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A one-dimensional treatment is presented of space-charge effects in materials having two charge-blocking
electrodes. Especial attention is given to the situation where univalent, mobile charge carriers of only one
sign can recombine bimolecularly with fixed charges of opposite sign; however, the case where noncombining
charges of both signs are mobile is also included. Space-charge potential distributions and differential
capacitance cannot be obtained explicitly in the general case but have been accurately calculated using a
digital computer. Potential vs distance and capacitance curves are presented which illustrate dependence on
applied potential, separation of electrodes, and recombination ratio. The results show features often ob-
served experimentally for a wide variety of materials such as photoconductors, semiconductors, and insula-
tors. The treatment is applicable for much higher applied potentials than is the case for the previously
considered one blocking electrode situation with charge accumulation at the blocking electrode.

INTRODUCTION

N a previous paper,! a discussion has been given of
static (equilibrium) space-charge effects arising
in a charge-containing material with one charge block-
ing and one ohmic electrode. It was assumed there
that charge of only one sign was mobile but that bi-
molecular recombination with fixed charge of opposite
sign was possible. The results obtained from a one-
dimensional treatment were found for appreciable
recombination to apply also to the simpler case of
noncombining charges of both signs mobile? In the
present work, similar assumptions are made except
that the material in which space-charge polarization
occurs has two blocking electrodes. This case is im-
portant because, while it is always possible to make
electrodes which are at least approximately blocking
over a given range of applied potential, it may be con-
siderably more difficult or impossible to ensure ohmic
behavior between a metallic contact and a high-energy-
gap material such as a phosphor or photoconductor.
The two-blocking electrode case differs from that
with a single-blocking electrode in two major ways.
First, the separation of electrodes is taken to be finite
in the former and infinite in the latter case. Finite
length means that effects at one electrode may interact
with those at the other; thus, the physical separation
of the electrodes becomes an important parameter of
the problem. Second, the presence of two blocking
electrodes requires that all transient charging or dis-
charging of the system occur entirely by means of dis-
placement rather than conduction current. Therefore,
the over-all system will always be electrically neutral.

* Presented in part at the Washington, D. C., meeting of the
American Physical Society, May 3, 1958 [J. R. Macdonald, Bull.
Am. Phys. Soc. Ser. II, 3, 218 (1958)], and at the Congrés
International sur la Physique de 'Etat Solide et ses Applications
a I'Electronique et aux Télécommunications, Brussels (June 6,
1958).

1 J. R. Macdonald, J. Chem. Phys. 29, 1346 (1958).

2 ]. R. Macdonald and M. K. Brachman, J. Chem. Phys. 22,
1314 (1954).

Such neutrality, which is not maintained when only
one electrode is blocking, leads to much lower fields
and charge concentrations than those that appear for
the same applied potential difference in the one-
blocking electrode case. This result means that the
two-electrode solution will generally apply up to much
higher applied potentials than will the one-electrode
solution. For sufficiently high potentials, dielectric
breakdown or high field emission will finally occur
at one of the electrodes, often leading to scintillations
there, and the electrode will no longer be blocking.

The case of both electrodes blocking and mobile,
nonrecombining charges of both signs has been solved
explicitly by Jaffé®** but the result is difficult to use.
This solution is formally included as a special case of
the present work but here, as in the one-blocking
electrode case, final integrations cannot be carried out
in closed form except in limiting cases and the integra-
tions have therefore been done herein using a digital
computer.

Experimental situations where space-charge distribu-
tions of the type considered in this paper have been
measured or are expected to be present are discussed
in references 5 to 13 of the preceding paper.! In addi-
tion, the work of Gemant, Thiessen, Winkel, and
Herrmann,® Kallmann and Rosenberg,” and Kallmann,
Kramer, and Mark® is pertinent. Finally, it is worth
mentioning that the capacitance variation with applied
potential expected in a system with one or two blocking
electrodes may be useful in capacitative reactance
amplifiers’ where large nonlinearity is desirable. In
particular, below a limiting frequency determined by
recombination time and dimensions, such systems
should show a differential capacitance which depends
exponentially on bias potential over a considerable

8 G. Jaffé, Ann. Physik 16, 217 (1933).

4J. R. Macdonald, J. Chem. Phys. 22, 1329 (1954).

5 A. Gemant, Phil. Mag. 20, 929 (1935).

¢ Thiessen, Winkel, and Herrmann, Physik. Z. 37, 511 (1936).
7 H. Kallmann and B. Rosenberg, Phys. Rev. 97, 1596 (1955).
8 Kallmann, Kramer, and Mark, Phys. Rev. 109, 721 (1958).
9 A. Uhlir, Jr., Proc. Inst. Radio Engrs. 46, 1099 (1958).
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range of potential without at the same time having
appreciable resistive losses.

