
equations show that it is impossible to distinguish
between displacement and conduction currents by elec-
trical measurements alone (Macdonald et al., 1999;
Macdonald, 2008), one must usually invoke other
knowledge about the system when attempting to choose
an appropriate model and apply it at either the imped-
ance or the dielectric immittance level. Therefore, when
models may be readily expressed in algebraic form, here
we shall express them in terms of a general I(o) immit-
tance function that can be applied at either level. The
result can thus describe either conductive-system or
dielectric-system relaxation/dispersion.

1. An iconic, widely used empirical model is the Hav-
riliac–Negami, which, along with its simplifica-
tions, is described, e.g., in Macdonald (2010). It
may be written as

IkðoÞ
Ikð0Þ

¼ 1

½1þ ðiotÞa�g ð12Þ

Here t is a characteristic relaxation time, and aand
g usually fall in the range from zero to unity. For
impedance response, the subscript symbol k¼0
and I0ð0Þ � Z 0ð0Þ � R0, while for dielectric-level
response k¼D; therefore, it is customary to write
IDðoÞ � eDðoÞ ¼ e‘ þ De=½1þ ðiotÞa�g, where
De � e0�e‘ and e‘ is the high-frequency-limiting
dielectric constant. The Havriliak–Negami model
thus potentially involves four or five free para-
meters.
Note that when the values of a and g are both

fixed at unity, Equation 11 reduces to single-time-
constant Debye response at either the impedance
or the dielectric permittivity level. Alternatively,
when g¼1, it reduces to Cole–Cole response,
widely used for analysis of liquid electrolyte data.

Unfortunately, the k¼0 responses of both the
general Havriliak–Negami model and that of the
Cole–Cole response do not reduce to a physically
correct low-frequency-limiting power law with an
exponent of two for the real part of the admittance
in this limit. This defect isnot present, however, for
the Davidson–Cole model defined for a¼1. Fur-
thermore, the Davidson–Cole model is less empir-
ical than the other two and may even be derived
from fractal considerations. Even though the Hav-
riliak–Negamimodel with its extra free parameters
may frequently be found to fit data better than the
Davidson–Cole model, the latter is more realistic
and should be preferred for both fitting and inter-
preting data, especially when an impedancemodel
is appropriate.

2. Althoughmanymodels are onlyavailable for fitting
in numerical form, an early physically plausible
model that can be expressed algebraically is the
Poisson–Nernst–Planck (PNP) effectivemedium for
ordinary diffusion of positive and negative mobile
charges of arbitrary mobility in the material of a
finite-length cell with fully blocking electrodes
(Macdonald, 1953; Macdonald and Franceschetti,
1978): its anomalous-diffusion version, the PNPA
(Macdonald, 2010; Macdonald et al., 2011), and
the partially blocking PNP/PNPA model (Macdo-
nald, 2011). For these models Poisson’s equation
is satisfied throughout. The fully blocking PNPA
expression (Macdonald et al., 2011) (Equation 6)
may be written for full or small charge dissocia-
tion as

Za ¼ R‘

ðiotÞg þ tanhðMqaÞ
Mqa

ðiotÞgð1þ iotÞ þ iot�ðiotÞg½ � tanhðMqaÞ
Mqa

whereR‘ � 1=G‘,G‘is the high–frequency-limiting
conductance, t � R‘C‘, C‘ is the high-frequency-
limiting bulk capacitance,M � L=2LD, the number
of Debye lengths in half the cell
length,qa ¼ ½1þ ðiotÞg�1=2, and 0 < g � 1. When
g ¼ 1, the result is PNP response that is found to
be closely equal to dielectric-level dipolar Debye
behavior when M � 1, even though the conduction
process here involves mobile charges (Macdo-
nald, 2010).When g < 1, however, the PNPAanom-
alous diffusion case, this model has been shown to
well fit experimental data sets of several disparate
ionically and electronically conducting materials
(Macdonald, 2011; Macdonald et al., 2011) and
involves CPE-like behavior at low frequencies. Fur-
thermore, in its LEVM instantiation (Macdonald
website, 2011) it includesarbitrarymobilities of the
two charge types, the possibility of their generation
recombination from neutral centers, and can
account for full or partial blocking of charges at the
electrodes, as well as possible specific adsorption
(Macdonald and Franceschetti, 1978). In addition,
it can lead to estimates of both the original
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neutral-center concentration as well as those of the
dissociated charges, particularly important for the
usual case in solid materials of small dissociation
(Macdonald, 2011).

