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ABSTRACT 

For an  infinite hexagonal array of ions adsorbed on a conducting plane of infinite extent, the 
thermal fluctuation from strict lattice ordering in the neighborhood of a given adion is con- 
sidered. The ions are imaged in the uniform, conducting adsorbent and are assumed to move 
freely in the plane; they thus arrange themselves in a perfect hexagonal array a t  absolute zero 
temperature. By use of the accurate planar potential seen by one adion moving in the field 
arising from an  infinite number of fixed hexagonally arrayed surrounding ions, the root-mean- 
square (r.m.s.) amplitude of planar vibration of the ion relative to its neighbors is approximately 
determined for several values of nearest neighbor distances between ions, rl. On the basis of 
these results, we find, for example, tha t  for a distance, P ,  between the center of charge of an  ion 
and the imaging plane of 3 A, an ionic valence z, of unity, and an  effective dielectric constant of 
e, a hexagonal array with rl = 15 A is stable up to  a temperature, To, of approximately 
1760/e OK while one with r l  = 21 A is stable up to about 760/e OK. Results apply to  adsorption 
from either a gas or liquid phase and, as well, to an  array of real dipoles adsorbed on a non- 
conducting surface. The appropriate values for e are of the order of 2 and 6, respectively, for 
adsorption from gas or from aqueous electrolytes. For various rl's, explicit expressions for To  
are obtained which depend on e, 8, and z,. - 

INTRODUCTION 

In many treatments (1-7) of the adsorption of ions from a gas phase onto a conducting 
plane adsorbent, it is assumed that  the adions are strongly bound to the surface by physical 
or chemisorption forces but are free to move in the plane. If the adsorbent surface is 
relatively uniform and without many discrete, strongly preferred adsorption sites, then the 
mutual repulsion between adions will tend to make each such ion move a s  far away from 
every other ion as possible, leading, a t  absolute zero temperature and for surface coverage 
of a monolayer or less, to the establishment of a fixed hexagonal array of discrete charges, 
the configuration that minimizes the electrostatic energy of interaction in the plane. As the 
concentration of adions is quasi-statically increased, a hexagonal array will be maintained 
but with decreasing nearest-neighbor distance, 71. Finally, a full hexagonally arranged 
monolayer of adsorbed ions will be reached when steric forces prohibit the addition of 
further adions in the first adsorbed layer. 

At non-zero te~nperature, planar thermal vibrations of adsorbed ions will tend to destroy 
the long range order of the fixed hexagonal array. As the coverage is decreased, mutual 
repulsion between adions weakens because 71 increases and, a t  a given non-zero tempera- 
ture, a coverage will be reached where thermal energy and interaction energy are com- 
parable and the order represented by the hexagonal array substantially disappears. 
Alternatively, a t  fixed coverage, increasing temperature will eventually lead to "melting" 
of the two-dimensional adsorbed structure and again the order will degrade. 

This paper is concerned with establishing approximate but reasonably quantitative 
conditions for the loss of quasi long range order (defined later), primarily in the case of 
ions electrically imaged in a conducting adsorbent surface. Such imaging leads to the 
formation of nonideal discrete dipoles which can again form ordered hexagonal arrays a t  
low temperatures or sufficiently high coverages. This situation of ordered dipolar arrays 
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has received much attention in treatments of adsorption from a gas phase, although the 
dipoles are usually approximated as ideal (1-6). Elsewhere, we (see ref. S, hereafter 
referred to as 11) have treated the situation of hexagonally arrayed, nonideal dipoles in 
considerable detail and have also discussed the error to be expected from using the 
classical electrostatic image potential. For most cases of interest, the error is small, and the 
classical imaging formula was used there and will also be employed herein since we shall 
make use here of planar potentials calculated by the methods of 11. 

The question of thermal stability of a hexagonal array of adions is also of importance in 
adsorption of ions from a liquid phase. In a number of treatments of the electrolyte double 
layer (9-13), it has again been assumed that  a t  least above some miniinun~ surface 
coverage, the ions adsorbed on the electrode (usually a mercury drop) arrange themselves 
in a fixed hexagonal array. In this situation, there is the possibility of imaging of adions in 
the diffuse double layer as well as in the electrode (10-13). Such imaging leads to an infinite 
array of image charges perpendicular to the adsorbent surface and has been termed infinite 
imaging (13). When the imaging in the diffuse layer is assumed to be incomplete, the 
situation is termed partial imaging, whose limit is the present single-imaging situation (8) 
when imaging in the diffuse layer (if it exists) is absent or negligible. Bell, Levine, and 
Mingins (14) have considered the thermal stability problein for a partial-imaging situation 
nearly approximating infinite imaging. Their results and method, which is based on more 
approximate planar potentials and calculations than those used herein, will be discussed 
later. 

