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The usual methods for calculating potentials and fields arising from a regular, adsorbed 
plane array of ions or dipoles are complex and time consuming to apply. We present here 
a method based on a modification of Grahame’s cut-off model which allows several 
such quantities to be calculated accurately but rapidly from simple closed formulas. The 
method is applied to hexagonal arrays of ideal and non-ideal dipoles. Non-ideal dipoles 
are assumed to arise from imaging of an array of adions in a conducting adsorbent. Results 
of the simple, approximate formulas are compared in detail with very accurate results 
obtained from lengthy computer calculations. We believe the latter will be unnecessary 
hereafter, whenever the field or potential is desired on a line perpendicular to the plane 
adsorbent through a removed dipole or ion. With proper normalization, potential-distance 
curves for ideal and non-ideal (finite-length) dipoles are found to be nearly the same. 
Finally, the present results are employed to yield an improved formula for the change of 
work function of a conducting surface, when a hexagonal array of polarizable molecules 
or atoms is adsorbed on it. The formula is illustrated and shows that adsorbed uncharged 
elements, with sufficiently high but still physical polarizability, must either ionize or their 
polarizability decrease upon adsorption. 

1. Introduction 

Consider a fixed, planar, hexagonal array of infinite extent made up of 

either discrete ideal dipoles or of adsorbed ions and their images in a con- 

ducting plane adsorbent (non-ideal dipoles). Calculation of the work of 

adsorption or desorption of an array element requires knowledge of the 

electric field, b, and electrostatic potential, $, along an outward perpen- 

dicular to the surface, (+ z direction) taken through the position of a missing 

array element. We have elsewhere calculated this field and potential very 

accurately for arrays of non-polarizable non-ideal dipolesl). In addition, we 

have recently given somewhat more approximate expressions for electrona) 

and ionic work functionss) for an array of polarizable ions and their images. 

All these calculations require computation of d and II/ as functions of z and of 

lattice spacing rl, where rI is the nearest neighbor distance of a hexagonal 

array. Here, we shall develop relatively simple expressions for d and $, 

appropriate for both ideal and non-ideal dipole arrays. Their relatively high 
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accuracy and simplicity expedite calculations of the type cited above greatly. 

The problem of stability of the hexagonal array and thermal disordering has 

been examined elsewherea); here, we assume the array is rigid, a useful 

approximation in many cases of experimental interest for adsorption from 

either a gas or liquid phase. 

In 1927 Topping5), in a much cited paper, calculated the mutual potential 

energy of a plane, hexagonal array of ideal, non-polarizable dipoles. His 

result may be readily transformed to yield the field at the position of a 

removed dipole 

d=&,(O)=-opr,3, (1) 

where the subscript I denotes ideal dipoles, ,U is the dipole moment of a 

discrete dipole, and a= 11.034 1754, a number derived from a lattice 

sum 5,6). Although Topping’s treatment cannot be used to calculate the field 

accurately at a distance z > 0 in front of the plane of dipoles, it furnishes an 

accurate value to which any more general result should reduce for z = 0, the 

plane of the dipoles. Even though the above expression applies for an array 

of ideal dipoles having fixed moments ,u, it may be easily modified for 

polarizable ideal dipoles 2,7,8). In most of the present treatment, ions and 

dipoles will be taken non-polarizable, however, since polarization modifi- 

cations have been recently discussed 2, 3, and require expressions for d and II/ 

such as those derived herein. 

In the following section, formulas for & and $ will be derived for ideal 

dipoles by modifying a known approach appropriately, then the results 

extended to arrays of non-ideal dipoles consisting, for example, of ions and 

their images. Next, an evaluation of the accuracy of the present results will 

be presented by comparing them with those accurately calculated from a 

very complex lattice-sum approach l). Finally, we will use the present results 

to calculate the potential change arising from an adsorbed array of ideal 

dipoles. 

