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Abstract-.4n accurate digital-computer solution is presented of the differential equations describing 
an idealized metal-semiconductor junction. Mobile charges of negative sign only are considered 
which arise from a uniform, fixed-donor charge distribution. The situation is similar to that con- 
sidered earlier by WAGNER, SCHOTTKY and SPENKE, and accurate results for the static current- 
voltage characteristic and distance dependence of field, electrostatic potential, and quasi-Fermi-level 
potential are compared with previous approximate results. Primary attention is devoted to a structure 
involving one ohmic and one barrier electrode separated by a fixed distance, but that involving two 
barrier electrodes a fixed distance apart is also investigated. The problem is idealized by omitting 
trapping, image effects, tunneling, recombination, breakdown and hot-electron effects. Earlier 
approximate treatments are rather inaccurate in their predictions of the space dependence of various 
quantities but are quite close in their current-voltage predictions, even in the forward-bias direction 
of current flow. The results for a fixed length of material between electrodes are compared with 
those of the more usual approximate analyses which pertain to a variable-length barrier region alone. 
The influence of the fixed length, which corresponds to the experimental situation, is large, under 
some conditions, on current-voltage relations, resistance and on the forward and reverse differential 
capacitance of the system. 

RBsumB-Une solution exacte applicable aux calculatrices Clectroniques des equations differentielles 
qui decrivent une jonction idealisee metal-semiconducteur est presentee. Des charges mobiles 
ayant un signe negatif ne sont consider&es que lorsqu’elles proviennent d’une distribution de 
donneur uniforme et fixe. Le cas est similaire a celui analyse precedemment par WAGNER, SCHOTTKY 
et SPENKE; des resultats exacts decrivant la caracteristique statique courant-tension, la dependance 
du champ en fonction de la distance, le potentiel electrostatique, et le potentiel des niveaux quasi- 
Fermi sont compares avec de precedents resultats approximatifs. Une attention particuliere est 
consacree a une structure comprenant une electrode ohmique et une autre de barriere separee par 
une distance fixe, mais on a aussi consider& une autre structure comprenant deux electrodes de 
barriere separtes par une distance fixe. Le probleme est idealise en omettant les effets de trappe, 
d’image, de tunnel, de recombinaison, de disruption, et d’electrons “chauds”. Precedemment les 
traitements approximatifs Ctaient plut6t inexacts en ce qui concenrait les predictions de la depend- 
ante de charge de plusieurs quantites mais Ctaient plus justes en ce qui concernait les predictions 
courant-tension, mCme dans le sens avant de l’ecoulement du courant. Les resultats ayant rapport 
a une longueur fixe de materiau entre electrodes sont compares avec ceux des analyses approxima- 
tives plus usitees qui ont rapport a une seule region de barriere a longueur variable. L’influence de 
la longueur fixe, qui correspond au cas experimental, est importante sous certaines conditions sur 
les relations courant-tension, resistance et sur la capacite differentielle en sens avant et inverse du 
sysdme. 

Zusammenfassung-Fiir die Differentialgleichung eines idealen Metall-Halbleiter-Ubergangs 
wird eine genaue Digitalrechner-Liisung gegeben. Die Behandlung beschrlnkt sich auf bewegliche 
Ladungen negativen Vorzeichens, die durch eine gleichfiirmige, bestimmte Verteilung der 
Donatorladung entstehen. Dies entspricht den friiher von WAGNER, SCHOTTKY und SPENKE 
behandelten Bedingungen, und die genauen Ergebnisse fur die statische Strom-Spannungs- 
Kennlinie und die Abhangigkeit des Feldes, elektrostatischen Potentials und des quasi-Fermi- 
Niveau Potentials vom Abstand werden mit den friiheren angenaherten Ergebnissen verglichen. In 

* Many of the present results were presented at the Houston, Texas, meeting of the American Physical 
Society, 5 March 1960. 
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erster Linie wird ein Gebilde behandelt, das eine ohmsche und eine Sperrelektrode mit festem 
Abstand enthslt, daneben wird such der Fall van zwei Sperrelektroden mit festem Abstand in 
Betracht gezogen. Durch Verniehl&sigung van Einfang, Bildwirkung, Tunneleffekt und der 
Wirkung van Rekombination, Durchschlag und heissen Elektronen wird das Problem idealisiert. 
Die friiheren Kiherungsverfahren sind in Bezug auf Angaben iiber die rlumliche Abhlngigkeit der 
verschiedenen GrGssen etwas ungenau, dagegen sind die Angaben uber die Strom-Spannungs- 
Beziehung, sogar im Falle einer Vorspannung in der Flussrichtung, ziemlich genau. Ergebnisse fiir 
eine bestimmte Materiallsnge zwischen den Elektroden werden mit den ublichen Anngherungs- 
liisungen, die sich auf eine ver5nderliche Sperrschichtllnge beziehen, verglichen. Die festliegende 
I,iinge, die den Versuchsbedingungen entspricht, iibt unter gewissen Verhgltnissen einen starken 
Einfluss auf Strom-Spannungs-Beziehungen, Widerstand und die differentielle Kapazitgt des 
Systems in Fluss- und Sperrrichtung aus 

INTRODUCTION 

THE charge distribution in a vacuum or a material 
medium is determined by the boundary conditions 
and by constraints within the medium. Table 1 
presents a non-exhaustive classification of some 
cases of usual interest based on the above distinc- 
tions. An idealized physical situation can be 
approximated by the combination of one choice 
from the left-hand column with one from the 
right-hand; thus, the case 1,A might pertain to 
electrons in a vacuum or solid with boundary 
electrode(s) which are blocking for electrons. 
Although mobile charges of a given sign which are 
present may be of different types and have different 
mobilities, in the usual case considered theoretic- 
ally the situation is simplified and all mobile 
charges of the same sign are taken to have the 
Sam: mobility. This restriction, plus that of one- 
dimensionality, will be adhered to herein. Note 
that zero recombination of mobile carriers is 

equivalent to complete ionization of any neutral 
centers from which they arise. It is well approxi- 
mated in weak electrolytes and is the limiting 
high-temperature condition in extrinsic semi- 
conductors. 

Although the present work will be largely- 
devoted to case II(l),B(a), some discussion of the 
historical development of solutions to other cases 
as well is in order. Attention seems first to have 
been devoted to case I,C(l,a) in connection with 
diffuse double layers in electrolytes.(l,2) The 
solution of the potential distribution in the diffuse 
layer for a single, plane, blocking electrode was 
first given by GouY(~) and in modern form by 
FOWLER@) but has sometimes been attributed to 
MUELLER@). It has been re-derived independently 
many times thereafter, especially since the advent 
of the transistor.(5,6) The expressions for the 
static and differential capacitances of the simple 
diffuse double layer have been given by 

Table 1. Class@cation of cases 

Current conditions Internal conditions 
- ___- -____ -__- --____ ~__._._ 

I. Zero current; thermal equilibrium A. Mobile charges of only one sign present 
- -______ 

II. Non-zero current; steady state B. Mobile charges of one sign plus fixed 
recombination centers present 

1. d.c. a. Zero recombination 
2. a.c. b. Son-zero recombination 

______~____~ c_--__-- 

III. Transients C. Mobile carriers of both signs present 
1. Charging 1. Intrinsic or injected charge 

a. Zero final current a. Zero recombination 
b. Non-zero final current b. Non-zero recombination 

2. Discharging 2. Extrinsic 
a. One or both electrodes blocking a. Zero recombination 
b. Electrodes not or partly blocking b. Non-zero recombination 
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GRAHAME(~) and by the author(s) and have 
recently been presented again by BOHNENKAMP 
and ENGELLcg). 

A detailed discussion of potential distributions 
and capacitance in cases &B(a) and I,B(b) for 
both one(l0) and two(11) blocking electrodes has 
recently been given by the author. A somewhat 
similar treatment of solely potential distributions 
has been published by PROCTOR and HUTTON, 
but it is incorrect in some of its conclusions. The 
differential capacitance for a single blocking 
electrode in case &B(a) was apparently first 
calculated by WAGONER, although this fact 
seems to be little recognized today. BOHNENKAMP 

and ENGELLcg) have given an expression for the 
capacitance for case I,C(2,a) which reduces to 
WAGNER’S result when intrinsic carriers are 
ignored. Recently, DEWALD(~~) has recalculated 
the capacitance for a single blocking electrode 
in cases &B(a) and I,B(b) and applied the results 
to zinc oxide. 

Since the advent of the transistor, considerable 
progress has been made in the small-signal 
treatment of transient and a.c. response problems 
involving mobile charge. On other hand, little 
progress has been achieved in the exact large- 
signal solution of these problems, and they will 
not be considered further herein. Instead, further 
discussion will be restricted to the direct-current 
case only. 

The early theories of rectification between a 
metal and a semiconductor are well discussed by 
HENISCH(15) and by SPENKE’~~). We shall here be 
primarily concerned only with barrier-layer 
rectification theories which correspond to cases 
II(l),A or II(l),B(a). In the latter case, any 
minority carriers present will be neglected, and 
immobile impurity centers will be assumed 
uniformly distributed throughout the semi- 
conductor. This is the situation which leads to the 
ideal Schottky barrier(l7). 

The first exact solution of case II(l),A for 
specified boundary charge concentrations was 
that of FAN(~~~), who applied his results, expressed 
in terms of Airy integrals, to copper oxide 
rectifiers.* FAN also gives a solution for case 

* FAN’S solution is apparently not well known. For 
example, a solution of the equations in terms of Bessel 
functions has recently been republished independently 
by ADIRovICH~~sb). In addition, it was not referred to in a 

1,A. FAN’S basic differential equation was re- 
derived later by SHOCKLEY and PRIM(lga) and 
solved exactly with different boundary conditions 
to apply to the case of space-charge-limited 
emission in a p-i-p structure.? Here results were 
expressed in terms of modified Bessel functions of 
fractional order. Neglecting diffusion effects, 
DACEY(~~) gave a treatment of the same problem 
with a field-dependent mobility. Next, without 
reference to the work of FAN(18a) and of SHOCKLEY 
and PRIM(lga), SKINNRR(~~$~~) published solutions 
for cases 1,A and II(l),A which are appropriate 
for describing the charge conditions in some 
insulators. For non-zero current, SKINNER’S 
results are expressed in terms of ordinary and 
modified Bessel functions of fractional order. 