The results of the present treatment, which apply to adsorption from a gas phase and, 
perhaps to a somewhat lesser extent, to adsorption from an electrolyte, inay be used to 
show under what conditions the single-imaging, hexagonal-array treatment of nonideal 
dipoles referred to earlier (8) is a good representation of the actual situation for an adsorbed 
layer of ions. Buff and Stillinger (15) have constructed a cluster integral theory of the 
double layer in which in treating the adsorbed ionic layer they properly accouilt for short 
range forces. I-Ience, in their treatment the tendency of the adsorbed ions to form a lattice 
under conditions approaching close packing, as  a result of the steric effects arising from 
such short range forces, is a natural consequence of the theory. I t  is important to recognize 
that the long range forces between the ions will also play a part in creating array structures. 
These arrays have nothing to do with steric effects and so are quite different from any 
arrays consistent with the Buff and Stillinger treatment. In the present ~vork, we are 
concerned with the long range interaction type of array and ignore short range forces 
entirely. Our interest is to determine under what conditions such arrays are essentially 
undestroyed by thermal motion and therefore under what conditions arrays are adequate 
as  models for the adsorbed layer. I t  should be pointed out that in those circumstances 
where the long range forces lead to array structures, the Buff and Stillinger theory loses 
validity: The reason for this is that  in their theory (eqs. [33] et seq.) the long range forces 
are treated as  a small perturbation-all Mayer f-bonds are linearized in the long range 
interaction and, consistent with this, contributions from the long range forces to clusters 
higher than first order are ignored. I t  is precisely in the regime where long range forces lead 
to array structures that such approximations become poor, ho\vever. Clearly, the treat- 
ments of Buff and Stillinger and those which assume an array model ab initio are comple- 
mentary, but one should knoxv where the crossover occurs, and this question, while not 
considered by Buff and Stillinger, is approxiinately answered by this paper. As we shall 
see, even for infinite imaging (13), where adsorbed concentrations must be somexvhat 
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higher than for single-imaging situations in order that  a hexagonal array will be formed and 
maintained a t  the usual experimental temperatures, there is an appreciable range of 
surface concentration less than the maximum experimentally observed concentration over 
which the hexagonal array seems to be a good model. The Buff and Stillinger approach 
seems more appropriate only a t  rather small adsorbed concentrations where quasi long 
range order has completely disappeared and where the effect of adsorption itself on 
measured quantities such as  double-layer differential capacitance is still small. 

THERMAL AVERAGING CALCULATION 

Before actually attempting to estimate'the degree of thermal disorder present in a 
lattice, i t  is desirable to present a physical picture of the system as the teinperature is 
raised froin absolute zero. Consider the surroundings of a given particle: At  any finite 
temperature, the correlation between the position of that  particle, taken to define the 
origin, and the position of any other particle is a steadily decreasing function of distance. 
In fact, for sufficiently large arrays there will be a distance beyond which the fluctuations 
of particle positions relative to the particle a t  the origin will be comparable to or greater 
than the zero-temperature lattice separation between nearest neighbors. I t  is consequently 
only within such distances that  the lattice structure is a good concept. Within this distance, 
the environment of a particle is that  of a two-dimensional "microcrystal"; beyond this 
distance are other particles in motion, essentially uncorrelated with the given particle and 
belonging to their own microcrystals. As a particle inoves over the surface, some particles 
remote from the given one gradually leave this microcrystal and are replaced by other 
particles. Thus, after a sufficiently long time the original microcrystal will disappear and 
new inicrocrystals will have formed. In this respect, our two-dimensional system is different 
froin the usual concept of a solid, three-dimensional lattice and resembles inore the case of 
liquid crystals. Nonetheless, it is important to recognize that  a t  any time the environment 
of any particle may be considered as  a crystal of possibly very many lattice spacings in 
size. Now as the teinperature is increased, the correlations between particle positions 
decrease and accordingly the sizes of the microcrystals decrease. Of course, provided the 
interaction potential between particles asymptotically falls off faster than the inverse 
square of the distance, all particles sufficiently remote from a given one will play an 
arbitrarily ininor role in influencing that  particle or its immediate surroundings. Accord- 
ingly, we shall say that  quasi long range order exists provided the size of the microcrystals 
is sufficient that  negligible change would result in the neighborhood of a given particle by 
taking the size of the microcrystals as  infinite. In the present work, we shall, in fact, use 
the potential appropriate for an infinite array in carrying out thermal averaging. 

