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Abstract. The conventional relation h = 'ii tan 6 between free-vibration logarithmic 
decrement .!I and loss tangent or internal friction was shown by Parke to fail for high 
damping conditions. Here it is shown that the relation fails in the opposite direction 
to that found by Parke when h i s  a spatial decrement derived from attenuation of a plane 
wave travelling in a passive medium. The following exact relations are found for this 
case: A = 2 4 p  = 2n ~ tan 48 1, Q-I = 2(u/P) ' 1  1 - (u/p)' 1 = j tan 8 1, where U and 
/3 are the attenuation factor and phase factor of the wave in the material and Q is the 
quality factor of the material. Frequency response curves are shown for 
R = Q-ll(-lh) > 1, Q-l and A m  for the cases of both non-resonant absorption of 
pomer and resonant absorption. For resocant absorption the phase lag 8 may exceed 
~ ' 2 .  The deviation between the present results and those of Parke is shown to arise 
from intrinsic dificulties in precise!y defining and measuring period (free vibration) 
or wavelength (wave motion) under high-loss conditions. 

I. Introduction 
Although it is well known that the usual simple equations relating dissipation factor and 

such quantities as attennation of a plane wave or logarithmic decremer,t break down for 
high-loss conditions, the exact relations which hold for any possibie loss are not iireli known. 
Here we shall investigate these relations for the specific case of internal friction losses in 
solids. The resxlts will apply as well? however: to electrical losses in dielectrics, semi- 
conductors. or metals. 

There are a number of methods of measuring the internal friction energy-loss parameters 
of anelastic linear materials (Koisky 1953, Zener 1960> Klima 1962). By measurigg the 
heat produced during cyclic deformation one can determine the ratio of energy dissipated 
per cycle throughout the specimen A W to the maximum stored deformation energy W. 
Measureinent of the decay of the amplitude of oscillations of a freely vibrating body yields 
the logarithmic decrement A. a well-defined quantity provided that the decay is exponential 
and that the damping is not so large that the motion is aperiodic. By exciting forced 
osciilations of 2 material with a harmonic force of constant amplitude and variable fre- 
quency, the compliance and resonance curve of the material may be obtained and related to 
interna! friction in the material. Finaily, measurement of the attenuation of the amplitude 
of an elastic wave in the medium may be employed to yield the attenuation constant a. 
Note that these various rcethods may yield loss parameters related to different elastic 
processes such as shear, volume compression, longitudinal deformation, etc. 

For sinall damping, it is conventional to write 

1 = 7i t an8  (1) 
where tan 8 is the internal friction dissipation factor or loss tangent. and 1 and tan 6 should 
properly both be obtained from nieasurements involving the same type of deformation. 
Here S is the phase angle by which a sinusoidal strain lags an  applied sinusoidal stress. I t  is 
frequently termed the loss angle. Recently, Parke (1966)t has shown that for a standard 
linear solid with appreciable damping, 1 > 7i tan S in the frequency region near the maxima 
of .!I and tan S. For large damping he finds that the usual relation fails by a significant 

i Parke denotes the logarithmic decrement by Q rather than 1. 
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ratio. Note that 1 and tan S are only connected by equation (1) for loM-loss conditions 
when the measurements nhich led to them Lvere properly carried out at  the same frequency. 
While it is relatively easy to change the frequency in tan 8 measurements. it is not as easy 
to do so in free vibration experiments. 

The present uork leads to the surprising result that for a general model of the solid 
(nhich includes the standard iinear solid model). 1 < 7~ tan S when A is derived not from 
free vibrations but from attenuation of a longitudinal plane pressure wave travelling in 
the medium. 

2. Analysis 
Consider first the application of an alternating longitudinal stress G = G~ exp ( i w t )  to a 

general linear viscoelastic material. For sufficiently small G ~ ,  such that 1 W and W are 
proportional to the square of the amplitude of vibration (and thus the material remains 
linear), the response will be an alternating longitudinal strain E = D (io) G, where D ( iw)  is 
the complex longitudinal compliance. This notation and much of that to follow conforms 
with the recommendations of the Committee on Nomenclature of the Society of Rheology 
(Leaderman 1957). Let D ( i x )  D ,  and D(i0 )  De and consider. for simplicity. a 
material with infinite viscosity. Then 

D ( i w )  Dg Drt(iw) 
= Dg(1 _L Q (iu), (2) 

\i here Da(iw) is the part of the compliance arising from anelastic effects. 