2. Derivation of formulas 

Grahames) seems to have been the first to introduce a cut-off model for 

calculating approximate fields and potentials of the present type. The model 

does not allow calculation of the field and potential anywhere but along the 

perpendicular line through a removed array element, an adion or ideal dipole. 

Calculations for other positions require a lattice-sum approach’). For the 

discrete ideal dipole case, the actual discrete distribution is replaced in the 

cut-off approximation by a uniform dipole sheet containing a circular vacan- 

cy of radius yO. For Grahame’s non-ideal dipole case, he actually used a 

radius which led to a removed circular hole of area just containing the 
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charge of a single adion and its image. Let N be the number per unit area of 

adions or discrete ideal dipoles. Note that N may be written as ON,, where 

018~ 1 and N, is the full monolayer coverage. For a hexagonal lattice 

N=(+r;4)t, and Grahame’s choice of r,, may be written as r0 = ~,,o = (rrN)-* 

=(v~~/2n)fr, ~0.525 037 6 rl. Although this expression for ro, which has 

been used by several authors1°pr3) since Grahame, seems intuitively plausi- 

ble, we shall see that while it is a fairly good approximation for the hexagonal 

lattice over the experimental ranges of z and rl of interest, it is only exact for 

a fixed lattice in the limits r,+O or z-+co. When thermal agitation is impor- 

tant, it may, however, be more appropriate in some circumstances than the 

following fixed hexagonal approach. 

For a uniform, smeared ideal dipole layer of strength Np per unit area, 

the potential for z>O is 
II/, = 2rrNj.1 (2) 

and is positive when the positive pole is toward the + z direction. Let 5 E z/r1 
and calculate the potential arising from the ideal-dipole cut-off model at a 

position z along the perpendicular line through the center of the circular 

vacancy. This potential is easily obtained by integration and is 

11/1(t) = (27rNP) Cz/(z’ + I’m 
= ti,/c1 + b-a21+. (3) 

Note that I,+(()/$~ is only a function oft, not of z and r, separately. We have 

written p = r,,/rl in (3). 11/r(t) goes to $, as it should for fixed z and ro-+O and 

for fixed r,,, Z-POC). 
Grahame’s choice of r. leads to p =pG =pco = (,/j/271)* z 0.5250376, 

where the subscript 00 refers to the limit t-00. Although eq. (3) withp=p, 

is approximate for a hexagonal array situation except when t-+co, this 

equation can be made exact when p is made the appropriate function of r. 

Approximations to the p(r) which makes (3) exact will now be developed. 

The value of this approach is that p also appears in the formulas for the 

non-ideal dipole situation and even there the p(t) derived from the ideal 

dipole case turns out to be a good approximation. Although the p for the 

non-ideal dipole case is a function of R, (see following definition) as well as 5, 

the R, dependence is very slight and as, we shall see, may frequently be 

neglected entirely. 

Althoughp, is the smallest value appropriate for a fixed hexagonal lattice, 

we show elsewhereId) that the mean distance of nearest neighbors for a 

random array without interactions between its elements is (4N)-*. This 

corresponds to ~~0.465, if r,, is taken as the mean nearest-neighbor sepa- 

ration distance and rl is defined by ($)*N-* as for a hexagonal array. For a 

somewhat disordered array with repulsive interactions, p must exceed the 
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value appropriate without interactions, in agreement with the strong inter- 

action, fixed hexagonal array result pm r 0.525 037 6. It is next of value to 

obtain the maximum possible value of p for a rigid hexagonal array. Since 

g,(r)= -rT’ (d$,/d[), eq. (3) with p=p(t) leads to 

R, (g = _ ($JrJ (1 + F, 
P t-1 + (tlP)21' ’ (4) 

where F(5) = - dlnp(t)/dln t. We shall find that p(5) varies only slowly with 

5 and that F(t)=0 for c=O. Then, writing p(O)-pO, we have 

&r(O) = - Il/,lrIPo. (5) 