As the teinperature is raised further, quasi long range order begins to deteriorate and the 
particles become so agitated that  eventually even the short range order, correlations be- 
tween the positions of near neighbors, has dropped to a point where fluctuations play a 
significant role in determining even the local environment of a given particle. When the 
inicrocrystals have become only a few lattice spacings in linear dimension, a further 
raising of the teinperature will finally destroy the obvious lattice structure and the n-body 
correlations remaining will become sufficiently small to be considered as  mere perturba- 
tions upon a highly randomized system, as  in Buff and Stillinger's (15) treatment of long 
range forces. 

As has already been pointed out, the transition between the phase possessing indefinitely 
long range order and that  described by inicrocrystals takes place a t  absolute zero. The 
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transition which concerns us here, however, is the one wherein the neighborhood of a 
particle ceases to resemble a lattice a t  all, tha t  is, the melting of the microcrystals. I t  is 
this melting which truly affects the appropriateness of a lattice model of a particle array 
for practical purposes. We shall be concerned, therefore, with the regime in which this 
gradual phase transition takes place and shall use the term "quasi long range order" to 
indicate the order of a microcrystal having a minimum linear dimension sufficiently 
greater than rl. Note that  our treatment involves a gradual diminution of order and is not 
relevant to first order phase transitions which may possibly occur. 

In describing melting phenomena of three-dimensional crystals, two types of criteria 
have been used: One of these involves macroscopic thermodynamic quantities such as 
chemical potentials and pressures of the two phases; the other approach (which should 
lead to the same results, of course) is the microscopic statistical method exemplified by the 
melting criterion of Lindemann. This criterion which provides tha t  melting takes place 
when the root-mean-square (r.m.s.) displacement of a particle relative to its neighbors is 
of the order of the lattice spacing or thereabouts seems appropriate for the type of gradual 
loss-of-ordering transition considered here. In  applying such a criterion to the present 
situation, the "critical" r.m.s. displacement is determined by the maximum amount of 
disorder deemed consistent with an array model. Thus, the value actually used amounts to 
a choice for which the ions fluctuate so strongly a s  to be somewhat weakly associated with 
their lattice sites but  not so strongly as  to destroy the appropriateness of such sites as  
estimates of particle positions, and hence of local potentials. Finally, some discussion is 
necessary regarding the basis for calculating the r.m.s. thermal motion of a given particle 
relative to its neighbors. 

Let us consider a fixed hexagonal array of ions of charge e and their images in the plane, 
conducting adsorbent. Let P be the distance between the center of charge of an adion and 
the conducting plane and r l  the nearest-neighbor distance for adsorbed ions. Take the 
origin of a rectangular coordinate system on the adsorbent surface between a given adion 
and its image, let x and y be in the plane, and take z positive along the outward perpen- 
dicular to the plane. For convenience define the normalized quantities R l  = rl/P, X E x/P, 
Y r y/P, and Z = z/P. Then Z = 1 will define the plane in which the centers of charge 
of the adions lie. There will be a charge a t  (X, Y, Z) = (0, 0, l ) ,  (El, 0, l ) ,  (R1/2, 
4(3)R1/2, I),  etc. 

