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Exact Solution of a Time-Varying
Capacitance Problem*

J. R. MACDONALDfY, rELLOW, IRE, AND D. E. EDMONDSON{

Summary—By means of a new method, a closed-form solution
is obtained for the harmonics generated by a sinusoidally varying
capacitance in series with a fixed resistor and battery. The solution
describes the behavior of the condenser microphone, the vibrating-
reed electrometer, a vibrating plate contact potential measuring ap-
paratus, and a special loudspeaker improvement. With only minor
modifications the solution can also apply to the case of a sinusoidally
varying resistance in series with a fixed inductance and battery;
thus, it may, in addition, be usedl to caculate the response of a carbon
microphone. The present large-signal solution, which applies for
any finite values of the modulation index and frequency, is compared
with previous small-signal approximate results, and the dependence
on modulation index and frequency is investigated for such quanti-
ties as output waveform, total harmonic distortion, harmonic am-
plitude and phase, and average input and output power. A very dis-
torted waveshape is obtained for low relative frequencies and values
of the modulation index near and including unity.

INTRODUCTION

EW time-varying circuit problems have been
Fsolved to vield exact expressions for the harmonic

components and thus, to allow their large-signal
behavior to be investigated. With the current general
interest in parametric amplifiers, such problems are be-
coming of more importance. Parametric amplifiers gen-
erally involve time-varying components, such as ca-
pacitors, in circuits which involve both inductive and
capacitive energy storage. Exact large-signal analysis of
such systems is very difficult and is not attempted
herein. Instead, we shall be concerned only with the
simpler problem of capacitive energy storage and shall
show that here, at least, it is possible to give an exact
solution in closed form.

Fig. 1 shows a circuit in which the center plate of a
double capacitance can be moved by an outside force.
We shall be concerned only with the case in which the
equilibrium position of the center plate is such that
(C1)o=(C2)o=C,, where the zero subscripts denote
equilibrium. In addition, we shall take R;=R;=R and
Cs=C,. In the resulting antisymmetrical push-pull
circuit there is no interaction between the top and bot-
tom circuit halves, and initial attention can therefore
be restricted to the top, or single-ended, half alone.
Finally, it will be assumed that the restoring force act-
ing on the center electrode when it is displaced from
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Fig. 1—Circuit diagram for time-varving double capacitor.

equilibrium is proportional to the displacement, so that
the system is mechanically linear. For the present anal-
ysis we shall focus attention on the electrical part of
the problem, as shown in Fig. 1, and shall not be con-
cerned with mechanical impedances and the details of
electromechanical coupling between the movable plate
and the outside world.

When the movable capacitor plate is driven sinus-
oidally, the resulting time-varying current which
flows in the circuit of Fig. 1 will not generally be sinus-
oidal but will contain harmonics of the driving signal.
Such harmonic generation, while similar to that which
arises in a nonlinear circuit, occurs here in a linear time-
varving system which obeys a linear differential equa-
tion and satisfies the principle of superposition. Har-
monics are produced here because of the time-varying
capacitance and not principally because of the inverse
dependence of capacitance on electrode spacing.

The circuit of Fig. 1 can represent a variety of de-
vices of physical interest. First, it can be used as a
representation of a single-ended or push-pull condenser
microphone.! It can also be used to analyze the behavior

1 F. V. Hunt, “Electroacoustics,” John Wiley & Sons, [nc., New
York, N. Y., p. 170; 1954.

H. F. Olson, “Acoustical Engineering,” D. Van Nostrand Co.,
Inc., Princeton, N. J., p. 253: 1957.
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of a capacitance type of displacement probe.? In addi-
tion, it applies to the vibrating plate method of contact
potential measurement®* and to the vibrating reed
electrometer.® As shown in Appendix VI, the present
analysis, with relatively few changes, can also be used
for a treatment of the carbon microphone where a time-
varying resistance is in series with a time-independent
inductance. Finally, the treatment applies as well to the
special loudspeaker discussed below.

The magnetic loudspeaker is one of the weakest links
in the high-quality reproduction of sound. Its perform-
ance has sometimes been somewhat improved by nega-
tive feedback derived from an auxiliary voice-coil
winding and applied around the driving amplifier. This
approach is only partially successful, especially for
heavy-coned, low-frequency loudspeakers, because the
voice-coil current has only partial control over cone
motion and is not, therefore, a true measure of the out-
put sound. More ideal control of cone motion can be ob-
tained by metallizing the cone and making it the center
electrode moving between two fixed metal-screen elec-
trodes in front of and behind the cone. If bias is applied
as shown in Fig. 1, the motion of the cone will generate
a push-pull output signal between electrodes 1 and 2
which can be used for negative feedback. This signal
will be a better measure of average cone motion and
sound output than any that could be derived from the
voice coil. Using it for negative feedback will result in
flatter frequency response, lower nonlinear distortion,
and possibly even some improvement, because of aver-
aging, in the deleterious effects of cone breakup when it
occurs. Note that the above arrangement is, in some
sense, the inverse of the usual push-pull electrostatic
loudspeaker where electric forces are used to move the
center membrane instead of the magnetic forces of the
present system. Although the same electrostatic forces
exist in the present situation, they are negligible com-
pared to the magnetic driving forces. After the above
speaker improvement system was thought of by one of
the present authors, a patent describing a single-ended
version of the device was discovered.® It will be shown
later that the push-pull system without feedback can
exhibit much less nonlinear distortion generation than
the single-ended system.

In the present analysis of the circuit of Fig. 1, we
shall be concerned with the simplest case, that of sinus-
oidal driving force, such as that occurring when a con-

2 R, D.Shattuck, “Capacitance-typedisplacementprobe,” J. A coust.
Soc. Am., vol. 31, pp. 1297-1299; October, 1959.

3W. A. Zisman, “A new method of measuring contact potential
differences in metals,” Rev. Sci. Instr., vol. 3, pp. 367-370; July, 1932.

4 J. R. Anderson and A. E. Alexander, “Theory of the vibrating
condenser converter and application to contact potential measure-
ment,” Australian J. Appl. Sci., vol. 3, pp. 201-209; September, 1952.

s H. Palevsky, R. K. Swank, and R. Grenchik, “Design of dy-
namic condenser electrometer,” Rev. Sci. Instr., vol. 18, pp. 298-
314; May, 1947.