On setting eqs. (I) and (5) equal, we obtain p. =4n/$aZ0.657 520 592, 

showing that p only changes from about 0.53 to 0.66 as 5 varies from co 

to zero. The present value of p. has been used for all 5 in some of the earlier 

work of the present authors 2, 3, in preference to pdo, since higher accuracy is 

attained thereby in experimental ranges of interest and since the choice 

of p0 leads properly to ideal dipole results in the limit that non-idea1 dipole 

arrays degenerate to idea1 dipole arrays. As we shall show, much higher 

accuracy for both idea1 and non-idea1 dipole arrays can be obtained by using 

a variable p(t) than by using a constant p, however. Thus, the accuracy of 

the results given in refs. 2, and 3, can be appreciably improved by using the 

present formulations in appropriate equations. 

In order to obtain the p(r) function which makes eq. (3) exact for a 

hexagonal array, we need accurate values of It/,(t). These can be obtained 

from our previous non-idea1 dipole lattice-sum calculationl). Let b be the 

distance between the charge centroid of an adion and the imaging plane of 

the adsorbent electrode (z=O). The dipole moment of the adion-image pair 

is then ~=22z,e/?, where z, is the effective valence of the adsorbed ion. The 

average charge density, qa, is then just z,eN. We take the electrode grounded 

here so its charge density is just -zz,eN and I/J, =4rrNz,efi. It will be con- 

venient to define the normalized variables R, =r,/P and Z=z//l. Then, 

4 =Z/R, =z/rl remains unchanged. Note that R, =2 is the minimum possi- 

ble value allowed by steric restrictions for spherical adions having their 

charge centroids at the sphere center. Smaller values of R, will therefore 

usually not need to be considered. If the minimum value of R, (corre- 

sponding to a full monolayer) is denoted as RI,, then R, = OetR,,. 

Although the results of the exact lattice-sum treatmentl) are quite com- 

plex in the general case, they reduce to 

h(-cRl) 
*x 

=I-(~)(~) (6) 
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and 

6N(Z,R,) 
-b, = (g)((ZkR:l)‘) 

for Z> I+ 3R1. Here the subscript N refers to non-ideal, and these equations 

hold to one part in 10s or better. The quantity d, is - $,/p= -4rcNz,e. 

Now if we express (6) and (7) in terms of c wherever possible and then 

let R1-+co, while keeping 5 fixed, we obtain 

(8) 

a(()=_ J3 II/, t- ( >( > 3 
I 

2x r, 
(r 2 3)Y (9) 

where 4rrNz,ep has been replaced by $, = 27rNp in (9). Such replacement is 

justified since R, may approach infinity by /? approaching zero but keeping 

p = 2z,ep a constant. Since eqs. (8) and (9) are exceedingly accurate for [ 2 3, 

we now need to obtain p(5) only in the range 0 CC < 3. 

To obtain accurate results for $,(r) in the region 0 < 5 < 3, accurate values 

of $N(Z, Rl)/$m were first obtained l) for given 5 values for R, = 50, 100 

and 200. They were nearly equal but were extrapolated to R, = 00 using 

the epsilon algorithm15). The resulting values of $,(Q/$, were then used 

together with (3) to calculate accurate values of p(5). 

In the non-ideal dipole case, the cut-off model leads tol) 

$NcZ, R,)/II/cc = + {Wd2 + (z + I>‘]+ - hW2 + (z - 1)‘1+). (10) 

For a given RI, (IO) may be used together with accurate values of $N/ll/% 

to calculate p(r). We have done so for R, = 2, 3 and 5 for comparison with 

the R, = co ideal-dipole-layer results. The four curves of p(t) are shown in 

fig. 1 on an expanded ordinate scale. It will be seen that even the curve for 

R, =2 is very close to that for R, = co over most of the 5 range. This range 

is here extended to 3.5 since the condition Z2 1 + 3R, leads to c 2 3.5 when 

RI =2, usually the smallest value of R, that need be considered. Note that 

although the 5 = 0 values of p(c) are unequal to p0 for RI < 00, the deviation 

is quite small even for R, =2. When p is taken as a function of < in (lo), the 

corresponding non-ideal-dipole layer field is 

b,(Z, R,) 1 Z + 1 - C(PRI)~/Z] F Z - 1 - kW2/Z1 F 
8, =?i [(pR1)' +(i-+ - [(pR,)' +(Z - l)‘]* 

a result which reduces properly to (4) when R, --) co and ,u and 5 are held 

fixed. 
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The functionp(<) for RI = 2, 3, 5 and co (ideal dipoles) plotted with an expanded 
ordinate scale. 