3. Several interesting conductive-system imped-
ance-spectroscopy data analysis models, refer-
enced in the Macdonald website Guide
mentioned in the section “Applications of Imped-
ance Spectroscopy to Electrochemical Systems,”
are only available in numerical form for fitting
data. A particularly valuable one, instantiated in
the LEVM computer program, is the Kohlrausch
CK1 model, whose strengths and relevant refer-
ences are summarized in a section of the Macdo-
nald website. Its K1 part dates since 1973 and has
been derived from both macro and microscopic
analyses with the latter showing that it is a con-
tinuous-time, random-walk hopping model.

In the time domain, it has frequently been found, since
the work of Kohlrausch in the 19th century, that the
discharge current of a fully charged material containing
mobile charges decays as a stretched exponential of the
form fðtÞ / exp½�ðt=t0Þb with 0 < b � 1, stretched when
b < 1 In the stretched case, the one-sided Fourier trans-
formto the frequencydomainmustbecarriedoutnumer-
ically that directly leads to what has been called the K0
model, whose high-frequency capacitance approaches
zero, thus requiring the addition of a parallel capacitance
representing e‘ and leading to the CK0 model.

Interestingly, the K1 model, also derived from
stretched exponential temporal response and expressed
at the electricmodulus level (Macdonald, 2009), leads to
a constant capacitance in the high-frequency region,
wrongly identified in the earlier work as e‘ Thus, the full
fitting model must also include a parallel capacitance
and is termed the CK1. It has been found to well-fit
conductive-system data sets for many different materi-
als with a value of b very close to one third and indepen-
dent of the temperature and ionic concentration! In this
case, it is named the CUN, with UN standing for
“universal” (probably an exaggeration), and it then
involves only three free parameters. Nevertheless, when
fitting impedance spectroscopy data in either the time or
the frequency domain, it is important to fit with several
different models to find the most appropriate one.

Example of Impedance Spectrum Analysis for Bithiophene
Electropolymerization

This section gives an example of impedance spectra and
its analysis. Data used for this section were recorded
during electropolymerization of bithiophene resulting in
the formation of a thin electrically conductive polybithio-
phene layer. The test setup is the same as described in
the section “Sample Preparation.” A Nyquist plot of the
data is shown in Figure 4.

This data has been published earlier in Barsukov
(1996, Chapter 4.3, Fig. 32 (0.1 s)). However, the anal-
ysis given here uses a simplified model that focuses on
the most pronounced electrochemical processes.

The analysis of impedance spectroscopy mostly fol-
lows five steps.

1. Understanding the System: In this case, the
system includes twoprocesses. The first process is
due to a highly conductive polybithiophene film
deposited on the electrode surface. Polybithio-
phene undergoes an oxidation/reduction reaction
if the applied voltage is varied, with subsequent
diffusion of the counter-ions that compensate the
injected charge into the bulk of the film. Since
the film is thin (polymerization is at early stages),
the diffusion is limited by the thickness of the film.
Conductivity of the film is very high so its resis-
tance can be neglected.
The second process is a polymerization of bithio-

phene. It is limited by its charge-transfer resis-
tance. Bithiophene also diffuses from the bulk of
the electrolyte but due to the small electrode size
and excess of bithiophene monomer, this is not a
limiting step.