An accurate treatment of thermal averaging should involve averaging in the plane with 
all adions subject to thermal motion. Since even the problem of determining the accurate 
potential a t  a given point in the Z = 1 plane arising from an infinite number of fixed, 
hexagonally arranged surrounding ions is itself quite difficult (8, 13), we shall consider the 
simpler problem in which the ion originally a t  (0, 0, 1) is allowed to move, under thermal 
perturbation, in the potential arising from all other ions and their images, taken to be 
substantially a t  the regular lattice sites. The solution of this problem will approximate 
closer and closer to the full vibration problem above as  the planar r.1n.s. distance of 
vibration from the equilibrium position a t  (0, 0, 1) decreases. For consistency as well as  
stability, of course, we demand tha t  this r.m.s. vibration distance be sufficiently small. 
Since the criterion we shall use for melting of two-dimensional quasi long range order is not 
very precise, the accuracy and applicability of the solution of the simplified problem will 
be adequate for our purpose. This simplification was also made by Bell, Levine, and 
iVIingins (14). In  further support of the reasonableness of this approximation, we remark that  
the very same replacement of coupled particles by a system of individual particles, each 
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vibrating in the constant potential well representing the average interaction (calculated 
here as  though a t  absolute zero) with its neighbors, was introduced by Einstein to calculate 
the vibrational energy of a solid (16) (see ref. 17 for an application of the Einstein inodel to 
adsorption). When Debye subsequently removed this approxin~ation, it was seen that in 
spite of the introduction of coupled vibrations the Einstein and Debye theories predicted 
almost identical behavior except a t  temperatures very close to absolute zero. When we 
realize that except for a multiplicative constant these thermal energies predicted so 
accurately by the Einstein model are identical to the mean-square-displacement of the 
particles relative to their neighbors, we gain some optimism regarding the usefulness of our 
approach. 

T o  carry out two-dimensional averaging conveniently, we need an analytic expression 
for the potential #,(X, Y, 1) -- #, a t  the point (X, Y, 1) arising from all charges but that  
originally a t  (0, 0, 1). Although such an expression was obtained in 11, it is too complicated 
to lend itself readily to the weighted double integration needed in two-dimensional 
averaging. Thus, here we shall initially consider one-dimensional averaging along certain 
selected lines in the plane, then apply these results to consideration of two-dimensional 
motion. 

Bell, Levine, and WIingins (14) have carried out their therillal stability, partial-inlag- 
ing treatment using a fixed-array planar potential arrived a t  by two distinct types of 
approximation. First, only terms in the potential quadratic in x and y have been kept. 
Second, the doubly infinite sums remaining in the expression for the potential have been 
approximated by finite sums: only contributions from ions and their images lying relatively 
near the origin have been included. The quadratic approximation allows the integrals 
arising in the averaging problem to be carried out analytically. Another consequence of 
retaining only terms through quadratic is that  to this order of approxin~ation the potential 
becomes circularly symmetric. This is very convenient in determining the r.m.s. thermal 
displacement from the origin in the two dimensions of the planar array inasmuch as each 
degree of freedoin contributes equally, reducing the coinplexity of the problem to that of 
one dimension. In the present calculation, however, higher order terms destroy the 
circular symmetry and present us with an essentially two-dimensional problem which is 
not so easily reduced to one dimension. Thus, we have been led to the method of studying 
motion along selected lines. As i t  turns out,  the potential for single imaging in the neighbor- 
hood of the origin (r = (x2 + y2)lf2 2 0.3~1) is fairly well approximated by the circularly 
symmetric form when a hexagonal array itself is a good approximation. We shall later see 
in the present single-imaging case how much difference is obtained between results 
calculated with the quadratic approximation and the results obtained when this approxi- 
mation is not made. 

Figure 1 shows the potential difference 4 -- #,(X, Y, 1) - #,(0, 0, 1) plotted versus the 
normalized distance 1 for several values of R1 and several specific lines in the plane indi- 
cated by the heavy lines and arrows in the diagrams. These curves were calculated by the 
method described in I1 using /3 = 3 A, c = 1, and positive adions of unit valence. Here c is 
the dielectric constant in the neighborhood of adsorbed charges and I is the distance from 
an assumed center of one-dimensional vibration normalized by the basic triangle height 
h = (4(3)/2)rl.  Thus for the line to which the solid curves apply, 1 = 2r /4(3) r l  = 
2R/4(3)R1 = 4x/3rl, where R -- r/P. This particular line, a binary axis (and its five 
other half-line equivalents under the symmetry of the hexagonal lattice), is that along 
which vibration can occur most readily because the potential increases most slowly along 
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FIG. 1. The quantity E = $&(X, Y, 1) - $C.,(O, 0, 1) versus normalized distance:-1 = 14X/3R11, 1 = 
(4(3)/2)IX/R11, and I = (1/43)1 (4X/R1) - 11, respectively, for the three directions indicated. The distance 
I is measured along the heavy directed lines in the diagrams. 

this line. Thus, i t  is of the most immediate interest to  obtain the r.m.s. distance, m*, of 
vibration along this line. I t  will be termed line 1. 