Fig. 2. The normalized potential I/J/& vs. 5 for RI = 2 and 00. 
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Fig. 2 shows accurately calculated curves of normalized potential in the 

ideal dipole case, $r/$m, and in the non-ideal dipole case, I/~/$,. For the 

latter curve, the minimum value R, =2 was used, while R, = 00 in the ideal 

dipole situation. The relatively small difference between the curves of course 

explains why p(r) is only a weak function of R, (2 I RI < co) as illustrated in 

fig. 1. It has not usually been recognized that the use of the variable t rather 

than Z or z tremendously reduces the explicit dependence of $/II/, curves 

on RI. Thus, widely spread families of curves calculated in an approximate 

fashion have been given for finite dipoles l6, r7) and a similar set of curves 

has been calculated for ideal dipolesr7), even though in the latter case they 

all degenerate to a single one when 5 instead of z is used as independent 

variable. Although all of the preceding results are based on the assumption 

of a hexagonal lattice, Swanson and Gomerr6) and the authors*) have 

pointed out that virtually the same potentials are obtained for a square 

array of the same surface density as a given hexagonal array. 

Although only p(t, R,) is needed to calculate potentials accurately, its 

associated function F(t, R,) is required as well for field calculation. Since F, 

like p, is relatively independent cf R, (21 R, I co), reaches a maximum of 

only about 0.14 near 5 = 1, and decreases continuously for smaller or larger 5, 

it may frequently be neglected compared to unity. Although F may be 

obtained from p by differentiation, we have found it more convenient to 

obtain it from eqs. (4) and (1 I) by using accurate values of the field ratios 

and the appropriate accurate p values. 

3. Explicit approximation results 

Although the accurate curves ofp(<) presented in fig. 1 allow quite accurate 

calculations of $/II/, to be made for given values of 2 and R, (or z and rr), 

frequently both fields and potentials are required for many Z and R, 

combinations. It is then desirable to have entirely analytic expressions 

available for hexagonal array potentials and fields. In this section, we shall 

thus discuss analytic approximations to ~(5, R,) and F(if, R,) for R, =2, 5 

and co, and will use these to calculate rl//$, and a/6?, for various R, values 

for comparison with accurate values of these ratios. The resulting standard 

errors will show how good the several analytic forms are for calculating 

*/1(/,, for example. 

The simplest calculations of $,/11/6, and $,,JtJou use a constant value of p. 
Table 1 lists the standard errors obtained for pgpm, pgp,,, and the non- 

linear least-squares values of p shown, for several values of R,. Here, 

constant values of p were used in eqs. (3) (RI = co) and (10) (for R, = 

2, 3, 5 and IO) to fit sets of 27 accurate potential ratios covering the range 
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TABLE 1 

Standard error values for fitting of &-J/ I,& and $111 I/I* using constant values of p 

RI p = 0.525 0376 GX px Least-squares p p = 0.657 520 59 s po 

2 0.024 01 

3 0.028 22 

5 0.031 19 

10 0.032 69 

co 0.033 24 

0.007 062 
(p g 0.599 193) 

0.008 834 
(p s 0.603 976) 

0.010 08 
(p g 0.607 183) 

0.010 69 
(p zz 0.608 752) 

0.010 91 
(p g 0.609 308) 

0.018 83 

0.019 47 

0.019 86 

0.020 04 

0.020 10 

0<5<3.5 for each R, value. As table 1 indicates, p,, yields a slightly better 

fit than pm, and the least-squares values are about a factor of two better 

than those using pO. Note that since the least-squares values vary only 

slightly with R,, a best-choice value of p for all R, values of interest would 

be about 0.607. For many purposes, sufficient accuracy in calculating values 

of Ic//$, will be achieved using just this value throughout the calculation. 

