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Solution of a Transistor Transient Response Problem* 

INTRODUCTION 

/7 OOD TRANSIENT response 

I 

J. R. MACDONALD? 

is desirable ‘in many 

k.J high-frequency and switching applications of 
transistors. A single transient response measure- 

ment can, in principle, yield frequency response informa- 
tion over a range of frequencies of width determined by 
the short-time resolution of the transient response measure- 
ment and the duration of the measurement. Further, 
measurement of the response to a unit step or unit impulse 
(delta function) of voltage or current applied at the input 
of the device allows its response to any other driving 
curve-shape to be calculated.’ 

Calculation of transistor transient response is compli- 
cated by the fact that a transistor is a distributed active 
element requiring an infinite number of passive elements 
(resistances and capacitances) and a finite number of 
current and/or voltage generators for its complete descrip- 
tion by means of an equivalent circuit. Even transistor 
equivalent circuits having a finite number of elements 
can be excessively complicated.’ The situation is further 
complicated because transistors are bilateral instead of 
unilateral elements; hence, changes in the output circuit 
are reflected in the input and vice versa. 

The present work was undertaken to investigate the 
utility and practicality of calculating transistor transient 
response by bypassing both the equivalent-circuit tran- 
sistor representation with an infinite number of elements 
or an approximate form of it with a finite number of 
elements. Transient response is calculated by dealing 
directly with the meromorphic functions arising from the 
solution of the small-signal linearized differential equations 
pertaining to transistor operation.3 Moll has treated the 
large-signal transient response of junction transistors by 
approximate methods of accuracy sufficient for many 
purposes.4 In addition, he has calculated the small-signal 
transient response by making use of the usual approximate 
expression for the short-circuit current transfer ratio CY. 
For a single mode of operation, the present work shows to 
what order of accuracy this approximation is valid and 
also yields more accurate results suitable for a quick and 
approximate oscilloscope determination of transistor 
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frequency response and material constants by means of 
transient response measurements. 

In his work, Moll has taken transistor emitter efficiency, 
y, as unity and neglected its frequency response. Although 
this approximation is not necessary, it is usually a good 
one and simplifies the analysis greatly. Therefore, it will 
be made here as well. Then, the current transfer ratio (Y 
may be written for a p-n-p junction transistor as 

a(p) = b(p) = sech $ (1 + ~7~)~” 1 , (1) 
where W is the base width, Q the lifetime of holes in the 
base, L, = (DP~b)1’,2 is the base diffusion length, and D, 
is the ‘hole diffusion constant in the base. The quantity p 
is the complex frequency variable u + iw, where g is a 
constant. When the argument of the hyperbolic function 
is small compared to unity, a(p) becomes, to first order 

(1 + w2/2L3-’ -- 
&) = 1 + p(2D,/W2 + $)-l .- (1’) 

This approximation yields’ w, = 2D,/W2 + 7;’ for the 
a-cutoff frequency; better approximations for this quantity 
have been discussed by Rittner’ and Pritchard.6V7 Eq. (1’) 
was used by Moll in his small-signal transient response 
analysis. 

TRANSIENT RESPONSE CALCULATION 

For simplicity’s sake and because it is sufficient to 
illustrate the method, we shall consider only grounded 
base operation of a junction transistor. Taking y = 1 and 
assuming with Moll that (rc’ + w,C,)(r, + R,) << 1, the 
current transfer ratio h,, reduces to its short-circuit value 
-LY, with LY given by (1). If w, is replaced by w in the above 
inequality, it becomes obvious that it cannot hold at 
arbitrarily high frequencies. Hence, taking h,, as -(Y for 
all frequencies is equivalent to neglecting the effect of the 
collector capacitance C, at the very high frequencies, say 
w, (assumed much higher than w,), where it becomes 
important. Such neglect causes the transient response to 
be in error in the region of very short times comparable 
to or less than w,‘. Again, although it would be possible 
to take such quantities as rb and C, into account explicitly, 
the analysis would be considerably complicated without 
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an important gain in accuracy in the most significant tran- 
sient response region defined by (5w,)-’ < t < (0.3mE)-l. 
Here, therefore, we shall only be concerned with response 
of a system governed by LY alone. Using Pritchard’s more 
exact results for h,,, mgre accurate transient response 
calculations may be carried out when required. 

If the transient response of a system to a unit impulse 
or a unit step applied at its input is known, its response 
to any other input can be calculated.* Although either of 
these responses is sufficient for the above purpose, they 
emphasize different regions of the time scale differently, 
and it is therefore worthwhile to calculate them both. 
We require the change in output current, B(t), from the 
transistor produced by a unit impulse (unity charge) of 
current applied at t = 0, or the change in current, A(t), 
arising from a unit step of current applied at the input 
at t = 0. As is well known, B(t) and A(t) are given by the 
inverse Laplace’ transforms of -a(p) and -a(p)/p, 
respectively. For convenience sake, we shall suppress the 
minus sign. 