Let us define L = (F)*/h as the normalized r.m.s. vibration amplitude. Then 

lmar 

1' exp (-ei /dT) dl 
- - 

lmar 1 exp (-e(/ckT) dl 

The second form follows because the weighting factor p(f) = (d (/dl)-l. The quantity I,,, 
is the value of 1 for which 4" = a provided such an 1 exists, and is infinite otherwise; 
I,,, = 2 for line 1. The dielectric constant enters (I)  because ( was calculated with c = 1. 

The introduction of c is itself an approximation; i t  has been discussed a t  length else- 
where (6, S, 13). For adsorption from a gas phase, there will be no material between adions 
and c can arise only from adion polarizability itself. Therefore, in this case c will vary with 
coverage and will lie between approximately 1 and 3 or 4 a t  most. In the single-imaging 
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electrolyte case, i t  has been found (8) that there is a very high field in the inner region of 
the double layer where ions are adsorbed and this field (for constant e) varies only slightly 
with adsorbed ion concentration (itself a function of electrode charge). The field is large 
enough to produce almost entire dielectric saturation of the dipolar contribution of water 
nlolecules between adions. Thus, in this case the appropriate dielectric constant is probably 
6 or less (8, IS) and will not vary much with coverage until the contribution from ionic 
polarizability outweighs that from water-molecule polarizability when the coverage 
approaches that of a monolayer. There is a feedback mechanism a t  work here which tends 
to ensure complete saturation. If the field is large enough to produce some dielectric 
saturation, the consequent reduction in E will increase the effective field, reducing e further 
and so on. The final self-consistent value of field and dielectric constant may not be that  
for complete saturation-this depends on the details of the dielectric constant-field 
dependence-but in the electrolyte single-imaging case, saturation is apparently virtually 
complete (8). In the present calculations, we shall use e = 6;  remember, however, that E 

and Tenter the equations together. Thus, the lower e appropriate for gas phase adsorption 
can be associated with a higher temperature than the 20 "C we shall use in the electrolyte 
situation. 

Since the potential is an even function of 1, i t  must involve 12", n = 1, 2, 3 . . . , not In. 
To carry out the integrations in [I] numerically, we found it convenient to fit E(12) by 
rational approxiinations of the form 

where f(12) varies in form with the line considered. For line 1, f(12) = l2 - 4;  for line 2, a 
bisectrix axis (associated with tlie dashed curve in Fig. l ) ,  f (I2) = l2 - 4/3, l,,, = d(4/3)  ; 
and for line 3 (associated with the dotted curve in Fig. I ) ,  f(12) = 1, I,,, = m.  The con- 
stants ai and pi were determined for given 0 and R1 from numerical values of E(l2) calculated 
by the methods of 11. A Chebyshev type of rational fitting* was used in finding best 
values for ai and p,. This is an equi-ripple method which minimizes the absolute error 
between the original (or transformed) data and the approximation. Typical values obtained 
forp = 3 A a n d ~ l  = 5 were, for line I ,  a. = 121.2885, a1 = -29.07516, a 2  = -25.75952, 
a 3  = 12.05564, po = -45.52907, Pl = 33.67155, = -29.53773, and 03 = 1. With f 
available to very high accuracy in the form of eq. [2], the integrals of [ I ]  could be readily 
evaluated numerically. 

I t  is of interest to note that when E(l2) X12, wl~ere x is a constant, the integrals can be 
evaluated analytically and yield 

where = ekT/2e. This quadratic approximation has been evaluated in several cases 
using x values obtained froin an accurate fit of f ( Z 2 )  near the origin. The dash-dot curve 
of Fig. 1 is the result for R1 = 5 and line 1. For the quadratic approxin~ation, as  pointed 
out by Bell, Levine, and iblingins (14), who used only this approximation with 241 rather 
than 41 since two-dimensional vibrations were envisaged, the average value = ekT/2e = 

41. Since the original E was defined with e = 1, we must divide the above result by e to 
obtain the average potential difference appropriate to a non-unity value of e. 

*Prograttznzed for coiizptcter by E. L. Jones of this laboratory. 