There are instances where the accuracy illustrated in table I is insufficient. 

In particular, as we show elsewherel*), values of Il//$, and a/8= can be 

used to obtain partial and infinite imaging potentials and fields. In such 

situations, an adion may be partly or completely imaged by another plane 

parallel to but separated from the electrode in addition to its imaging in the 

electrode. Such behavior is particularly important for adsorption from 

electrolyte solutions and frequently requires quite accurate values of the 

present I/I/$, ratios to yield sufficient accuracy in the final potentials. 

In order to deal with situations where constant p yields insufficient accu- 

racy, we have chosen to represent p and F by rational function approxi- 

mations of the Chebyshev type, which minimize the absolute value of the 

relative (or absolute) error between accurate functional values and those 

given by the approximation. In the appendix, coefficients of the polynomials 

entering the approximation formulas for p and F are given. For the more 

importantp, we present both linear/linear (l/l) and quadratic/quadratic (2/2) 

approximations for R, = 2, 5 and co. For F only the simplest linear/quad- 

ratic (l/2) approximation is included. 

Table 2 shows the small standard errors which result when $/$, is calcu- 

lated using the (1 /I) and (2/2) approximations to p(c). The vertical column 

R, values denote those RI’s used in calculating the exact data with which 

the approximate results were compared, while the top horizontal R,‘s 

indicate the values of R, associated with the approximations to p(c) used 
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in the formulas. The standard error results shown in tables I and 2 indicate 

that all the (l/l) approximations lead to standard errors roughly an order 

of magnitude smaller than those obtained with constant p0 or pn and around 

three times lower than the constant least-squares values of p. The (2/2) 

approximations lead to far smaller standard errors than the (l/l) ones when 

the R, of the approximation is near the R, of the comparison data. When 

this is not the case, the (2/2) approximations are only slightly superior to 

the (l/l)‘s. Since R, =5 is near the middle of the range of usual interest, 

the (l/l) R, =5 approximation for p(t) will usually be sufficiently accurate 

for any value of R, in the range 21 R, < co. Note that R, =5 corresponds 

to q,r18.5pC/cm2 and to NE 1.15 x 1014cm-2 when jI=2A and z,= 1. 

The above formulas and the expressions for p and F may now be directly 

applied, as illustrated in the next section, to the calculation of the electrical 

effects of adsorbed arrays of ions, atoms, or molecules. 

4. Work function change on dipolar adsorption 

An old problem of continuing interest is the calculation of the change in 

electron average work function, A V, when a discrete array of identical dipoles 

is adsorbed on a conducting surface. The individual dipoles may be polar- 

izable molecules with a permanent dipole moment, and/or dipoles induced 

in polarizable atoms or molecules by a “natural” surface fields) gnI and/or 

a surface charge density q. For simplicity, we shall here consider that the 

dipoles are ideal, the polarizability CI is independent of field, and that the 

orientation of any permanent dipoles remains unchanged as the field changes 

(we take all such dipoles lined up perpendicular to the adsorbent plane). 

The common solutions to the above problems) are sometimes useful, but 

are so overly approximate as to be frequently very misleading. In particular, 

discreteness of the dipole array itself is often neglected and the effects of 

imaging of the dipoles themselves are almost invariably omitted. These 

effects, which affect the induced polarization, may be of great importance 

whenever the atom or molecule is polarizable, as all real atoms and molecules 

are. 