2. Devising a Model: Charge-transfer resistance
due to oxidation/reduction of the polymer would
be in serieswith the finite-length diffusion element
and both of these components would be in parallel
with the electrochemical double layer. Polymeri-
zation reaction is not limited by diffusion in the
polymer, andwill therefore appear as independent
charge-transfer resistance in parallel to all these
components. There is also a serial resistance that
is always present due to ohmic resistance of the
electrodes and wires as well as small portion of
electrolyte between the tip of the Luggin capillary
tube that connects reference electrode and the cell
and the working electrode. Such model can be
represented as an equivalent circuit in Figure 5.

Figure 4. Nyquist plot of impedance spectrum of a thin poly-
bithiophene film during electropolymerization of bithiophene.
Circles are raw data and the line is the model fit.
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3. Deriving the Impedance Equations for the
Model: The impedance equation for the model
in Figure 5 can be derived using the simple rule
that serially connected impedances add up and
parallelly connected admittances (an inverse of
impedance) add. This way we start with Rser that
gives us
Z(o)¼RserþZcir1, where Zcir1 includes every-

thing else, and o is the circular frequency, related
to the usual frequency f¼o/2p. Note that most
commercial impedance spectrometerswould store
usual frequency “f” unless specified, so you would
need to convert it to o to use the above equations.
Now we have three components that are in par-

allel in the remaining circuit: Rpol, Cdl, and Rct

serially to X1. First, let us calculate impedances
of these components. They are Rpol, 1/(Cdlio), and
Rct þ ZX1ðoÞ. Now to use the admittance addition
rule, we turn these values into admittances as
Y¼1/Z. This gives us 1/Rpol, Cdlio, and
1=½Rct þ ZX1ðoÞ�.
The admittance of the total circuit will be the

sum of parallel element admittances, for example,

Ycir1 ¼ 1

Rpol
þ Cdlioþ 1

½Rct þ ZX1ðoÞ�

Nowtoget the impedanceof thecircuit,weuseZ¼1/Y
to get

Zcir1 ¼ 1

f1=Rpol þ Cdlioþ 1=½Rct þ ZX1ðoÞ�g

Substituting it into equation for the total impedance
Z(o) we get

ZðoÞ ¼ Rser þ 1

f1=Rpol þ Cdlioþ 1=½Rct þ ZX1ðoÞ�g

Onemissing impedance function is ZX1ðoÞ—reflective
finite-length Warburg impedance. This impedance

function was first used in electrochemistry by Ho
et al. (1980), and it is described in more detail in
Appendix II, Equation 21. Substituting this function
into Equation 21 and substituting s¼ io we get

ZðoÞ¼Rserþ 1
1

Rpol
þCdlioþ 1

Rctþ
ffiffiffiffiffiffiffiffiffiffiffi
Rd

Cdio

r
cothð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RdCdioÞ
p

ð13Þ

4. Fitting the Data to Optimize theModel Para-
meters:
To simplify this example, we can use the trial
version of MEISP impedance analysis software
(MEISP, 2002) (which is a front-end to LEVM) to
fit this data by optimizing parameters Rser, Rpol,
Cdl, Rct, Rd, and Cd. It allows one to make a circuit,
as in Figure 5, using a built-in circuit editor and to
use a ready-made function for ZX1ðoÞ (reflective
finite-length Warburg impedance). Normally, you
wouldalsoneed to comeupwithan initial guess for
the values, but MEISP has a “pre-fit” option where
it finds initial guess values by roughly mapping
time constants of the analyzed circuit to that of a
series of RC elements.
Time-constant order has to be specified accord-

ing to the prior knowledge of the system. Rser is
always thehighest frequency (soorder0),whereas,
otherwise, the typically highest frequency RC ele-
ment corresponds to Rct and Cdl (so order 1). Then
come the polymerization reaction (order 2) and
diffusion components Rd and Cd involving lowest
frequency response (order 3).
The resulting fit curve is shown as a continuous

line in Figure 4 and the parameters and their
estimatedstandarddeviationsare given inTable1.
It is important to evaluate the fit accuracy and

