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ABSTRACT

A convenient general method for calculating potentials and fields arising
from planar arrays of discrete adions under a variety of imaging conditions
is described and illustrated. Adions are perfectly imaged by one conducting
plane (single imaging) and are also imaged by a dielectric constant discon-
tinuity at a plane on their other side. The method employs only solutions
of the single imaging problem, is readily applied without a computer, and
is pertinent to the usual electrolyte compact layer adjoining either an elec-
trode or a_dielectric material, which may be air. The single image solutions
used in calculating more complex imaging results may be exact values ob-
tained from a previous rather complicated approach, or for ease in calcu-
lation, may frequently be approximate but quite accurate values calculated
by a simple method described herein. Using the exact approach, one can
calculate, for the full range of the dielectric reflection parameter, fields and
potentials along any line perpendicular to the conducting plane. Here we
are primarily concerned with potentials and fields along the line through a
removed adion, and the approximate single imaging solution is especially
useful. Although we apply the method to regular hexagonal arrays, in the
latter case it is equally applicable to arrays described by Grahame’s partially
smeared, cut-off model for single imaging. Some comparison with the results
of this model is presented. In addition to calculating and illustrating the vari-
ation of fleld and potential within the compact layer and the adjoining di-
electric medium, we have examined in detail the difference between the
micropotential and the macropotential for many different imaging situations.
The present study includes the previously treated single conductive plane
imaging and also the (infinite) conductive-conductive imaging situations as
special cases. It is found that special care is needed to describe the latter
situation by the present model. Finally, the effect of possible conductive

imaging by the electrolyte diffuse layer is considered qualitatively.

The system we shall consider in this paper is the
electrolyte compact double layer (1). We shall as-
sume it consists of a monolayer of ions (effective
charge z,e and average surface charge density q;)
bounded on one side by a plane interface which we
shall call the electrode-surface plane (ESP), gener-
ally (but not always) associated with an adsorbing
conductor, and on the other side by an imaginary plane
marking the points of closest approach of the charge
centroids of ions in the electrolyte, or diffuse layer.
The plane of closest approach is known as the outer
Helmholtz plane (OHP), and the plane passing through
the charge centroids of the adions in the monolayer
is the inner Helmholtz plane (IHP). We shall define y
to be the distance between the OHP and the IHP
and g to be the IHP-ESP separation; d = 8 4+ v is
therefore the total thickness of the compact layer.
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Fig. 1. Cross-sectional diagram of the double layer region show-
ing charges, and some of their images applicable for calculating
potential in region I, and the distances 8, v, and z.

The situation is illustrated in Fig. 1. The circle cen-
ters denote the positions of adion charge centroids.
The diagram is not to scale since g is roughly equal
to an ionic radius, and the minimum distance between
spherical adions in the plane is thus approximately
28. The present treatment of course applies for ad-
sorption on a curved electrode surface such as a
mercury drop provided, as is the case in practice,
that the radius of curvature of the surface is much
greater than the characteristic microscopic distances
involved in the situation such as d and the effective
Debye length in the diffuse layer.

The possibility immediately arises that other mate-
rial besides the ions, such as adsorbed water mole-
cules, may reside in the compact layer; to represent
this possibility approximately as well as to take into
account to the same degree of approximation the finite
polarizability of the adions themselves, we regard
these ions as point charges lying on the IHP and take
the dielectric constant of the compact layer in which
they reside to be e. We have discussed the introduc-
tion of such an e; in some detail elsewhere (1-4).

The present paper is concerned primarily with the
determination of the electrical potential within the
compact layer; this is because the potential’s be-
havior is centrally related to virtually every meas-
urable electrochemical property of the system (5).
As it turns out, the potential within the system is
sensitively dependent on certain structural aspects of
the system; not only is it necessary to take the dis-
creteness of the elements into account (6), but cor-
respondingly one may only do so if reasonable models
are used for the spatial distribution of the discrete
adions within their plane (7). What is “reasonable”
depends, it seems, on the temperature, the surface
density of the monolayer, the quantities 2,, 8, and v,
and other, more subtle, characteristics of the system.
In the present work we shall usually assume that
the ions form a perfect hexagonal array with lattice
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constant ry, although our general analysis is applicable
even without this specific restriction. This is a popu-
lar model (3, 4, 7a, 8); and even though it is by no
means applicable under all conditions (7), it seems
to be a model which is approximately valid for many
conditions of interest. As might be suspected, the
hexagonal model begins to become inapplicable at
low surface densities and/or high temperatures; fur-
ther discussion of the applicability of this and other
models appears elsewhere (7).

