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The Ershler infinite imaging model for adsorption of ions from electrolytes is discussed in detail. An in-
correct derivation of the basic equations for the micropotential is critically examined, and a correct derivation
provided. The potential arising from discrete adions and their images is determined exactly based upon a
method which heretofore has only been applied to crystal field problems. Finally, the accurate results ob-
tained using a digital computer are compared with the approximate results of other treatments.

INTRODUCTION

HE present paper represents the first of a series

treating the potential arising from adsorbed ions
in various circumstances. In this first paper we are
concerned with the situation where the ions are effec-
tively “imaged” by two equipotential planes: This
may come about when the adsorber is a good electrical
conductor and the ilons are adsorbed from a bulk
“diffuse layer” of ions present in sufficient concentra-
tion to produce an approximately equipotential plane
just beyond the adsorbed layer. This is a well-known
state of affairs in electrolyte double-layer theory. When
two equipotential planes are not maintained in such
proximity, it is appropriate to consider another model:
The single-image model is one such which is applicable
to adsorption by a metal of ions from a gas phase. This
model, which may be somewhat applicable to the elec-
trolyte situation as well, will form the subject of the
second paper of the series. There are cases where partial
imaging (e.g., dielectric imaging) is appropriate; and
this will be treated in the third paper of this series.

In any microscopic theory of adsorption of ions, a
quantity which plays a fundamental part in deter-
mining the characteristics of the adsorption process is
the electrochemical free energy of adsorption. This
quantity, which itself depends upon the density and
arrangement of the adsorbed phase, may be defined as
the work required to move an ion of valency z from the
bulk to a vacant adsorption position. Generally, this
quantity depends upon the type of ion considered, the
(metal) electrode, the charge on the metal, and to
some extent the temperature of the system, as well as
the structure of the adsorbed phase.

In the present work, we are concerned only with
that part of the free energy which obtains when the
detailed atomic structure of the ions and metal is
ignored; that is, we confine attention to the ordinary
electrostatic interactions, ignoring all (“‘chemical”)
interaction such as those arising from the possibility of
internal structural changes of the ions themselves. Thus,
that part of the free energy of adsorption we consider
arises wholly from the Coulomb interaction between
an adsorbed ion and all other adions and induced
charges in the system. Another quantity related to but
not identical with the free energy is often more useful

in statistical adsorption theory: If one calculates the
total Coulomb potential at the site of an adsorbed ion,
discarding that ion’s infinite direct contribution, the
resulting potential is known as the micropotential,
here denoted as 1. Some previous discussion has
recently been given of the micropotential and its
use by various authors to calculate ionic adsorption by
an ideal polarized electrode from the electrolyte double
layer.! In the present work, we are solely concerned
with potentials in the inner region of the double layer
and not with the various forms of electrical adsorption
isotherms in which the micropotential appears.

In early work,? the micropotential was calculated
by ignoring discreteness-of-charge effects and thus by
smearing the ions in the plane of adsorption, the inner
Helmholtz plane (IHP). It therefore becomes in this
approximation the mean potential at the IHP relative
to the bulk of the electrolyte; and this approximate
value of the micropotential is now generally known as
the macropotential.?

In 1933, Frumkin* suggested that because of the
actual discreteness of charge, the macropotential might
be a poor approximation to the micropotential; and
later Esin and Markov® seemed to verify this supposi-
tion indirectly by observing that the shift of the elec-
trocapillary maximum (ecm) potential with increased
adsorption of ions was larger than the shift predicted
by the theory based on the macropotential. Since then,
there have been many attempts to calculate ¥4 approxi-
mately when charge discreteness in the IHP is not
completely neglected. Esin and Shikov,® Grahame,” and
Levine, Bell, and Calvert® have considered a model in
which the adions are hexagonally arrayed, and in
which a single equipotential plane (either the electrode
or the outer Helmholtz plane (OHP), the plane of

17. R. Macdonald and C. A. Barlow, Jr., Proc. 1st Australian
Conf. Electrochemistry, Sydney, Australia, February 1963 (to
be published).

2. C. Grahame, Chem. Revs. 41, 441 (1947) and references
cited therein.

3B. V. Ershler, Zh. Fiz. Khim. 20, 679 (1946).

4+ A. N. Frumkin, Phys. Z. Sowjetunion 4, 256 (1933).

50. Esin and B. Markov. Zh. Fiz. Khim. 13, 318 (1939);
Acta Phys. Chim. U.R.S.S. 10, 353 (1939).

6 0. Esin and V. Shikov, Zh. Fiz. Khim. 17, 236 (1943).

7D, C. Grahame, Z. Elecktrochem. 62, 264 (1958).

8 S.)Levine, G. M. Bell, and D. Calvert, Can. J. Chem. 40, 518
(1962).
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closest approach to the electrode of the charge cen-
troids of ions in solution), serves as an imaging plane
for the charges in the THP. In all these treatments, the
material (apart from the adions) present between the
OHP and the electrode was replaced by a homogeneous
medium of uniform dielectric constant e. The analyses
of these authors differed somewhat, but they agreed in
vielding results which seemed to over explain the Esin—
Markov effect. It was this dificiency which prompted
the introduction by Ershler® of a somewhat different
model whose consequences will principally comprise
the subject of this paper.