In all the above solutions, trapping effects have 
been neglected. SUITS has extended SKINNER’S 

results for case II(l),A to include trapping of 
mobile charge by originally uncharged centers. 
Although the treatment of trapping is approximate 
and only valid when the trap occupancy is low, 
an analytic solution in terms of Bessel functions 
of fractional order is obtained which applies 
when the charge densities at the boundaries of a 
slab of insulator are held fixed and independent of 
current through it. Earlier, LAMPERT gave an 

approximate treatment (in which diffusion effects 
were neglected), of space-charge-limited currents 
in insulators with traps and late+) extended 
these results to the case of field-dependent 
mobility. It should be pointed out that in those 
cases where field-dependent mobility is considered, 
such as the treatments of DACEY(~~) and of 

LAMPERT(24125), the mobility and diffusion constant 
should depend on current as well as field in such a 
way as to give no field dependence in the zero- 
current thermal-equilibrium case obtained, for 
example, with a blocking electrode. 

Very little work has been done on the two- 
carrier, non-zero-current, space-charge problem 
because of its difficulty. Recently, however 

recently published treatment of space-charge-limited 
currents by WRICH+~@). Solutions for the zero-current 
case 1,A have been known for a long time and are cited 
by SKINNER (see Ref. 21, below). 

T The fact that FAN’s results can be expressed in 
terms of Bessel functions of fractional order has not 
usually been recognized but was apparently first pointed 
out by LANDSBERC(‘gb). 
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PARMENTER and RUPPEL(~~) have treated case 
II(l),C(l,b) for injected charge of both signs. 
The insulator has been assumed trap-free and 
diffusion has been neglected. LAMPERT has 
given a further simplified treatment of this problem, 
including consideration of recombination mechan- 
isms and field-dependent carrier mobilities. 
Recently, I,AMPERT@*) has also extended the 
simplified solution which neglects diffusion to the 
semiconductor case with injection II(l),C(2,b). 
The neglect of diffusion necessitates the rather 
artificial boundary conditions that the field be 
zero at both anode and cathode and consequently 
restricts the range of applicability of solutions of 

this type. 
In most space-charge work, it has been 

customary to use the Maxwell-Boltzmann distribu- 
tion for mobile carriers in the thermal-equilibrium 
case. This simplifying restriction has been relaxed 
by VAN OSTENBURG and MONTGOMERYQ~) for 
charge of a single-sign mobile and by SEIWATZ 
and GREEN for the more general semiconductor 
case. In addition, DEWALDo4) has given an 
approximate treatment of the capacitance arising 
in case 1,B for degenerate conditions. These are all 
equilibrium calculations, however, and no potential 
distributions or current-voltage results are ob- 
tained. The results obtained apply for very heavy 
doping and/or low temperatures. 

MoLL(~~) has summarized the historical de- 
velopment of the theory of the current-voltage 
relation for p-n junctions II(l),C(2,b), and it 
therefore need not be repeated here. We shall 
concentrate attention primarily on case 11( l),B 
hereafter. This case applies to a metal-semicon- 
ductor contact in which minority carriers are 
neglected either because of heavy extrinsic doping 
of the semiconductor or because of a low relative 
temperature of operation. It also is pertinent to 
the situation where the metal is replaced by a 
concentrated electrolyte. It applies as well to an 
insulator with metal or other partly blocking 
contacts where the mobile carriers of one sign 
are dissociated from neutral centers by the ab- 
sorption of radiation. Finally, this case is also 
pertinent to the metal-metal oxide-electrolyte 
situation, which also exhibits rectification(3”) 
and is of considerable practical importance. 

Fig. 1 shows very diagrammatically some of the 
charge arrangements which can arise in case 

with ohmic [0] and blocking [R] electrodes. 

1$(a) with ohmic (0) and completely blocking 
(B) contacts. In the neutral case, there are no 
macroscopic potential drops within the system, 
and conduction-band electrons remain close to 
ionized donors. With one blocking and me 

ohmic contact, mobile carriers are free to leave or 
enter the material under the influence of an 
externally applied potential or potential barrier at 
the blocking electrode, Exhaustion or accumula- 
tion regions may be formed under these circum- 
stances as shown. When both contacts are blocking, 
both regions appear but are restricted in magnitude 
by conservation of charge within the material as a 
whole(ro~rl). Such blocking conditions may be 
well approximated by interposing a thin insulating 
layer between the metallic electrodes and the 
charge-containing material or by placing the 
material without electrodes in a region of high 
electric field such as that produced in semi- 
conductor field-effect experiments. In the present 
work, we shall usually make no distinction between 
exhaustion and depletion but shall use the word 
“exhaustion” to include the depletion, or in- 
complete exhaustion, case as well. 

In case II(l),B(a), the situation may be expected 
to remain qualitatively similar, for very small 
currents, to that discussed above. For a current 
to flow without tunneling or barrier breakdown, it 
is necessary that both contacts be ohmic or only 
partly blocking. Instead of the infinitely high 
potential barrier of an ideal blocking electrode, 
the potential barriers at the electrodes must be 
finite in height. When a reverse potential is applied 
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to a system having one ohmic and one partly 
blocking electrode, the effective height of the 
barrier will be increased, while a forward potential 
will decrease the height until finally the barrier 
disappears and essentially ohmic conduction is 
reached at high forward currents. 

In barrier-layer devices, rectification is associ- 
ated with a layer next to a partly blocking contact 
which is partly depleted or completely exhausted 
of mobile charge carriers. When this layer is 
thick compared to the mean-free-path length of 
mobile carriers, the diffusion theory of rectification 
applies, while in the opposite extreme of thin 
barrier layers, the diode theory is appropriate.(15) 
In the present work we shall treat only the usual 
case of complete ionization (zero recombination) 
and thick barriers. Although the assumption of 
complete ionization is only a limiting case for 
solids and occurs only at infinite temperatures or 
radiation intensities, many practical situations 
arise where this assumption is a good approxima- 
tion. In later work it is hoped to investigate in 
some detail the case of rectification with non-zero 
recombination. 

Two different assumptions have been made in 
the diffusion theory of rectification concerning 
the barrier-layer thickness. For the MOT@) 
barrier it is assumed that the concentration of 
donors is vanishingly small for a certain distance 
from the partly blocking metal electrode into the 
material of the rectifier, and that there is then an 
abrupt transition to a high donor concentration. 
For such barrier layers of constant thickness, the 
electric field in the barrier is also constant. On 
the other hand, for the Schottky barrier it is 
assumed that the original concentration of un- 
ionized donors is uniform throughout the material, 
leading to a dependence of barrier layer thickness 
on applied potential. The assumption of a homo- 
geneous donor distribution is more often a better 
approximation to the experimental rectifier 
situation than is the MOTT assumption, but the 
usual neglect of mobile charge in the barrier 
region, which leads to linear field dependence, 
is an approximation which is not always well 
justified, especially in the forward-bias direction. 
This approximation and that of somewhat 
arbitrarily separating out a barrier region of 
specific thickness (the region where the field is 
non-zero) is avoided in the present work, allowing 

the effect of the above approximations to be 
evaluated. Therefore, we shall usually consider a 
piece of material of fixed length between an ohmic 
and a partly blocking electrode. This configuration 
corresponds to that used in experimental measure- 
ments of rectifier characteristics, and its treatment 
will make clear how an ohmic potential drop and 
the geometric capacitance between the electrodes 
may be properly accounted for. 

The simplest isothermal diffusion-theory rectifi- 
cation characteristic was first derived by 
WACNER(~~). Soon after this, SCHOTTKY@~), 
SCHOTTKY and SPENKE(~~), and SPENKE@~) im- 
proved the theory further, but so far no exact 
solution of the basic equations of the problem has 
been given. LANDSBERGt3’) has carried out an 
approximate treatment with the inclusion of 
image force effects acting on mobile carriers near 
the partly blocking metal electrode. In addition, 
LANDSBERG has also considered the case of field- 
dependentmobilityanddiffusionconstant(a*)andthe 
effect of an arbitrary distribution of fixed charge(sQ). 