and 

In these equations, Dd -1 Da(iO), De is the equilibrium compliance, and D g  is the instan- 
taneous or elastic compliance. In terms of the unrelaxed modulus MI: = Dg-l and the 
relaxed modulus M R  De-' the quantity q equals (MU - M R ) / M R ,  termed the relaxation 
sxength by Zener (1960). In the dielectric case q = ( e s  - E , ) / E , ,  where E~ is the 'static' 
dielectric constant and E ,  the 'infinite' frequency dielectric constant. Clearly, either the 
electrical or mechanical q may appreciably exceed unity for some materials. We may 
now write 

Q (io) = J(0) - i H ( w )  ( 5 )  

J ( w )  = (q/Dd) (&(iw)) (6) 
H ( w )  = - (q/Dd) x (Da( iw) )  (7 )  

and observe that Q(0)  = J ( 0 )  = q. The quantity Q ( i w )  is a normalized complex com- 
pliance accounting in a completely general way for the anelastic part of the behaviour only. 
Its relations to other relaxation or retardation parameters are discussed elsewhere (Mac- 
donald and Brachman 1956, Macdonald and Barlow 1963)f. 

From the definitions: it now follows that 
D(iw) = [ D ( i w )  [ exp (-8) (8) 

In both these references J ( 0 )  is normalized such that J ( 0 )  = 1. 
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The quantity sin 6 is known as the power factor. The above relations hold exactly for all 
physically possible values of the phase angle 6. This angle may sometimes be negative, 
indicating a phase lead instead of lag. For examp!e, in an active system which supplies 
rather than dissipates energy H ( w )  may be negative over part of the w range. Further, as 
we shall see later, 1 + J ( w )  and hence cos 6 may sometimes become negative even in a 
passive system. 

It has been shown elsewhere (Gross 1948, Macdonald 1961) that the parameter 
Q-l = A W,'Zn W is equal to tan 6 as given by (1 1). Here, the quality factor Q should not 
be confused with the normalized compliance Q (iwj. When sin 6 or cos 8 may be separately 
negative. the connection between Q-l and tan 6 must be slightly modified. It is reasonable 
that Q be negative for an active system. but Q should not be negative when only cos 6 is 
negative. since the system remains passive. We shall therefore write 

Q-l = 1 tan 6 1 sgn ( H ( w ) )  

The displacement U ( x ,  t )  for a longitudinal plane wave of infinitesimal mplitude 
and ignore the sgn factor hereafter since we shall not deal with active systems herein. 

incident on a homogeneous material may be written as 

U(x ,  t j = U ,  exp (-(a j- ip) x> exp ( iwt )  (12) 
for travel in the Tx direction. Here a = a(w) is the attenuation factor and p = P(w) = w,'V 
is the phase factor. The quantity Vis the phase velocity, equal to the elastic velocity V,  in 
the absence of attenuation and power loss. Let us therefore define Po.= w i v e .  For 
comparison. in the free vibration case considered by Parke (1966j, the strain, or angle of 
twist in torsional oscillations, is proportional to exp {- (6 + iwo)t}.  
damping constant and w o  is the radial frequency of oscillation. 

In previous work (Macdonald 1961) it has been shown that 

a - ip = ipo((l - J ( w ) )  - iH(w))1*. 
This equation leads to 

U = = pO{(l - J(w))z - (H(w))?) l  sin $E 1 
P = po(( l  - J ( w ) ) ~  - (H(w))*} l  1 cos +6 

Here 6 is the temporal 

(13) 

(14) 
direction in a passive where the - sign is appropriate for a wave travelling in the Lx 

material. From (13  and (14) we may derive the exact passive-system relations 

The general correction term in (16) to the usual approximate relation (Knopoff 1965) 
Q-l N 2a113 can also be derived for a less general case from equations given by Marvin, 
Aldrich and Sack (1954). 

Let the wavelength h of the plane wave 5e written as h = 2nViw = 2.i;//3. Then 
the wabe is reduced in amplitude on travelling one wavelength by the factor 
exp (--ah) _= exp (-3) and thus 

1 = 2.i;aiP = 2.i; [ tan46 j (17) 

an exact expression for 1 no matter what its magnitude. It is interesting to note the 
differences between equations (17) and (1). If we define 

then it is clear that R > 1 for 6 2  > 0 in the present case. whereas Parke found R < 1 in his 
somewhat different situation. In  both cases, however, equation (1) is well satisfied pro- 
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vided 6 is sufficiently small. When < 1, we have from (15) R N 1 - (@)z and 
Q-l = 1 8 1 ,  where 6 is in radians. In the opposite extreme as 6 - 7~12. a -+ P. ,l + 27~ and 
Q -+ 0. Note that the G, = 0 amplitude ratio is exp (-27~) e 1/535. When Q = 1, on 
the other hand, A = 2 4 2 ’ 2  - 1) 2 2.607 and the corresponding amplitude ratio is 
about 1113.6. 