To yield a basis for comparison, we wish to obtain A(t) 
and B(t) for both the exact a(p) of (1) and the approximate 
form (I’). The results for the latter are readily found 
from tables’ to be 

B,(t) = (2DD/Wz)e-(zw/*La)27e-sr/r=, (2) 
A,(t) = [l + W2/2L3-‘(1 - e-(2W’nLb)‘re-Sr’*1J, (3) 

where we have introduced the new time variable 
T = D,(?r/2W)‘t for later convenience. It will be noted 
that the ratio of the two exponential time constants in 
the above equations is W2/2Lt, which will be considerably 
less than unity for a good transistor. For many practical 
purposes, the first exponential term may therefore be set 
equal to unity. 

Calculation of B(t) and A(t) from the exact expression 
for a(p) is somewhat more complicated but follows the 
usual treatment of a meromorphic function.g The function, 
either a(p) or p-la(p), is first written as an infinite product 
in terms of the roots of its denominatpr. Then, the infinite 
product is rewritten in terms of an infinite series of 
partial fractions involving these roots. The inverse 
Laplace transform of each of these fractions is easily 
carried out, yielding the final result as an infinite series 
of exponentials. For the present case, we find 

B,(t) = (nDp/WP)e--(2W’rL’)‘r 2 (- 1)“(2n + l)e-(*“+l)‘r, 
0 

(4) 

A.(t) = sech (W/L,> 

_ (4iTje-~2~/r~6)+ $ (-1)“(22n + l)e-(2n+1)‘re 

( > 2 
(5) 

+ (2n + 1)” 
b 

8 Gardner and Barnes, op. cit., pp. 234, 262. 
g Gardner and Barnes, op. ?it., p. 241. 

These results may also be expressed in terms of Jacobian 
theta functi’onsl’ and evaluated from tables when avail- 
able. Since the series are very rapidly convergent even for 
7 = 0.1, it is easiest to sum them directly, however. 

Before comparing (2), (4), (3), and (5) in detail, several 
facts are immediately obvious. First, B,(O) = 2Dp/W2, 
while B,(O), the exact result, is zero. Second, lim T + 00 
[B.(T)/B,(T)] = (~/2)e-“.18g4r. Thus, the final decay of the 
exact impulse response is somewhat more rapid than 
that of the approximate responses. Next, AL(O) equals 
A,(O), since the series in (5).with 7 = 0 may be shown to 
sum to sech (W/L,). Finally, A,( ~0 ) and A,(,a) are 
somewhat unequal unless W2/2Li is vanishingly sniall. 

It may also be noted that the complete zero-order 
exponential decay constant occurring in A, and B, is 
(T/t)[l + (2W/nLJ] = 7;’ + (7r/2)‘D,/W2. This 
quantity is the exact zero-order a-cut-off radial frequency 
w, and may be compared to the previous approximate 
result where 2 appeared instead of (r/2)’ = 2.4674. With 
the omission of the 7;’ term, Pritchard and Rittner 
obtained by a different method approximately the present 
result, but with 2.434 instead of 2.4674. The exact zero- 
order (lowest) cy cut-off frequency fl may now be written as 

fc” = wy27r T (2n7J-’ + 7rD,/8W2 

= 0.15927,’ + 0.39270,/W’. (6) 

The first term, arising from recombination, will usually 
be negligible in a high-a, transistor. 

The above calculation of w, by taking it as the smallest 
exponential decay constant appearing in the transient 
response is not exactly equivalent to the usual defini- 
tion of this quan_tity determined from the relation 
so/I a&,) [ = 2/2. The difference arises from the fact 
that the transient response actually involves an infinite 
number of time constants. This is our reason for denoting 
the above cut-off frequency as the “zero-order” value. It 
depends on a0 implicitly through the relation a0 = 
sech (W/L,). Using this relation, the zero-order (Y cutoff 
radial frequency may be written 

co: = [(r/2)’ + (sech-’ ao)‘](Dp/W”). (7) 

In this form, its dependence on 01~ is evident. For conveni- 
ence, the magnitude of the term in square brackets is 
presented, for three values of (Ye, in the third column of 
Table I. These results may be compared with the similar 
dependence of the conventional a! cutoff frequency dn 
a0 (or PO) given by Pritchard.? 

Fig. 1 is a log-log comparison of the exact and approxi- 
mate transient response for the limiting case a0 = 1. The 
approximate curves are those dotted. The impulse response 
curves are normalized as shown. It will be noted that the 
deviations between the exact and approximate curves 
are largest for small values of T. Figs. 2 and 3 present the 
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The Total Instantaneous Power Output *(t; 0) [Se (55)] 

Setting r=O in (14) gives, in the notation of this 
example 

s 

t 

\E(t; 0) = 4 da(t - x; x)$(z)dx. (105) 
0 

Substituting (103) and (104) in (105) we find, on per- 
forming the integration, 

\k(t; 0) = 7 a/3 f!& [l - e-(“+8)t] 

+ 3 [l - ,&9-.,t]} (106) 

woo 43 j-.- as t--+oo. 
4 a!+p 

(107) 

A Solution of the Integral Equation for $(x) 

In this section we assume a system of the form shown 
in Fig. 5. Then in line with the previous discussion, we 
interpret (105) as an integral equation for $(x). It is 
assumed here that fP(t; 0) is the known function. In 
practice it is very easily measured. We now proceed to 
find the exact solution of (105) for a +(t; X) appropriate 
tolthe system of Fig. 5. 