In the present work, we shall omit consideration 
of the following: trapping; image effects(s7940); 
tunneling; recombination; non-uniform fixed 
charge distributions; discrete charge effects; 
field-dependent mobility, diffusion constant and 
dielectric constant; avalanche breakdown; field 
emission; degeneracy; and non-isothermal condi- 
tions. Although a formal non-isothermal diffusion 
theory of rectification is available,(41) the com- 
plexity arising from a non-isothermal lattice can 
be avoided by pulse measurements(Q). The work 
to be described here is, therefore, an accurate 
treatment of the popular WAGNER-SCHOTTKY- 
SPENKE idealized situation. This approach has 
been applied to the interpretation of so many 
different experiments that no summary of experi- 
mental applications will be given here. The 
present results will allow the accuracy of the 
simplifying assumptions made by the above 
authors to be assessed and should yield a basis of 
comparison with, later, more-sophisticated rectifier 
calculations. In the next section, the pertinent 
equations for case II(l),B(a) are set up and exact 
and approximate integrations leading to field, 
current and capacitance relations are discussed. 
Finally, the results of accurate computer solutions 
of the differential equations of the problem are 
considered in some detail. 
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NOTATION 

c/-l?rLn, limiting space-charge capacitance. 
differential capacitance 
electron diffusion constant 
magnitude of electron charge 
electric field 
G/[kT/eL,], normalized electric field (number 

subscripts as defined in text) 
energy (letter subscripts as defined in text) 
current (subscripts as defined in text) 
j/[D,2~n~/I,C], normalised current (subscripts as 

defined in text) 
13oltzmann’s constant 
rate constants 
electrode separation 
length of mean free path 

IlI4, normalized length 
normalized length of barrier region alonc in 

approximate theories 
[ckT/bre2N~,]‘~2, Debye length 
BLn, effective Debpe length with recombination 
negatirc mobile charge concentration 
value of II in space-charge-free-bulk region 
?llY?rn, normalized negative mobile charge con- 

centration 
density of states; density of charge (subscripts as 

dcfincd in text) 
charge on barrier electrode 

NJJN,,, recombination constant 
normalized resistance (subscripts as defined in 

tckt) 
k&n!kl, recombination constant 
time 
absolute temperature 
fixed potential difference (subscripts as defined in 

test) 
distance variable 
S,‘I‘,g or X/I‘,, normalized distance variable 
I, - x 
El--J; also used for dielectric constant 
In h’ ‘I’- a),{ 
[(l +r)(l -r)]~ ‘12 
electron mobility 
(EF?_ - E:,)/e, quasi-Fermi-level potential 

&z/(kT/e) 
total normalized potential difference across 

sample, equal to Va 
normalized quasi-Fermi-level potential difference 

across barrier region alone 
electrostatic potential 
$/[&T/e] (subscripts as defined in text) 

FORMAL RESULTS FOR ZERO RECOMBINATION 

Basic equations 
The equations describing the steady-state 

behavior of an n-type semiconductor in which 
intrinsic carriers are neglected are, for one- 
dimensional variation, 

hl 
j = j, = r Dn (enii/kT)+ --- t/x 1 (3 

l/j 
- = 0 
tlx 

where the Einstein relation p,,/D,, = e/kT has been 
used in (3). In these equations, e is the magnitude 
of the electron charge and t the dielectric constant 
of the material. The other symbols have their 
conventional meanings. In the present aero- 
recombination case, the donors are complctelj 
dissociated and Ni = J\‘,), the original, spatialI> 
uniform donor concentration. A short treatment 
of the equations pertinent in the non-zcro- 
recombination case is presented in Appendix I 
as a background to future work in this field. \\:hen 
the material is degenerate, the charge densities in 
(2) obey FermiLDirac statistics,‘Jsj and IANIX- 
ISERG has shown that the mobilities and diffusion 
constants arc concentration dependent. In addition, 
in the case of hot electrons, it is likely that e\en 
the form of (3) must he modified.‘d”) 

In bulk material in the absence of space charge, 
n = ;v,, = n:u, and it will be convenient to denote 
this value of n by IZ~: and use it for normalization. 
The normalized mobile charge density is then 
,V s II/N~ s njhrD. JI:c shall he concerned here 
only with temperature and doping conditions for 
which R4axwcll-I3oltzmarIn statistics will be ;I 
good approximation for the mobile electrons.‘““JT) 
This requires that the concentration of conduction- 
hand electrons always he much less than the 
effective density of states in the conduction band, 
ni’,. Denote the quasi-Fermi, donor and bottom 
of the conduction band levels by Ep, ED and EC;, 
respectively. Further, let the thermal-equilibrium, 
space-charge-free bulk \-alues of these quantities 
be designated by the subscript CO. Then II may 
be written, 

n = NC exp[(EF-&)/kT] (n $ NC) (5) 

Under steady-state non-equilibrium conditions, 
the Fermi band energy will vary with position 
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within the material, and it will prove convenient 
to describe such variation with a quasi-Fermi-level 
potential.(4*) Let us define 

4% = -(&-&J/e (6) 

llr = - (& - &J/e (7) 

where # is the electrostatic potential and & is a 
quasi-Fermi-level potential for electrons, both 
taken as zero in space-charge-free bulk material. 
The true quasi-Fermi-level potential is simply 
-&/e. From (5) we may write 

4% = N = exp[{(&- EF~)- (EC- Ec,)}/kT] 

= exp[e(+$dWl = explY-@t61 (8) 

where Y and @‘n are normalized quantities. Their 
difference (Y --(&) will be denoted by TX. 

In addition to the above normalization, it will 
prove convenient to introduce E z eLDE/kT, 
x s XILD, L = l/LO, Y s L-X, and 
J s Loj,/eDnnm. Here 1 is the length of a slab 
of material between two plane, parallel electrodes, 
an essentially ohmic one at x = 0 and a partly 
blocking one at x = 1. Lo is the Debye length for 
zero recombination, LD s (EkT/4re2ND)1/z. With 
these definitions the pertinent normalized equa- 
tions become 

dY 
-= -E 
dX 

(9) 

dE 
- = 1-N = l-exp(Y-@,) 
dX 

(10) 

da,, 
- = -J exp(@,-Y) 
dX 

(11) 

This set of equations can be reduced to two 
differential equations involving E and 71 only, 
but, since it is important to be able to separate 
out the variations of ‘I” and @a individually, their 
equations have been kept separate. When there is 
no fixed space charge,(lsJQ) (10) becomes dE/dX = 
-N and the other equations remain unchanged. 

Fig. 2 shows energy-band diagrams for a metal- 
semiconductor junction, expressed in terms of the 
present variables, for three current conditions. 
The current directions shown represent con- 
ventional current; electrons will travel in the 
opposite direction. It will be noted that for 
convenience the flat band condition has been 
taken at the extreme left of each diagram. The 
normalized diffusion voltage VD shown is the 
height of the barrier in the equilibrium case and 
is positive for an exhaustion-depletion barrier 
region such as that shown in Fig. 2. It may be 

_____--- 
QUASI FERMI LEVEL 

EOUILIERIUM l FORWARD I 

CONDUCTION 

ERM1 LEVEL ---------- 

--_ 
----_ 

-. 
QUASI FERMI LEVEL ‘.-. 

FIG. 2. Energy-band diagrams for semiconductor-metal junction. 
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related to the properties of the metal and semi- 
conductor in various ways which are discussed 
in detail by SPENKE@~? If we use a subscript 2 
to denote the value of a quantity at the barrier, 
it is clear that J’o = --r/z = (Qn,-Ys) in the 
present case. Further, the normalized applied 

voltage V, equals CD,,. Since Q,, is here zero, 
this result is in agreement with the rule that the 
voltage applied across a region equals the difference 
in quasi-Fermi-level potentials at the ends. 

diffusion theory 
when the mean 
small compared 

of rectification are appropriate 
free path of current carriers is 
to the barrier-region thickness. 

OHMIC CONTACT 

As mentioned earlier, the equations of the 

material which is not too heavily doped and is 
non-degenerate. For an exhaustion situation, the 
magnitude of E increases with reverse bias; 
therefore, the first condition limits the bias range 
over which the present equations are applicable. 
The second condition is usually less restrictive 
but, when combined with equation (lo), limits the 
range of applicability of the equations in a charge 
accumulation situation where N may be much 
greater than unity. 

the same word to designate both a normalized 
and an unnormalized quantity, since the specific 
meaning will be evident from the symbols em- 

BARRIER CONTACT 

For convenience hereafter, we shall often use 

---e CURRENT CARRIERS : NEGATIVE 

,/L-___-___---___-_ 

/ 

/x=0 
E =E, 

q=o 

FIG. 3. Structure analysed and boundary conditions. 

STRATTON@()) has obtained more precise require- 
ments by deriving the diffusion equation from the 
Boltzmdnn transport equation. The conditions 
simplify considerably in the present idealized 
case where the current carriers are taken to have 
very nearly the lattice temperature. If L, s ImiLe, 
where ZnE is the mean-free-path length for the 
mobile carriers, the requirements are, firstly, the 
usual condition lEILm 4 1 and, in addition, 
L&(dE/dxl < 1. The mean free path will be of the 
order of lo-103 .& for most materials of interest, 
and L, will thus be appreciably less than unity for 

/X=L 
E=E, 

q=q=-VD 

\I/ = v2 
Q* = a,, 

ployed. In addition, we shall focus attention on a 
cross-section of material of unit area and will 
therefore omit verbal distinction between such 
quantities as currents and current densities, 
capacitance and capacitance per unit area, etc. 

Exact and approximate results 

The situation with which we shall usually be 
concerned is depicted in Fig. 3, For the boundary 
conditions at the ohmic contact we have somewhat 
arbitrarily chosen a zero space-charge condition 
such as that shown at the left of each section of 
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Fig. 2. Although there may be a small electric variation is entirely specified by the magnitudes 
field, El, at this point, the free electron concentra- and signs of El and J, allowing the construction 
tion at the contact is constrained, if necessary by a of Fig. 4 which divides the J-E plane into six 
special electrode, to equal nm, which, in the present regions and one singular line as shown. This 
zero-recombination case, is itself equal to No. figure applies only for integration in the +X- 

CURRENT AIDED NORMAL 

EXHAUSTION 

FIELD REVERSAL 

ACCUMULATION 

FIELD REVERSAL 

EXHAUSTION 

NORMAL CURRENT AIDED 

ACCUMULATION ACCUMULATION 

RAI 

FIG. 4. Diagram showing influence of El and J on character of space charge 
for integration in the +X direction from an ohmic contact. 

Alternatively, El could have been taken identically 
zero and some space charge accepted at the 
“ohmic” electrode. The present choice is simplest 
for the following reasons: only one quantity need 
be specified at this boundary instead of two; it is 
experimentally realizable; it allows Yl and CD,, 
to be always taken as zero; and it is not particularly 
restrictive of the complexity of solutions possible 
for the system. 