FORMAL RESULTS

In the preceding paper, the differential equations
defining space-charge distributions were solved for a
general, zero-current, boundary condition and the
result was then specialized to the one-blocking elec-
trode, infinite-length case. The general solution for
electric field dependence on mobile charge concentra-
tion may now be specialized for the present situation of
mobile charge-containing material between two block-
ing electrodes. First, however, the pertinent normalized
variables used will be summarized. Let

LD1= [ekT/41re2N]* LD2: LDl/\/Q
L.=0Lp, 0=[n*o(2—n*,) I
n*o=—(1/2R)+[(1/2R)*+(1/R) }

R=hN/bi  w*=n/N  p*=p/N=[1+Rn*T"
z=x/LD1 x*=x/Le
L=1/Lo, L*=1/L=6-L

y*=y/(kT/e)

In the foregoing equations N is the initial homogeneous
concentration of fixed neutral centers before any
dissociation into mobile charges and fixed charges has
occurred; Lp, is the minimum Debye length, which is
applicable for complete dissociation; Lp, is the mini-
mum Debye length when charges of both sign are
mobile; and L, is the effective Debye length (ab-
breviated EDL) applicable for incomplete dissociation
in the one-mobile case. The separation between elec-
trodes is I. The quantity #*,, is the normalized common
equilibrium value of positive and negative charge
concentrations at a position where there is no space
charge. The recombination ratio R involves the re-
combination constant 4, and a dissociation constant k.
It will be assumed that only negative charges of con-
centration # are mobile. Note that z and L are inde-
pendent of R but that #* and L* are the distance from
the left electrode and the length between the electrodes
measured in terms of numbers of EDL’s, which depend
on R through 6 and »n*,.
From the one-electrode case, we have

E*=A+20[n*+In{ (14 Ru*) /u*} ], (1)

E*=E/(kT/eL,).

and
(1/n%) (dn*/dx*) = — E*= (dy*/dx*). (2)

If Eq. 2 is integrated under the condition that n*=n*_
at some potential ¢*4, one obtains

n*=n*_ exp(Y*—y*y) =n*, exp(¢*), (3)

where ¢*=y*—¢y*; is a new normalized potential
variable. This is a reasonable boundary condition

since an applied static field will tend to accumulate
mobile charge near one electrode and deplete or exhaust
it in the region of the other electrode. Thus, there
must be some dividing position, say x*;, between the
electrodes where the equilibrium values of the positive
and negative charge concentrations are undisturbed
by the field. It is convenient to take this position as the
zero of the variable ¢* so that at the left positive
electrode ¢*=o¢*=y¢*—y¢*; and ¢*=¢*,=—y*; at the
right negative electrode. Here ¢*; is the total applied
inner potential, including any surface and contact
potential contributions. We shall always take ¢*, and
the left electrode positive and ¢* will thus be zero at
the right electrode, the cathode.

On using (1), (3), and n*,= (1+ Rr*_)"!, one can
obtain

E*(¢*) = £V20(cotn*, [exp(¢*) —1]
+ In{i+n*, [exp(—¢*)—11})}, (4)

where the sign of E* is selected such that the field is
directed from positive to negative charges. It will
always be positive for the present case of y*, and the
left electrode positive. The quantity ¢, in (4) is an
integration constant related to the constant 4 by
A=20%(co—n* o+ Inn* ?). In the infinite-length, one-
blocking electrode case, E* is zero for ¢*=0 at x*= o,
Since n*= p*=n*_ at this point, $*; is identically zero
and ¢*=y*. Thus, ¢, must be zero as well in this case;
then (4) reduces to the expression found in the one-
blocking electrode case. Therefore, the nonzero mag-
nitude of ¢, in the present two-electrode case will be a
sensitive function of the actual normalized length L*,
whereas this would not have been the case had the
constant 4 been used instead of c,.

The guantity ¥*; can be obtained from the condition
of over-all charge neutrality in the two-electrode case.
On integrating Poisson’s equation from one electrode
to the other, one obtains

E*o

L%
fo (dE*/dx*)dx*= | dF*=E*—E*=0, (5)
*1

B
where the fields at the electrodes are E*y= E*(y*—
v*o) and E*= E*(—y¢*;). The equality of these fields,
as shown by (5), is the main reason for appreciable
differences between the one- and two-electrode cases.
The substitution of (4) into (5) and the elimination
of ¢ yields the following transcendental equation for

IP*d)

ln{ 14+-[exp(¥*s) /Rn*o] }
Sraegtetn| I lexpl = 0oy JRn] ] |
e n*o[1—exp(—y*%)]
(6)
For R=0 the explicit result
¥ra=y*—In{y*/[1—exp(—¢*) 1} (6"
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is obtained. Equation (6) can also be simplified in
other limiting cases. It follows from (6) that as R—w
for fixed ¥ or as ¢¥—0, ¢*; approaches ¥*/2. A
digital computer program has been written® to solve
Eq. (6) or its simplified versions accurately by the
Newton-Raphson iterative method for any value of R
between 0 and 101,

The aforementioned results show that y¥*>¢*;>
Y*/2. Thus (¥*—y¢*;) must lie between zero and
Y*/2. By using (3), the minimum and maximum
mobile charge concentrations are n*;=n*_ exp(—y¢*;)
and n¥*=n*_ exp(Y*o—y*s). When ¢*;=0, as in the
one-blocking electrode case, we have seen previously
that #* reaches very large values for relatively small
applied potentials. This is not the case when there are
two blocking electrodes. For R=0, (6’) shows that
n*=y*/[1—exp(—y*) ], which cannot appreciably
exceed y*. For R>0, the maximum value of »#%; is
approximately 7%, w2 *s—InRu*, which is always
less than ¢*;,. In addition, the maximum field E*;(¢*)
is a function of (Y*y—y¢*s) as is n*; and will not increase
with applied potential as fast as in the one-blocking
electrode case. The present difference arises from the
condition of over-all charge neutrality and means
that quite high applied potentials such as are often
employed experimentally are required before breakdown
occurs at an electrode or before the treatment ceases
to apply because of one or more of the reasons discussed
in the preceding paper.! The electric field in the ma-
terial varies from equal maximum values at the two
electrodes to a minimum value at x*=x%; given from
(4) by E*(0)=E*;=8(2¢co)*.