The steps involved in a correct solution to the above problem, one which 

includes the usually omitted factors, may be skipped here since they appear 

in refs. 2, and s). On combining eq. (19) of ref. 8, and eq. (17) of ref. 2), we 

have, after minor changes, 

Al/ = I’(@) - V(0) = - 4mV[a(4rrq + CT,,) + p&, (12) 
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where ,u,, is the permanent moment (if any) of an adsorbed molecule, or its 

invariant component perpendicular to the surface. In eq. (12), B is the aver- 

age polarization of the dipole array, and thus AV refers to the potential 

arising from th3 array minus that without it. The work function of the bare 

surface does not, therefore, appear in A V. Note that when q=O, A V= - II/,, 

where tj, is, as usual, the potential (referred to zero at the electrode) a 

large distance in front of the adsorbent and its array. 

The principal new terms appear in eq. (13) for the effective dielectric 

constant. Here J=c(//?~, where b is now the distance between the electrical 

centers of adsorbed dipoles and the conducting, imaging surface. The sepa- 

ration p might, for example be roughly the radius of an adatom. Its intro- 

duction allows us to again use R, -rl//?=d-fRl,,, and thus introduce the 

coverage 8. The aRL3 term in (13) arose from all the array dipoles sur- 

rounding (and in the plane with) a given one and takes into account their 

polarizing field at the selected one. The next term, involving the number $, 

appears when one includes the image of the selected dipole, and the last 

term in (13) accounts for the polarizing field at the given dipole arising from 

all the array image dipoles except that of the selected dipole. This last term 

has been written in the notation of the present paper and follows immediately 

from eq. (4). It involves 5 directly and through the p(t) and F(r) appropriate 

for ideal dipoles (R, = a). Since here the position we require the field at is a 

perpendicular distance 2/3 in front of the (image) dipole array, 5 =2/?/r, =2/R, 

in (13). Note that if R,, is taken as 2, then 0 =4/R: = 4’. The effective 

dielectric constant may then be considered a function of R,, 4 or 0. 

The present solution for AV is a completely self-consistent one and has 

some interesting properties. The most striking is that when t=O, c1 is zero 

when J= 4. For J> 4, non-physical poles in A V occur for small positive <‘s. 

This means that a linear theory such as the present one where CI is taken 

field independent is actually inapplicable for any atom or molecule for which 

J24. For some atoms, such as cesium, the expected J may apparently be 

greater than 4. Using the highest value of CL for cesium quoted by De Boer lg) 

and Pauling’s 20) value for the radius of a cesium atom, we find J=61A3/ 

(2.35A)3 2: 4.7. A value for CL as large as 67.7A3 has been calculated theo- 

retically for cesium 21). Even when an CI as small as 50a3 is used 21), it would 

require only a very small displacement (arising from the attractive dipole- 

dipole image field) of the dipole centroid from the center of a cesium atom 

for p to be reduced from 2.35A enough for J to equal or exceed 4. For any 

adsorbed element for which we might expect J24 in the adsorbed state, we 

must either conclude that the atom or molecule in question becomes wholly 

or partly ionized on adsorption, or that the high fields polarizing the discrete 

element reduce its polarizability sufficiently that the above catastrophe does 
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not happen. This failure of linear polarization theory has appeared as a re- 

sult of properly including the image effects so often entirely neglected. We 

plan to present elsewhere a treatment of such nonlinear effects. 

Using the present ideal dipole (R, = co) rational function approximations 

for p and F, we may readily calculate AV. On introducing the hexagonal- 

array relation between N and rl, eqs. (12) and (13) expressed entirely in 

terms of the variable t become 

and 

&I = 1 + J 
* 

(15) 
For the purposes of calculation, we shall choose R,, =2, so that 8= t2. 

For any other choice of RI,,,, we need only multiply the RI,,,=2 Q-scale 

values by ($R1,,J2. In fig. 3, we present some curves of the normalized 

, 

Fig. 3. The normalized electron work function change on ideal dipole adsorption, 
A V/A V (0 = 1). vs. 0 for Rim = 2. 
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ratio A V/A V(O = 1) = f3sI(0 = 1)/&r f or several values of J. These were calcu- 

lated using the (l/2) expression for F and, for highest accuracy, a (3/3) 

expression Is) for p. The dashed J= 4 curve is non-physical and represents 

the envelope of allowable curves. 