I I 1 1  I 1 1 1 1  I I I I I l l 1  2.0 

e x p  ( h )  

Figure 1. The ratio R = Q-l (1 7 )  p!otted against the inverse damping amplitude ratio, exp (1). 

In figure 1 n.e have plotied R against the inverse amplitude ratio, exp (1). The Q = 1 
value of R is still only about 1.2, showing that very low (2 values are required for R to be 
much greater than unity. Parke found that when q = 1 and exp (A) = 3.78. the minimum 
R N I,’1.2. In the present case this value of exp (1) corresponds to only R e 1.044. a 
considerably smaller efiect. 

The complex admittance Q ( iw)  may describe a system with one or many discrete relaxa- 
tion times or with a C O I ~ , ~ ~ ~ : O U S  distribJtion ~f silch times. Eisew’nere (Macdonaid i963). 
lye have suggested a general distribution of relaxation times function which seems parti- 
cularly appropriate for many viscoelastic materials. Here it is of interest to investigate the 
behaviour of R with frequency for two different types of compliance each involving, for 
simplicity, a single relaxation time. 

Let T~ be the efiective relaxation time of the material and define the normalized frequency 
variable kt’ coro. The simplest non-resonant compliance function is or’ the Debye type 
and leads to 

JD = 4/(1 - U;‘> (19) 

HD = qJv/(l w-’). (20) 
These equations are formally ecpivalent to those associated with the standard linezr solid 
(Zener 1960). Note that even though the materia! is non-resorant: equations ( l l ) ,  (19) 
and (20) lead to a resonance curve for tan 6. 

Alternatively. we shall consider a Loreiitzian compliance function which itself exhibits 
resonance. Such a function leads to (Macdonaid and Brachman 1956) 

I 411 .L W,,(W- WO) 1 - w0(w- w,) 
1 - ( W -  WC)* 

JL - __-___ - 
2 1 1 - ( W -  Wo)2 

H L = ~ [ ~  qW 11 ( W -  W,)?)-l- (1 - ( W -  W0)2]-l] (22) 

where WO = w o ~ o  is the normalized resonant frequency. Note that when WO = 0, (21) 
and (22) reduce to (19) and (20), respectively. Such reduction does not occur with the 
more usual one-term Lorentz dispersion formulae for resonant absorption. The present 
equations are thus more appropriate and general (Frohlich 1958). 
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Figure 2 .  The quantities R, Q-1 and A i r  
plotted against W E  W T ~  for various q values 

and WO = 0. 

Figure 3. The quantities R, Q-l and 11% 
plotted against W =  W T ~  for various q values 

and WO = 1. 
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Figure 4. The quantities R, Q-l and sir: 
plotted against W = W ' T ~  for various q values 

and WO = 2. 
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The quantities R, &-I and Figure 5. 
plotted against W z W T ~  for various q values 

and WO = 4. 
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3. Frequency-response results 
Figures 2-5 show frequency response curves for R. Q-l and A / r  for a variety of q values 

and WO = 0, 1, 2 and 4. respectively. The curves were computer calculated and were 
automatically plotted. The change in the vertical scales as q and WO increase should be 
especially noted as well as the narrowing of the curves as WO increases. In addition to the 
increases in curve heights shown as q and WO increase. it is clear that the frequency corres- 
ponding to the peak of the curves also increases with them and does not occur at 
w = 70-1 (log W = 0) but at greater frequencies. 

Let WM be the normalized frequency at which Q-I reaches its maximum. In the WO = 0 
case, WAI = (1 + q)l12 = (De/Dg)l12. When W = WM. 

Q-l = q/2(1 1. 4)lI2 = (De - Dg)/2(DeDg)1/2. 

For WO = 0, infinite q is thus required to reduce Q to zero. It is of interest to note that 
when q < 1, Q-I ?$q  = HD at W = 1. 

When WO > 0, Wlf is given by a considerably more complicated expression. Further, 
note that for the same q all WO > O  curves lie above the corresponding WO = 0 curves. 
As WO increases and wo exceeds r0 - I  by a larger and larger factor (WO > 1). it turns out. in 
fact, that J L  can go negative and finally even exceed unity in magnitude. The larger WO, 
the smaller the value of q required for 1 J ( w )  to become negative at large W values. 
When Wf > WO2 > 1, it is readily found that JL = - 1 when q c: (W/ For sim- 
plicity. we have limited the WO and q combinations used in figures 2-5 to those mhich keep 
J ( w )  > - 1 and thus restrict S to the range 0” < 6 < 90”. 