It is possible to infer qualitatively from the forms 
of equations (9-11) how the space charge will 
vary as one progresses from left to right. This 

direction. The letters F, R, A and E stand for 
forward, reverse, accumulation and exhaustion, 
respectively. When & = J, no space-charge 
region is formed, no matter how much X increases, 
and the material remains completely ohmic. For 
all other cases, one of the conditions shown on 
Fig. 4 applies as the equations are integrated in the 
direction of positive X away from the ohmic 
electrode. In the present work, we shall primarily 
be interested in the exhaustion regions to the left 
of the ohmic line, since only they exhibit sufficient 
rectification to be of technical interest. Fig. 4 
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shows that there are three distinct exhaustion 
regions. The closer El is to J or, equivalently, the 
smaller the parameter E = El-J, the larger L 
will be for a given Vo. For a given J and El, L 
will be greatest for the FE2 region and smallest 
for the FE1 region, with the result for the RE 
position intermediate. 

It is important to note that a single exact 
integration of (10) is possible in the present zero- 
recombination case(45) even for non-zero current. 
On using (9) and (lo), we have 

(12) 

‘J 

-$[EJ-Ef] = J [l- exp(Y--@,)]d’J! 

0 

‘I’-@, Q,r 

_ y _ I’ !’ e’rdq - exp (Y - ‘D,) f&T,, 

(; 0 

= Y+ 1 - exp(V‘- (I&)+_/ 
i 

CJX 
v 
0 

(13) 

IF - ET = 2[exp(\F-- Q’,I)- 1 -Y’-JX] 

(14) 

where (11) has been used in (13). Note that if 

there were no fixed charge, as in case II(l),A, 
only the -‘F in (14) would be missing. Equation 
(14) is in agreement with the corresportding result 
in the zero-current case,(lO) where J = 0, (I),, = 0 
and where El is also zero when the ohmic contact 
is removed to infinite distance. Equation (14) 
could be used to eliminate equation (10) from the 
equations which must be solved to obtain the X 
dependence of E, Y and (Dn for given & and J. 
Since an exact equation analogous to (14) cannot 
be obtained in the R > 0 case, we have preferred, 
however, to solve equations (9-11) together, 
using a digital computer and employing (14) as 
a checking equation on the computer results when 
R = 0. When (14) is evaluated at X = L, one 

obtains the following exact equation for the 
current 

Note that we have taken k; 3 -vz and that (I),, 
is the voltage applied across the material ot 
length 1,. 

In the usual Schottky barrier approximation, 
the mobile charge in the barrier region is neglected. 
Integration of equation (10) from the partly 
blocking electrode toward the ohmic electrode 
(using the normalized distance variable Y) then 
yields E(Y) = I?z- Y, a linear field dependence. 
Since the Schottky barrier deals only with the 
non-ohmic space-charge region, we shall denote 
the normalized thickness of this layer by I,’ 
rather than the previously used L, which may 
exceed this thickness. Since El is usually quite 
small, we shall here adopt the usual Schottky 
approximation and take it zero at I’ = L’. The 
potential distribution is found, using (9) and the 
linear field dependence, to be ‘I’ = Yz+ Ez I-- 
(Y?/2). At Y = L’ the condition El = 0 yields 
I?? = I, . If Yl is taken as zero, the potential 
equation then leads to the usual result 

(16) 

When 1:; is taken zero, equation (15) shows 
that a better approximation will be 

where exp( - I/o) may usually be neglected against 
unity. Since the JL’ term will be small over most 
of the range of interest, it may also usually be 
neglected. For exhaustion barrier layers, the plus 
sign in (16) and (17) must be used. 

Using the above expression for the space 
dependence of ‘I”, (11) may now be rewritten as 

(i(l) IL 
exp( - (D,)----- 

d Y 
= J exp[ -‘P’z - Ez Y+ (Y2/‘2)] 

(18) 

When this expression is integrated with the 
neglect of the Y” term, a relatively simple ex- 
pression for (I),(Y) may be obtained. Taking 
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a%(O) = (I& and O%(L’) = 0 allows the constants 
of integration to be evaluated and leads to the 
following current-voltage relationship, 

J = &exp(- Vo)[l-exp(k)]/[l- exp(--&L’)l 
(19) 

When L’ is set equal to Ez and Ez specified by (16), 
the usual Schottky barrier result is obtained.(51) 
A better approximation will be produced, however, 
by taking E2 from (17) with the JL’ term neglected 
and L’ = E2. 

Increased accuracy may be achieved by 
integrating (18) as it stands. The following 
current-voltage relation is then obtained, 

J= 
exp( - VD>[~ - exp(%,>I 

42 exp{ - Ei/2}[erfi{(L’- Ez)/1/2}+ erfi{E2/2/2}] 

where 

erfi(6) = 
s 

exp(x2) dx 

0 

If L’ is taken equal to Ez, the first erfi function 
disappears. Then Es can be substituted from either 
(16) or (17). Th e f ormer choice leads to the result 
found by SPENKE(~~). Because of the neglect of the 
free-charge carriers in the barrier region, equations 
(19) and (20) should not be expected to hold 
accurately into the high forward-current region 
where @ n2 N Vo. Also, it should be remembered 
that they apply to the barrier of length L’ alone, 
not to the entire length L. 

The exact calculation of the differential capacit- 
ance of a finite-length device with space charge 
and a leaky barrier is difficult under non-zero- 
current conditions. Operationally, this capacitance 
may be obtained in the limit of low frequencies 
from the reactive part of the fundamental- 
frequency current which flows when the com- 
bination of a steady bias and an infinitesimal 
sinusoidal voltage is applied to the device. In the 
absence of an exact solution of the differential 
equations of the problem in this case, we shall use 
the following approximate expression for the 
differential capacitance Cd 

where C,, = +brL~ is the space-charge capacitance 
of a single completely blocking barrier in the 
limit of zero barrier height.(ls~ss) Here ~2 is the 
charge on the barrier electrode, and it is assumed 
that there is space-charge neutrality at the other 
electrode, The equality of d&, and d#z follows 
from the assumed independence of VD and applied 
voltage. 

In the present instance, equation (21) is an 
excellent approximation to the true capacitance 
over most of the bias range provided the measuring 
frequency is sufficiently low that the system re- 
sponds quasi-statically and transit times are there- 
fore unimportant. It can, in fact, be shown(Q) 
that equation (21) yields an upper limit when there 
is a retarding barrier. Further, it leads properly 
to the geometrical capacitance in the limit of high 
forward currents and is exact at zero current. 
Therefore, this equation will be used in the 
computer calculation of capacitance presented 
later. 

The substitution of (15) in (21) yields 

dJ 
l+L-- 

d-6 

Cd d‘r2 
El- 

d\r2 
(22) 

-= 
CO E2 

We shall now consider the simplification of (22) 
in various cases. For appreciable reverse voltage, 
the term &dE~/dy-“2 can be neglected compared 
to unity and the other derivative provided L is 
sufficiently large that the length of the exhaustion 
region produced by the barrier and applied 
reverse voltage does not begin to approach L. 
In the current and reverse-bias ranges of practical 
interest, the capacitance will then be that of the 
barrier region alone and we may set L r L’ g Es. 
The quantity LdJ/dY2 may now be evaluated 
from (19), yielding -exp( - Vo> when only im- 
portant terms are kept. Thus Cd becomes 

Cd k-1 N = 
co ?wJ 

1 - exp( - VD) 

[EF+2{ exp(-VD)-~+VD-~D,,-JL]~~~ 

(23) 

Over a wide range of reverse voltages, El and JL 
may be neglected compared to other larger 
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terms. Now in the zero current case, QLz = 0 
and Vo = -Yz. These omissions and sub- 
stitutions in (23) lead to WAGNER’S~~~) result 
discussed previously. For cases of practical 
interest, exp( - Vo) may be neglected compared to 
unity. Equation (23) still differs, however, from 
the conventional Schottky result by the presence 
of the - 1 term in the denominator. Its omission 
in the Schottky formula arises from the neglect of 
free charge in the barrier region and can be of 
some importance when comparing theory and 
experiment. The reverse-bias capacitance is, 
approximately speaking, shunted by the high 
barrier-region resistance, and the combination is 
in series with the bulk resistance. 

When the entire material behaves ohmically, 
V,Q = Oanditis easy toshow that El = E2 = J = 
-Yz/L and Qnz = Yz. Since dEz/dYz = -l/L, 
one finds from (21) 

(Cd)ohmic = Co/L = +Trl (24) 

the geometric value for a material of dielectric 
constant E between two electrodes separated by a 
distance 1. This capacitance is, of course, shunted 
by the ohmic resistance between the electrodes. 

In the forward-current direction, it is found that 
El z J very closely if L is appreciably greater than 

unity. Thus, Cd/Co becomes 

Cd 

(-1 N 

I+(L-.l)$f& 
2 

= 
Co for F 

(25) 
4? 

where E2 is given by (15). For sufficiently high 
applied forward bias, the barrier layer must 
eventually be wiped out even for very appreciable 
6’0 values. Then, again, the material behaves 
ohmically with Ez g J g -Yz/L and (25) reduces 
to the geometrical result L-1. The same result 
is also found for reverse bias when the bias is so 
high that the exhaustion layer essentially fills the 
region between electrodes completely. 

Next, consider the situation of one ohmic 
electrode and one partly blocking electrode in the 
limit of vanishing space charge and current: 
Vo + 0, Ya + 0, J + 0. On letting J go to zero 
first, it is easy to show(ll) that El approaches 
-Y&inh L. Then (15) yields Ei 2 E:+Yi = 
kZ Y;coth2L. Th is result may be used in (21) to give 

Cd = Co coth L 
Ilrn Y,-)O 

(26)~ 

in agreement with earlier results(sJ0). When 
L + KI Cd + CO, the correct value for a single 
electrode. On the other hand, when L + 0, there 
is no room for a space-charge layer, and Cd 
approaches the ohmic value given in (24). 

When none of the above simplified forms is 
sufficiently applicable or accurate, the differential 
capacitance may be calculated directly from (21), 
with the derivatives approximated as finite 
differences. A possible procedure is to select L 
and Vu and use the digital computer to obtain 
results for two very nearly equal values of J. 
The results may then be used to determine Cd 
and also the differential resistance of the junction. 