In 1946, Ershler? and later Grahame, Levich,
Kir’yanov, and Krylov,® and Levine, Bell and Calvert®
analyzed a model in which both the adsorbing electrode
and OHP are considered to be equipotential surfaces
and hence perfect imaging planes. When these two
planes both serve to image the hexagonally arrayed
charges on the THP, an infinite set of images results.
The inclusion of this infinite imaging improved the
agreement between theory and the Esin-Markov effect,
which has lent some support to the model in spite of
various approximations made in some of the calcula-
tions. On the other hand, it still seems quite possible
that infinite imaging is basically inappropriate and that
the necessary improvement of earlier models lies in
other directions; thus, by way of example, the pos-
sibility remains open that the shift in the ecm arises
partially from the orientation of dipoles in the polar
solvent which occupies the inner layer, the region
between the OHP and the electrode. There is already
evidence!'!® to support the existence of a significant
solvent polarization in the inner layer at the ecm,
although the exact causes for this dipole orientation
are not yet completely understood. It is possible and
even likely that the adions and/or diffuse layer of
ions in solution play an important role in creating this
inner layer polarization, in which case one might ex-
pect a consequent shift of the ecm with varying adion
and/or diffuse layer concentration which differs from
that predicted in the early single imaging treatments.
A further possibility is that the dielectric constant in
the inner layer varies significantly with position on
either side of the THP and that this too must be con-
sidered in any more accurate model of the inner layer.
There is good reason to believe that this is true.l.
Further, even if one neglects imaging by the diffuse
layer of ions, the approximate discontinuity of the
dielectric constant of the solvent at the OHP or pos-
sibly between the THP and OHP!''! will serve to image
charges to some extent, Finally, the effects of thermal

*V. G. Levich, V. A. Kir'yanov, and V. S. Krylov, Proc. Acad.
Sci. U.S.S.R. (Dokl. Akad. Nauk S.S.S.R.) Phys. Chem. Sec.
135, 1193 (1960); V. S. Krylov, 4bid. 144, 356 (1962).

© 7, R. Macdonald and C. A. Barlow, Jr., J. Chem. Phys. 36,
3062 (1962).

1 N. FiMott, R. Parsons, and R. J. Watts-Tobin, Phil. Mag.
7, 483 (1962).
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motion in the inner layer'? and in the diffuse layer®
could play a role in determining the relevance of an
imaging model as well as other features of the system.
We neglect thermal motion effects herein.

In this paper we shall consider in detail the simple
infinite imaging model of Ershler}? Grahame,” Levich
et al.,? and Levine e al.8 giving an exact and computa-
tionally useful treatment of this model and at the same
time presenting a method of calculating micropoten-
tials which will be employed in subsequent papers
treating different models. Before entering into the main
stream of the paper, it is desirable first to present a
correct derivation of the exact formulas applying to the
simple infinite image (Ershler) model and to point out
an error in the literature.

ERSHLER MODEL: INTRODUCTORY ANALYSIS AND
COMPARISON WITH EARLIER TREATMENTS

We now consider the following model of the inner
layer: Assume the adions to be hexagonally arrayed on
the IHP with a nearest-neighbor distance ;. Let 8 be
the distance between the THP and the adsorbing elec-
trode, and define v as the distance between the THP
and the OHP. Assume a mean charge per unit area g
on the planar metal electrode which is exactly balanced
by the adion charge per unit area ¢; at the THP and
the diffuse layer charge per unit area — (@ +¢), con-
sidered as lying entirely on the OHP. Take the effective
dielectric constant of the entire inner layer’® as the
constant e, and assume that the OHP as well as the
electrode is an equipotential surface. Finally, assume
that the electrode and the charge-occupied areas of
the IHP and OHP are of finite extent but are suffi-
ciently large in dimension compared to 8, v, and 7,
that edge effects may be neglected over virtually all
the occupied surface.

The question which now concerns us is: What is the
electrical potential in the inner layer along the line
which is perpendicular to the OHP and passes through
the site where a single adion has been removed from
the hexagonal array,”® assuming that all other adions
and their images remain undisturbed? One may pro-

271, Langmuir, J. Am. Chem. Soc. 54, 2798 (1932).

33 The introduction of a dielectric constant is actually inap-
propriate to an essentially microscopic, discrete system such as
that considered here and represents an approximation which will
not be removed in the present work. Some discussion of how one
more properly considers polarization effects in microscopic layers
of one or more components is to be found elsewhere.!'* For the
present work, we merely note that the ‘‘effective dielectric
constant” introduced herein and involving polarization of the ions
and surrounding molecules is not to be identified with any bulk
value but is determined by the properties and arrangement in the
inner layer of the discrete constituents. It follows that e, insofar
as it may be defined and taken position independent in the inner
layer, will in genera] vary somewhat with g; this effect is
likewise neglected here.

4 J. R. Macdonald and C. A. Barlow, Jr., J. Chem. Phys. 39,
412 (1963).

15 Here, as in the following development, it is assumed that the

event which takes place is sufficiently remote from the edge of
the array that boundary effects may be ignored.
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ADSORPTION MICROPOTENTIALS. 1

ceed in several ways to answer this question; here we
adopt the method of images. We are assured that the
electrode and the OHP are both equipotential surfaces
by assuming that the potential in the inner layer,
taken zero at the OHP,' is equal to the potential y,
which arises from the adions and infinite set of images
(resulting from imaging in both electrode and OHP),
plus the linearly varying potential . associated with a
uniform field of as yet unknown magnitude. As we shall
see, the field magnitude depends on both ¢ and ¢;. By
the above assumption we also guarantee the satis-
faction of the Poisson equation within the inner layer.
Because of total charge neutrality, in the present
model we may set the field outside the inner layer
equal to zero. From the uniqueness theorem of electro-
statics, the complete solution of the problem is found
by determining the unknown linearly varying poten-
tial ¥, to be added to ¢, so that the resulting mean
surface charge densities on both the metal and OHP are
properly given as ¢ and — (g1+¢), respectively.

In order to determine the uniform field to be added,
we must first answer the following important question:
What are the mean surface charge densities g, and
qua on the electrode and OHP associated with the
potential ¥, alone? These charges are readily deter-
mined by the following reasoning. First, we know by
the vanishing of the field outside the inner layer and
the applicability of Gauss’s law that

Q1m+Q1d= —q1. (1)

That is, the total induced charge on the metal and
OHP is just the negative of the inducing charge at the
IHP; a well-known result. Next, by electrostatic theory
we have a simple relation between the local surface
charge density at any point on the surface and the
normal component of electric field at that point on the
surface. By averaging over the surface we obtain a
relation between the average surface charge density
associated with a field and the surface-averaged normal
component of that field. In particular we find

Angim/e= (En), (2)
drqa/e= (Eq), (3)

where (E,) and (E;) are the surface-averaged normal
components of the electric field at the metal and OHP,
respectively. In both cases the surface normal is chosen
directed towards the THP.

