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Synopsis 

The distribution of relaxation times function, G(r), often used to describe the 

response of a linear mechanical, magnetic, or dielectric system is identified as a 

probability density. The situation is examined where either 7 or s = In(~/ss) is made 

up of a linear combination of new variables, some or all of which may be themselves 

distributed. When the probability densities of the individual variables are specified, 

it is shown how the overall density describing the distribution of 7 or s and the variance 

of the overall distribution can be calculated when the individual variables are either 

all statistically independent or all linearly related to a single distributed variable. 

To illustrate the above general results, the important specific example of thermally 

activated processes is examined. It is assumed that 7-i obeys an Arrhenius equation 

and that both the pre-exponential factor and the heat of activation, or activation 

energy, may be separately distributed. For concreteness, the distributions of the two 

variables which combine to yield s are taken to be of the important exponential form, 

although many of the results apply as well for other distributions. Special attention 

is given to overall temperature dependence possibilities, and cases are described which 

lead to almost complete determination of the temperature dependence of the transient 

and frequency responses of the system. Finally, comparison is made between some of 

the temperature dependence predictions of the present work and internal friction and 

dielectric dispersion experimental results. 

Introduction. Many magnetic, mechanical, and dielectric systems exhibit 
frequency dispersion. When the system is linear and non-resonant, its 
frequency response may be related to a distribution of relaxation times 
function, G(7). We may writer), 

0 --m 

where s = ln(T/Ta), TO is an arbitrary time constant, and p is a complex 
frequency variable. Here, Q(e) is a normalized frequency response function 
equal to (E* - E_)/(E~ - a_) in the dielectric case. The quantity E* is the 
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complex dielectric constant ; ,zS the static dielectric constant; and E, the 
high-frequency dielectric constant beyond the dispersion region considered. 
The relation between G(T) and f(s), the distribution function for the loga- 
rithmic variable s, may bc obtained from the condition G(T) d7 = f(s) ds 
and is TG(T) = F(T) = F(T@) = f(s) = /[h(T/To)]. It is evident from the 
normalization of Q@) that Q(0) = 1 and that therefore G(T) and f(s) are 
themselves normalized. The response of many systems involves only a single 
time constant ~1 over the frequency range of interest and then G(T) = 
= d(T - Tl), where s(T - 71) is a Dirac delta function. In many cases, 
however, a number of time constants or a continuous distribution is necessa- 
ry to characterize the system response. 

Since G(T) and f( ) s are probability density functions, we shall make use 
in the present work of the large body of statistical results dealing with such 
functions. We shall be specifically concerned with cases where T or s is given 
by a linear combination of other variables, xi, some of which are themselves 
distributed. This is a situation which is likely to be frequently encountered 
in physical systems involving a distribution of relaxation times. The presence 
of the individual x2 distributions then leads to overall distributions of 7 and s. 

General analysis. Let us consider a variable Z, which may be either 7 or s, 
given by rt 

2 = C &Xi, 
i=l 

where the probability density functions, fiZ,(xi), of the xi variables are 
assumed known and ai # 0. We wish to obtain the overall probability 
density function p,(z). It will be convenient to transform to the new vari- 
ables yz = azxz. In general, $,,(yz) involves the Jacobian of the transforma- 
tions). In the present case of univariate distributions, one finds 

When some or all of the xi variables are partly correlated, the overall 
probability density function corresponds to a multivariate distribution 
whose variables are not all statistically independent. Since information 
concerning the details of such a multivariate distribution is usually lacking 
in physical cases of interest, we shall confine the present discussion to two 
situations which can be readily handled: that where all the xi variables 
are statistically independent and that where they are all linearly dependent 
on a single variable, w. An extension to combinations of these two cases can 
also be readily carried out, and the case where the individual variables 
depend nonlinearly as well as linearly on a single distributed variable may 
also be treateds). 

When a probability density is known, its variance ~72 may be calculated 
directly by integration or from the characteristic function (c.f.), an ex- 
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ponential Fourier transform of the probability densitys) 3). One finds, for 
example, Oil = (aza,Js. When all yd’s are statistically independent, the c.f. 
corresponding to ;b&) is the product of the individual-variable c.f.‘s. The 
overall p,(z) may then be obtained by an inverse Fourier transform. It also 
follows in the independent case, irrespective of the forms of the pUl(y~) 
densities, that 

7L 

u”, = x CT” 
i=l ” =igl (wzJ2. 

Note that when one of the yi variables, say the jth, is not distributed, 

ib,,(YJ) = S(Y, - YY) and o2 = 0. Here yy is the non-distributed value of 111 
the yf variable. 