parameter confidence levels. In this case, the fit is
visually good (more detailed analysis would
include looking at the distribution of residuals).
Rser was not determined with good confidence
because of its extremely low value (value 1 for
relative standard deviation means “singular
matrix”). Confidence intervals obtained for other
parameters are below0.2,whichmeans that phys-
ical processes are sufficiently prominently

ref Rser

Rct
X1

difopen

F

Cdl

gmd

Rpol

Figure 5. Equivalent circuit of polybithiophene/electrolyte sys-
tem in thepresenceof apolymerizationreaction.Here,Rser is the
serial resistance and Rct is the charge-transfer resistance of
polybithiophene redox reaction, X1 is a distributed element
representing limited length diffusionwith a blocking boundary,
Cdl is the double layer capacitance, and Rpol is the charge-
transfer resistance of the bithiophene polymerization reaction.

Table 1. Optimized Parameter Values and Relative Standard
Deviations Obtained During Fitting the Spectrum of Figure 4
with the Function in Equation 13

Parameter Value
Relative Standard

Deviation

Rser 3.1210e�004O 1
Rct 2.7379eþ003O 6.7e-03
Cdl 4.3673e�008F 2.5e-03
Rd 3.9333eþ002O 1.0e-01
Cd 6.7774e�006F 1.3e-02
Rpol 7.4008eþ003O 1.4e-02
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represented by this impedance spectrum. The
worst value here is for Rd (0.1); it is larger than
values for other parameters because of the small
value of Rd. By plotting the values of all resistive
components as in Figure 6, it can be seen thatRd is
much smaller than other values.

5. Using the Parameters to Find Physical Prop-
erties:
The relative reaction rates of redox reaction and
polymerizationmaybecomparedby just lookingat
the values of Rct and Rpol. Clearly, the polymeriza-
tion reactionhasasmaller rate constant since they
both take place on the same surface. To compare
with other experiments, charge-transfer resis-
tances are usually expressed in area-independent
form Rct¼Rct/S, where S is the electrode area. In
this case, it is known fromthediameterd¼0.5mm
of the platinum disc used as electrode (see Section
“Sample Preparation” for details). This gives us
S¼ pd2/4¼1.967e-07 m2 and relative charge-
transfer resistances of Rct¼1.39e010O/m2 and
Rpol¼3.769e010O/m2.
In this case, quantitative values of the rate con-

stant can also be found. The relationship between
the charge-transfer resistance and the rate con-
stant is given in Equation 19 in Appendix I. It
requires, however, some additional values not
usually available from impedance experiments,
such as the standard half-cell potential of the
oxidation reaction, E0, and the concentration of
the reduced and oxidized species ctot. E0 can be
foundusing cyclic voltammetrymethod (seearticle
CYCLIC VOLTAMMETRY).
The voltage effect of concentrationchange, dE/dc,

may be found fromCd, as given in the description of
the “reflective finite-length Warburg” element in
Appendix II, if the diffusion length “d” (in this case
thickness of the polymer layer) is known:

dE

dc
¼ FndS

Cd

Here n is number of electrons participating in reac-
tion, in this case 1.
From polymer density and amount of polymer

considerations, d has been estimated for this case
in Barsukov (1996) as 80nm.
On substituting the values ofCd andd, we get dE/

dc¼2.236e-04 V m3/mol.
ThediffusionconstantDcanbe foundfromRdand

Cd values, given a value of the diffusion length d, as

D ¼ d2

CdRd

On substituting the values from Table 1, we get

D ¼ 2:4e�012m2=s:

SAMPLE PREPARATION

While studying the electrochemistry of liquids, it is com-
mon to investigate the behavior of an electrochemical
reaction on just one of the electrodes by subtracting the
effect of other components of the cell. This is done by
comparing the potential at the “working” electrode under
test with the electrochemical potential of a passive
“reference” electrode close to its surfacewithapotentiom-
eterwithhigh-ohmicinput.Sinceonlynegligiblecurrentis
flowing between theworking and the reference electrodes
due to the voltage measurement, the impedance of the
reference electrode itself does not matter.