DISCUSSION OF COMPUTER RESULTS 

Introduction 
In this section, the results of extensive computer 

calculations for the zero-recombination case are 
discussed and compared with various approximate 
results. The outcome of similar calculations with 
recombination present will be reported later. 
Details of the computer calculations are presented 
in Appendix II. Since image effects have been 
neglected in the present treatment, the diffusion 
potential Vo will remain independent of current 
and applied voltage. This quantity, which must be 
positive to allow an exhaustion layer to form and 
which must be greater than unity for much non- 
linearity to be exhibited, will generally be taken to 
be IO for the present numerical work. This is a 
convenient magnitude and allows direct compari- 
son withconsiderable earlier theoretical workwherc 
the same value has been used. The normalized 
length L will also usually be taken as 10, although, 
results for many different lengths have been 
obtained. 

Distance dependence 

Fig. 5 compares some results for the field- 
distance dependence obtained from the SCHOTTKY 
and SPENKE theories already mentioned with those 
obtained from an accurate computer solution of the 
differential equations of the problem and with the 
approximate modified SCHOTTKY solution ob- 
tained by combining equations (17) and (19). 
In such combination, the JL term is omitted from 
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FIG. 5. Field-distance dependence for various degrees of approxi- 
mation (junction at left). 

(17) and L’ is taken equal to Ez. The dashed lines 
in parts (a) and (b) of Fig. 5 show the linear 
field-distance dependence assumed by SCHOTTKY 

and SPENKE. The solid lines were obtained from 
computer solutions run backwards from the 
barrier (at Y = 0) toward increasing Y and using 
the values of J and E2 which follow from the 
various approaches. Note that the same magnitude 

for forward and reverse bias has been used. The 
initial value of ‘3!~ is obtained from the bias value 
and Vo. 

The value of J used in the machine runs are 
shown on the figure. For the reverse runs, the 
SCHOTTKY-SPENKE (S-S) values of Es are quite 

close to the accurate value, but the difference is 
considerably larger in the forward case. It is clear 
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that there is considerable discrepancy between the reached. As integration proceeds beyond this point, 
S-S assumed field dependence and the actual an accumulation region begins to build up, (DIL 
dependences obtained from accurate solution of becomes limited, and Y and E begin to increase 
the equations with the S-S values of J and Ez. rapidly. When the accurate solution is run 
The heavy solid lines in part (a) show the entire backwards, however, the condition Dn = ‘f’ = 0 
field dependence obtained using the SCHOTTKY is reached at Y = 10 and the field El there is 
and modified SCHOTTKY (termed approximate) 0.01462, the value selected to yield 1, = 10. If the 
starting conditions. After an infinitesimal initial accurate solution is continued past Y = 10, one 

decrease in exhaustion as integration proceeds again finds accumulation. The situation with both 
away from the electrode, the free-charge con- exhaustion and accumulation is shown in Fig. 6, 
centration begins to drop rapidly, exhaustion where On(X) and v(X) have been plotted; the 

10-t , I I I I I I I I I 

8- 
FA RE 

ACCUMULATICN DEPLETION -EXHAUSTION 

6- v~=-io v,=+c 

I ’ ’ ‘7 

4 

2 

FIG. 6. Distance dependence of 17 and % with an accumulation junction at the 
left, an exhaustion junction at the right. 

increases, and the solution obtained applies to a 
material with a larger Vo than 10. The resulting 
rapid increase in G&(Y) precludes appreciable 
further increase in Y or change in Y and E. This 
increasing exhaustion behavior occurs because 
the initial currents in these cases are too large. 

The situation is different for the reverse 
SPENKE case. Here, the initial current is sufficiently 
close to the accurate value that exhaustion only 
decreases. The field follows the assumed de- 
pendence quite well for a considerable distance 
but eventually deviates from it. At the position 
marked by the small vertical line, the zero space- 
charge condition, N = 1 with (D, = ‘I’” =/= 0, is 

anode is at the left, the cathode at the right (for 
correspondence with the results of Ref. 11); 
and integration was stopped in the accumulation 
region when Vo = - 10. The electrostatic 
potential is given by On(X) +7(X). Since In N = 7, 
the quantity 17 is a logarithmic measure of the 
normalized charge density. The quasi-Fermi-level 
potential is very small over much of the region. 
It changes sign at X = 0 and reaches a maximum 
positive value of about 10-a when Yo = - 10. 

The letters FA and RE on Fig. 6 show the 
regions of Fig. 4 to which the starting conditions 
correspond. For combined accumulation- 
exhaustion, the field at the zero-space-charge point 
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(X = 0) has been termed Eo. Fig. 4 can be used 
when integration proceeds in the -X direction if 
the labeling of the axes remains the same and the 
six regions denoted by letters are inverted through 
the origin. On the other hand, when the signs of 
El, J and X are all reversed, a complete inversion 
through the origin is obtained and no real change 
in Fig. 4 or change in the results occurs; this is 
readily verified from the differential equations 
of the problem. 

Fig. S(b) shows the assumed and actual behavior 
of the field in the forward current case. Here the 
SCHOTTKY and approximate starting conditions 

accumulation curves of Figs. 5(a) and 6 correspond 
to regions RE and FA of Fig. 4. On the other hand, 
the SCHOTTKY, SPENKE and modified SCHOTTKY 
curves of Fig. 5(b) correspond to regions FE1 and 
RAr, while the accurate curve of Fig. S(b) and its 
continuation for Y > 10 corresponds to FE2 
and RAa. All the results yield E(X) curves which 
are convex to the X-axis, but those which involve 
FE2 and RAa will be displaced downward and 
will cut the X-axis twice in progressing from strong 
accumulation to strong exhaustion. Thus, the Eo 
value for the accurate solution is negative and 
equals - 0.02931 at X = 0. 

FIG. 7. Dependence of barrier profile on distance for various 
current values. 

yield significantly better results than found in the 
reverse direction. The approximate solution is 
close to the accurate one over much of the range 
because its starting value of Es is closest to the 
accurate value, but deviation finally occurs because 
the starting current is somewhat incorrect. Again, 
when integration of the accurate solution is 
continued past L = 10, accumulation begins, but 
there are some significant differences worth 
pointing out. The SPENKE and accurate exhaustion- 

The dependence of barrier profile on current 
is shown in Fig. 7. Here -Y is plotted against 
X for several current values. The barrier occurs at 
the right for easy comparison with the qualitative 
curves of Fig. 2. As the forward current increases, 
the barrier profile is depressed until its slope, the 
electric field, is everywhere negative and finally 
approaches constancy, as in the almost ohmic 
J= -I curve. 

In Figs. 8 and 9 the distance variable Y has 
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FIG. 8. Dependence of 7 (logarithmic charge density) 
on distance for various current values (junction at 

left). 

been used in order to place the barrier contact 
on the left for convenient comparison with zero- 
current results previously obtained. Fig. 8 
shows 7, or the logarithmic charge density, for 
various forward and reverse current values. The 
zero-current curve agrees closely with the earlier 
result for Y found by a different mathematical 
method. A slight difference appears for large Y 
values because L is taken to be 10 here and was 
infinite in the earlier one-blocking-electrode work. 

Since the effective length of the barrier region is 
reduced for forward currents and increased for 
reverse ones, the finite length of the sample has 
little effect on the barrier-region charge-density 
distribution for forward currents, but exerts a 
crucial effect in the reverse direction because the 
exhaustion region cannot exceed the sample 
length. In actual physical cases, breakdown 
would probably occur before a distribution such 
as that shown for J = 2 x 10-s could be set up. 

Fig. 9 shows the dependence of the quasi- 
Fermi-level on distance for reverse and forward 
currents. Since the change of shape with current 
is of most interest, normalized curves are presented, 
with the actual normalization constants shown in 
the tables on the graphs. The quantity (I), has 
been so defined that it is identically zero when 

09 

08 
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06 

3990 J 

0 04 08 12 16 20 24 26 

Y 

(b) 

FIG. 9. Dependence of normalized quasi-Fermi-level 
potential on distance for various current values (junction 

at left). 

J = 0. Therefore curves for] = i 10-T have been 
included which indicate the shape to be expected 
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in the limit of low currents. The two parts of Fig. 
9 show the two quite different ways the 0% curve 
approaches a linear distance dependence as the 
current increases in either the reverse or the 
forward direction. 

When space charge is either absent or in- 
dependent of position between electrodes, the 
material behaves ohmically and therefore exhibits 
a linear current-voltage relation. When mn 
depends linearly on X as it does for the limiting 
ohmic lines in Fig. 9, equation (11) shows that 
77(X) is constant and that the charge distribution 
thus does not vary with position. For 7(X) to be 
constant requires either that an and Y be constant 
or that they vary identically with distance. In the 
present instance Y will thus also depend linearly 
on distance, and the electric field in the material 
will be constant, as expected for ohmic behavior. 
For the limiting ohmic line in Fig. 9(a), Y will be 
given by (mn- Vo> between the electrodes (except 
immediately at the ohmic electrode), while in 
Fig. 9(b) the Y corresponding to the ohmic line 
will be given by Y = QD, (except immediately at 
the barrier electrode). 

If VO is specified and fixed at the barrier contact, 
the largest difference between Yp and @‘n anywhere 
in the material cannot exceed 1 V,l for any current 
level. However, when the maximum value of 
I@,nl is of the order of or less than VO, the shapes 
of Q%(X) and Y(X) curves can differ appreciably. 
On the other hand, when I@‘nl greatly exceeds 
1 V,l over most of the region between electrodes, 
the J@,J and )Y) curves will be almost the same 
over this region. 