At low frequencies values of 0-’ as high as 20 have been reported (Benbou and Wood 
1963) for organic glasses which show viscosity. Although viscosity contributions have 
been omitted from the compliance functions used herein. they may readily be added to 
them in a simple way. 

4. Discussion 

Although it may seem surprising that R should exceed unity for the present situation of 
power absorption from a plane stress wave and be less than unity when A is derived from a 
free vibration experiment, such a difference can and must arise from the differences in the 
two experimental situations, which lead to diKerent results for 1 even when both A’s are 
defined in conventional and reasonable ways. 

When A increases to unity or beyond: it becomes increasingly difficult to define precisely 
and measure. In the plane wave situation, the wavelength in the material must be known 
to obtain A. but the error in establishing a definite h characteristic of the system grows as A 
increases. Similarly, to obtain h in the free vibration case one must know the period, but 
this too becomes more difficult to establish precisely as A increases. Although these 
problems may be reduced, but not entirely avoided, by replicating measurements and using 
statistical analysis: these techniques will still not save one from the situation that at suffi- 
ciently large A the imprecision in h will approach A itself in magnitude. 

Although the frequency associated with a wave of the type of equation (12) may be very 
well defined, the wavelength, cr wave number k,  is actually distributed and not of the form 
@(k - ,B), where 6(k - p> is a Dirac S-function. If we write f ( x )  = exp {-(a + ip> XI, 
then Fourier transformation off(x) yields its mate 

g ( k )  = {a  - i(p - k))-I. (23) 

The quantity I g ( k )  I exhibits resonance character and shows, as expected, that the most 
probable wave number is k = p .  The Sk = I p - ke 1 which produces i g (ke)/’g ( p )  I = e-1 
is Sk = a($ - 1)1/2 z”_ 2 . 5 ~ .  If we note that 6x e a-l, then SkSx N 2.5, not in conflict with 
the Heisenberg uncertainty relation SkSx 2 1 (Mott and Sneddon 1948). 

In the temporal damping case, the characteristic function is of the form 
exp {-(( + iwo)t), where w 0  is the most probable radial frequency of vibration. Fourier 
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analysis then leads analogously to Sw N 2 5 [ :  again consonant with the uncertainty relation 
Swat 2 1 if S t  is taken as 5-l. 

To first order in 1k ,  we may write I S1/1 I N 1 Skjk I .  Suppose that A can be determined 
sufficiently accurately by replication and statistics that its most probable value is found to be 
1 = 2~aj,8, involving ;9, the most probable value of k .  We may then write 

1 6 A j A  1 N 2.5a/;9 = 2.5112~ A12.5 

which holds when 1 81 1 < A. This condition in turn requires A g2.5. (The same 
conclusion may be reached in an analogous way for temporal damping.) Clearly, when 
1 2 1, therefore, the distribution in k produced by large a makes it impossible to attribute 
a very precise meaning to A itself. Further, for such large A conditions, if two different 
experiments, each with a distributed or imprecise A, produce h values whose difference 
appreciably exceeds 2A2/2.5 in magnitude, then something is wrong with one or both of the 
experiments or definitions of A. On the other hand, if the different A’s should be closer 
together than the above A difference, no such difficulty can be asserted apriori. 

Parke (1966) found for q = 1 that h m z x  N 1.33 for temporal damping of a standard 
linear solid. This value of h leads, using the above results, to I SA 1 N 0.71. On the 
other hand, damping of a plane wave travelling in such a material (WO = 0) leads for 
q = 1 to N 1.08 and to 1 6h [ N 0.46. The sum of these two I 64 I values is 1.17, 
satisfactorily larger than the actual difference between the two A’s, - 0.25. Thus, it is 
clear that the differences found between theoretically calculated temporal and spatial 
values of 1 are within the expected range. It is evident that considerable care must be 
exercised in the interpretation of experimentally found A values when A 2 1. 

Finally, it has been already mentioned that there are situations when the attenuation of a 
plane sound wave travelling in a material may be intrinsically negative even though the 
material is non-resonant (Hutson, McFee and White 1961, White 1962). Most of the 
present analysis should apply to such amplifying systems after a change of sign of U and 
corresponding changes or reinterpretation of some of the formulae and definitions herein. 
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