¢ G. H. Brodie, U. S. Patent No. 2,857,461; October 21, 1958.
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denser microphone is exposed to a single-frequency
sound source. There have not been many treatments of
the present problem, and none has been carried to such
a stage that it is practical to calculate the high-order
harmonics which are of importance at low relative fre-
quencies and high values of the modulation index, .
Wente? analyzed the condenser microphone in 1917 and
gave results valid for the fundamental response at low
m and high relative frequencies only. Since then, the
most ambitious treatment of the problem seems to have
been that of Anderson and Alexander.* They have dealt
with the cases where there is no parallel fixed capaci-
tance C; across R and where C; is nonzero, but their
analysis of the latter situation is incorrect. As we shall
show later, such capacitance can usually be made neg-
ligible in practice, and it will be neglected in much of
the present work because it considerably complicates
the analysis.

ANALYSIS

Consider the top half of Fig. 1 only, with ,=17, C;=C,
and Ry=R. The basic equation to be solved is then

d(] Vl

av,
dt R

v (M

where ¢ is the instantaneous charge on C and V;=7V,
—(g/C). Eq. (1) can be manipulated to yield

dq+ q [1 CgR(dC>]_( C )Vo
dt ' R(C+ G c\at/)l \c+a/R’

The quantity we wish to calculate is the steady-state
value of i/i9, where 4,=T,/R. This quantity can be
written from (1’) as

(1)

(i/i0) = (c n c)

g RCy (dC
“veral e (@) @
Vo(C + Cs) c \d

which can be calculated when C(¢) and ¢(¢) are known.

Eq. (1') may be formally integrated by means of an
integrating factor when C(t) is specified. The result in-
volves rather unwieldy integrals however, and further
analysis will be carried out here only for the simpler
case, for which C;=0. Then, a steady-state solution for
i/10 is of the form

7 1 1 dt
(‘) ="Ec‘e""[‘7éf *5]
.fexp I:i —(zf:ldl (2)
RJ c ]l

7 E. C. Wente, “A condenser transmitter as a uniformly sensitive
instrument for the absolute measurement of sound intensity,” Phys.
Rev., vol. 10, pp. 39-63; July, 1917.
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Further progress requires knowledge of the time varia-
tion of C. We shall assume that the spacing between the
plane-parallel plates of C is given by d=dy(14m sin
wt) for an input driving frequency of (w/2w). Here m is
a modulation factor usually satisfying 0 <m <1. Then,
neglecting fringing effects, taking rigid capacitor plates,
and assuming that the driving frequency is sufficiently
low that Maxwell's equations need not be invoked, one
may write

C = Co/(1 4+ m sin wt). 3)

For simplicity, let us now introduce the new variables
o=wt, B=1/RCy, z=w/B, y=1/3, and x=my=m/z.
Also let M=(1+4+m sin ¢)=Cy/C. Note that z is a nor-
malized frequency variable. Eq. (2) may now be simpli-
fied with the help of (3) to yield

(_:1_) =1 yMe—ZI¢+z cos vbf gu—z cos dbdd) (4)
o0

The integral in (4) cannot be carried out explicitly to
yield 7/%y in closed form. It will be shown, however, that
closed expressions for the fundamental and harmonic
components of 4/7, can be obtained.

When x<«<1, one can expand the exponentials involv-
ing x cos ¢ in (4) in a simple power series. The integra-
tion can then be carried out and the result simplified to
yvield the fundamental and harmonic current com-
ponents. When this procedure is applied in general, it is
found that the harmonics, far from appearing in closed
form, must be calculated from the product of two double
series. In Appendix I, the results of this approach are
given to the second order in m and up to second har-
monic terms only.

Another method of handling (4) is to use the expan-
sion?®

00

e s = 3 ¢(£1)'7,(x) cos (s9), ¥
§=0

where eo=1, ¢,=2(s>0), and I,(x) is a modified Bessel
function of the first kind. When (5) is used, /7o may be
expressed as the product of two series or as a double
series.? Finally, each harmonic current component can
be expressed as a single infinite series of modified Bes-
sel functions. Such reduction is very laborious, and the
resulting series are only rapidly convergent for small x.
The zero-order harmonic component of 7/7, turns out
to be

- Y (—lyalim) 0<z< ). (6

() --%

8 W. J. Cunningham, “Introduction to Nonlinear Analysis,”
McGraw-Hill Book Co., Inc.,, New York, N. Y., p. 248; 1958.

9 Since the present analysis was completed, the treatment of
Anderson and Alexander* has been discovered. It makes use of (5),
but a double series is formally avoided since the authors Fourier
analyze their single-series results separately to obtain harmonic com-
ponents.
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Since the sum of the series may be shown to be unity,
there is no static component of current, which is in
agreement with the fact that a direct current cannot
flow through a capacitance, even when it is varying
with time as in the present case.

Another approach, and the one we shall follow in de-
tail here, is to Fourier analyze the steady-state part of
(4) directly in order to obtain closed expressions for the
harmonic current components. Before Fourier analysis
can be applied, the steady-state current must be ex-
pressed in terms of a definite rather than an indefinite
integral. Such transformation is carried out in Appendix
IT with the result

1

—)=1

1o
Next, we wish to express 7/7y in the complex Fourier
series

(i) = D caeimt= % + 2 la.cossp + b.sinsg}, (8)

20 N=—00 s=1

yMez cos ¢ 21

e — evr—zcos(tu) g . 7
@ =1l Hdu (7

where ¢, =(a, —1b,)/2.