Finally, the distance dependence of various 
quantities is of interest when both contacts to the 
specimen are non-ohmic. Results obtained for 
L = 10 and with Vo = 10 at both ends are shown 
in Fig. 10. For comparison with zero-current 
results,(ll) the anode is at the left and the cathode 
is the right; thus, the contact at the left is forward 
biased, that at the right reverse biased. In cal- 
culating these curves with the computer, integra- 
tion was usually carried out from left to right 
starting with an initial value of E, Y = - 10, and 
0% = 0. The zero of quasi-Fermi-level potential 
is thus taken, as shown in Fig. 10(a), so that the 
anode is at ground and the total applied voltage, 
Qnz, appears at the cathode. 

In the small-current limit, the curves of Fig. 
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FIG. 10. Distance dependence of Qn/Qn2 and 7 for 
various current values for two identical barrier junctions 
(forward-biased junction on left, reverse-biased on 

right). 

10(a) become antisymmetric about the center line 
between the electrodes. Even in the zero-current 
case, Fig. 10(b) shows that there is a small amount 
of space charge at the center because of the finite 
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length considered. The curves of Fig. 10 arc 
made up of both forward- and reverse-biased 
barrier parts and show clearly the dominating 
effect of the reverse-biased junction region on the 
over-all combination as the current increases. 
Only at the lowest currents shown in Fig. 10 does 
the electric field deviate appreciably from linear 
distance dependence. 

The present (Dn(X) curves are surprisingly 
similar, but not identical, in shape to Y(X) 
curves previously calculated for the zero-current 
case.‘ll) In addition to the distinction between 
non-zero and zero current conditions, the present 
results apply only to the case where there is an 
exhaustion-type barrier at each electrode while 
the earlier Y(X) curves apply only when there is 
exhaustion at one electrode and accumulation at 
the other. Therefore, the curves are not really 
comparable, and it is a coincidence that the shapes 
arc so similar. 

Most writers who have used the potential-probe 
method of investigating space-charge distributions 
have implicitly or explicitly assumed that the 
probe measures the electrostatic potential at the 
point probed.” In a one-carrier, one-dimensional 

system, a potential probe will actually measure 
the quasi-Fermi-level potential of the mobile 
carriers, howaver, provided the electron tempera- 
ture remains very close to that of the lattice, and 
in certain regions this quantity can differ by an 
amount as large as Vo from the electrostatic 
potential. The situation is appreciably more 
complicated when charges of both signs are 
mobile, and separate quasi-Fenni-levels must be 
introduced for each. These quantities are not 
equal except under ohmic conditions or at the 
electrodes, but the application of a metallic 
potential probe will force their equality at the 
point of application. Such forced equality will 
slightly perturb the charge and field distributions 
within the material even when the probe draws no 
current, and will thus destroy the one-dimensional 
character of the current flow. 

The (D,(X) curves of Figs. 9 and 10 show the 
potential distributions which could actually be 
measured by a potential probe in the non-zero- 
current case. In the earlier work of the author,(lo*ll) 

* A number of references to measurements of this 
kind are given in Refs. 10 and 11. 

it was correctly stated that potential probes could 
not be used to determine the electrostatic potential 
distribution present in the material in the absence 
of a potential difference externally applied to the 
electrodes, but it was implied that probes could 
measure the electrostatic potential at a point in 
the material even in the zero-current case in the 
presence of an externally applied potential. This 
conclusion is wrong, and the comparison rnade’ll) 
between the earlier calculated Y(X) curves and 
the experimental potential distributions obtained 
with potential probes by JOFFE(~~) is entirely 
vitiated. 

It is not entirely clear from JOFFE’S work whether 
the current observed in quartz and calcite crystals 
was primarily of a single charge type or not. If so 
and if recombination was negligible, his curves 
are comparable with those of Fig. 10(a). It should 
be noted, however, that although his curves arc of 
the general shape of those of Fig. 10(a), he was 
concerned with potential differences of the order 
of 100 V, while the largest (I),,, in Fig. 10(a) 
corresponds to about 10 V at room temperature. 
It is probable that larger values of L and Lb 
than here used could be selected which would make 
theoretical curves such as those of Fig. 10(a) 
approximate to those of JOFFE in magnitude as 
well as in shape. 

When the potential-probe method of measuring 
quasi-Fermi-level potential distributions within 
a material is not pertinent or practical, other 
methods of investigating the distance dependence 
of various quantities of interest must be used. 
CROITORU(~~) has shown that the Kerr effect can 
be employed to give a(.~) for transparent dielectric 
liquids. HARRIcZK(~~) has used infrared absorption to 
probe the distribution of free carriers in semicon- 
ductors, and preliminary results of Bii~(~~) indicate 
that the field distribution in high-field regions may 
possibly be directly obtainable from measurement 
of light absorption at the edge of the fundamental 
absorption band of the material. 

Current-coltage dependence 

The current which flows when an external 
potential difference is applied to the material is 
determined by the charge conditions throughout 
the system. Although near the barrier the charge 
and field distributions may differ appreciably 
from those predicted by the SCHOTTKY or SPEIXKE 
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solutions, the current is an averaged response, 
and the exact current-voltage relation may be 
expected to differ less radically from those 
predicted by the above theories. Since the 
SCHOTTKY-SPENKE theories deal only with the 
barrier region and therefore exclude any ohmic 
potential drop, the present results, which are 
calculated for a fixed length and include an ohmic 
contribution, must be modified to eliminate any 
ohmic drop, in order to allow direct comparison. 

The ohmic potential drop is readily found to be 

and is compared with the simplest exponential 
characteristic, that for an ideal rectifier. The 
constant in the latter has been selected to yield 
the same limiting low voltage characteristic as 
that found in the exact solution. For strong 
revers ebias, the length of the exhaustion region 
may exceed L = 10. Since we are here dealing 
with the barrier region alone, the actual length 
used in calculating the reverse characteristic has 
been purposely taken appreciably greater than Ez 
so that it is always considerably greater than the 

/ 
OHMIC/ 

v, =I0 

i 

_ ACCURATE RESULTS 

--_-_ -__ J= I.802 x ICJ-~(I - e”i,) 

. . . . . TWO BARRIER 
ELECTRODES 

1 

FIG. 11. Log-log current-voltage relations for barrier region 
alone (except for solid dots which pertain to a fixed length L = 10 

and two barrier electrodes). 

- JL; therefore, the new potential variable 
@AZ E @as+ JL may be used for comparisons 
restricted to the barrier region alone. It is the 
applied potential drop across only the barrier 
region in the SCHOTTKY-SPENKE theories. In the 
present work, where the approximation of an 
explicit barrier thickness is not made, @,h, is 
simply the total applied potential difference less 
the ohmic drop occurring in the total length L. 
There is no significant difference between @,, 
and 0;, for the range of reverse currents and 
lengths considered herein; it is only in the forward 
direction that appreciable difference appears. 

In Fig. 11 the exact current-voltage dependence 
for the barrier region is shown on a log-log plot 

effective exhaustion length. The limiting current- 
voltage relation is then approximately 

J = [2 VD- @A2)]1/2 exp( - Vn), 

and 1 JI thus eventually becomes proportional to 
/@&11/s. On the other hand, when L is fixed, the 
exhaustion region soon fills almost the entire 
region, as in the J = 2 x 1O-3 curve of Fig. 8. 
As the applied potential is further increased in 
this region, it is found that ) J] becomes pro- 
portional to I@‘nzl. Such ohmic behavior follows 
because the charge distribution, which is exhausted 
down to the level N = exp( - VD), cannot change 
appreciably with current after this condition is 
reached. It turns out that there is little difference 
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between the field Ez at the reverse-biased junction 
for the case when the length of the sample is 
appreciably greater than the exhaustion region and 
that when the length is fixed and less than the 
exhaustion region would be for a given reverse 
potential difference in the first case. On the other 
hand, the field El at the ohmic contact is quite 
different in the two cases, being very small in the 
first and approaching (Ez- L) in the second. 

The present curves can easily be used to con- 

struct the current-voltage characteristic for two 
identical junctions in series, such as would be 
obtained if the separation between barrier regions 
were always sufficient that a region of essentially 
zero space charge appeared between the electrodes 
for all applied biases. For a given applied voltage, 
one junction would be forward biased and the 
other reverse biased. The total potential difference 
would then be made up, for a given current, of 
the forward barrier drop plus the reverse drop 
plus any ohmic potential drop. 

The situation is somewhat different when the 

length is fixed and small enough that most of the 
material between electrodes becomes appreciably 
exhausted when an external potential difference 
is applied. The results for such a case are illustrated 
by the large solid dots in Fig. Il. Here, two 
identical electrodes each with Vu = 10 were 
considered for a fixed length L = 10. For high 
applied bias, the influence of the forward-biased 
junction is negligible and the over-all response 
approaches that of a single reverse-biased junction. 
Since the material becomes exhausted down to the 
JV = exp( - Vo) level, the final limiting character- 
istic for this case will involve direct proportionality 
between /]I and (#‘nz(. In the limit of low applied 
potentials, conditions at the two junctions are 
identical, however, and the zero-current resistance 
is thus twice that of a single junction. It is worth 
mentioning that for IQ&I < 1, where the current- 
voltage relation is linear and hence ohmic, there is 
still space charge in the neighborhood of barrier 
contacts, as shown for example in Fig. 9. Such 
ohmic behavior is found whenever the space- 
charge distribution is zero or independent of 
current. 

Fig. 12 is a linear plot of the forward character- 
istic for various conditions. The two heavy solid 
lines show the exact results for L = 5 and 10. 
The dashed lines are the asymptotes which the 

exact solutions approach as IJI increases. Note that 
they may be used to determine Vo. When Qnz is 
modified by subtraction of the ohmic drop, it is 

ti.5’ 

I 
0 \ 

I 

2 

FIG. 12. Linear plot of current-voltage relations in the 
forward direction showing corrections for ohmic 

drops. 

found that the resulting characteristic for the 
barrier alone is independent of length, as it should 
be. Thus both the L = 5 and L = 10 curves 
lead to the same barrier characteristic. Over part 
of the range, the predictions of the simple 
SCHOTTKY theory are also shown for comparison. 