Next, integration of dy*/dx*=d¢*/dx*= — E* yields
the results

é*o

wo= [ Tae/ B2 | ™
o*
d¥o

Lo= [ Tagr/ E9%) | ] ®)
*1

where E*(¢*) is given by (4). These equations, the
implicit solutions to the static space-charge distribu-
tion problem, can only be integrated explicitly in
special cases; therefore several digital computer pro-
grams have been written to carry out the necessary
operations to high accuracy.® First, (8) is used to
obtain by successive approximations the ¢ corre-
sponding to desired values of L* ¢%, R, and ¢*.
Since ¢, is often an exponential function of L* and can
vary over many orders of magnitude for moderate
changes in L* calculation of ¢ to sufficient accuracy
to make the resulting L* within one or less percent of
the desired value is a lengthy and complicated process.
Next, the value of ¢ is used in (7) to yield x versus

10 Copies of this and the other IBM 650 computer programs
developed for the present problem are available to any who need
and can use them.
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o*, n* p* and E* Equality between E* and E*
is generally obtained to five or more significant figures
and is a test of the accuracy of ¢*; determination.
When ¢, is taken zero, the same program may be used
for the one-blocking electrode case.

When #n*, [exp(—¢*) —1]<1, Eq. (7) may be
reduced to

a¥= /; o{d¢*/EE*d2+4 sinh*(¢*/2) #,  (9)

which may be integrated in terms of Jacobian elliptic
functions.®1'12 Not only is the result rather compli-
cated but the necessary functions are not well tabu-
lated in the ranges of most interest. Equation (9)
also represents the solution of the space-charge dis-
tribution problem when charges of both signs are
mobile and there is no recombination.? In the present
case, reduction to this situation occurs formally when
R is sufficiently large that the fixed charges are every-
where mobilized by recombination. Equation (7) may
be integrated directly to give other approximate solu-
tions, as was done in the one-blocking electrode case.
The same result is obtained for the case exp{¢*)>
(14¢) as was there obtained for exp(¢¥*)>>1 since
¢o will then be negligible. When ¢* is large and nega-
tive, the approximate exhaustion-depletion relation
previously obtained for the one-blocking electrode
case need only be modified for the present case by the
transformations ¢*—*—y*s, ¥*—¢*, and the addi-
tion of ¢y inside each square root.

The maximum value of ¢, is obtained when it en-
tirely dominates E*(¢*). From (8) one finds

€0 max= % (¢*O/0L*) 2=%(¢*0/L) 2'

When | ¢* | <1, the sinh in (9) may be replaced by the
first term of its series expansion and the integration
carried out. The result is

x*=sinh—1(p*,/ E*s) —sinh—1(¢*/ E*,).

(10)

(11)

When ¢*=¢*;, x*=L* and (11) becomes a trans-
cendental equation determining ¢, in terms of L*,
¥*, ¥*4, and R. When ¢ is known, (11) may be used
to obtain ¢* as a function of x* by selecting values of
¢* and calculating the corresponding values of x*,
For ¢*o>E*;, (11) gives an initial exponential drop
off of ¢* with x*. Since x*,2<L*/2 and ¢*=¢*)/2 in
the present case, for ¢*=0 (11) leads to

¢*02 L*2 °€0 max

‘S gg sinh?(L*/2) 4 sinh?(L*/2)’

(12)

which reduces t0 ¢y max When L*<K2. Several additional
approximate expressions for ¢p in various limiting cases

1 R. C. Prim, Bell System Tech. J. 32, 665 (1953).

2P, F. Byrd and M. D. Friedman, Handbook of Elliptic In-
tegrals for Engineers and Physicists (Lange, Maxwell & Springer,
Ltd., London, 1954), p. 182.
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have been derived and a number of curves of ¢y de-
pendence on L*, R, and y¢* calculated but lack of
space prohibits their inclusion.

DISCUSSION OF SPACE-CHARGE POTENTIAL CURVES

In the case of a single blocking electrode, the po-
tential distribution curves show either charge ac-
cumulation or exhaustion-depletion regions depending
upon whether the mobile charge builds up at or is
withdrawn from the region of the blocking electrode
by the lapplied potential and the resulting internal
field. The two-blocking electrode potential distribution
curves, on the other hand, generally show both an
accumulation region near one electrode and an ex-
haustion-depletion region near the other. One region
cannot occur without the other because of the over-all
space-charge neutrality of a system in which mobile
charge can neither enter nor leave the material at the
electrodes. As noted in the last section, such neutrality
also leads to much lower internal fields and maximum
charge concentrations for a given applied potential
in the present case as compared to the one-blocking
electrode situation.