The complicated calculation of the complex co-
efficients ¢, is carried out in Appendix III. The final
closed-form results are

Co = 0, (9)

inw

Cn = Liy(%) + Tn—iy(). (10

- (n > 0).
sinfz wy

Eq. (10) is difficult to use directly for numerical cal-
culations because of the imaginary and complex orders
of the modified Bessel functions appearing in it. As
shown in Appendix IV, however, recursion relations
may be established between the complex and real har-
monic coefficients of different orders. These relations
allow the coefficients for any harmonic order to be cal-
culated provided those for the two adjacent orders are
known. One simple way of obtaining such initial start-
ing coefficients is to calculate them directly from the
power series expansion of (10). The necessary results
are developed in Appendix V. Once a,, az, b1, and b; are
calculated, the recursion relations of Appendix IV allow
coefficients of higher orders to be obtained quite simply.
Although the calculation of the initial a’s and b's re-
quires series evaluation, the series are far simpler than
those obtained by the other methods of solution dis-
cussed briefly above, and the convergence of the present
series is such that they are useful for much higher x
values than could be treated practically by other meth.
ods.

The quantity z2=y"!'=RCw is a normalized frequency
variable proportional to the ratio of the time constant
of the undisturbed system to the period of the driving
force. In addition, the following symbols will be used in
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the next section. Each harmonic component of ¢/7 ap-
pears in the form

h.(¢) = a, cos np + b, sin ne (11)
= an s (¢ + Xa),
where
an = (as? + B2)1, (12)
and
Xn = sin™! (an/an). (13)

In addition to the harmonic amplitude a,, we shall
also be interested in the normalized amplitude =,
= (a,/c1). The total harmonic distortion (THD) given

by
© 1/2 © 1/2
THD = [ > aﬁ] / [ > aﬁ]
r=2 r=1

is likewise a quantity of interest. When the entire cir-
cuit of Fig. 1 is operated in the push-pull mode with
C1=C, and R;=R;, the symmetry of the arrangement
is such that no even-order harmonics appear between
the 1-2 terminals. In this case, it is pertinent to define
the modified total harmonic distortion factor (MTHD)

by
© 9 1/2 0 9 1/2
MTHD = [Z azr_l] / [ > azr-l] , (1)

r=2 r=1

(14)

an expression which involves odd harmonics only.

Using an IBM 650 digital computer, (49)—(52), and
(59) in Appendixes V and VI have been summed for
values of z and m that are of interest. In such summa-
tion, additional terms of the series are calculated until
a term is reached which is sufficiently small to cause
no change, within the eight-figure precision of the com-
puter, in the partial sum to that point. This procedure,
which yields sums of maximum computer accuracy, is
necessary because the recursion relations (42) and (43)
require starting values as correct as possible to allow
accurate higher order harmonic components to be calcu-
lated.

DiscussioN oF RESULTS

Since the series for the harmonic components are con-
vergent for any finite value of x, they can be used for
very large x values, which can correspond to high val-
ues of m and low values of 2, the normalized frequency.
Although m=1 is not usually a useful value for the
physical devices discussed in the Introduction, it is
found that there is a smooth transition from m =0.99
to m=1, and it is therefore convenient to consider this
limiting case. The pertinent series converge, in fact, for
m>1; so the limitation m <1, when pertinent, is physi-
cal, not mathematical. It would be possible to use an
analog computer to represent the circuit of Fig. 1 in
such a way that negative capacitances were realized. In
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this case, m could exceed unity, and the present mathe-
matical results would still apply. However, since the
physical devices which the mathematical results de-
scribe are limited to m <1 or m <1, the numerical cal-
culations leading to the results of the present section
have been also limited to the range 0 <m <1.

Fig. 2 shows how the distortion factors depend on fre-
quency for various values of m. It will be noted that for
21 both THD and MTHD approach limiting values
which, in the case of THD, are very nearly equal to m.
Thus, for example, no matter how low the frequency,
the maximum total harmonic distortion for m=0.01 is
one per cent. For 22>1, both THD and MTHD decrease
as the frequency increases with limiting slopes of —1
and —2, respectively. As expected, MTHD is always
less than THD even at very low frequencies.

Fig. 3 presents the distortion factors as a function of
m with z the parameter. These graphs show clearly that
only for high values of m near unity can decreasing z
below 0.1 make any very appreciable difference in THD
and MTHD. Such decrease, however, can change the
harmonic constitution considerably. The limiting slopes
in Fig. 3(a) are unity, while those in 3(b) are equal to
two. The dotted lines show the linear extrapolations of
the curves.

(a) (b)

Fig. 2—Harmonic distortion factors, THD and MTHD, as functions
of normalized frequency z for various values of the modulation
index m.

THD W MTHD i

. [
o1 02 ©3 04 05 o€ or asas

(b)
Fig. 3—THD and MTHD vs m for various values of z.
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For most of the practical devices to which the present
analysis applies, it is desirable to operate under condi-
tions which minimize harmonic distortion. Fig. 4 is
drawn for THD and MTHD values of one per cent and
shows how m and z must be interrelated to maintain
these values. To the right of each curve the distortion
will be less than one per cent. Clearly, for a given z, m
may be much higher for a total push-pull harmonic dis-
tortion of one per cent than for a single-ended total
harmonic distortion of the same value. The limiting
slopes in this figure are both two.

Another quantity like THD or MTHD which is de-
termined by the entire spectrum of harmonics is the
rms relative wave amplitude. We shall actually plot the

amplitude
© 1/2
(209

n=1

which is +/2 times the rms amplitude. The quantity 4
reduces to the zero-to-peak amplitude of the wave only
when a single sinusoidal component is present. Thus,
for large z, it approaches ey which, in turn, approaches
m. For push-pull operation we shall take A as

9 1/2
Z 02r—1
r=1

llllllll T

MTHD=0.0i

flll

THD = 0.0l

Ligigs

100

10° S AT el o vl 4y
10 10" | 10
z

Fig. 4—Interrelation between m and z necessary for MTHD
and THD to remain constant and equal to 0.01.
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for convenient comparison with that for single-ended
operation. Fig. 5 shows how 4 depends on z for m=0.5
and 1. The limiting slopes for the m=0.5 curves are
unity, the usual 6 db/octave slope to be expected for a
capacitative reactance. Note that when the single-
ended and push-pull curves are very close together, only
the fundamental is of importance.

The equations for all the above quantities which de-
pend on sums of harmonics have been written with an
infinite upper limit. In practice, as the harmonic index
n increases, one eventually reaches a region where higher
harmonic amplitudes are decreasing so rapidly that
further harmonics add nothing appreciable to the series.
In the machine calculations, summation of the series are
always carried to this point even when # values as high
as 25 are required.