2002 CANADIAN JOURNAL OF CHEMISTRY. VOL. 43. 1966 

RESULTS OF CALCULATIONS 

The single-imaging curves of Fig. 2 were calculated for line 1 using eqs. [I]  and [3]. 
Clearly, terms in 4 higher than l2 cause L to be less than Lo provided the peak and valley 
parts of the ,$ curves have negligible effect in the averaging. When they do become im- 
portant, for Rl > 4.5, the inoving ion can vibrate further, on the average, and L > Lo.  
The dotted curve in Fig. 2 has been derived from the results of Levine, AIingins, and Bell 
(14) by transforming from the value E = 10 they used to E = 6, more appropriate for the 
electrolyte situation, by changing the normalization to agree with our convention, and by 
dividing their results by 4 2  to change (within the fraine\vork of the quadratic approxi- 
mation) from two-dimensional to one-dimensional motion and averaging. I t  is evident that 
the ion can vibrate considerably more freely in the nearly infinite-imaging case than in the 
single-imaging case. For E = 2, more appropriate for adsorption from a gas phase, the 
curves of Fig. 2 apply to a temperature of about 790 OK. 

FIG. 2. The normalized r.m.s. vibration amplitude L I [3(X2 + Y2)/4R12]1l2 versus ~lormalized nearest- 
neighbor distance RI = r l /& 

The superiority of two-dimensional over one-dimensional averaging depends on the 
ratio of the normalized distance lo, over which circular symmetry is a good approxiination, 
to L.  If both these numbers are small enough that a hexagonal array is well maintained, 
two-dimensional averaging using the quadratic approximation will be the more appropriate 
provided lo/L 5 1. When vibration along a particular line, such as line 1, is greatly 
favored over all other directions of vibration, lo/L will be much less than unity and the 
assumption of circular symmetry will be very poor. 

Figures 1 and 2 show that lo/L = 1 for R1 = 5. The ratio will be even larger for smaller 
R1. Thus, for the input parameters shown in Fig. 2, two-dimensional averaging will be a 
somewhat better approximation than one dimensional for R1 "<. If a criterion is estab- 
lished for the maximum one-dimensional L for which we may expect maintenance of a 
hexagonal array, then the criterion is divided by 4 2  to obtain that appropriate for 
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circular symmetry and two-dimensional averaging. I t  seems to us reasonable to pick 
L 2 0.5 as a rough criterion for hexagonal array (microcrystal) stability. This is somewhat 
more stringent than that used by Bell, Levine, and RiIingins (14) when transformed to the 
same basis for comparison. The two-dimensional criterion is thusL2 2 0.35. I t  is of interest 
to compare this figure with the corresponding one for the inelting of single-crystal solids: 
In the latter case the value ,- 0.1 has been found to be appropriate (19); however, it is 
important to realize that the case considered here is actually quite different from that of 
solids insofar as first order phase transitions are not treated and the forces are the long 
range repulsions of the similarly charged adions and their images rather than the crystal- 
binding fields of an ionic crystal or the short range forces found in metals and covalent 
crystals. We should accordingly not expect the analogous values to carry over from one 
situation to the other. Although we have here used the stability criterion Lz 2 0.35, Fig- 2 
may be used in conjunction with any other reasonable value to obtain the limiting value 
of R1 appropriate to the new criterion. 

Since L .v 0.35 from Fig. 2 for R1 = 5, this value of R1 seems, according to the above 
criterion, to be a t  or near the limit of hexagonal stability for the choices P = 3 A, z, = 1, 
E = 6, and 20 OC. Further, Fig. 1 shows that for 12 0.35, circular symmetry is a fair 
approximation for Rl = 5. In fact, the values of L obtained for lines 1, 2, and 3 were 
0.351, 0.268, and 0.344, respectively, for Rl = 5. The fair correspondence of these figures 
indicates the approximate validity of the circular symmetry assumption for R1 "< ~inder 
the conditions of Fig. 2. The quadratic approxiination for R1 = 5 leads to L O  = 0.336, 
again showing that this further approximation is also not too bad for this value of R1. 
Note that the heavy solid circles on the curves of Fig. 1 indicate the calculated values of L 
for the conditions of Fig. 2. I t  is worth noting that these conditions lead for R1 = 5 to an 
adsorbed charge density, gl, of 8.22 crC/cmz, a nearest-neighbor distance of 15 A, and an 
area per adsorbed ion of about 195 A2. 