Finally, Fig. 13 shows the forward characteristic 
on a semi-log basis. The dashed line shown at the 
extremes of the heavy exact barrier characteristic 
denotes the best straight-line approximation to 
this characteristic. It is clear that over about three 
decades of current an exponential approximation 
to the exact solution is quite adequate. Instead of 
involving exp(@&), however, the straight line 
shown implies exp(QP’Jl.15). The number 1.15 
will, of course, be a function of V-0. 

Table 2 presents a comparison between the 
predictions of various current-voltage character- 
istics for the barrier region alone. Here Je is the 
exact current. The SCHOTTKY formula used was(slF 

Jsc = d/( -2y2) 93 - bN - exp(&)l -__~ 
[1 - exp(2Y2)] 

(271 _ _ \-. I 
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v,= IO 
FORWARD 

. . . . . SCHOTTKY 

/ I I I I I I I I I 
0 I 2 3 4 5 6 7 8 9 IO 

FIG. 13. Log-linear forward current-voltage characteristics. 

where Y2 is given here and below by (a;,- V.). the Jsp and Jmsc forms are clearly superior to the 
The modified SCHOTTKY formula employed 

J 
E2 exp( - b)[l - exp(@b,)] 

msc = 

was Jsc. Since the expression for Jmsc is Considerably 
simpler than that for Jsp and yet yields almost as 

where 

[l - exp( - E$I 

E2 = [2{ -Y2 - 1 + exp( - ~o)}]lis 

(28) 
accurate results, the former will usually be pre- 
ferred. As the current increases in the forward 
direction, the accuracy of the three expressions 
decreases for an appreciable range, then increases, 
and finally decreases. As might be expected, none 

(29) 
of the solutions is adequate in the high-forward- 
current range. This is not usually of importance 

This approximate expression for Ea was used only since, even if the present exact solution applied 
when -Y2 > 1. Finally, SPENKE’S result may be closely to experimental results in the high forward 
expressed as range, the barrier-region characteristic would be 

exp(- %)[I - exp(@i,)] 
masked by ohmic potential drops associated with 

Jsp = 
the fixed and finite length of the sample. 

d(2) exp(Y2) erfi d( -Y2) 
W) Fig. 14 compares the accurate dependence of Ei 

where erfi(.$ has already been defined. 
on @& with the linear predictions of the SCHOTTKY 
theory. The dotted barrier-region curve and the 

The results of Table 2 show that in the reverse 
direction all three expressions are adequate, but 

SCHOTTKY line are, of course, plotted vs. @AZ. At 
about @Lz = 9.3, E2 passes through zero and 
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Table 2. Comparzson of various current productions (barrier layer alone; VD= 10) 

IJel 
JsciJe 

0 1 .I27 
10-s 1.128 

2 x 10-5 - 

3 x1n-5 1.129 
4x10-5 - 

10-4 1.134 
2 x 1OP - 

2.5 x lO+ - 

3 s lo-” 1.146 
4 x10-4 - 
6 x 10-4 - 

IO--” 1.169 
2 x10-3 - 

3 x10-” 1.204 
10-Z 1.260 

3x10 2 1.324 
10-l 1.364 

3 x lo-~1 1,252 
6x10-l 1.073 
8 x10-1 0.990 
1 0.930 

1.4 0.853 
3 0.750 

Forward Reverse 
- __-__ 

- 
JlnsclJe JsD’J~ 

1.069 1.062 
1.069 1 .062 
- - 

1 .070 1.063 
- - 

1.073 1.066 
- 

Js,,,IJe 
--- 

1 .062 
1 ,062 
1 .062 

- -_ 

1.080 1.071 
- - 
- - 

1~094 1.0x1 
- - 

1.113 1 .094 
1.141 1 alO9 
1.161 1.113 
1.12-C 1.073 
1.051 0.964 
- 0.871 
- 0*x33 
- 0 *so7 
- 0.773 

0.727 

JsciJe Jnw/Je 

1.127 1.069 
1.126 1 ,068 
1.125 1 .06X 

1.123 1 ,067 
1.115 1.062 
1 ,092 1 44’) 
1 .066 1 .03-c 
1 .046 1.024 
1 ,026 1.013 
1 ,011 1.006 
1.004 1 ,002 

- 

- - 
- - 
- - 

- - 
- 

- 
- - 
- - 

\ \ 

\ ‘Ye \ 
‘c ‘\ 

.5x10-4 ’ \ 
\ 

\ 

\ 
\ 

\ 

2 WlO“J ‘\\ 
\ 

‘* 

10-4 / 

REVERSE 

I I I 

- 
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FIG. 14. E: vs. a,, showing comparison with SCHOTTKY-theory predictions and 
dependence of accurate Ei on barrier-region potential drop as well. 

1 .060 
1.057 
1.046 
1 +33 
1.023 
1.012 
1 ,006 
1 ~002 

- 
- 
- 

- 

- 
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becomes negative. In this high-current region, 
it and El both approach J. The lines joining the 
heavy dots in Fig. 14 show where points for a 
given current fall for the exact and SCHOTTKY 
lines and thus indicate further deviations between 
the two calculations. 

Resistance 

Fig. 15 shows the dependence of (normalized) 
resistance L&Y on the total applied voltage @a2 
across a slab of thickness L. This integral or static 

/ REVERSE 

IO’ 

R 

v, = IO 

FIG. 15. Dependence of junction static resistance on total 
applred potential difference. 

resistance is simply -Ons/J. The normalizing 
resistance is thus kTLD/e2D,n,. The curves for the 
differential resistance, - d@,,/dJ, are quite similar 
in appearance to those for the integral resistance. 
When L is always taken appreciably greater 
than E2 and the length of the exhaustion region, 
the L%? for the barrier alone will become pro- 
portional to )@iall/s for strong reverse bias, in 
agreement with the discussion of Fig. 11. When the 
length is fixed, W will approach constancy and 
ohmic behavior for both high-reverse and high- 
forward bias. Sooner or later, deviations from the 

C 

reverse-bias behavior shown in Fig. 15 must occur 
because of high-field breakdown in the material. 
The final limiting L% in the forward direction is 
just L, since J then approaches -Dfi,/L. The 
dashed line in the forward direction marked 
L < 10 shows the resistance for the barrier 
region alone. 

The zero-current resistance B?s of the junction 
is a quantity of some interest. It can be calculated 
directly for the cases defined by equations (27-30), 
but must be obtained by interpolation from the 
accurate computer solutions for several very low 
currents. The results for Vo = 10 are 5548.7, 
52246, 5191.7 and 4925.3 for the computer, 
SPENKE, modified SCHOTTKY and SCHOTTKY 
solutions, respectively. The SCHOTTKY value of 
LJ&J is 2 sinh V~/1/2v~. When the true zero- 
current field Es r (2(Vo- l))l/s is used in the 
SPENKE solution instead of the SCHOTTKY field 
Es = (2V~)l/s, the resulting CJ& is very close to 
the accurate value for Vo > 10. 

Capacitance 

In Fig. 16(a) the accurate and SCHOTTKY 
results for the normalized differential capacitance 
are compared for VD = 10. Although the accurate 
curves are plotted from the computer evaluation 
of equation (21), this equation itself is somewhat 
approximate, as mentioned earlier. The SCHOTTKY 
curves apply for the barrier region alone and yield 
a capacitance which indefinitely increases in the 
forward direction and decreases toward zero in the 
reverse direction. The main difference between the 
accurate and SCHOTTKY curves in the low-bias 
region arises from the presence of the (Vo- 1) 
term in the accurate expression for Es as compared 
to VO alone in the SCHOTTKY expression for this 
quantity. 

For larger bias, the accurate and SCHOTTKY 
curves deviate in addition because the computer 
results apply to the entire slab, not just the barrier 
region. Thus, the accurate results include the 
effect of the geometrical capacitance of the material 
as well and, in the high-forward-bias or reverse- 
bias limits, the capacitance approaches the 
geometrical value and (Cd/C+L-1. The com- 
puter results therefore are directly comparable 
to the results of capacitance measurements on a 
material of fixed length having one ohmic and 
one barrier electrode. 
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FIG. 16. Normalized differential capacitance and [C’O~C~]~ 
vs. applied potential difference with comparison to 

SCHOTTKY-theory predictions. 

Because the field is in general non-uniform 

through the entire length between contacts, the 
space-charge and geometrical capacitances of the 
material cannot be considered to be in either 
series or parallel. Further, as long as the field is 
non-uniform the geometrical capacitance, insofar 
as it can be defined, is not even equal to the 
constant limiting value of equation (24). However, 
in the limit of high bias and ohmic behavior, 
the field is essentially uniform and the geometrical 
capacitance is all that is of importance and has its 
usual value. The above considerations make it not 
worthwhile to try to combine the geometrical 
capacitance with the SCHOTTKY space-charge 
capacitance to obtain over-all capacitances which 

could be directly compared with the accurate 
results for the whole slab. 

Fig. 16(b) shows the capacitance plotted in the 
conventional inverse-square manner. This graph 
should be compared with that of Fig. 14 for EE 
In the reverse direction, equation (23) shows 
that (CO/Cd)2 is closely equal to Eg. Thus, a com- 
parison of Figs. 14 and 16(b) shows clearly the 
region where the above near equality begins to 
fail badly. The deviation of Cd-2 from a straight 
line has been ascribed by SHIVE(57) to either a 
bias-dependent VU or to non-uniform doping of 
the material. It is evident from Fig. 16(b) that 
deviation can occur even in the absence of both of 
these effects. Because of the difficulty of measuring 
capacitance accurately in the low-resistance, 
appreciable forward bias region, no measurements 
showing an actual increase in (Co/Cd)2 like that 

in Fig. 16(b) seem available, although many 
measurements show deviations in the right 
direction from straight-line behavior. Note that 

for L + 1 the higher L’D the wider the range 
over which a straight-line dependence will be 
found. 