When both electrodes are blocking, the potential

(x/2)
i}

curves depend on an additional variable, the normalized
separation between the electrodes, L¥, which does not
enter in the one-blocking electrode case. Since the
curves depend on ¢*, R, and L* and arise from a
nonlinear differential equation, they may take on a
wide variety of forms, only a fraction of which can be
illustrated within the scope of the present paper.
Further, it is worth mentioning that if the blocking
condition is partly or wholly relaxed at one but not
both of the two electrodes, space-charge neutrality is
no longer maintained and the potential distribution
near the entirely blocking electrode will approximate
the one-blocking electrode, infinite-length case, with
the only difference arising from the finite length.
Figures 1 through 5 show some accurately calculated
potential distribution curves. In these graphs % and
the left electrode are always taken positive and the
right electrode, the cathode, is taken to be at zero
potential. Thus, accumulation regions will always
appear on the left side of x*; (denoted by the small
vertical line on the curves) and exhaustion-depletion
regions on the right. The normalized abscissa, «/1, is
also equal to /L and x*/L*. Note that the two parts
of Fig. 1 are plotted for equal L* values but different

Q.8

F1e. 2. Dependence of relative
potential on relative position be-
tween electrodes for ¥o¥=10, L oah
and L*=10, and various R values.
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R values; on the other hand, in Figs. 2 through 35,
¥o* values are the same for both parts of each figure,
R is used as a curve parameter, and the left and
right groups are for L and L* held constant, respec-
tively., Thus, the left-hand curves correspond to the
usual experimental case where the physical length is
held constant and R is varied, for example, through
changes in %; arising from optical activation. The

boxes in Figs. 2-5 show the values of L* and L per-
tinent to the various curves; the present means of
presentation allows a considerable range of these
parameters to be covered as well as separating out the
effects of R and length variations on curve shape.
Little detailed discussion of the various curve shapes
is required since they may usually be interpreted in
terms of combinations of accumulation and exhaustion-
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Fi16. 6. Experimental potential distributions obtained during polarization build-up by Joffe® for (a) quartz, (b) calcite.

depletion curves of varying lengths. It will be noted
that for sufficiently high applied potentials with R
and L* (and L) fixed or for sufficiently large R with
Y* and L fixed the curves approach linear dependence
and ¢y—¢y max. Under these circumstances, the internal
field everywhere approaches Egm.:, the geometrical
field, and the quantity E*;/ E*; shown in the boxes of
Fig. 1 is a measure of such approach to constant in-
ternal field. This ratio tends toward unity when space
charge becomes negligible. In both of the cases which
lead to linear distributions, conditions are such that
space charge is indeed negligible almost everywhere
between the electrodes. Linear dependence for fixed
Y% and L* is not reached for large R even though the
charge density in the material may become excep-
tionally small because L becomes large as R increases
in this case, and there is thus always room between the
electrodes for the applied potential to cause some
separation of charge.

Figure 5(a) is worth explicit mention because it
shows that a nonlinear distribution may persist even
when the number of EDL’s between the electrodes
becomes much less than one. The curves for 101<
R<10°% are made up of a nearly linear portion and a
final rapid dropoff. The linear portion arises because
there is no room in the actual length for an accumula-
tion layer since L* is less than unity. On the other hand
L is large and there is room for an exhaustion layer
whose width, 2z, is less than L in the present case.
This exhaustion layer accounts for the final dropoff
and disappears when exp(y*;) <Rwn*,. It is present
even when L*<«1 because its width in terms of the z
rather than the x* distance variable is pertinent here.
For a value of L greater than z,, an exhaustion layer
can occur if R is not too great no matter what the
value of L* since L* depends on the mobile charge

equilibrium concentration and this is immaterial in an
exhaustion layer where there is no mobile charge.

Figure 6(a) and 6(b) show some experimental
potential curves of Joffe!® for heated quartz and
calcite, respectively. The linear curves were observed
immediately on applying the external potential while
the others were measured later as polarization slowly
built up. Although measurements were made at only a
few positions between the electrodes in obtaining these
curves and the electrodes were apparently not com-
pletely blocking (but approximate over-all neutrality
was probably maintained), the curves show con-
siderable similarity to some of the present theoretical
results. Such similarity is particularly noticeable on
comparing Figs. 4(a) and 6(a) and 5(a) and 6(b).
It is noteworthy that Joffe explained some of his
results qualitatively on the basis of recombination
between mobile and fixed charges. Cohen* has ob-
served rather similar potential distributions for fused
quartz. Further, Kallman and Freeman have inferred
that polarization of the present type is present in
photoconducting phosphors,”® and Griinicher!® and
Steinmann'®" have observed space-charge effects in
impure ice which probably would lead, after the
application of a steady potential to the material, to
static space-charge distributions like those presented
here. Finally, space-charge potential and charge
distributions consistent with the present results are
discussed in a number of the references given in the
preceding paper.!

B A. F. Joffe, The Physics of Crystals
Company, New York, 1928).