Fig. 6 shows how the normalized harmonic ampli-
tudes depend on the order of the harmonic for various
m and z values. We have connected the calculated

10 ———— SINGLE -ENDED—]

— PUSH - PULL

<2

10

Fig. 5—Dependence on normalized frequency of the single-ended
and push-pull amplitudes, 4, for m=0.5 and 1.

4T

' T T T —T ™3 LI L B e e e
] Z o
3] AN 0.0l 09737 | _|
4 0.03162 | 0.1914
L 0012 X, - o1 3578
- . o 8873
L o036z [oi7sa | 4 | [160__[o.9987 ]
1.0 3741 - - p!
10.0 4980
10" |- E m=1
F B r 0.0t
F m=05 ] 4
%ot 1 %7 1
L 4
101 0036 =
. F k
= ool 3 ol ]
E 3 ]
r 0.316) 7] b
L \ N
F 1 1
10, I t
10° | 1 L 1 I L wldsy e v i1 141,
2 3 a4 5 6 1 8 L3 5 7T 9 1t 1315 17 19 21
n n

(a) (h)

Fig. 6—Dependence of normalized harmonic amplitudes, v» =an/a,
on harmonic index, #, for m=0.5 and 1 and various 2z values.
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points with light lines for convenience, but only the dots
themselves are significant. Also shown in the tables are
the fundamental amplitude values, au, for the various
z values considered. For z>>1, an approaches m. As ex-
pected, the harmonic amplitudes decrease very rapidly
when z is unity or greater. When g=1, wRCy=1;s0z=1
is a natural dividing point. When z>>1, the period of the
driving force is much smaller than the natural time con-
stant RCo. Under these conditions, the charge on the
variable capacitance cannot change appreciably within
a period, and the instantaneous voltage across the ca-
pacitor will be proportional to 1/C and will thus involve
the fundamental component only. In the limit of high
frequencies, the variable capacitor charge ¢ will remain
virtually constant and there will be no harmonic gen-
eration.

For n>3, the harmonics in Fig. 6 have been calcu-
lated using the recursion relations of Appendix IV.
These relations eventually involve small differences be-
tween large numbers and, as »# increases, harmonic co-
efficient accuracy will eventually become impaired.
With the eight significant figures available on the 650
machine, this point is reached when <, has decreased
somewhat below 0.01. The value of v, which is still ac-
curate is still more than sufficiently small so that the
sums involving a,? converge excellently.

Anderson and Alexander* have been able to apply
their technique for solving the present problem to m
values as high as 0.667 and to z values as small as 0.222
(x=3). In this case, they obtained +y, values of 63, 26, 9,
and 1 per cent for =2, 3, 4, 5, respectively.!® For the
same input, the present analysis yields 63.3, 26.7, 8.8,
2.4, and 0.58 per cent for # from 2 to 6. This is relatively
good agreement and affords a check of both methods of
solution.

An interesting feature of Fig. 6(b) is the rise of some
of the higher harmonic amplitudes above the amplitude
of the fundamental. This behavior occurs to a smaller
degree as well for m values of 0.9 but has disappeared by
m=0.7. Curves for m=1 and 2z, considerably less than
0.01, could not be obtained with the present 650 calcu-
lation program because it was limited to a maximum of
100 terms in each of the series of Appendixes V and VI.
Some idea of how many terms in these series were re-
quired is given by the following data: for m =1, the fol-
lowing z values: 10, 1, 0.3162, 0.1, 0.03162, and 0.01 re-
quired a maximum of 3, 7, 11, 21, 40, and 82 terms, re-
spectively; smaller values of m of course needed fewer
terms.

The harmonic coefficients a, and b, can be recom-
bined when known to yield the Fourier series of (8)
which allows 7/ to be plotted as a function of ¢. The

10 Tt should be noted that Anderson and Alexander have denoted
by fundamental, first harmonic, second harmonic, etc. quantities
which are usually (and in the present treatment) termed fundamental
or first harmonic (z=1), second harmonic (z=2), etc.
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resulting waveshapes for various values of z are shown
in Fig. 7 (next page) for m=0.5 and in Fig. 8 for m=1.
We have actually plotted (1/m(i/,) rather than (i/7,)
in order to facilitate comparison between the two fig-
ures. The (1/m) factor causes the fundamental signal
components to have the same amplitude at high fre-
quencies (eg., 22>10) independently of the value of m.
Also shown in these figures are dotted curves of (C/C))
or (C/10Cy) which indicate how the normalized ca-
pacitance varies through a cycle.

Fig. 7 shows that at high relative frequencies the cur-
rent is in phase with the capacitance, and, even at z=10,
there is little distortion of the waveshape and very small
phase shift. The situation is considerably changed as z
decreases, however, and the harmonic components
shown in Fig. 6 begin to play an important role. Note
that the decrease in amplitude shown in Fig. 5 has been
partly compensated in the curves for z=0.1 and 0.01 by
multiplying the amplitudes by the factors shown. As z
decreases, the most striking alteration is that the cur-
rent changes from having a maximum at ¢ =3w/2, the
point where the capacitance is maximum, to going
through zero at this point. In the low-frequency limit,
the current curve thus tends to be proportional to the
derivative of the capacitance.

Somewhat similar results are shown in Fig. 8. For
m=1, however, Fig. 5 shows that there is not a very ap-
preciable decrease in the rms current amplitude as z de-
creases; thus, none of the curve amplitudes has been
changed here. For m=1, the capacitance reaches in-
finity at ¢ =3w/2. The equations show, however, that
at this point there is no voltage across the capacitor
and no charge on it. Hence, it is merely a short circuit
and, at this value of ¢, the current is limited only by
the series resistance and must therefore be equal to .
This requirement is independent of the value of z. As
mentioned in Appendix VII, the force between the
capacitor plates never becomes infinite even for m=1.
Except at very low relative frequencies, the force with
m =1 will not, in fact, vary much over a cycle. The stiff-
ness of the suspension of the moveable plate need only
be great enough to balance the static electrical attrac-
tive force and give the desired spacing, d¢, when V;=0
and V, is equal to the applied value. Note that near
¢=23m/2 the capacitance somewhat approximates a
delta function and the current approximates a doublet
impulse function, the derivative of the delta function.
Because of the requirement that =1, at ¢ =3w/2, the
doublet cannot be equal to zero at ¢ =37r/2, as in the
m=0.5 case, except in the low-frequency limit. The
short-circuit condition and the resulting waveshape
near ¢ =23r/2 are responsible for the slow decrease of
the rms amplitude of 7/7, for m =1 as compared to that
for m =0.5. Note that Fourier analysis shows that the
average value of (C/Cy) is (1—m?)~V2, For m=1, this
quantity reaches infinity, unlike the average value of a
delta function which is finite. Little need be said about
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the push-pull curves; their symmetry arises from the
absence of all even-order harmonics.