The averages in Egs. (2) and (3) are most easily
determined by observing that the surface-averaged
field is equal to just that field which would result from
smearing the source charges in their planes.” We

16 The p.d. between the OHP and the bulk of the solution, Vs, is
thus omitted from the definition of the micropotential but may
be included whenever appropriate.

YN, F. Mott and R, J. Watts-Tobin, Electrochim. Acta 4, 79
(1961).
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therefore may write
_47"91/52 <E,,,>+ <Ed>§ (4)

and because ¥,=0 on both the metal and OHP (by
construction of the images),

(Em)B=(Ea)y. (5)
We may solve (4) and (5) to yield
(Em)y=—(4rqi/e) v/ (B+7) ], (6)
and
(Ea)=—(4nq:/)[B/ (B+7) ]. (7)
By substitution into (2) and (3), we find
Jum= — [7/ (6+7) ]‘]1; (8)
and
gu=—[B8/(8+7) lgr (9)

Now we are ready to determine .. Letting the elec-
trode and the OHP define the planes x= 4 (8+7) and
x=0, respectively, one may write

Ye(x) = Eox,

where E, is the uniform field to be determined. By
Gauss’s law, associated with this field are the constant
mean surface charge densities o4 and o, on the metal
and OHP, respectively, given by the expressions

(10)

= €E, /4, (11)
6= —eE, /4. (12)
We may satisfy the remaining conditions
Gimt0m=q,
qutou=—(¢t+q),
simply by setting
E.= (4n/e)LgFaly/(B+7)}] (13)

The complete potential at the position x is now
obtained by adding to ¥.(x) the contribution y,(x)
from the discrete lattice of jons and their images;
recall that this lattice contains a vacancy at one ion
position (x=v) and at all associated image positions
which lie on the line perpendicular to the adsorbing
surface passing through the ion vacancy site. Later
we present a technique for calculating ¢, accurately,
but for the present we note that most other authors
have been concerned with obtaining approximate, but
readily calculable expressions for y,: The basic problem
is that a direct summation of the contributions from
each lattice point takes practically forever to converge.

The complete micropotential should of course con-
tain the contribution from the interaction of an adion
with its line of self-images; we omit this in the re-
mainder of the present work because it is divergent
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Fic. 1. Lattice of ions and images: (a) 1 IHP; (b) IHP.

for the ideal Ershler model; since it is independent of
¢ and g, it can be considered as part of the chemical
free energy of adsorption in any case. With this in
mind, and because from symmetry ¥.(0)=y.(0)=0,
we may write the micropotential y; as follows:

‘//1=¢u(7) +‘Pe ('Y) - {Kba(O) +‘/’e(0) }
=va(v) +¥e(v)
=du(v) +(@dmy/ ) [gtalv/ B+ )]

Before considering ¥, in more detail, let us make
several observations on the results obtained so far and
make comparisons with Grahame’s’ treatment. First,
one should note that the total p.d. across the inner
layer, V1, does not involve ¥, because ¥.=0 both on
the metal and on the OHP for infinite imaging. We
therefore have that

Vi=v.(8+v) = (B+7) E.
= (4n/e) [q+{v/ (B+v) }aJ(B+7).

At the ecm, ¢=0, and V1= (4mgry)/e. It is sometimes
convenient to subtract this quantity from the true p.d.
in order to obtain a shifted p.d. which is zero at the
ecm. Such a shift will have no effect on quantities
which depend only upon p.d. differences; but for quan-
tities which depend upon the absolute value of the p.d.,
this shift must be eliminated. Secondly, to the extent
that one may neglect ¢,, the field in the inner layer
is uniform, and hence the micropotential is just given

by

(14)

(15)

vi~y/(B+v) V1. (16)

Grahame” has obtained the equivalent of (135) and
(16) ; however, his derivation is faulty. His first error
is to assume that at the ecm (¢=0) the potential in
the inner layer arises purely from the adions and their
infinite set of images. We have already seen, however,
that in order that the potential be so given the
average charge density on the electrode must be

AND J. R.
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q=—qv/(B+7); thus at the ecm where ¢=0 there is
an amount of charge density qry/(8-+7v) which is not
accounted for. His second error is in finding a finite
contribution to the total inner layer p.d., V;, from the
discrete potential y,; this contribution Grahame ini-
tially (¢g=0) denotes as y*. We have seen that ¥,=0
on both the metal and the OHP and hence that ¢~
should be zero. Grahame’s method of calculation when
properly applied does, in fact, produce this vanishing
y* provided one considers a lattice finite in extent
over the THP. By implicitly considering an infinite
lattice and carrying out the summations in such an
order that the resulting ¥, does not actually converge,
he obtains a manifestly incorrect expression for
Y*=v¢.(B+7v) —¥.(0). That his expression predicting
finite values for y* is incorrect should have been ap-
parent through several means: First, y* should have
been invariant under interchange of 8 and +; secondly,
his equation would predict a finite p.d. between two
grounded conductors, whereas the whole method of
construction of images in the first place is such that
the resulting ¥, is actually assured of vanishing on the
two imaging planes.

His third error is actually a repetition of the first:
When he finds the effect of ¢720, he neglects the fact
that parts of the total average charge densities on the
electrode and the OHP are involved in setting up the
images which lead to y.. The charge on the electrode,
therefore, has already been partially taken into account
and is not completely identical with the charge partici-
pating in production of the uniform field. A similar
statement holds for the charge on the OHP. The result
of this error is to produce an incorrect value for
Grahame’s ¥ [equivalent to y.(84v)—¢.(0) in the
present work ]. This error is just compensated by the
earlier ones involving the infinite-image potential,
which Grahame now defines as ¢° for the case ¢#0,
and the correct value of V; (now expressed by y*=
Y'+y¢%) is obtained for any g.