147, Cohen, J. Appl. Phys. 28, 795 (1957).

15 H. Kallmann and J. R. Freeman, Phys. Rev. 109, 1506 (1958).

6 A. Steinemann and H. Grénicher, Helv. Phys. Acta 30, 553
(1957).

7 A. Steinemann, Helv. Phys. Acta 30, 581 (1957).

(McGraw-Hill Book
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CHARGE AND CAPACITANCE

It is often difficult to measure static space-charge
potential distributions accurately because of high
impedance levels, possible small dimensions of space-
charge regions, and possible surface effects. In such
cases, direct measurement of the static or differential
capacitance of the system as a function of an applied
static bias potential can yield useful information on
space charge and yet avoid difficult potential probing.
It should be noted that differential capacitance meas-
urements of this type should be made with an ac signal
amplitude much smaller than the applied static po-
tential and at frequencies sufficiently low that recom-
bination and motional dispersion effects'® do not ap-
pear.

In the present finite-length case, the geometrical
capacitance must be considered as well as the space-
charge capacitance which alone was sufficient in the
infinite-length case. In the absence of free charges, the
geometrical capacitance (per unit area) may be
written

Co=(¢/4ml) = (¢/4mL.) - (1/L%). (13)

Because of the nonlinearity inherent in the space-charge
case, it will be shown later that (13) will only be
directly applicable there in certain limiting situations.
A number of integrated or total charges are of
interest in the two-blocking electrode case. Let

bi b*i
Oume[ nx)de=eLN [ wrat)art,  (19)

i b*i
Q,,‘:efli p(x)dx=eLN| p*(a*)dx*.  (15)

Now take a* =0, b¥=x%;, and a*=x%;, b%=L*
The quantities Qn, and Qn, will be the total negative
charge per unit electrode area (the unit area qualifica-
tion will be subsequently dropped for simplicity) in
the left accumulation region and the total negative
charge in the right exhaustion region. Q,, and Q,
are the similar positive charges.
Now let

0n= O+ O
0p=0nt 0,
01=0m— 0O,
Q2= 0n—Cna-

Q. and Q, are the total negative and positive charge
magnitudes in the system; from over-all charge neu-
trality, they must be equal. Similarly, Qi and Q; are
the excess (negative) space-charge magnitude on the
accurnulation side and the excess (positive) space-

(16)

18 T, R. Macdonald, Phys. Rev. 92, 4 (1953).
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charge magnitude on the exhaustion side, respectively.
These quantities must also be equal. Note, however,
that @ and Q, are not equal in general.

After some manipulation, we may write

vro—yY*a %k X * *
Q= (kT/0) (@/4x L) | ﬁ%ﬁ%‘ﬁ%“i, (17)
O
— 2 ° dd)*
=G0 @t [ e T
(18)

and similar expressions for @, and Q. Q1 may be
expressed as

*o—y*q

¥
0= (#7/0) (/4L [
X[(—dE*) /6°dx*][de*/| E*(¢*) | ]
— (BT/e) (¢/4rLy) f i*udE*

= (kT/e) (¢/4r L) E*— E*;], (19)

where absolute value signs have been omitted since the
E¥s will always be positive. This quantity is the total
charge magnitude on either electrode arising from fixed
and mobile space charge between x*=0 and x*=2x%;
or between x*=x*; and x*= L*, but it does not include
geometrical charge effects. The total electrode charge
which does include such effects is

Q= (ET/¢) (¢/4mLs) E*o= (ET/e) (/4 Ls) 0%z
=eEo/4r. (20)

The computer program that calculates x* versus
¢* (Eq. 7) also calculates Q%,,, O*.,, 0%y, and 0%, by
direct integration. The normalization for all charges
is the same as that shown in (20) ; note that

6*- (kT /4meL.) =eL.N.

For each of the Q*’s the full integration range is split
into five or more parts, thus additionally yielding the
dependence of integrated charge on distance from an
electrode. Further tests of the accuracy of ¥*; and the
integrations are afforded by comparison between Q.
and (, obtained in this way and between the Q; or
(s value calculated from (14) and that obtained from
(19). Agreement between these quantities was usually
found to be better than 0.19,.

Table I shows how some of the normalized charges
depend on R for y*;=10 and L=10 and L*=10. In the
R=0 case, 0*, and Q¥*, must equal their zero applied-
potential value #* L*= L*, equal to 10 in the present-
case. When R>0, however, an applied potential
moves the mobile charge around, changing the amount
of combined charge and relaxing the aforementioned

Downloaded 19 Feb 2008 to 152.2.62.11. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



SPACE CHARGE AND CAPACITANCE FOR BLOCKING ELECTRODES 813

TaBLE I. Charge dependence on R for y¢*=10.