The question of how well the simplest approximate
expressions for the harmonic coefficients given in Ap-
pendix I represent the actual behavior of the system is
of some interest. For z=0.01 and 1, Figs. 9 and 10 show
how the ratio of exact to approximate coefficients,
(an/@,?), depends on z for =1, 2, 3. For the 2=0.01
case, the simple solution is only a good approximation
for m <0.3. Also, for 3=0.01 the higher the harmonic
order the worse the approximation, while for z=1 the
reverse is true.

The results of Appendix I may also be used to com-
pare approximate and exact phase predictions. In Fig.
11, the quantity —Ax,=X."—X. is plotted vs m for
n=1 and 2 and three 3 values. In Fig. 12, the phase re-
sults are plotted vs z in different forms. In these graphs,
solid lines denote positive and dotted lines negative
quantities and, for convenience in plotting, all x, values
have been diminished by 180° First, the accurate
values of x1 and x. in degrees are plotted. In addition,
the percentage deviation of the accurate values from

(b
Fig. 8—Dependence of (1/m)(i/7:) on ¢ for m =1 and various 2 values. The dotted curve shows (C/10Cy) in (a) and (C/Cy) in (b).

the approximate values are shown. Note that very high
deviations occur for x» when m=1. The open breaks
in the (100Ax:/x:°) curves near z=0.6 appear because
in this region the signs of the approximate and accurate
second harmonic phases are different.

Finally, Fig. 13 (page 461) shows how the zero fre-
quency or dc harmonic amplitude in the carbon micro-
phone case (Appendix VI) depends on modulation for
various frequency values. One sees that in this case,
where a dc component is allowed, the dc part of 7 can
greatly exceed 7= V,/Ry when m is near unity and z is
small. This is an interesting case of rectification without
nonlinearity.

For low harmonic distortion yet appreciable m, 2
must be unity or greater. It is of interest to inquire
what value of R is necessary to ensure that z=1 at
f=20 cps in the modified loudspeaker discussed in the
Introduction. Since the capacitance modification will be
of most value for large, low-frequency speakers, we may
consider a typical cone area of 1300 cm?. If the fixed
screens are 0.25 inch in front of and behind the cone,
the single-ended equilibrium capacitance is about 181
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p-f. This leads to an R value of 44 megohms, an easily
realized magnitude. Note that the present analysis ap-
plies only when R is much less than the leakage re-
sistance of C. It was mentioned earlier that the capaci-
tance C; in parallel with R would be neglected. Exact
conditions which must be met by C, to justify such
neglect have not been derived. It is clear, however, that
one necessary condition is that C3<<Cy for any m. Fur-
ther, if the load is to remain primarily resistive, it is
essential for all frequencies of interest that the react-
ance of C; appreciably exceed the magnitude of R. If we
require a capacitive reactance of 100 megohms at
f=1000 cps, the parallel capacitance must be less than
0.016 p.f. This is a reasonably stringent requirement, but
it can be met by fairly well-known feedback tech-
niques' > which make it possible to achieve an amplifier
input impedance made up of a resistive component ex-
ceeding 10° ohms and virtually zero input capacitance
over the audio frequency range.

In Appendix VII, expressions are derived for the
instantaneous values of the vibrating capacitor charge,
voltage, stored energy, power dissipated in the vibrat-
ing capacitor, attraction between plates, input power,

1 J, R. Macdonald, “An ac cathode follower circuit of very high
in%ut impedance,” Rev. Sci Instr., vol. 25, pp. 144-147; February,
1954.

12 J, R. Macdonald, “Some augmented cathode follower circuits,”
IRE TRraNs. oN Aubio, vol. AU-5, pp. 63-70; May—June, 1947.
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and the power developed in the load resistor, K. In ad-
dition, a general relation, (69), between the instantane-
ous powers in the system is established. The behavior of
the capacitor voltage, V., can be obtained directly from
the results already presented for (i/7,). The other
quantities involve functions of the integral F; (Ap-
pendix IT) which has not been evaluated in closed form.
It is of interest, therefore, to calculate the time aver-
ages of these quantities where possible.

The average power output, equal to the average
power input, is obtained in Appendix VII in a series
form valid for arbitrary frequency. Averages of the
other quantities may also be obtained as infinite series,
but only the first few terms, applicable for z>>1, are
calculated in the Appendix. It will be noted from (71)
that the average output power, (Pous), equals A2V(2/2R
where 4 is the ordinate of Fig. 5 and has been defined
earlier. For z>>1, (Pow) approaches m2V,y2/2R. For
2=0.01 and m =1, the results of Fig. 5 show that (Poy)
~TV,?/8R, indicating that the output power has not
dropped off tremendously even at this low z value. The
input power calculated in Appendix VII is the ideal
minimum and involves only the power required to move
the charged plates of the capacitor against the electri-
cal forces involved. In practice, there will be unavoida-
ble electromechanical conversion losses, but such power
dissipation can often be made small.

The rich harmonic generation shown in Fig. 6(b) sug-
gests that a vibrating capacitor device could be used for
efficient high harmonic production. However, the con-
version efficiency is lowered by the efficiency of what-
ever electromechanical, piezoelectric, electrostrictive, or
magnetostrictive device is used to vibrate one of the
capacitor plates, and the resulting over-all efficiency
may not be comparable to that obtained with all-elec-
tric harmonic converters. When a voltage-dependent
capacitance'® is used in place of the mechanically
driven capacitor, the nonlinearity of this device may
possibly contribute even greater high harmonic genera-
tion if Cuin/Cuax can be made sufficiently small.