Finally, to obtain the micropotential Grahame makes
the approximation that the field in the inner layer is
uniform. In this manner Eq. (16) is obtained. As we
have seen, however, (16) gives the exact expression
for the micropotential if one completely neglects ¥a(7),
the infinite image potential. Because Grahame obtains
a contribution to Vi from this potential, it would seem
at first sight that by the uniform field approximation
his treatment determines approximately the effect of
¥.; actually, because ¥, contributes exactly nothing
to V; the uniform field approximation is tantamount

METAL,THP OHP

1
He2 B 27— e o2 o2 f—s—27——28
e ® ©] ONENC) ® C] ®

N 1
\VACANT SITE

Fi1G. 2. Some of the self-image charges whose contributions will
be subtracted out.
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ADSORPTION MICROPOTENTIALS. I

to the neglect of ¢, entirely, an approximation which
may frequently be poor, as shown later.

DISCRETE-CHARGE POTENTIAL: ¢,

We turn now to the calculation of ,. Recall that the
potential desired is that produced by the lattice of
charges resulting from the infinite imaging of a hexa-
gonal array of adions with one vacancy. This potential
(referred to zero potential at the OHP) may be
formally written for a hexagonal lattice as a simple
sum of Coulomb potentials in a not unfamiliar way:

oo m—=1

4u) =22 35 32 St ) +40(5-4) T

=—00 m=1 n=0
— {r2(m2-fn2—mn) +4L (B+v)1— 6T},

where z = valence of adion, and ¢ = charge of proton.
Because of the exceedingly slow convergence of this
sum, however, we find it more convenient first to de-
termine (by somewhat devious means) the potential
¢. arising from the lattice of charges with one vacant
adion site but with all image sites occupied. We may
then readily determine ¥, by subtracting out the con-

(17)

ze Z(.’Z, {I

#e(R)=—C | [8/(8+v)Jas+R \+? .

In Eq. (18), the primes on the summations refer to
the exclusion of the lattice point at the origin; all other
lattice pOil’ltS, rkEklal+kzaz+kaa3 (kl, kz, k3 all in-
tegers), are summed over.

There have been numerious methods developed for
calculating lattice sums of the type occurring in Eq.
(18). The main difficulty is that a straightforward at-
tempt to compute such sums by direct addition fails
to converge adequately in less than an astronomical
number of terms. As a consequence, various approxi-
mations have evolved: Generally these approximations
involve summing certain terms exactly and replacing
the remainder by an integral. Representative of this
approach is the excellent work of Levine, Bell, and
Calvert® based on a method suggested by Grahame.”
Yet another method, the one applied here, was origi-
nated by Ewald® and has been used in the past to
calculate Madelung constants for ionic crystals:®2
This is a natural method to use here when one notes
the similarity between the present problem and that of
calculating fields in such crystals. Note, however, that
the different assignment of charge signs here from that
to be found in a typical crystal field problem makes the

18 P, P, Ewald, Ann. Phys. 54, 519, 557 (1917); 64, 253 (1921);
Nach. Ges. Wiss. Gdttingen 55, (1938).

19 J, Sherman YChem. Rev. 10-11, 93 (1932).

20 F, W. de Wette, Ph.D. thesis, University of Utrecht (1959);
Physica 23, 309 (1957); 24, 422, 1105 (1958).
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tribution from the added self-image charges. Figure 1
illustrates the lattice of charges for which we will find
the potential ¢,(R) along the normal line through the
origin. Figure 2 shows some of the charges whose con-
tributions to ¢, must be subtracted in order to obtain
Ya. The vectors we use in describing the lattice are
presented in Fig. 3.

Referring to the figures, the potential ¢.(R) may be
written

n—R [ — | ne—[6/(8+7)Jas—R |71} (18)

convergence properties of the simple series such as that
in Eq. (18) even worse, thereby further necessitating
the use of special techniques to obtain significant
numerical results.

In Appendix I an analysis is given leading to a rapidly
convergent form for ¢.(R) as well as for the self-image
contribution. Comparison with the Ewald method®® as
generalized by de Wette® would reveal substantial addi-
tional complications encountered here as a result of
the type of “lattice” of charge arising from the present
infinite imaging situation. Appendix I is intended to
be self-contained, however, in the sense that the reader
need not refer for background information to the work
of Ewald and de Wette.

The potential o (y) is found by subtracting the self-
image contribution S,{0) from ¢.(0), these quantities
being given in Appendix I, to yield

e ERT )
(19)

(It may be shown that the value of ¥, is invariant
under the interchange <>y as required.) The micro-
potential ¥, follows immediately from (14). Equation
(19) combined with Egs. (1.20) and (14) represents
a complete solution for the micropotential in the sense
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that the computation may now be carried out numeri-
cally with rapid convergence to an answer. For a
hexagonal lattice, we also need the following relations
between r, and ¢;:

= (2/\/3) zery 2

=1.8499 X 10~1z7,2; (20)
n=(4/3)%(ze/q)*
=4.3010X 107 (z/q1)}, (21)

where in the numerical equations 7; is in cm and ¢; in
uC/cm.? The “cut-off” radius ro used by Levine et al.?
is 0.52605 7.

Finally, it is worth pointing out that a very valuable
check on the analysis and numerical calculation of
¢.(0) is afforded by variation of the length parameter s
employed in Appendix I. The results must be inde-
pendent of s; if calculations with two s values yield
the same numerical value of ¢,(0) to four or five sig-
nificant figures, the probability of the answer being
correct is exceedingly high. In the present work, s was
usually taken of the order of 7, but several values
were always used for each calculated point and agree-
ment of results was very good.