L=10 L*=10
L./Lp, O, Q.* o, O*
R ] Eg* Or*=Ed* (Ei—Ed) Q.5 Q" Eg* Or*=E¢* (Eo*—Es*) Qn*, Q0*

0 1 8.58% 1072 3.661 3.575 10 8.58 1072 3.661 3.575 10
102 2.35 1.016 6.578 5.562 6.346 5.48% 1072 6.499 6.444 9.678
104 7.11 5.877 11.983 6.107 6.271 4.71X1072 10.443 10.398 13.600
108 70.7 70.573 71.599 1.026 1.041 4.59%1072 12.078 12.032 15.236
10 7.07X108 .. 4.58X10~2 12.101 12.055 15.261

requirement on Q%, and Q*,. The actual unnormalized
charge is proportional to Q*,/6, which decreases as R
is increased. Note that for L constant ¢, approaches
Comax @5 R increases, and E*; therefore approaches
E*joa=y*o/ L¥*=0(y*/L), a function of R in this
case. The un-normalized E; therefore approaches
¥o/l, the geometrical field, and is constant from one
electrode to the other. On the other hand, when L* is
held constant E*, approaches a constant independent
of R for large R [since E*(¢*) becomes independent
of R] and E, therefore is proportional to 67! in this
limit.

The total static capacitance, including both space
charge and geometrical (charge-free) contributions, is

Cor=|Qz/¥0| = (e/4rLs) | EX/f¥% )|, (21)

while the static capacitance arising solely from space
charge is

Cos= | O/t | = (¢/4rL.) | (E*— E*a) W% ]. (22)

In the limits of zero applied potential with L*<2,
infinite applied potential, or infinite R (zero free
charge), E*;=E*=y*/L* and C:s=0, C:r=C,.
When none of these conditions apply, the contribution
of the geometrical capacitance to C,r will be less than
C, because of the inconstancy of the electric field
between the electrodes. Note that it follows from (21)
that Cir1=Cor, 4 Cor, !, where C,7, and C,r, are
the static capacitances associated with the accumula-
tion and exhaustion-depletion regions, respectively.

The total differential capacitance Csr may be calcu-
lated most simply from the contributions on either
side of the x*=x%; dividing line. The accumulation
and exhaustion-depletion contributions will be in series
since the plane at x*=x*; may be replaced with an
equipotential plane held at the potential ¢*; with no
effect on the problem provided the differential capac-
itance is measured with an ac signal of much smaller
peak amplitude than ¥*). One may write

Car1=Cy 4 CdTg_l
= (4rLo/¢) {[d(¥*o—¥*a) /AE* I+ (dY*s/dEX)}. (23)

This equation cannot be further simplified by the
direct use of Poisson’s equation as was done in the
infinite-length problem because such simplification

would erroneously eliminate all contribution from the
geometrical capacitance. The two differential terms
on the right of (23) may be evaluated directly from
(4), yielding, after considerable manipulation,

[deo/d($*o—y¢*a) T+ (n¥o—p*) }

Can,= (e?/47 L) {

E*
(24)
Comm (/4 L) [(dCO/d¢*d) Z*(lp*,—n*,) ] (25)

where p*; and #*; are the normalized charge concen-
trations at the x=1[ electrode and E*,= E*, In the
limiting cases discussed in connection with the static
capacitance, Car, and Car, each approach 2C; so that
Car itself approaches C,.

Next, it is convenient to determine the common
limit Co of Cqr and C,r when ¢*:—0. To evaluate C,,
the value of ¢, given in (12) and either (21) or (23),
(24), and (25) may be used. The result is

Co= (/4w L,) = (¢/8xL,) ctnh(L*/2)
=Cy(L*/2) ctnh(L*/2),
L./L.=2tanh(L*/2).

(26)
(27)

Two limiting cases are of interest. When L*32 so that
>2L., Co=¢/8rL,. This is just one half the value
found for Cy in the infinite-length case, with the
one half arising here from the presence of two blocking
electrodes and space-charge regions rather than one.
Alternatively, when L*&2 so that I&2L,, Co=C,. In
this case, no space-charge separation is set up because
the electrodes are much less than an effective Debye
length apart.

Finally, in order to calculate Cyr for all conditions,
the ¢y derivatives in (24) and (25) must be evaluated.
We may write .

dC(]/ d\b*o
1= (dy*a/dp*)’
dCo/dl,l/*d= ng/d\[/*o (dlp*d/dlll*o) -1
The quantity dy*;/dy* may be determined in a

straightforward manner from (6); since the result is
very cumbersome, it will not be given. The other

doo/d(Y*o—¢*s) = (28)

(29)
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Fi16. 7. Log-log plot of normalized total differential capacitance
versus |@o*| for various R and L* values. The dashed curves
(L*= ) are for the one-blocking electrode case with an exhaus-
tion region finally formed for large negative normalized potentials.

necessary quantity, dco/dy*, may be obtained from
(8) by differentiation under the integral sign. After
simplification one finds,

% dp* -1
dasivre o]

As a step in calculating Car/Co, both d*;/dy ¥ and
deo/dy*, have been programed for IBM 650 calculation
given ¢, ¥, ¥*4, and R. The results may then be used
in a further machine program which calculates Cyr/Cy,
Car/C, etc.