It is often desired to obtain high harmonics from a
frequency-stabilized quartz crystal since the resulting
harmonics will themselves be well frequency stabilized.
The vibrating capacitor may possibly be useful here.
Consider a quartz crystal vibrating in a longitudinal
mode. One end of it is metallized and may be considered
the vibrating plate of a capacitor. The quartz crystal is
attached to a rigid rectangular C-shaped structure in
such a way that the top of it vibrates very close to the
top of the C, which can be the fixed plate of the ca-
pacitor. By forming this fixed capacitance of aluminum
with a thin anodized insulating surface, values of m at

3 D. B. Leeson and S. Weinreb, “Frequency multiplication with
nonlinear capacitors—a circuit analysis,” Proc. IRE, vol. 47, pp.
2076-2084; December, 1959.

“ L. J. Giacoletto and J. O’Connell, “A variable-capacitance
germanium junction diode for UHF,” RCA Rev., vol. 17, pp. 68-85;
March, 1956.
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least as large as 0.95 should be achievable and opera-
tion with m =1 should also be possible on elimination of
this layer. Operation with 2=0.01 or below will then
lead to the generation of harmonics of high order and
accurately controlled frequency.

ApPPENDIX |
PowEgRr SERIES EXPANSION
To second order in m (x=my), we may write
etr s e =1 4+ xcos ¢ + (x2cos®¢)/2. (14)

The quantity ¢/42o may be expressed in general as the
Fourier series given in (8) of the body of this work. Sub-
stituting (14) in (4), simplifying, and comparing with
(8) yields
ay = 0
a = — mz/(1 + 2?)
_3m252
as =
1+ )[1 + (29)2] .
by = — mz*/(1 + 2?)
m?z(2z* — 1)
A+ )1+ (297]

(15)

o ==
2

The harmonic amplitudes a, =V/a,2+b,? are, for n=1,
2, 3,

a® = mz//1 + 22
man®/+/1+ (22)2 ¢},
3ma®/4/1 + (32)?

=3
Il

(16)

=3
It

where the zero superscript indicates that the quantities
in question are of lowest order in m. Note that as z—«,
2/10— —m sin ¢, the correct result in this limit.

AppPENDIX II
TRANSFORMATION OF (4)

Let
where
Fl(¢) = p—y¢+z cos ¢ f eg/qs—z cos ¢d¢
¢
— Yotz cos ¢ [C +f eyx—x cos )\d)‘:l . (18)
0

In the last equation, ¢ is an integration constant. Next,
we wish to find the steady-state or periodic part of
Fi(¢). We have

[
Fl(d? + Zwk) = p—2myk {e—wtﬁ-ﬁc cos ¢ I:c + f ¥\ cos )\d)\:l
0

¢+2rk
+ e—y¢+z cos ¢f ey)\—-x cos )\dx}
@
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k—1 ¢+2m (s+1)
= ¢—2muk I:Fl(¢) + ¢ vbtz cos Z eV =2 cos )‘dX]
s=0 d+27s

= ¢ [Fy(¢) + Fa(9)],

where & is a positive integer.
On making the transformation u=\—¢—27s, the
last integral becomes

(19)

27
f ey(#+¢+21rs )—z cos (p+¢+2n)d“
0

2
= gyb+2rsy f eyn—z cos (u+¢)d“'
0

Thus,
k—1 2r
Fo(p) = ez cos¢ Z e2ﬂyf guh—z cos ($+u) gy
s=0 0

k—1

27
= % c08¢f gyk—= cos “"”‘)dw E ersy
0

8=0

e21rky —_ 1 2w
= ( ) ex cos ¢f gyk—x cos (¢+u)d“
e — 1 0

(y = 0). (20
Substituting (20) into (19) with a=(e?™—1)"! yields
Fy(¢ + 2rk)

2
= p—2myk [F1(¢) — ge® 08 ¢f gYH—z o8 (¢+“)dﬂ]
0

2r
-} ge® o ¢f gyu—z cos (¢+u)d“. (19’)
0
If the last term is denoted F;(¢), we have
F\(¢ + 2rk) = e [Fi(¢) — Fs(¢)] + Fs(¢). (197)

Since Fi(¢+2mk) = F3(¢), we may write
Fi(¢ + 2xk) — Fy(¢ + 2wk) = e~ [Fy(¢) — Fs(¢)]. (21)

Now since [Fi(¢) — Fs(¢) ] is bounded for 0 <¢ <2 and
¥>0, (21) shows that F; approaches F; uniformly in ¢
for large ¢. Thus, for large t(¢— =)

2T

Fi(¢) — Fi(¢) = ae* «* “’f gvi—z cos (tmdy  (22)

0

Applying (22) in (17) yields (7) of the text.

AppENDIX 111
FOURIER ANALYSIS
Using the notation and results of Appendix II, the
complex Fourier coefficients are given by
2r

[1 — yMFsleinedg

Cn = —

2‘"‘0

1 2T 1 2
=— f ey — — f yMFse=iodp.  (23)
27 [i} 27 i

{
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Thus, with Since the second integral is periodic, we may write
1 -

1 2
e indp = 6, = 1 (= 0) and 0 (= > 0),

el

we may write

(50u - Cn)

2r
eUH—% cos (¢+u)d“d¢

a 2
- — (y + x Sil’l ¢)e——in¢+x cos d:f

27!'- 0 0

a r
= .*f (y + x sin ¢.)e—""¢“1/d>+:r cos ¢
27l' 0

.f Jg;u(aH-n)—x cos (¢+“)d[l(1¢. (24)
)
Now let,
G(¢) Ef ’ eV (@+u)—x cos (“’"“")du, (25)
0
and
g(¢) = g~ (rtin)ote cos b, (26)

Integrating (24) by parts vields

a . 2 dG
(80s — €2) = g{[—g(wcwlo + fo g(e) TiId"’

—in [ g@G@asl, @D

0
where
dG d 2r+¢
_ ey)\—f cos )\d)\ — [e.v/(¢+21r)-:v cos ¢ __ e;:/d;«-:c cos d;]
dop doJ,