CALCULATED RESULTS AND COMPARISONS

The Grahame approximation, Eq. (16), states that
the micropotential ; and the average potential across
the entire inner layer, V,, are directly proportional for
all ¢, values. Experimentally,”? the proportionality
factor is found to vary appreciably with ¢i; this be-
havior has recently been discussed by Parry and
Parsons® and by the present authors.! Although the
infinite imaging model analyzed herein is rather ide-
alized, its predictions of ¥,/V; are still more relevant

21D, C. Grahame, J. Am. Chem. Soc. 80, 4201 (1958).

1:611)). C. Grahame and R, Parsons, J. Am. Chem. Soc. 83, 1291
((1;36%) M. Parry and R. Parsons, Trans. Faraday Soc. 59, 241
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to the experimental results than those of any previous
calculations.

To achieve maximum generality, it is desirable to
use normalized variables. Let us therefore define

v/ Vi=[v/(B+y) [1+A4], (22)
where from (14) and (15)
_¥a(¥) [ { Y H
A= ol T || =

Note that A may also be expressed as
¢(t(7)/[¢1——¢u (v) ]

We are particularly interested in how A depends on
g1 or r, for various values of /v and g. Let us there-
fore define A as the value of A when ¢=0, A® as the
value when 8=+, and A as the value when ¢=0 and
B=+~. We are primarily concerned with A, since only
approximate results are available from experiment for
q1(q)-

One of the advantages of dealing with A or Aq rather
than ¢, directly is that A is independent of ¢ on the
present model. Even when it is reasonable to take e
dependent on ¢ and ¢;, such dependence cancels out
of A since Ya(y) xet. As well as being the value of
A when ¢=0, A is also the limit of A when ¢ is held
fixed at some nonzero value and | 5 | —oc. When ¢=0,
A=A, does not depend on z at all. In the limits ¢—0
(n—=) and ¢—o (r—0), it may be shown that
A—0 and B/, respectively.

A variety of accurate values of A have been calcu-
lated using a digital computer. The results for A,® are
shown in Fig. 4 for the typical values B=y=2 A. The
accurate curves, shown solid, are plotted vs both
and ¢, (for positive adions). The results of the approxi-
mate cut-off treatment of Levine et al® are shown
dashed. These authors developed a very slowly conver-
gent single series for y,(v) applying when =+ and
transformed the series analytically to a more rapidly
convergent series in the range 7> (8+7). It is worth
noting that to obtain numerical results this lengthy
analytical work was unnecessary. Instead, the e algo-
rithm? could have been applied to the first few terms
of the original, slowly convergent series to yield an
accurate value for the sum of the entire series. This
approach has the further virtue that it is applicable
for much smaller values of 7o/(8+7v) than unity. For
example, for »)/(8+7v)=0.1, the first three terms of
the original series yield, using the e algorithm, a result
for the sum correct to 19, while the first five terms
lead to a result accurate to 0.039%. Unfortunately, the
present exact triple series cannot be summed by the
e algorithm or its variants.?

Figure 4 shows that the cut-off approach consist-
ently overestimates A. It predicts a value about 2.4
times too large at ;=40 uC/cm,? about the maximum

% P, Wynn, Chiffres 4, 23 (1961) ; Math. Comp. 15, 151 (1961);

Mathematics Tables and Other Aids to Computation 10, 91 (1956).
2 D, Shanks, J. Math. and Phys. 34, 1 (1955).
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experimental value, and 12 times too large at ;=10
#C/cm.? From the magnitudes of the accurate values
of A in the present f=vy=2 A case, it is clear that ¥,
and ¥V, are proportional over the entire experimental
range of ¢; to within 59 accuracy. The concomitant
variation of ¢ with ¢; found experimentally makes A
rather than Ay the quantity of most interest for com-
parison with experiment in the electrolyte case. Some
consideration of A is given later.

Let us now consider the A results for various ratios:
(8/7). It has been found that the results can be repre-
sented most economically by plotting Ag as a function
of r/¢, where £ is the smaller of 8 and . Typical accu-
rate results are presented in Fig. 5. The parameters
shown on the curves are the values of 8/y. The curve
for B=+ is shown solid, those for <y dotted, and
those for 8>+ dashed. It will be noted that the curve

‘35\--__1_/50

ilidl

I i2 13 14

F16. 5. Normalized discreteness contribution A, for various
ratios 71/8 and r/vy.

for 8=+ represents the limiting case; all other curves
have smaller slope magnitudes. Another result, which
simplifies the construction of curves, is that curves
for B/y=a>1 are of exactly the same shape, on a
semilog plot, as those for 8/y=a71, the only difference
being a vertical displacement by a factor ¢ when
passing from the 8/y=a curves to those with yv/8=a.

It is interesting to note that the results of Fig. 5
show that the curves change from convex to the ab-
scissae to concave between 8/y=4 and 10. Between
these values lies a curve which is very nearly pure
exponential in its dependence on ri/¢. Experimentally
likely values of B/v in the electrolyte situation lie be-
tween about 4 and 1/4. Note that the 8/y=4 curve
involves values of A which are much too large to
neglect even for appreciable values of r/£ In such
situations, the Grahame approximation is invalid. The
cut-off solution of Levine et @l8 is only applicable
when 8=+ and so cannot be compared with the 8=y

1541
3 T T T T T
1\ B-3k B
| oy ik
, LON KI DATA™S
E‘ ; 0 1 DATAT
C /A .
— [’ —
NEGATIVE o
0.3 BRANCH, -~
o= -
C Ag _
0.03 —
ECM
0.0l 1 1 1 L ! L
-44 -40 -36 -32 -28 -24 -20 -16
q, (uC/cm2)

Fic. 6. Normahzed discreteness contribution A vs Grahame’s
derived gi(g): =3 A,y=14,

curves of Fig. 5. Unfortunately, the apparently exact,
but still slowly convergent, solution of Levich ef al.?
for ¥; has not been sufficiently reduced to numerical
or graphical results for comparison with those of the
present work.