Fig. 16(b) shows that the intercept of the 
straight-line extrapolation of the Cd-2 curve with 
the Qn, axis is the WAGNER value (Vo - 1) while 
the SCHOTTKY intercept is V,. When experimental 
Ca-2 plots have been analyzed, it has been almost 
invariably assumed that the intercept yielded L;. 
This error is self-compensating and leads to no 
error in .!Vo if the latter is calculated from the 
SCHOTTKY capacitance formula as well. Further, 
the actual difference between V’ and (VD- 1) 
will usually be quite small for most experimental 
Vu’s at room temperature and below. On the other 
hand, wherever exp( - Vu) occurs, as in ex- 
pressions for the current and resistance, the 
assumption that (Vo- 1) is actually vo leads 
to an error of a factor of e1. If No has been deter- 
mined correctly from capacitance measurements, 
the dielectric constant is assumed known and the 
mobility pCI is to be determined from current- 
voltage results, the unwitting use of (Vo- 1) in 
place of L’o can lead to an apparent mobility e-1 
times the true mobility, even aside from other 
smaller errors incident to using an approximate 
equation such as (27), (28) or (30) instead of more 
accurate results. 

Finally, it may be mentioned that when both 
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electrodes are partly blocking, the space-charge 
capacitances localized near each electrode can be 
added in series to obtain the over-all capacitance, 
provided the separation between electrodes is 
sufficiently great that there is a region of essentially 
zero space charge between the two barrier regions. 
This matter has been considered at some length 
for the zero-current case in earlier work.(ll) 
Again, the final limiting capacitance is the geo- 
metrical value. The results for two identical 
partly or completely blocking electrodes can also 
be applied to the case of back-to-back barrier 
contacts such as that considered in SIC by 
STRATTON(58). It is only necessary that the length 
of material between outside ohmic contacts in the 
back-to-back case equal the length between barrier 
electrodes in the two-barrier case and that this 
length be great enough for essentially ohmic, 
zero-space-charge conditions to exist at the 
center. In both cases there will be one forward- 
and one reverse-biased junction and the over-all 
behavior will be the same. 
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APPENDIX I 

Non-Zero Recombination 
Let N;“, be the local concentration of neutral donors. 

Then at any point in the material we must have 
ND - Ni+N$. In addition, in equilibrium we may 
write 

aN; 
__ = -KIN;+ k&; = o 

a 
(A.1) 

where kl is a dissociation rate constant and kz a recom- 
bination rate constant.(5s) We may now define the new 
recombination constant R 3 kzNo/kl. Equation (A.l) 
then leads to the mass-action result(4s) 

where N’+ and n may be functions of position. This 
equation holds only when the Maxwell-Boltzmann 
approximation, equation (S), is applicable. In the non- 
zero-recombination case, R # 0, and n and N,’ have the 
common value nm (f ND) in space-charge-free bulk 
material. Then (A.2) becomes 

(1-s) =R(z)k (A.3) 

where a new recombination constant r (0 < Y < 1) 
has been introduced. Equation [A.31 leads to 

not, 
--_z 1-y = - 

v ID 
&+ [(_g+$]‘-’ 

(A.41 Y = 1 -(NAa/ivD) = {[I +$exp[(EDm-E~m)/kT]}-l 

which shows how R or Y determines the mobile charge 
concentration in space-charge-free bulk material. On 
normalizing with n=, (-4.2) becomes 

(A-9) 

Thus, + is just the probability with which a donor level 
is occupied by an electron, in agreement with the relation 
N& = rNo. The recombination coefficients R and Y 
depend on radiation as well as temperature provided 
absorbed quanta are of sufficient energy to ionize neutral 
donors. 

s- = (%)[I-R(Z)2/%)(&)] 
%c 

= (1 -Y)-l[l -rN(N;/n,)] 

= [l +r(N- l)]-1 (A.5) 

Since N T= n/nm is still given by (8) in the present 
case, (A.5) may be introduced into (2) to yield the 
appropriate Poisson equation when R # 0. Let the 
Debye length LO used in the body of the paper for 
normalization be replaced everywhere by the effective 

Debye length(la~li) L, E OLD, where 

e = [(l +r)(l -r)]--l/s. 

Then the form of equations (9) and (11) remains the 
same and (10) becomes 

dE 1 
,iy = (1 + y)-l -N 

1 +u(N- 1) 1 
= wl( (l+r)-l(l+rN) \ 

1 +r(N- 1) -I 
(A4 

where the term in curly brackets represents the correction 
for non-zero recombination. Equation (-4.6) has been 
termed a Poisson-Boltzmann equation by DEWALD(~~), 

but such nomenclature is misleading since the donors 
obey Fermi not Maxwell-Boltzmann statistics here. 

Finally, it is of interest to express R and Y in terms of 
the energy levels of the semiconductor. The usual 
expression for Ni is(47j 

N;j = No{1 f2 exp[(&-&)/kT]}-1 (A.7) 

where the factor of 2 in (A.7) arises from the spin 
degeneracy of the donor state. On substituting (5) and 
(X.7) into (A.2), one obtains 

R= 
END 

__ exp[(&- &)/kT] 
lV( ’ 

END 
3 __ exp(Em/kT) 

NC 
(A4 

where the energy difference ECD is constant throughout 
the material for both equilibrium and non-equilibrium 
conditions. The quantity Y can be expressed in a number 
of ways. One of the most interesting is obtained using 
(A.7) in (A.3) and noting that nm - N,‘, ; then 

APPENDIX II 

Computation Details 
An IBM 650 computer has been used to solve the 

three differential equations, (9-ll), simultaneously by a 
step-by-step, fourth-order Runge-Kutta procedure. 
In such calculations the current J must be specified and 
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the resulting applied voltage determined at the com- 
pletion of the solution. When the length between 
electrodes is specified, as is usually the case here, one 
must begin the calculation with specified values of E, 
an and ‘F and continue computation until the desired 
length has been reached, where it is hoped that specified 
boundary conditions will also be met. In this case, we 
must solve a two-point boundary-value, or “jury”, 
problem. For example, we shall usually integrate from 
the ohmic to the barrier contact. Then we can take 
Qnl = ‘l!l = 0, and we must choose El such that the 
condition -7s = Vo is met when X has progressed 
to the desired L-value. Exact determination of El will 
therefore require successive approximations. When 
integration is commenced from the barrier electrode, 
it is necessary that Es, Qz and ‘r, be known at the 
beginning of the calculation for given J and L. Such 
knowledge is usually unavailable until the problem has 
been run through first the opposite way from ohmic to 
barrier contact. Once this has been done, the results may 
be used for a calculation running from X = L to X = 0. 
Such an integration is valuable as a check of the accuracy 
of the computations since it should finally yield 
@‘nl = ‘%‘I = 0 and the original value of El when X 
reaches zero. 

Although the El value which results in satisfaction of 
the desired boundary conditions at X = L for given 
choice of J and L can often be estimated quite closely, 
the attainment of accurate results usually requires that 
several values of El be tried until one is found for which 
the boundary conditions are sufficiently closely met. 
We must select El such that both X and 7(X) are 
simultaneously close enough to the selected values of L 
and 72, respectively, at the end of the integration. In 
order to help meet this requirement, an iteration routine 
has been incorporated into the digital computer program 
which automatically selects those final-length increments 
which result in -7s exactly equalling a specified value 
of Vo. The computer run is then concluded. If the 
resulting final-length value is not close enough to that 
desired, the run is repeated with a better choice of El. 

The length L is a function of E 3 El-J, as already 
mentioned. For E < 1, it turns out that for a given 
current the relation L = a-b In E holds very well. 
The quantities a and b are themselves functions of 
current, however. In the reverse direction b is unity, 

while it decreases slowly from this value as the current 
increases in the forward direction. For VD = 10, 
Q = 4.52 at J = 0. In general, it decreases in the forward 
direction and rapidly becomes asymptotic to E2 in the 
reverse direction. The exponential relation between l 

and L is very useful in estimating the value of El re- 
quired to yield a desired L-value for a given J. 

Considerable attention has been given to minimizing 
round-off and truncation errors arising in the step-by- 
step integration. A first step toward this goal was to use 
variables whose total variation was as small as possible 
over the range of integration. The present choice of the 
essentially logarithmic variables % and $ rather than 
the direct variable N results in far smaller and hence 
more accurate increments in the dependent variables 
for a given increment or step size in the independent 
variable. 

Secondly, both round-off and truncation error are 
controlled and reduced by progressive and automatic 
adjustment of the size of the X-increment throughout 
the calculation. Such control is accomplished by 
comparing at each step estimates of the truncation errors 
of each dependent variable increment with pre-set upper 
and lower relative and absolute error bounds. Automatic 
increment control of this kind allows the interval from 
X = 0 to L to be tranversed with a minimum number of 
increments of varying size consistent with a fixed, 
specified, local error from truncation. It is particularly 
appropriate and desirable in the present problem where, 
even using logarithmic variables, the increment size often 
varies by a factor of as much as lo6 over the range from 
0 toL. A typical high-accuracy solution with variable 
step length requires from 100 to 200 steps for L = 10. 

The accuracy of a given solution can be assessed in 
three separate ways. Firstly, the results at any step can 
be compared with the predictions of equation (14). 
Secondly, a complete run can be repeated with more- 
and more-stringent upper error bounds until no signifi- 
cant change in any of the results occurs. Finally, a forward 
run can be run backwards from X = L to X = 0 and 
corresponding points compared. Except at the extremes 
of current where the accuracy may be slightly impaired, 
error analysis such as that above shows that the results 
reported herein are generally accurate to five or six 
significant figures. Greater over-all accuracy could have 
been achieved had it been warranted. 