= gub—r cos “’[62"” — 1]_ (28)

The first term in (27) is zero and substituting (28) in
(27) leads to

1 ™ ina (*°%
(bon = 62) = — f ooy — f ¢)G(@)ds. (29)
27!' 0 27['

0

Thus, ¢o=0 and for #>0, one obtains

; 2r
ina

= 4@
am 0
e ¥ =

_ f eyk—ind+2r gin /2 sin (¢+”’2)dﬂ(i¢

2rJo Jo
’i?ld 2r 2

—_— eyn+inu/2d# e~ in(¢tp/2)+2x sin u/2 sin (d>+u/2)d¢
2r Jo 0

ina 2r w/2+42r
- eyn+inp/2dﬂf eminttar sin w2 sin EdE  (30)
u

2ﬂ' 0 /2

ina 2r Ris
Co = — euu+inn/2dﬂf e—-i[n£+2i1 sin p/2 sin E]dE’
21r 0 0
ina % ] "
= — evetinu2 J (—2ix sin — )du. (31)
27!' 0 2

On making the substitution u/2=w/2+86,

T2
Cu = Zinae“”f gitindginm(2 ], (—2ix cos 0)df. (32)

—al2
Since
1) = e, (o), (33)
and
Ju(xe=i™) = e~ ], (x), (34)
we may write
e /2] (—2ix cos §) = e /2¢~" J,(2ix cos §)
= e~i""/2],(2ix cos 8) = [,(2x cos ). (35)
Thus,
/2
Ch = Zinae"-"f et 0 (2y cos 8)d8. (36)

—r/2

This result can finally be further simplified as follows:

Tt
Cn = 2iuave"-"f [e@rtin 8 4 et b ][ (21 cos 6)do
0

2in /2 i
= - —f cos [(n — 2iy)0]I.(2x cos 6)do
sinhmyJ
2in /2
= f——f cos { [(n — iy) — iy]o}
sinh myJ

Iiipvin (2x cos 0)do. (37)

Now, we may make use of the identity!®

2 /2
I, ()] (x) = —f I,..(2x cos 6) cos {(p - v)()}dﬂ (38)

to obtain the final result

inmw

Cn = —— ]1‘y(x)1n—iy(x). (7’1 > O).
h ry

(39)

ArrENDIX IV
RECURSION RELATIONS

Using a recursion relation satisfied by I,(x), (10) may
be written as (n>1), hence

iTnx

—— Liy(x)  [Toca—iy (%) — Tuga—ip(%) ]. (40)

Cn = ——————
2(»n — iy) sinh 7y

15 G. N. Watson, “A Treatise On the Theory of Bessel Functions”
Cambridge University Press, Cambridge, Eng.; 1944, See p. 150 for
the equation expressed in terms of ordinary Bessel functions.
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This result may be expressed in the form The last result must be simplified. We have
nx Cns Cn . - . .
tn = . [ T “], 40) Te—iy+s+1)=]J16+7r—iy-Tls+1-1dy), (46)
2 —iy)ln—1 n+1 el

a recursion relation between the complex harmonic P+ 11—+ 1+

coefficients. Next we require similar relations between ) Y ‘ '
the real coefficients a, and b,. From (40') we have = T(iy)T(—1y) I:E [ + iy)(r — iy))
. 0t 1 . :
(@ — ibyya) = <n — 1) (@na — bn) - csch my H (r* + y%). “n
y r=0
2 1
2D i —ibg, @y TR
" e =1ny 2,
which leads to the final results s=0
x n+2s n
Gnp1 = (ﬂ + 1) Gy — 2t 1) (nan — ybs),  (42) (—2—) 42 [ s+ 7+1iy)
n—1 nx 3 8 ’=1n . (48)
bupr = (" + 1) b — 2D 4 g0, 43) sln+ ) TL 2+ 99 IT LG +n? + 5?]
n— nx r=0 =1
AppENDIX V When ¢, is set equal to (¢,—1b,)/2, series for the real
r coefficients can be obtained. Because of the complex
SERIES EXPANSIONS product in the numerator of (48), such separation be-
Eq. (10) may be written in the form comes progressively more complicated as # increases.
. Hence, it is convenient that series results need only be
¢y = sl H(z) (n > 0). (44) obtained for =1 and 2, with the recursion relations
sinh 7v ’ used for higher #. Separation yields the series
< ©/2)¥2(1 + 25)!
w=—202 WA ’ , (49)
s+ A+ 9+ 2] T1 ¢ + 9D
r=0
ad (x/2)1+2(1 + 29)!
bh=—2y 2, - ) (50)
TPl 92+ T+ )
r=0
, i x/2)72(2 4+ 25)1(3 + 2s
B /24216 +29) , -
s=0
sI2+ 9+ 92+ 2][@+ 92+ 2 TT 02 + 99
r=0
d x/2)223(2 4+ 29! 4+ 5)(2 4 5) — 2
RS SN L e R U G (D Bt N 2
s=0 2 2 2 2 - 2 2
SI2+ )M+ 92+ 92][2+ 92+ »] TT 2 + 9?)
r=0
where These series are absolutely convergent for 0 <x< 0,
_7 _ It is worth pointing out that their initial terms (s=0)
H(x)—I"f’”(x)I’"(x.) ) agree with the results of Appendix I when z=y"1 is
=g~ 2], . (1%)J iy(ix) used.
= (0) 7T n—iy (i) J 55 (1) For numerical summation of the above series, it is
w (x/2)"2 T (n+254+1) worth pointing out that they all involve simple func-
= , (45) tions of s times the quantity
w0 SIT(n+s+ )T (n—iy+s+1)TEy+s+1) 29)! -
s)! s
and the last result follows from a Bessel function ex- 4, = Jhslsl | 2o (s ), (53)

pansion given by Watson.!®

and 4, satisfies the recursion relation A,.1=[(s+3)/
16 Thid., p. 147. (s+1)]4.(s>0) and A,=1.
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ArpPENDIX VI
CARBON MICROPHONE

Consider a single-ended carbon microphone in series
with a battery, V,, and an inductance L, the primary of
an input transformer. If a sinusoidal sound wave of fre-
quency (w/2w) impinges on the microphone, its re-
sistance R will be given by R=Ry(1+m sin wt), where
the modulation factor m(0<m <1) depends on the
amplitude of the incident wave. The pertinent differen-
tial equation for the current 7 is

di + (Ro) (1 + m sin a) Vo (54)
— — msinwf) = — -
i \L T
A steady-state solution is of the form,
(_1/_> e ye—y¢+x cos ¢fety¢—:c cos ¢d¢’ (55)
2o

which should be compared with (4). Here 4= V,/R, as
before, but y=(wL/R,)~!since the time constant is now
To=L/R, rather than RC, as in the capacitance prob-
lem.