Finally, Figs. 6 and 7 show how A varies with ¢
according to the present model when ¢;(¢) data de-
rived by Grahame? from his measurements of differen-
tial capacitance of 1.0 N KI are used. Also shown are
the corresponding curves for A, Figure 6 shows the
results when =3 A& and y=1 A, values recently used
by Parry and Parsons® for another electrolyte. The
contributions to 8 and y have been discussed else-
where by the authors,»!® and it iz suggested that a
treatment of double-layer capacitance when ions are
specifically adsorbed should involve a distinction be-
tween regions near a specifically adsorbed ion and
regions appreciably away from such ions. Such distinc-
tion makes it impossible to assign a unique thickness
to the inner part of the double layer since the OHP is
no longer really a plane. If one considers only the value
for v near an adsorbed ion, one might expect it to in-

0.40 1 T

0.36

8 =34 -
y=7x

LON KI DATA™]

0.32

0.28 A

0.24

T

0.20

—

o
>
T

@
o
T

1 " 1 1 1 1 I l J
-44 -40 -36 -32 -28 -24 -20 -6 -12 -8 -4 O

q, (’u.C/sz)

Fic. 7. Normalized discreteness contribution A vs Grahame’s
derived ¢:1(g): 8=3 A, v=7 A.
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1542 C. A. BARLOW, JR.,
clude as a maximum approximately a radius of the
adion, the diameter of a hydrated water molecule
between the adion and an ion in the diffuse layer at
the OHP, and approximately the radius of this ion.
Although this appreciable thickness may be somewhat
reduced as far as capacitance and average potential
calculations are concerned by supposing with Mott,
Parsons, and Watts-Tobin" that the dielectric con-
stant rises rapidly in the inner layer with distance
from the electrode, it seems unlikely that v could be
as small as 1 A. Figure 6 _seems to indicate that the
values =3 A and y=1 A are a very poor approx1-
mation to the truth for KI since they lead to an in-
finite value for A (implying a zero value of V;) within
the experimental ¢; range. Note that a logarithmic
scale for A is used in this figure and that negative
values of A are shown reversed in sign and dashed.
The more reasonable values 3=3 A and y=7 A are
used for the curves of Fig. 7. Here the ordinate scale
is linear and no pole in A appears in the experimental

AND 7J.

R. MACDONALD

range. The value y=7 & is probably the maximum
value which might be expected for KI on the basis of
the contributions discussed in the preceding paragraph.
If B~3 Aand 1 A<y<7 A, then A will increase faster
than that of Fig. 7. The trend of A vs ¢, of Fig. 7 is
in qualitative agreement with the dependence of ¥1/V;
found by various authors using (16) or variants
thereof together with rather inaccurate expressions for
obtaining ¥, and V; from experimental data. No quan-
titative comparison is justified at present because of
the inaccuracy of the expressions which have been used
to obtain ¥1/V; from the experimental data thus far.
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APPENDIX I: LATTICE SUM

We may rewrite Eq. (18) as

$.(R)=— = z { . : } (I1)
’ ¢|[8/(B+7)JatR | & [l 6—C] | &—[68/(8+7) —C|)
where s = an arbitrary length,
kaS‘lkak1f1+k2f2+kaf3,
f.=s5"a; (1=1,2,3),
{=s"R.
We next produce the equality
ARy ze gs%ﬂﬁﬁ utmwﬁmrmmwwm—w}
‘ e[ [8/(B+v)Jas+R | e’ | &~ | &—[6/(B+) Ifs— |
ze (v T [ &=L vG, | &—[8/(B+1) 1~ I2)}
] - , (12
+65(7F)‘zk:{ | &—¢ | | &—[8/(8+v) Ms— | (1)
where

2 T
Erfc(x)=1— Erf(x)=1 _1/ exp(—£#)dt,
2 0

'Y(”: x)EF(n)—P(n; x))

(3, #*) ==t Eri(x),

and should not be confused with the distance, v, and

T(n, x)= / e~ dt,

In Eq. (I2) the first summation may be made to converge rapldly by choosing a sufficiently small value for s.
The problem remaining is to evaluate the second summation. It is this task which now forms a major digression.

We write

I?_(R)E

es(m)¥ g | &—C |

s Y& &) G | & [Bf/ B+ L)
| &—[8/(6+7) M~ |

" es(m)t [E—¢
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where 6(X) = Dirac & function. If one now defines the reciprocal lattice basis vectors, by, by, bs, as follows:
b= A X A3 A X A3
1= =
ara;xa; (B+y)n™V3

b= A; X a; Az X a;
2= =
ara;xa; (B+y)n™V3

b _ a; X Ag a; X as
3= =
a-a;xa; (B+y)nV3

and the associated vectors g;=sb;(i=1, 2, 3), one finds the following relations:

fie8;="0; (14)
£ = [f2|=r/s, |fs]=2084+7)/s; (15)
2
gl=ll=5,  [&]=s/+m); (16)
S108s=8o =i -fi=F- =0 fi-fhr=—3(n/5)%, g -&=3(s/r)2 (17)

Finally, we require the normalized reciprocal lattice vectors hy=g;+N:8:+As8s, where Aj, Ao, \; are integers.
The trick we use in evaluating I; is to note Parseval’s theorem:

/ PBady*(x) Ba(x) = [ dhGy* () Ga(h),

where
G(h)=%;{d} E/d3x<1>(x) exp{—2xih-.x}.