At the same time, the excitation signal is applied
between the “working” and the other much larger
“counter” electrode located in the bulk of the cell and
sized to minimize its impedance and to provide a homo-
geneous field around the working electrode. Since mea-
surements are made only between the reference and the
working electrode, the impedance of the “counter” elec-
trode, as well as that of the electrolyte between the
working and the counter electrodes, is also excluded.
Here, the electrolyte should be highly ionically conduc-
tive to avoid any local potential gradients, so typically a
salt that is passive in the potential window under inves-
tigation, such as LiClO4, is added to the solvent in large
amounts (typically, 1M or more).

An example of such a three-electrode cell is shown in
the Figure 7.

The working electrode used for investigation can be
made by inserting a platinum wire into a glass capil-
lary, melting the capillary so that the wire is imbedded
in the glass, cutting the left-over wire, and polishing
the glass/platinum composite perpendicular to the cut
until the platinum surface is coplanar with the flat
glass surface. The platinum disk is exposed to the
electrolyte and constitutes a mini electrode whose
diameter is precisely controlled by the diameter of the
original platinum wire. In the experiment described in
the section “Example of Impedance Spectrum Analysis
for Bithiophene Electropolymerization,” a 0.5-mm
diameter wire was used.

Figure 6. Relative contributions to total Re(Z) by different
processes.
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Thiscell issuitable formeasurementof the impedance
of theprocessesontheworkingelectrode.However, some
unusual considerations apply to a reference electrode to
be used for impedance measurement as compared to
traditionally used references. Because distortions in the
caseofACmeasurementcanbebothresistiveandcapac-
itive, it is important that theelectrode itself, aswell as the
Luggincapillary tubefilledwithelectrolyte,doesnothave
an impedance too large so that the impedance remains
less than that of the electrometer. This ismore difficult to
achieve for organic electrolytes, required for many sys-
tems commonly investigated. A good reference electrode
for impedance measurement in organic electrolyte is a
silverwire inasolutionof its ownsalt.Details ona typical
setup of electrochemical impedance measurement can
be found in Barsukov (1996).

PROBLEMS

Most problems are related to attempts that apply the
method to systems that donot completely satisfy some of
the impedance concept requirements, in particular, lin-
earity, steady state, and causality.

The linearity requirement would be violated if the
process in question cannot be described by an ordinary
differential equation. Inelectrochemistry, itwouldbe, for
example, a current/voltage relationship whose voltage
deviation ismuch larger than25mV. In this case, the full
Butler–Volmer equation (Equation 14) should be used to
describe the relationship rather than the linearized form
that is similar to Ohm’s law. The impedance concept no
longer applies to suchsystems. If youapply a single sine-
wave excitation andmakeanFFT from the response, you
will observe multiple additional frequencies instead of a

single-response frequency. Such “frequency splitting” is
a sign that some of the requirements of impedance spec-
troscopy are violated, although it requires a complex
additional analysis to find which one.

The simple approach is to try eliminating one of the
threepossible suspects and retest until frequency split-
ting disappears. For example, reducing the magnitude
of the excitation current can reduce voltage response to
below 25mV, thus eliminating nonlinearity. Making
sure that all chemical (e.g., change of state of charge)
or physical processes caused by temperature change
are completed prior to measurement by adding relax-
ation time can ensure the steady-state condition. Elim-
inating additional factors during the experiment can
assure the causality requirement. Note that for all of
this analysis, it is beneficial to have the ability to ana-
lyze the response signal in greater detail (FFT) than
many of the commercial FRA allow. The ability of mul-
tifrequency analysis could thus be one of the criteria in
choosing or designing an impedance measurement
apparatus.

Another common problem especially for low-fre-
quency impedance measurement is that the sine wave
might not be applied for sufficient intervals before the
measurement is done. First, sine-wave response
includes a transient component due to the load onset,
while sine-wave analysis assumes that sine waves were
applied long enough so that the initial transients are
completely dissipated. This effect also causes a multi-
frequency response that is seen as multiple frequencies
in the FFT spectrum. It can be simply fixed by adding at
least one period delay after the sine-wave onset before
the measurement, which unfortunately means a longer
test time (e.g., for 1 mHz measurement, you will need to
add 1000 s additional measurement time). Laplace
transform measurement does not suffer from this prob-
lembecausenoassumptionof absenceof transient effect
is made.