Because of the similarity of (55) and (4), it is readily
shown that the steady-state current is given by

,i yex cos ¢ 27
(_> = eyp—z cos (¢+#)d“, (56)
1'0 ; (62"’” it 1) 0
and
Ty
en = ——— Ly(x) - In-i(x), (n20). (57)
sinh ry

a result only slightly different from (10). Note particu-
larly, however, that ¢y is no longer zero, and there is
thus a zero-frequency component in the current. In
particular, we have (using an R superscript for the
present case)

2 /2
cof = — Y cosh (20y)I,(2x cos 6)ds, (58)
sinhryJ o
® (25 (x/2)%
SEOLE
s=0
I+

r=0

Note that ¢F—1 as m—0 and also as w—~. As w ap-
proaches zero, however, the sum of the series for c¢,®
approaches a limit greater than unity for m>0. In this
case the series may be summed and yields ¢®=(1
—m?)~V2 The excess over unity arises from rectifica-
tion of some of the incident energy by time-varying
resistance of the microphone. Clearly, infinite incident
energy is necessary to cause m =1 in the limit of zero
frequency. For >0 we have

cn® = (y/in)caC, (n > 0). (60)

where the R and C superscripts denote the carbon
microphone and capacitance values, respectively, of the
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465

complex Fourier coefficients. It immediately follows

that
R —

(61)
(62)

Qn (y/m)an®
X ® = x¢ — 90°.
A push-pull, or double-button, carbon microphone can

be handled in the same general way as the push-pull
capacitance microphone.

AprpENnDIX VII
Powgr RELATIONS
Let £=(4/4,). It is readily shown that

g=CVo(1l -9
= CoVo(l — §/M = q(1 — §)/HM, (63)
VC = V0(1 - E);

where V. is the instantaneous voltage across the time-
varying capacitance C. Denote the stored energy in the
capacitance by E and the work done in moving its plate
by W. The instantaneous power dissipated in the ca-
pacitor will be P,=dE/dt, and the instantaneous input
power will be Pi;,=dW/dt. The force between the
plates, F,, may be written in the form F.=C,Vy*(g/q0)%/
2d,. Finally, define P, as the power dissipated in the
output resistance, and P, as= V,2/R.
We may immediately write

1 1
E= —Z-Cch = Ey CoVo®(1 — Y M

= E(1 — §)*/M, (64)
Po=va oy, e
2 dt dt
— ity
2 dt
1 ac
= rfu-ole-ca-or ]}
Mmz COS ¢
-rfu-o[e+ 2 2a-0]h, @
where
i=v, 2y
dt dt
has been used. Since
dW = Fdd = F.do mw cos ¢d!,
Pi. becomes
Pin = F.dymw cos ¢
= Py[mwRCo cos ¢(q/q0)2/2], (66)
and Poy is
Poy, = Pog2. (67
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Now, using £=1—yMF,, where F; is the integral de-
fined in Appendix II, the desired quantities may be
written as

q/q0 = yFy,
Vc/Vo = MyFl,
E/E, = M(yFy)?,

mz Cos ¢
Pc/Po = (MyFl) - (MyF1)2+ -’*E*‘_ (yFl)Zy

r (68)
FC/FU = (yFl)2;
ms COS @
Pin/Po = , (vFy)?,

Pout/Po = 1 — 2(MyFy) + (MyFy)?,

where Fo=C,V2/2dys. Note that the expression for F,
shows that this force will not become infinite even when
m=1. The above equations lead to the general rela-
tionship,

(Pin/ Po) + (i/i0) = (Pe/Po) + (Pow/Po).  (69)

Next, it is desirable to obtain the average values of
the above quantities in the steady state. For this purpose,
the quantity F; must be replaced by Fs. It has already
been shown in Appendix IIl that for the steady state
co=0; thus (¢)=0 and (MyF;)=1, where the pointed
brackets denote time averages. This absence of a dc
current means that the battery cannot supply power on
the average to the load resistance. Some of the above
averages are difficult to carry out because of the pres-
ence of the integral F;in them, but the next two results
avoid such difficulties. We have,

(P./P lf?" dEd
“ 0>_27r dl *

0

= 21"_ [E(2r) — E(0)] = 0, (70)

where the last equation follows from the stationary,
periodic character of the stored capacitor energy. Then,
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Parseval’s theorem may be applied to vield the follow-
ing expression for (P..i/Py), valid for 0<x <=,

<Pout/P0> = (E‘_‘) = —1 + ((11’[_\"[":;)2>
=23 |aly (7
n=1

noting that ¢y=0. We mayv now write,
9/q0) = (yFs),
(Ve/ Vo) = (MyF;) =1,
(E/Eo) = (M(yF3)?),

(P Py) = 1 — (MyFy)?) + %— (yF3)? cos &) o
=0,
(F./Fo) = ((yF3)?*),

ms
(Pin/ Po) = 5 {(yF3)? cos ¢).

Note that (69) leads to {Pin)={Pou), a necessary con-
dition since the battery can supply no average power.

Although it has not been found practical to evaluate
the remaining averages in (72) in closed form, it is possi-
ble to use (14) and expand F: in a series useful for x<1
and 2>>1. Using the resulting series, the necessary
averaging may be carried out, and one finds for high
relative {requencies the following terms to second order
in x,

(@/qo) =1+ (x%/2) + - - -, |
(E/Eo) = 14 (*/2) 4 - - -,
(Fo/Fo) = 14+ 3x2/2) + - - - i

(Pin/ Po) = (Pout/ P}
= m*/2) — (1 — m)H(x*/2) + - - - }

(73)
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