Figure 7 shows how Caz/Cy depends on ¢, for several
R and L values. The C,r/Cy curves are similar but the
peaks which occur for large R appear at greater y*
values and are not as high as those of the Cur/Co
curves. The dashed lines in this figure are for the one-
blocking electrode, L*= o« case.! For R=0 the main
difference between the one- and two-blocking electrode
curves is the horizontal separation between the two
curves, equivalent to a factor of four in ¥*. This factor
arises from the factor of two difference in C, for the
two cases. For R=10% there is a factor of two y¥%;
difference between the two curves to the left of the
peak. This difference occurs because in this region
Car arises from accumulation and the potential ¢*; is
applied across only one accumulation layer in the one-
blocking electrode case and two such layers in series
in the two-blocking electrode case. This fact, plus the
difference in normalization in the two situations,
leads to the observed separation. Thus, when 2%,
is applied in the two-blocking electrode case and ¢*; in
the one-blocking electrode case, Cqr is itself one half
as large in the former as compared to the latter case.

On the right of the peak, the capacitance arises from
the series combination of an accumulation layer and
an exhaustion-depletion layer. Since the capacitance of

ROSS MACDONALD

an exhaustion layer progressively decreases with in-
creasing y* while that of an accumulation layer in-
creases, the exhaustion capacitance soon dominates the
series combination. As ¢*, increases, Cir/C, must
eventually reach C,/C; when the space-charge ca-
pacitance becomes negligible compared to C,. It is in
the region where Cyr/Cy is near C,/Cy that the ¢,
deo/dy*a, and deo/d (Y *o—y*s) terms become important,
The R=0, L*=10 curve shows this transition region.
For R=10% and L*=10, C,/C, is reached for y*;=>10F;
much greater ¥*; values are required to reach it for the
L*=10° curves, for which C,/C, is about 2X1078, It
should be noted that although the peak of the R=10*
curve is much higher than that of the R=108 curve,
most of the difference arises from the dependence of
Co on R; thus, one finds that (Cyr)1s/(Car)s evaluated
at the two peaks is only 0.68.

In Fig. 8 the C; dependence on R has been eliminated
by plotting Cqr/C,y rather than Cyz/Co. The single
dotted curve is for C,r/C,. Since the curves refer to
constant L values, the actual physical separation be-
tween electrodes, and hence C, remains constant as R
varies. In this log-log presentation, log(14R) is used
rather than logR so that the point R=0 may be in-
cluded. The indicated variation in R might occur if
free charge were produced in the system by the ab-
sorption of radiation. One would then expect the dis-
sociation constant & to be proportional to radiation or
light intensity, 7, and thus R would be proportional to
Il Then the right end of the curves would represent
a low-light condition while the left boundary, R=0,
would correspond to infinite light intensity.

In general, these curves show that increasing L
increases the maximum value of Car/C,, while in-
creasing y*, primarily increases the value of R re-
quired to relax Cyr to Cy; the condition for such relaxa-
tion is exp(¥*;) KRn*,. The curves show that while
decreasing R (or increasing I) leads to an increase

50 T T T T T T ! T T

30 ~
L=100
s S 1
dTlO'— =TT 7
i ~< GG 1
- \\ -
- N -
* \\
M ¥6=10 \ 1
3 \ 1
* v

L ¥,=100 }

\\\

L=10 \

| 1 ] . i 1 )
0 10 20 40 50

30
Iog|°(|+R)

Fic. 8. Log-log plot of Car/C, versus (1+R) for various L and
Yo* values. Note that C,, the geometrical capacitance, is inde-
pendent of R. The dashed curve is for Cyr/C,.
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and virtual saturation of Csr/C, (which measures
the total charge in the system), C4r/C, can be over-
saturated so that a decrease actually occurs as R de-
creases, '

Figure 9 shows how (Cy—C;)/C, depends on R~
for two different fixed lengths. Such a measurement
might be made with a low-frequency ac signal whose
peak amplitude was less than k7/e. Alternatively, it
could be carried out by measuring the total charge
which the system contains for smaller and smaller *,
values and extrapolating to ¢*=0. If the mobile
charge in the system arises from optical excitation, the
curves and dashed lines show that (Co—C,)/C, is pro-
portional to I* for Co/C,<1.8. For L>100, an ap-
preciable region also appears where (Cy—C,)/C, is
proportional to I'/4 in agreement with (26).

When ¢*c>1, the differential capacitance may
reach values appreciably greater than C;. Figure 10
shows the dependence of (Car—C,;)/C, on R for
several L and y*, values. These curves are derived
from those of Fig. 8 and are plotted only for the region
of greatest dependence on R. Note that the arrows
indicate the pertinent R1-scales for each of the curves.
Here, for L=100 I} (or R*) dependence (dashed
lines) is evident when Cyir/C, is less than about 3.
In the present case, such a region of light dependence
would be measurable over about four decades of light
intensity.

In the preceding paper dealing with the single-
blocking electrode case, the situation where the block-
ing electrode had to be produced artificially was dis-
cussed in some detail.! In the two-blocking electrode
case, it may also be necessary in some cases to ensure
the blocking character of the electrodes artificially,
especially when the mobile charge carriers are electrons.
By placing a thin film of insulating material such as

10
10 -
[
L
co-Cq
—_ °
Cq 0'E
16' =
16° e N A . N . N
-i2 -0 -8 -6 -4 -2 [} 2

—log, R

F16. 9. Log-log plot of (Co—C,)/C, versus R for two fixed
lengths. The dashed lines show R dependence.
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Fic. 10. Log-log plot of (Cir—C,)/C, versus R (top and
bottom scales) for different y¥¢* and L values. Dashed lines show
R dependence.