In the linearly dependent case, we have xi = ai + @u, where ze, is a 
distributed variable. Then z = a + bw, equal to ci + C&X( when ,36 # 0, 
where 

a = 2 ugcq, b = 5 a&, ci z (api - bag)/pt, 
i=l i=l 

and df = b/bt. On defining all 4s as positive quantities, it follows that 

c~z = lbl aw = I& cz,. Since (TV must be independent of the index i, one 
obtains azr/~w = 1,8Jls;rl. The use of this relation finally allows (I~ to be 
expressed as 

cz = I$ sgn (Q Bf) cy,l = Ii 4 sgn &,I. (3) 
i=l i=l 

The probability density $&) follows from either p,(z) = /b-l1 $,[(b-l) (z - a)] 

or ;b&) = Idill $,,[(dt~‘)(z - 41 an must be independent of i. Note that d 
the range of z is not necessarily equal to that of w or that of any xt. 

Specific examples. It is very often found in dielectricd) 5) 6) 7) and me- 
chanical*) 9) la) d is p ersion experiments that the relaxation frequencies of 
the system satisfy an Arrhenius type of equation. For such thermally acti- 
vated processes, one may frequently writes)g) 7=7d exp(dG/KT), where 
-rd = v d1 is an inverse vibrational frequency or attack time, and AG is the 
difference in work required for a transition from minimum to maximum 
Gibbs free energy in surmounting a potential barrier. Both Ed and AG may 
depend somewhat on temperature because of such effects as straining of 
the crystal lattice as the temperature changes. The experimental determi- 
nation of any small temperature dependence of Ed is very difficult, and this 
quantity will here be taken temperature independentiaa) . Experimentally, the 
apparent activation energy is often found to be temperature independent 
as well; therefore, we shall assume AG = E[l - (T/To)], the only form 
which can lead to such independence. Here, E is temperature independent, 
T < To, and To is of the order of the melting point or above for most solidss) and 
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near the boiling point or above for most liquids. Such linear dependence 
for AG has been used by Zen er *) 11) in a theory of diffusion and has been 
found also for semiconductor energy gapsl”) 13). 

The above expressions, plus the relations 

AH = AG + TAS = d(AG/T)/d( 1 /T), 

lead to AH =SZ E, the enthalpy increment or heat of activation, and AS f= 
= E/To, the entropy increment for the process. Such direct dependence 
of AS on E follows also from a diffusion theory of Ze ner and Wer t II), 
whose predictions agree excellently with experimentg). In addition, it is 
consistent with a large body of dielectric data on liquids?), which seems to 
indicate a surprisingly small variation in To from material to material. 

We may now write 

s = In (T/TO) = z = ln(T&o) + [(l/kT) - (l/hT0)1 E, (4) 

and identify x2 ES EIkT, = B, and a;3 s (T,/T) - (Tn/To), where T, is 
an arbitrary normalization temperature. The variable x1 may alternatively 
be either In( Td TO with al I= 1 or ln(Y&O) with al = - 1. When x1 and x2, / ) 

which may or may not be distributed, are statistically independent, they 
cannot depend on a common parameter such as temperature. When 8 is 
temperature independent but Td temperature dependent, x1 and x2 can 
be independent or at most partly correlated. Finally, some perturbing 
factor in the material may act on hl(Td/TO)[Or ln(Y&o)] and & in the same 
way, making it possible for both x1 and x2 to be distributed and linearly 
related if they depend on temperature similarly. 

For concreteness sake, we shall select6) $,~,(x~) = [i exp(-_5ixi) and take 
[i and xi temperature independent. When a given xi is independent of 
temperature, it is physically reasonable to expect that its distribution also 
will be so independent6). Note that the distributions of x1 and x2 need not 
be of the same form in general in the statistically independent case. The 
exponential distribution law can lead to system behaviour in agreement 
with many experimental results such as the frequently found t-n discharge- 
current time dependencel4) 15) and dispersion data usually described by the 
Cole-ColelG), Davidson-Cole17) orFangl8) relaxation-time distribution 
functions. Some more basic justification for a exponential probability 
density is that it is the only Markovian, or memoryless, distributionlg) and 
is the probability density for the waiting time for the first of a series of 
events obeying a Poisson probability law20). 

For simplicity of exposition, the range of xi has here been taken (0, oo), 
requiring li > 0, although a finite range is actually physically required for 
a thermally activated situation6)21). When the range is finite, Ei may be 
< 0 and the normalization of p,,(xi) is different from that above. When 

5i + 00, $,,(%) + 6(x$). Application of the general analysis to the present 
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distributions leads to (T,< = Eil, Go, = Iail [il, and to the results of table 
I. Here, 4 z us is a normalized, shifted, inverse temperature variable, taken 
positive on physical grounds. From (4)) &(z) = f(s), and G(T) may be alreadily 
calculated from any of the present results. In Case 1, it is 5i7;1(~e/~)1+81, 
itself a well-known distribution6) 7). Note that there is no temperature 
dependence in cases 1 and 2; thus, the only dependence observed in disper- 
sion and transient response measurements will arise from that of the 
(es - E_) term, which can be measured directly or obtained from application 
of a Kronig-Kramers relation to loss-frequency datai). 