Amost commonproblem in impedanceanalysis is that
the same spectrum can fit perfectly with a variety of dif-
ferentequivalentcircuits.Forexample,seriallyconnected
parallel RC elements and parallelly connected R–C serial
chainswouldproducethesameimpedancespectrumifall
R and C values were optimized. Thismakes it clear that a
good fit of impedance spectrum by a particular circuit (or
equation) does not prove that this circuit or equation is a
good representation of the physical processes in the sys-
tem. If amodel isnotphysically relevant,agoodfitwill still
produce completely meaningless parameter values. For
this reason, it is critical to follow the steps from physical
understanding of the system to model creation and only
then followed by fitting the data, as exemplified in the
section “Example of Impedance Spectrum Analysis for
Bithiophene Electropolymerization.”
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free newest WINDOWS version, LEVMW, of the comprehen-

sive LEVM fitting and inversion program. The program

includes an extensive manual and executable and full

source code. Commercial programs derived from this open

code include ZView and MEISP. All of the J. R. Macdonald

papers cited herein are available in PDF format for down-

loading from the above link. Their numbers in the temporally

ordered list in the website are shown as {xx} in the present

citation list.

APPENDIX I: COMMONLY USED DISCRETE ELEMENTS

1. Current due to activated electron transfer when
diffusion limitations are negligible.

(a) Governing Equation (Butler–Volmer):

I ¼ Si0

�
e

ð1�aÞnF
RT

ðE�EeqÞ�e

�anF
RT

ðE�EeqÞ� ð14Þ
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Here and below, “R” in thermodynamical equa-
tions, such as Equation 14, where it is multiplied
by temperature T, denotes gas constant,
8.3144621 J/K/mol, and “F” denotes Faraday
constant 96,485.3365C/mol. In all “electrical”
equations, R and F denote resistance (Ohm) and
capacitance (Farad), respectively.

(b) Electrochemical Parameters:
If n¼number of electrons,
a (usually around 0.5)¼ transfer coefficient,
E¼present potential at the electrode surface, and
S¼ surface area, then i0 exchange current is
given as

i0 ¼ nFk0coxe

�anF
RT

ðEeq�E0Þ
� �

ð15Þ

where k0 is the rate constant of the redox reaction.

(c) Small Voltage Equivalent Equation: I¼
DE/Rct (Ohm’s law).
DE¼E�Eeq is overpotential and is the difference
between the present and equilibrium potentials.

(d) Equivalent Electric Element:
Charge-transfer resistance is given as

Rct ¼ RT

nFi0
ð16Þ

It can also be expressed through concentration
and rate constant by substituting the equation
of exchange current i0 given in Equation 15 as

Rct ¼
RTe

�FanðE0�EeqÞ
RT

F2k0n2cox
ð17Þ

Here cox is the concentration of oxidized species,k0

is the rate constant of the redox reaction, and E0 is
the standard half-cell oxidation potential.
The ratio between concentrations of oxidized

and reduced forms of active species, cox and cred,
depends on the equilibrium potential Eeq as
defined by Nernst equation:

Eeq ¼ E0 þ RT

nF
ln

cox
cred

� �
ð18Þ

Sinceboth coxandEeq inEquation17dependonthe
amount of chargepassed through the electrochem-
ical system before equilibrium was reached, they
are both “state variables.” To make just one state
variable, cox inEquation17canbeexpressedbyEeq

and ctot (the sum of cox and cred) using the Nernst
equation. Since the sum of the concentrations ctot
remains constant and is a permanent systemprop-
erty,we are then left with just one state variableEeq

defining Rct shown in Equation 19.