We show in Appendix II that the Fourier transform of
2= &)
is given by
1
—>.8(h—h )-1,
'l)/ 9&
where
v=fy- £y x 5= s WV3(B+7).
The Fourier transform of #3 | £ |1 y(}, = | £ ) is known to be 7' | h [2exp{—= | h |?}; thus the transform of
G, 7 [E—n])
7| E—n|
8 exp{2mih-n} exp{—7 | h |?}/x | h ]2

Making use of Parseval’s theorem we easily obtain

e L R e e S |

(18)

Note that in Eq. (I8) the & sum includes the point 2=0. To carry out the integration of the terms involving
8 functions is of course trivial. For the remaining integration one proceeds as follows:

j— h 2 0 1
f & exp{ —2wih- Q}W =2 f dh exp(—h?) | dx exp(—2wihax)
T 0 —1
2 [edh 1 1
=—| — exp(—7h®) sin(2wha) =— Erf(nria) =Tv(%, o),
T [24 T*a

0
where a= | «|.
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We have therefore obtained

e 53 expi—n | hy |2}

L(R)==
i(R) €5 (;8—|—y)712\/33‘ x| hy, |2

[exp{—2mihy,- 3} — exp(—2mihy - {[8/(B+v) Hs+L}))

I B o YT 8/ (B I )
GSW[W(”M) [2-+IB/ (B+2) T | ] (19)

If one carries out a limiting process which is not detailed here but wherein the charges are “modulated” in the
(a;, a;) plane by sinusoids of indefinitely large wavelength, one finds that the indeterminate term from the
point =0 should be zero. Thus in Eq. (I9), the term X=0 in the summation should be excluded.

Now we shall obtain an explicit expression for ¢,(R) which makes use of the sixfold symmetry of the lattice.
First we need the following relations:

| &— | =((r/5)2 (ki H-ko*— kike) + | [2ks(B+v) — R/s}%), (110)
where
R=R-ay/|a;| == |R|;

2 — —_ 2}4

f—t fs—cl={(ﬁ)}<kl2+k2ﬂ—k1k»+[2k3(6 +v) =26 R]}; (I11)

B+ s L s
[Cl=|R/s; (112)
| ¢+[8/(B+v) s | =51 | R+28; (113)
| hy, P=N[s/ (28427) P+ (45%/3n%) (AP AP HAde) 5 (114)

R N )\3R
ha - &=\ = . 115
MM sy BBy (115)
i} Az

h < -——f>= iR) . 116
by (+ﬁ+73 Bty (ﬂ‘i‘z ) ( )

It is in the above equations that we for the first time introduce the assumption that R || a;. This means of course
that we are evaluating the potential along the line normal to the IHP which passes through the vacancy site.
If one’s interest were in finding the potential elsewhere, the above equations and the following development could
be readily generalized. Insertion of Eq. (I10)—(I16) into (I9) and referring to (12) leads to the following:

Erfc(w%{ (r1/5)* (ko4 ko — ks +[Mi31)—_—R:|z}>%

ze %e~~,
¢a(R) = _€(2ﬁ+R)+;zk:

{ (7'1/5) 2(1312‘|"k22'— k1k2) +

[st(ﬁtv) - Rﬁ*

Erfc<,r%{ (r1/5)2(B2+ky— biks) +[2k3(3 -I-v?V —26—R J?}%)

{ (/5 2l bt — k) +[2k3 (64— 25— R]ZF

N

T ,{exp(—r{ [s/(26+2v) P+ (45%/3r) MAM—Mdo) })
es (B+v)n3% w{[s/(28+27) AP+ (45/3r2) (MPFA—Aiho) }

WRY (o N\ s (T ORI vl aL(RH29)/5TY
o) oo i) |- 2 R = ey
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We note here that as R—0, the term — (ze¢/esw?) {v[ 3, 7(R/s)?]1/(R/s)} approaches — 2ze/es. This will be needed
when we calculate the micropotential. Making use of the sixfold symmetry of the lattice we write

$u(R)=—— 2 {7[%’”(R/S)ZJ_ZL%,W(R—I—Z;B)Z/s?]}

e(26+R) () R R4-28

6z &= oo ka—1 s

+— 2 22

€5 koo ko=l £1=0

Erfc<7ré{ (ry/s) (k2L b2 — k) +[2k3 wﬂtﬁﬂ*)

{ (r/5)* (ki — bas) +[MT} %

ErfCI:ﬁ((n/s)2<k3+k22—klk2) +[2k3 (ﬁ+71—ZB—RJ2)%:|

[Zka (B+v)—28— R]Q}*
N

{ (r1/5)%(ki>+ko?— kiko) +

Erfc{w% %_(EJE;’)_‘R“ Erfc{ﬁ 2k3(6+'y)—26—R“
e &, s

N

€5 ko i 2k3(B+7) — R l I 2k3(B+v) —28—R ’

6ze §3 o o A=l TR 213
+— [COS( )— cos B—{—lR)]
es (B-+7) nW3 pp— )\ZZ=:1 =0 ¥ 2

eXp{_”[(ZﬁH )AH F(W A=) ]}

X
s\ 452
2.1 77 (.2 9__
7r[(26+27> Mg MM)]
- i)
exp| —7r)\32< )]
o 28+2y
2ze 7!‘)\3R> 27!')\3 1 )]
F - 3R]} 118
€s (ﬁ+’y) N3 )\3;1 s X [COS(B‘l“’Y cos T 8-+3 (118)
2
3(2B+27)
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Specializing to the case R=0(x="v) yields the rapidly convergent result,

$a(0) = _ﬁ_'_; Icg—:w k; K10 L(r/s) 2 (kit+k?— kike) + (4ks/s) (B-+7) 2]

ge bze & & kzz‘:lliErfc{ﬁ[(n/S)2(k12+k22—kxkz)+(4k32/52) (B+7)*F}

_ Erfc(m{ (r1/5)2(klH-ks?— kike) + (4/52) [ (B+7) ks—BJ})
{ (7’1/5) 2(k12+k22" k1k2) + (4/52) [(ﬁ‘f")’) k3—ﬁ:|2}%

Sy {Erfc{w* | [2ks(8+v) Vs |} Erfela! | [2(84) ks—28]/s I}}
| [2ks(8+7) /s | | 2(8+7) ks—287/s |

€5 k3——co
(k3£0)

122¢ 53 w o Al B )]
_—— 1— 2\
+ es (B+y)n®3 va=‘: x; x?;o[:[ COS( "Bty

exp(—7 L5/ (26-427) T+ (452/3r2) (MAAF— M) }):]