Fig. 5 

We write (105) in the form (dropping the subscript 
cf on 4) 

xl?(t; 0) = J t$(x){@(t - x; x))dx. (108) 
0 

Differentiate both sides partially with respect to t and 
denote partial differentiation by primes; thus 

s 

t 
W(t; 0) = $44 @#w - x; 4 )dx (109) 

0 

as 4(0; X) = 0 by (24). (110) 

But from (104) we have 

&j(t - x; x) = ae-az[l - @a(t--Z)] (111) 

and thus 
\ 

Q’(t - x; x) = (ye-a*.&ye-2a(t--o). (112) 

Substituting (112) in (109) gives 

W(t; 0) = S o ’ (ae-9(4 1 * { 2ae-2a(t--2)} dx. (113) 

Writing 

f(x) = cue-a?(x) (114) 
g(x) = 2arev2az (115) 

it is easily seen that (113) may be written in the form 
of a convolution integral. Thus 

W(t; 0) = S 
t 
f(xMt - ax. (116) 

0 

This equation is readily solved by the Laplace trans- 
form method. We define a function g*(t) such that 

G*(t)] = l 
PLM) 1 . 

(117) 

It is then easy to show that the solution of (116) is 

f(t) = s &t - x) {; + s,(x)} P’(x; 0)dx (118) 
0 

where 61(x) is the one-sided impulse function such that 

S 
ca 

&(x)dx = 1. (119) 
0 

We may rewrite (118) in the more convenient form 

f(t) = g*(t)w(O; 0) + S fg*(t - x)W’(x; 0)dz. 
0 

Now using (115) we have: 

&{g(t)) = ’ 2ae-2at.eptdt S 0 

2cr =- 
p + 2a 

and thus form (117) 

L,{g*(t)) = 5 o! =-Jg+f, 

and hence we find 

g*(t) = $1(t) + 1, t > 0. 

Using (123) in (120) we have 

f(t) = (1 +$a,(t)}P(o, 0) 

t 

+ 
s{ 

1 + $(t - x) \k”(X; 0)dz 
0 > 

= (1 +;a,(t))I’(O, 0) + -p(t:0) 

+ Jo&(.; 0)dx 

(120) 

(121) 

(122) 

(123) 

(124) 

(W 
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For many purposes, exact fitting of the experimental and 
theoretical curves is unnecessary. Table I presents some 
results useful in obtaining approximate values of a! cutoff 
and of the transistor constants W and Q,. The peak of the 
B.(T) curve occurs very nearly at T = 0.4 for all a0 values 

TABLE I 

00 W/Lb u.“W2/D, W2/rDp Be(0.4) T, 

1.0 0 2.467 0.589 0.94’ 
_I_-- ---L 

0.90 0.467 2.686 0.568 0.89 
__- 

0.80 0.693 2.948 0.544 0.84 

in the range from 0.8 to 1.0. Column 4 of Table I presents 
the normalized peak height of the B,(r) curve for three 
a0 values in this range. Intermediate values can readily 
be obtained to within sufficient accuracy by linear or 
graphical interpolation. If the strength of the input 
impulse can be established, the peak height of the output 

pulse will yield W2/D,. The value obtained in this way 
may be compared to that found from the time at which 
the pulse reaches its ,maximum to give both a check and 
a possible determination of a!,, if this quantity is unknown. 

Column 2 of Table I shows how W/L, depends on CY~. 
Finally, column 5 is calculated from the implicit relation 

‘A(q)/A(m) = A(T~)/(Y~ = l/2. 

The quantity 71 is therefore the normalized time at which 
the step response reaches half of its final value. Since the 
half height position is readily -measured and is inde- 
pendent of input amplitudes, the corresponding time t, 
may be used to calculate D,/W” from the relation D,/W2 
= (2/a)“(r&). When W’/D, is known, the conventional 
(Y cut-off radial frequency (‘2.4340,/W’ for a0 = 1) may 
be immediately calculated. 

Finally, for the convenience of those who wish to plot 
the entire A(T) or B(7) curves for comparison with 
experiment, we present in Table II the quantities A,(r) 
and (W2/?rD,)B,(7) in the 7 range of interest. 

TABLE II 

8. 8~o;6,:O-4 8.88 ; 1OP 8. 8i,;5,10-4 Oi61 Oi58 
.0256 .3561 .3499 

.0851 .0839 .0823 5420 .5284 

.1581 .1542 .1495 .5886 .5681 

.2325 .2257 .2198 .5730 .5484 

.3685 .3547 .3389 .4911 .4616 

.5317 .5062 .4774 .3675 .3364 

.8277 .7755 .7023 .1353 .1134 

.9366 8553 .7704 .0498 .0486 

.9914 .8949 .7973 .00674 .00433 

010 = 0.8 

.0:52 

.3425 

.5106 
-5444 
: ii200 
.4285 

.3025 

.0917 
,027s 
.00255 
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