Although the curves of fig. 3 are of the general form frequently found for 

adsorption of such materials as cesium or potassium on tungstene, 8, es), we 

shall not carry out detailed fitting of theory and experiment because of the 

above difficulty with JZ 4 values and because there is indeed some likelihood 

that for small 0 at least, z,> 0 for such substancess). Note that if z,> 0 

below a certain B = Be value and z, = 0 above it, the present theory with J2 4 

might apply well for 0 > 8, provided 8, exceeds that 13 (= 0,) at which a pole 

of A V could occur. For J=8 and Rlm=2, we find, for example, that the 

pole still occurs below 0 = 0.15. We even suggest the rough hypothesis, that 

the J24 catastrophe makes it energetically more favorable for discrete 

elements with large J to be adsorbed initially as adions rather than adatoms, 

but that it is more favorable for the balance to shift back toward adatoms 

when 8>8,. The situation may be complicated by simultaneous occupation 

of the surface by adions and adatoms and by possible appreciable variation 

of z, with f3 for the adions. Finally, we note that even for J= 3, ~~(0 = 1)~ 5.06, 

by no means a negligible value. 

Appendix 

RATIONAL FUNCTION APPROXIMATIONS 

The approximations to p(t) and F(t) are of the form 

F (5) = i: aicy i bf$, 
i=O i=O 

(A.11 

where 6,, = 1. For the (l/l) approximation n=m= 1, and for the (2/2) ap- 

proximation M =m= 2. Fitting was generally carried out using 27 accurate 

values of p(r) or F(5) for the following values of 5: 0(0.1)1.6, 1.8(0.2)3.4 

and 3.5. Values for ai and bi for the various cases are given in the following 

tables. The p(5) approximations given here minimize the absolute value of 

the relative deviations, while the F(t) approximations were chosen to mini- 

mize the absolute value of the absolute deviations. Therefore, values of 6 

included are the maximum relative (6,) or absolute (6,) errors found be- 

tween the interpolation formulas and the accurate values of the functions. 

When a pair of 6 values appears, that for p(r) is above, that for F(5) 

below. 



394 J. R. MACDONALD AND C. A. BARLOW, JR. 

TABLE 3 

Coefficients of (l/l) approximations for p(C) 

ai, bi 
RI = 2 fit RI = 5 fit RI = m fit 

SK = 2.076 x lo-? BR = 1.939 x 10-a SK = 1.589 x 10-a 

a0 2.221 108 9 1.046 724 5 0.690 576 00 
al 0.399 970 32 0.454 063 14 0.473 781 35 
bo 3.480 387 0 1.547 614 74 1.007 380 5 

TABLE 4 

Coefficients of (2/2) approximations for p(r) and (l/2) approximations for F(t). Below 
each coefficient for p (5) the corresponding one for the (l/2) approximation to F(c) appears 

ai, bi 

RI = 2 fit RI = 5 fit R, = co fit 
BR = 1.645 x lo-” 61t = 7.314 x 10-4 6~ = 5.432 x IO-” 
dA = 8.606 x 10-3 8~ = 5.608 x lO-3 6a = 5.857 x lO-3 

1.020 396 6 0.636 252 04 0.545 216 09 
0 0 0 

- 0.719 820 08 - 0.293 762 15 - 0.224 246 08 
0.036 038 417 0.051 641 230 0.053 743 815 
0.545 881 0 0.534 402 21 0.532 336 15 
0 0 0 
1.634 799 4 0.977 354 54 0.830 499 18 
1.354 542 7 0.874 933 23 0.781 112 58 

- 1.201 802 2 - - 0.461 47 050 0.349 785 27 
~ 2.090 217 0 - I .502 407 5 ~ 1.382 874 9 
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