When the present two-dimensional averaging stability criterion is applied to the partial- 
imaging curve of Fig. 2, one obtains a limiting R1 of about 3.5. In turn, this leads to a 
limiting area per ion of about 106 A" alnlost exactly the criterion for loss of hexagonaI 
order derived by Bell, Levine, and RIingins for the partial-imaging case. This agreement is 
somewhat fortuitous since the effect of our more stringent criteria for Ioss of quasi long 
range order is offset by the present use of E = 6 rather than 10. Comparison of the present 
results for partial and single imaging shows that the hexagonal array is appreciably inore 
rigid for single imaging, and quasi long range order is not lost until ionic nearest-neighbor 
distance is appreciably greater in the single-imaging case than for partial imaging. Kote 
especially that since the circular symmetry assuinption is not very well met for R1 = 5, the 
criteria for melting should actually lie between the two values 0.35 and 0.5, leading to a 
larger limiting R1 than 5 (and accordingly even poorer applicability of the assumption of 
circular symmetry) for stability calculations at  20 OC. 

Finally, Fig. 3 shows how L depends on $ 1  for several values of R1. The temperature 
scale shown a t  the top is appropriate for E = 6; its values should be multiplied by 3 for the 
choice E = 2 more appropriate in the gas adsorption situation. In this case, we see that 
even the array with R1 = 7 will be stable a t  room temperature. For E = 3, it will be stable 
only below about -20 "C. We may write the temperature a t  which stability tends to  
disappear according to the present two-dimensional criterion as T O  ,- 1760/~ or 7 6 0 / ~  OK 
for r l  = 15 A or 21 A, respectively, when /3 = 3 A. Note that since the R1 = 2 curve is 
exactly proportional to d$l, the circular symmetry and quadratic approxinlations are 
completely valid for this curve. 
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TEMPERATURE ( O K )  
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FIG. 3. The normalized r.m.s. amplitude L versus $1 = ckT/2e.  The temperature scale a t  the top 
applies for e = 6.  

Thus far, we have considered only adions of valence z, = 1. When z, is different from 
unity, our 41 becomes 4JzV2. Thus, for adions of valence 2, for example, the instability 
temperature is four times greater than that  for z, = 1. Further, when R1 5 5, i t  turns out 
(S) that  $,(0, 0, l ) ,  for example, inay be well approximated by /3 times the field a t  (0, 0, 1) 
derived by replacing all nonideal dipoles by ideal dipoles (6). In this case, ( will be propor- 
tional to /3" and our present L curves, derived with /3 = 3 A, may be transformed to apply 
to arbitrary 0 by replacing a given 4 l  by 41/02. In the present work we have used 0 = 3 A 
since this value seems most appropriate for most electrolyte double layer situations of 
interest. In adsorption from a gas phase, 0 may frequently be somewhat smaller even when 
the imaging plane is taken =: 0.5 A behind the iiphysical" surface of the conducting 
adsorbent (S, 16). When R1 5, the effective E appropriate for adsorption from a gas 
phase is probably (6) appreciably less than 2. For r l  = 15A,  we may finally write 
T o  - 1760(zV0/3 A)2/ E OK. A similar expression for r l  = 21 A is T O  ,- 760(zv0/3 A)2/ E OK. 

No infornlation seeins currently available concerning the sharpness of melting of tmo- 
diinensional order with temperature increase or increase in nearest-neighbor distance. I t  is 
clear, however, that  if quasi long range order has disappeared by the time R1 has reached 
a certain value, say Rlo, R1 must be solnewhat smaller than Rlo before the order will 
reestablish itself. Further, R1 inust be larger than Rlo before the cluster theory of Buff and 
Stillinger (15) is a good approximation. If Rlo = 5, for exan~ple, corresponding to a ql of 
8.22 pC/cm2, a ql of 10 or 12 pC/cin2 inight be required before hexagonal order were 
regained, and a value of q1 as  small as 5 or 6 pC/cm2 might be required before the Buff- 
Stillinger approach would be applicable. As an example, for 1.0 N K I  (z, = - I ) ,  the 
results of Grahaine (20) indicate that the charge on the electrode, q, might have to be less 
than ,- - 9 p C / ~ m 2  for the Buff-Stillinger approach to apply and greater than ,- - 6 ,LC/ 
cin2 for the hexagonal lattice model to apply. Between -9 and - 6 &/cm2 neither model 
would theoretically apply well but  the gap might be bridged reasonably accurately by 
extrapolation between the results of the two approaches. Grahame's data  extends to 
q,,, = IS &/cm2 and Iql(,,,,( 42.61 pC/cm2, indicating that  the hexagonal model 
applies, a t  20 OC, E = 6, and z, = & l ,  over a much greater and more important part of 
the Iqll range than does the Buff-Stillinger approach. 
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