Rct ¼
RTe

Fnða�1Þ E0�Eeq

� �
RT

�
e
�
Fn E0�Eeq

� �
RT þ 1

�

CtotF
2n2k0

ð19Þ

2. Double-layer capacitance.

(a) Governing Equation:

I ¼ CdldE=dt ð20Þ

(b) Small-Voltage Approximation:
Same.

3. Reaction of monolayer of active species adsorbed
at smooth surface.

(a) Governing Equation:

i ¼ dE

dt

Fn

dE=dc
ð21Þ

Here, dE is the voltage deviation from steady-state
voltage and dc is the surface concentration devia-
tion from the equilibrium value.
dE/dc can be further determined if a process is

exactly described by the Nernst equation (typi-
cally, for diluted solutions and low coverage levels
of adsorbed species) as

dE

dc
¼ RT

Fnctot

e

nFðEeq�E0Þ
RT

e

nFðEeq�E0Þ
RT þ 1

2
4

3
5
2

ð22Þ

Note that in cases of higher concentrations,
Frumkin isotherm has to be used instead of
Nernst equation. See Conway (1999) for detailed
treatment of pseudocapacitance for various
systems.

(b) Electrochemical Parameters:
E0¼ equilibrium potential of redox reaction,
E¼applied electrochemical potential, and
ctot¼ coxþ cred is the bulk concentration of active
species (sum of oxidized and reduced-form
concentrations).

(c) Small-Voltage Equivalent:

I ¼ Cps �dE=dt ð23Þ

(d) Equivalent Electric Element:
Pseudocapacitance of redox reaction of an active
species adsorbed on the surface of an electrode in
F/cm2

Cps ¼ Fn

dE=dc

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY 13



In the case of Nernstian redox reactions, dE/dc
can be substituted from Equation 22 as

Cps ¼
2F2n2 cosh

FnðEeq�E0Þ
RT

� �
þ 1

� �
ctot

RT
ð24Þ

APPENDIX II: COMMONLY USED DISTRIBUTED ELEMENTS

1. Reaction of Mobile Active Species Distrib-
uted in Infinite Layer:
Linear diffusion from a medium whose length can
be approximated as infinite results in an imped-
ance analogous to that of an infinite length trans-
mission line composed of capacitors and resistors

Z ðsÞ ¼ dE

dc

1

nF
ffiffiffiffiffiffiffi
sD

p ð25Þ

Here D is the diffusion coefficient of the reaction
rate-limiting mobile species in the medium.
Governing equation in the Laplace domain: (infi-

nite-length Warburg impedance)

IðsÞ ¼ EðsÞ=ZðsÞ ð26Þ

dE/dc can be further determined for Nernstian
reactions as in Equation 22.
. Typical shape in complex presentation is shown
in Figure 8.

. Impedance function in terms of electric para-
meters:

ZðsÞ ¼
ffiffiffiffiffiffiffiffiffi
Rd

sCd

r
ð27Þ

. Schematic presentation of the circuit illustrated
in Figure 9.

. Fit parameters.
Cd in F/cm
Rd inO/cm

. Conversion into electrochemical parameters.
Here S is the geometric electrode area in cm2,
n is the number of electrons participating in the
reaction, and c is the volume concentration in
mol/cm3.

dE

dc
¼ FnS

Cd

dE/dc in V cm3

D in s�1 cm2

D ¼ 1

CdRd

2. Finite Length Diffusion for a System with a
Reflective Boundary (Reflective Finite War-
burg Impedance):
In the case of a reaction of a mobile active species
distributed ina layer of finite length, terminatedby
an impermeable boundary, the impedance is anal-
ogous to that of an open–circuit-terminated trans-
mission line. For thin homogenous layers of
intercalation materials, this type of impedance
was observed by Ho et al. (1980).

. Typical shape in complex presentation is shown
in Figure 10.

. Impedance function in terms of electric para-
meters

Z ðsÞ ¼
ffiffiffiffiffiffiffiffiffi
Rd

Cds

r
cothð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RdCds

p
Þ ð28Þ

. Schematic presentation of the circuit is shown in
Figure 11.