Mylar or mica between the metallic electrodes and the
charge-containing material, blocking can usually be
well approximated. It is of course necessary to use
charge-free layers sufficiently thick to avoid dielectric
breakdown and tunneling.

When an external potential is applied to such a com-
posite system, an appreciable fraction of the total
potential difference may occur across the two series
charge-free regions. For capacitance calculations, the
potential-independent capacitances of these two regions
may be combined (in series) and the combination
considered as a single capacitance itself in series with
the space-charge capacitance of the charge-containing
material. The situation is then very similar to that in the
one-blocking electrode case since Fig. 7 shows that the
Car/Co dependence on ¥*; is similar in both cases.
Because of such similarity (which applies for an ap-
plied potential of polarity leading to an exhaustion
region in the one-blocking electrode case but for either
polarity in the two-blocking electrode case), we shall
not discuss the present case in detail. Again, one would
find an effective built-in potential arising from the
nonlinear distribution of potential drop between the
charge-free and charge-containing regions. This effec-
tive built-in potential would of course depend as before
on the ratio of the capacitances of the two regions in
the limit of very small applied potentials.

One final point should be mentioned. When the
separation of blocking electrodes is such that Car>C,
for given R and ¢*), the geometrical capacitance can be
neglected. When this is not the case and artificial
blocking layers are used, the situation becomes con-
siderably more complex. In an exact treatment, the
combined space-charge, over-all geometrical, and
charge-free layer capacitance should be calculated as a
single problem taking into account the potential dis-
tribution from one metallic electrode to the other. In
most cases of interest, however, it is likely to be
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adequate to consider the boundaries between charge-
free and charge-containing regions as virtual electrodes
and therefore combine the (geometrical) series ca-
pacitances of the charge-free regions in series with
Caqr (or Cyr if the latter is considered), noting that
Car as calculated earlier in this section contains any
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effects of geometrical capacitance between the virtual
electrodes.
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A simple empirical equation for estimating the dipole moment of a molecule from dielectric constant
measurement in solutions without any density and refraction data is suggested. The equation has been
shown to be derived from an approximation of the Guggenheim-Smith equation for orientational polariza-

tion, as modified by Palit.

T WAS pointed out by Higasi' that the dipole mo-
ment of a polar solute in a nonpolar solvent may be
given as

u=B(A¢/ fr)}, (1)

where B is a constant for the solvent (0.94-0.10 esu for
benzene and 1.1540.10 esu for hexene), Ae is the differ-
ence between the dielectric constants of solution and
the solvent, and f, is the concentration in molar frac-
tion. Recently the range of validity of the above equa-
tion was found out by Bal Krishna and Srivastava.?
They found that the equation holds good only for the
straight portion of the dielectric constant-concentra-
tion curve and p may be written as

p=B(dew/d f2)}, (2)
where dep/d f2 is the slope of the straight portion of the
curve.

The aim of the present note is to investigate the
extent of deviation of the dipole moment values, ob-
tained by this method, from the accepted values and
to show that these are special cases of a wider equation
by Guggenheim and Smith.#4 If the variation of
+0.10 be taken for B as pointed out by Higasi, not
only is a wide range obtained for the dipole moment
but also it varies with concentration, where the curve
is not linear.

( 1 K) Higasi, Bull. Inst. Phys. Chem. Research Tokyo 22, 805
1943).
2B7.) Krishna and K. K. Srivastava, J. Chem. Phys. 27, 835
(1957).

3E. A. Guggenheim, Trans. Faraday Soc. 45, 714 (1949).

4 J. W. Smith, Trans. Faraday Soc. 46, 394 (1950).

" VARIATION OF B

However, these two variations were improved upon
by Bal Krishna and Srivastava? by suggesting the
graphical method and giving the value of B as 0.828.
Though Higasi’s constant gives good values for a
number of solutes taken by these authors, yet the
extent of variation of this constant for a large number
of compounds will be clear from Tables I and II for
benzene and dioxane as solvents.

BETTER EQUATION

However, a better empirical equation may be sug-
gested as follows, if an approximate estimate of the
dipole moment is required using only dielectric measure-
ments, without solution data for refraction and density:

p= M4 (dew/d fi)1. (3)

Here M; is the molecular weight of solute and 4 is a
constant for the solvent, dependent upon temperature.
For benzene at 25°C its value is 0.090: dew/d f2 is the
slope of the curve, obtained by plotting dielectric con-
stants against weight fraction at wy—0. Here it is
not necessary to consider only the straight portion of
the curve, but an equation of the form ep=a-t+bw+
cw?t+--+ may be written by the method of least
squares and the value of des/d fo may be obtained
from it as suggested by Palit and Banerjee.’
DERIVATION OF THE EQUATION FROM
THEORETICAL CONSIDERATIONS

The Guggenheim-Smith equation as modified by

Palit,? for the determination of molar orientational po-

5 S. R. Palit and B. C. Banerjee, Trans. Faraday Soc. 47, 1299

(1951).
6 S. R. Palit, J. Am. Chem. Soc. 74, 3952 (1952).
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