T{NLs/ (28+27) P+ (457/3r7) (MM — M) |

g_Z_e 53 o exp{—ﬂ)\f[s/(z;@-l—z'y)]?}[ B ( i)] 2z¢  ze ( s
o BInrBa T ol (B L ™ = Tage BT

28
B+ 5 ‘) (119)

The final step needed in determining the micropotential is to subtract out the contribution of the line of self-
images to the potential ¢.(R). This contribution, Sp(R), is simply

2 28 & 1 1
So(R) = _?(27+T>+? kaZ=1{ [2ks(8+v) +R]—[2k;(8-+7) +28+R]
+[2k5(B+y) — RI'—[2ks(8+v) — 26— R]™}.  (120)

Next we make use of the identity

S Ln42) 1= (n45) T4 (s) ¢ () +2 =2,

n=1

where the tabulated® i function is further discussed by Erdelyi,” and is not to be confused with the potentials
V1, ¥, or ¥, We obtain

SolR)=— e(Zﬁzj-R) +e(zﬁz—le-zw) M_ jgi;)—"(_ 2ﬂf27)+¢(;2i§y)_¢(26f27>]'

But since ¢ (—2) =¢(1—3) 27,

_ e ze 2B+R _ R
So(R) = 6(25+R)+25(6+7)[¢(26+27) ¢<2ﬁ+27)

2 R 2842y 28+2
R+B)_¢(1 )+6+7_ B+2v

- ] (I121)
28+2v 28+2v/ " 28+R R

+(1-

2 H. T. Davis, Tables of the Higher Mathematical Functions (The Principia Press of Illinois, Inc., Evanston, Illinois, 1933), Vol. I.
% Higher Transcendental Functions, edited by A. Erdélyi (McGraw-Hill Book Company, Inc., New York, 1953), Vol. L

Downloaded 24 Jul 2007 to 152.2.62.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



ADSORPTION MICROPOTENTIALS. I 1547

As R—0, So(R) goes over into

_ %, mn o 3 B v\, 6+y
5(0)= 266+E(B+'Y)T26(3+7)[¢(ﬁ+7)+¢(ﬁ+7)T 5 ]

)]

where v;= Euler-Mascheroni constant =0.57721566. As special cases when 8=4v, from ¥{1/2)=—v,~21In 2
we find S¢(0) = — (2¢ In2) /B¢; when y=28, S3(0) =— (z¢In3) /ey.

APPENDIX II: DETERMINATION OF Fs{ ) ,'8(§— &3 )exp(— 2mix-§)}

Y
Lemma 1:
35 exp{2miVk}= 32 5(k—).
N=—c y=—o0
Theorem 1:
Ni flx—N)= f: exp{2mrivz) j; mf(é) exp(—2mivt)dE.
Proof:
fla)= f " dk exp(2miks) f (8) exp(—2mikt)ds.
A f(x—N)= f " dk exp(—2miNE) exp(2nikz) f (8 exp(—2nikt)dt.
=M= 3 ] ® dk exp(2wikx) exp(—2miNk) f (8) exp(—2mikt)dt.
N=—uw Nz w0 ~—Co
By Lemma 1,
S fa=)= 3 f ” dk exp(2mikx) 3 (k—v) f “E) exp(—2mikt)dt
Ny y=—co¢ — —w
= i exp{2wivx) ] eof (&) exp{—2wivE)dE.
Lemma 2:

Zm:a(x—v)= i exp(2wiNx).

P=—0 N =emiXd

The proof follows from Theorem 1 by taking f(x)=48(x). Next we require the equations A;=f;-hy (i=1, 2, 3)
where the vectors f, hy, X are defined in the text. Now one may proceed to Lemmas 3 and 4.

Lemma 3:

T exp(arih-t) = %:[flam-fs——m

=1
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Proof:

3 exp(2rih-£5) = X exp[2riy A (he£,) ]
s A s=1

= %j{ﬁ exp[ 2N, (h-f,) ]}

s=1

=3 3 3 expl2rin(h-fy)] exp[2mirg(h-f;) ] exp[2rids(h-f;) ]

A|=—00 Ag=—00 Ag=--00

— fI{ i exp[2zxir.(h-f,) 1}.

8=l As=—o0

By Lemma 2 this becomes

g=1 p=-wc0

Y exp(2rih-£) =11 32 6(h-fie)
A

) [ © 3
=> > ; l;Ilé(h-fs—Vs)

p1=—00 po=—0

= Z fIé(h'fs—Vs).

v 8=1

Lemma 4:

% exp (2wih- &) = (1/v)) zl‘,a(h—hl).

Proof: From Lemma 3 one has

Z;; exp(2rih-§&)) = % fI&{ (h—h,)-£.}.

=1

Define the matrix A by the equations
A=t
where f;;=jth Cartesian component of f;.

Then
h-f,=(Ah)..

Noting that 8(¥)=8(£,)8(&,)8(¢.),
I=Ila[(h—h3,) £,]=o[A(h—h;)].

But
8(AX) = {detA}15(x).
Since
detA— f1‘f2 X fa‘—"l)/,
> exp(2rih-£5) = (1/3)) Zé(h—h;\).
oy by
Lemma 5:

53[%3(%— £)]= % exp(2rih-£y)
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Proof: From the definition of the Fourier transform,

sgt‘%a(z— £)1= %%[6(5— £)]
= zg? exp(—2mih+£5) = exp(2mih-&)).
oy

Theorem 2:

53[2};5(2— £)1=~1/v) %5(h—hx)-

The proof follows immediately from Lemmas 4 and 5.

Lemma 6:
Fs[ (&) exp(2rik-§) J=G(h—k),

where

FsL /(£) J=G(h).

Theorem 3 follows.
Theorem 3:

Fs %Mz—m exp(—2mik-£)} = (1/v7) 2 8(h+k—hj).
by

Corollary:
F[ 22/8(E— ) exp(—2wik-£)]=(1/0) Zd(h+k~hy) -1,
Py by

which was to be determined.
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