. Fit parameters.
Cd in F
Rd inO

. Conversion into electrochemical parameters.
HereS is the geometric electrode area in cm2,n

is the number of electrons participating in the

0

0
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2 4 6 8

Re(Z )/Ω

–I
m

(Z
)/Ω

Figure 8. Impedance spectrumof diffusionwith infinite bound-
ary condition,Rd¼1O/cm,Cd¼1 F/cm, from10kHz to 1mHz.

ref Rd Rd

CdCd Cd

N = inf

Rd

gmd

Figure 9. Equivalent circuit of an infinite boundary transmis-
sion line.
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reaction, and c is the volume concentration in
mol/cm3.

dE

dc
¼ FnS

Cd

dE/dc in V cm3

D in s�1 cm2

D ¼ 1

CdRd

3. Finite Length Diffusion with a Conducting
Boundary (Transmissive Finite Warburg
Impedance):
In the case of a reaction of a mobile active
species distributed in a layer with finite length,
terminated by a permeable boundary, the imped-
ance is analogous to that of open–circuit-
terminated transmission line. This case is realized
if the species diffuses through a semipermeable
membrane before reaching the electrode inter-
face, or in the case of impedance measurements
with a rotating disc electrode, where diffusion
length is constant and determined by the rota-
tion speed.

. Typical shape in complex presentation is shown
in Figure 12.

. Impedance function in terms of electric para-
meters

ZðsÞ ¼
ffiffiffiffiffiffiffiffiffi
Rd

Cds

r
cothð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RdCds

p
Þ ð29Þ

. Schematic presentation of the circuit is shown in
Figure 13.

. Fit parameters.
Cd in F
Rd inO

. Conversion into electrochemical parameters.
HereS is the geometric electrode area in cm2,n

is the number of electrons participating in the
reaction, and c is the volume concentration in
mol/cm3.

dE

dc
¼ FnS

Cd

dE/dc in V cm3

D in s�1 cm2

D ¼ 1

CdRd

ref

Cd Cd Cd Cd

N = inf

Rd Rd Rd Rd Rd

gmd

Figure 11. Equivalent circuit of open–circuit-terminated trans-
mission line.
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Figure 10. Nyquist plot of an impedance spectrum of open–
circuit-terminated transmission line,Rd¼1O,Cd¼300 F, from
10kHz to 1 mHz.
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Figure 12. Nyquist plot of an impedance spectrum of finite
length diffusion with conductive boundary, Rd¼1O,
Cd¼10 F, from 10kHz to 1 mHz.
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Figure13. Equivalentcircuit ofafinite-length transmission line
with short-circuit termination.
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4. CPE:
Impedance dependence on frequency that is
described by the CPE occurs, for example, in
many cases of inhomogeneous porous layers
and in solid-state conductors. This endemic

response function is described below (Macdo-
nald, 1984).
No physical process can result in ideal CPE

frequency dependence over the entire range from
zero to infinite frequency (except for special
values of f such as 0 or 1), although its spec-
trum is compatible with the Kramer–Kronig
transformations (Macdonald and Brachman,
1956). However, in a restricted frequency region,
CPE response can be strictly valid. The use of a
CPE for analysis is recommended only if there is
no way to obtain a more physically relevant
model of the process because its f exponent
does not usually have a physical meaning. Luck-
ily, however, physically plausible analysis mod-
els that include CPE-like behavior over restricted
frequency ranges exist and some are discussed
in the following section.

. Typical shape in complex presentation.

. Impedance function.

ZðsÞ ¼ 1

Csf
ð30Þ

. Electrochemical parameters conversion.
No direct conversion is possible. In the case

where f>0.5, the meaning of C is near to that of
a capacitor, while if f<0.5, it is nearer to a
resistor. For f¼�1, C is an inductance.

Figure 14. Nyquist plot of a CPE element, R¼1O, C¼1 F,
f¼0.4 . . . 1.
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