Cases 1 and 2 are distinguished by taking ai = 1 or - 1, respectively, and 
indicate whether the logarithm of Ed or of its inverse, the vibrational fre- 
quency V,J, is exponentially distributed with range (0, co). The same choice 
has been used for cases 4 and 5, but in 6 and 7 xi = ln(T&) and ai = 1 

have been taken, and the distinction between Td and vd introduced by means 
of the signs of /3i and @s in the relation x2 = at + ,!&w. In the table, A z 
E 5s/ti in cases 4 and 5, and /i//32 in cases 6 and 7. 
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Fig. 1. Normalized dispersion parameter 1, = &a, UeYsus normalized and shifted 
inverse temperature variable + = [(T,/T) - (T,/To)]. The various cases of table I 

and values of A are shown as (case no., A) on each curve. 

In fig. 1, the quantity q = 52~~ has been plotted versus 4 for cases 3-7. 
A number of points are of interest. First, it is noteworthy that the quite 
different distributions of cases 4 and 5 can have the same variance. The 
expressions for &(z) in cases 4 and 5 are also different in form from the 
individual $&~)‘s. In the independent case, only for a few distributions, 
such as the Gaussian, will the overall distribution be of the same form as the 
individual onesa). Were it possible for 4 to equal zero, case 3 would then 
lead to $Z(z) = 6( ) z an d - 7 - 70 = Td, yielding simple Debye dispersion with 
the single time constant Td. A physically more reasonable possibility in case 
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7 is (A + 4) = 0. At this temperature, T = (T;l + T,’ 1/i1/821)-1, which 
may be considerably below T 0, and again simple Debye dispersion is ob- 

tainedsr). Above this temperature, more than one time constant is again 
effective and in the formal limit of high temperatures (A + 4) approaches 
-[(Tn/To) + j/31//32/]. Although it has been experimentally found that 
frequently dispersion with a wide distribution of relaxation times tends 
toward simple Debye dispersion as the temperature is increasedG), no 
instances are known to the author where dispersion with a single time 
constant is reached and then the distribution widens again at higher temper- 
atures. Such behavior should be searched for, however, since there seems to 
be no theoretical reason to believe that case 6 should be more likely than 
case 7. 

Some consideration of case 3 (with To = co) has been given previouslyfi)ss), 
and it was found that most of the usual relaxation-time distribution functions 
such as that of Cole and ColerG), cannot be made consistent with the 
assumption of a temperature-independent distribution of activation energies. 
The present work shows that they also cannot be made consistent with the 
situation where both & and rd are simultaneously distributed with temper- 
ature-independent distributions. Luckily, the present exponential distri- 
bution with finite limits can usually describe the same data as well at a 
given temperature and describe measurements at different temperatures 
more satisfactorily21). 

Cases 1, 3, 4, and 6 have recently been independently considered by 
No wi c k and Berry 2s) for the combination of Gaussian distributions 
only. Their oZ expressions are equivalent to the present ones, in agreement 
with the general results of eqs. (2) and (3), when 4 is replaced by (Tn/T), 
a simplification appearing because they did not take explicit account of 
the entropy contribution which leads to the To term in (4). The resulting 
expression for cZ in Case 6 was used to fit results derived from creep and 
internal friction measurements on Ag-Zn alloys, but because of appreciable 
scatter in the points the uZ expression for the independent case also gave as 
good a representation of the data. Had an overall exponential distribution 
instead of a Gaussian been used to determine oZ from the data, the temper- 
ature dependence found might have been somewhat different. There are 
very little data available as yet where dispersion has been evaluated on the 
assumption of actual distributions such as those of table I. However, 
Vaughan, Lovell, and Smyt h24) recently analyzed dielectric dispersion 
data on alkyl halides on the basis of the oTz and p&) of case 3 with To = CO 
and found considerable evidence of the temperature dependence predicted. 

Since the temperature dependence of &(.z) or G(T) is entirely determined 
for the cases of table I, a full comparison of theory and experiment would 
require evaluation of the temperature dependence of either Q(p) or normalized 
transient response as well as that of the pertinent shape parameter related 
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TABLE I 

Results for Various Cases 

Case 
Variables 

Distributed 
Dependence 2 Range 

oz of a P.(Z) 

1 7d - ‘12 0, 00 .$1 t?--elc 

2 va - .q= - cqo 51 eeic 

3 I - (bl4W 0, 03 ($-‘1s) e-@-‘Cac 

4 8 and 76 Independent 0, 00 [&r&&/(4-i&2 - fi)][e-tic - e-~-‘Caz 

-~~ .$-qAs+@) 
2 

5 Q and vd Independent - w, 00 W%&W% + &)I. ( :h;-+& ;; ; 

6 8 and 76 Linearly 0, 03 
(-4 > 0) dependent (A -t-4)> 0 

(~~(4 -I- 4)” I.4 + +I-1& e- (A++)-%2 

7 0 and vd Linearly - 0 co, 
(A < 0) dependent (A+$)<0 

to oz. First, one must pick an overall distribution of a form such that 
transient and frequency response results at a given temperature are well 
described. Then, results at different temperatures may be compared with 
those predicted from the overall distribution for one of the possible cases. 
Such comparison, using a modified exponential distribution, will be published 
elsewhere 21). 
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