There is one other major consideration involved
before one can determine the potential in the compact
layer: What is the effect of those charges outside the
compact layer on the potential? If one of the bounding
planes is the surface of a conductor, the effect of
those charges on and beyond this plane is straight-
forward; the conductor acts as an electrical imaging
plane, and charges on the conductive surface in ex-
cess over those (proportional to q;) involved in the
imaging process set up an additional uniform electric
field in the compact layer. If one or both of the
bounding surfaces is that of a neutral dielectric in-
sulator, then again a type of imaging is involved. A
more difficult question, one which is responsible for
much of the variety in the various theories of double
layer structure and whose solution has significant im-
pact on the expected properties of such systems, is
the effect of the diffuse layer on the potential in the
compact layer. One possible approximation is simply
to neglect any variation in charge density or polariza-
tion within the diffuse layer along directions parallel
to the OHP; that is, to assume that these quantities
vary only in the direction perpendicular to the OHP.
That this is not strictly true is a result of the dis-
creteness-of-charge in the compact layer; that this
assumption might still be a good approximation rests
on the thermal motion of the ions in the diffuse layer,
motion which tends to disrupt any “shadowing”
within this layer of the charge density variations on
the THP through pairing of adions with counterions
in the diffuse layer. If one makes this approximation,
the explicit effect of the diffuse layer goes to nought,
and the potential within the compact layer is deter-
mined completely by the monolayer ions and the
boundary conditions at the other interface. Several
more or less correct, exact or approximate, treatments
of this model have appeared in print (4, 8c-f, 9, 10).
The above situation, with a metal electrode, has been
termed by the present authors the “single-imaging”
case in a treatment (4) hereafter referred to as II.

At the extreme opposite end of things, another
model of the diffuse layer’s effect has been proposed
and treated (3,7b, 8b-f, 11). This might be termed
the “Ershler model” after its first proponent; the
present authors have dealt with this model in. some
detail and have termed it the “infinite-imaging” case
in a treatment (3) hereafter referred to as I. As the
latter terminology implies to some of us, this model
assumes that mobile diffuse-layer ions are capable of
arranging themselves so as to make the OHP an equi-
potential surface, Effectively then, the OHP becomes
a second conductive-imaging plane (exactly as though
it were a metal surface) and the outcome of this is
an infinite set of images, as in a hall of mirrors.

Unfortunately it has not been possible to establish
unequivocally, either experimentally or theoretically,
which of these two models more nearly represents
the actual behavior of the diffuse-layer ions. An ade-
quate treatment of the diffuse layer in the vicinity of
the OHP, where the influence of the discrete compact-
layer ions is greatest and the usual approximations
most hazardous, may be as yet an unfinished assign-
ment. The most promising approaches have been those
of Stillinger and Kirkwood (12) and some of the
Russian workers (13); however, even these treatments
invoke expansions involving the ratio of electrical
energy to thermal energy in the diffuse layer, and
for concentrations of interest the validity of such
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theories is uncertain. The experimental problems are
almost as sticky: The quantities actually measured
are only related to local potentials after an “interpre-
tive process” which is somewhat questionable; for
example, isothermal measurements leading to adsorp-
tion coverages (qi) only yield adsorption potentials
vs. coverage if the form of the isotherm is known.
Furthermore, it is possible that the state of ionization
of the monolayer elements may change over certain
ranges of surface coverages for some systems (2, 14,
15).

Returning to the refuge of our idealized situation,
however, there is one diffuse-layer effect which should
exist independent of the behavior of the diffuse-layer
ions: In most situations there is a fairly abrupt
change in the dielectric constant in going across the
OHP. If we denote the dielectric constant of the bulk
electrolyte, containing no excess ions, by e, the dif-
ference e — ¢ will induce dielectric imaging at the
OHP. [We should note that the major dielectric con-
stant change may not occur precisely at the OHP, so
that the imaging plane may lie somewhat within the
compact layer (16). This possibility will be neglected
here.] When this imaging is accompanied by metallic
imaging at the ESP, resulting in an infinite set of
imperfect images, as though in a hall of imperfect
mirrors, we have described this dielectric-conductive
situation as the “partial-imaging” case. This case has
the following features of particular interest. First,
this type of imaging should be present in most sys-
tems, whatever additional effect may be present due
to the diffuse-layer ions. The dielectric discontinuity,
or an approximation thereto, would be expected in
most cases, forming a “background effect” for any ad-
ditional action by the diffuse-layer ions. In view of
this effect, it is in fact difficult to construct an elec-
trolytic system which displays “single imaging,” and
we now regard this case to be of interest only in ref-
erence to nonelectrolyte systems or as a least-imaging
limiting case for electrolytes.

Since we plan to compare many of the theoretical
single, partial, and infinite imaging discreteness-of-
charge treatments mentioned above in a forthcoming
review (17), we shall omit much of such cross-com-
parison from the present paper. It is perhaps worth
mentioning that the present work contains in a cer-
tain sense all the results of the limiting cases I and II
and also yields a continuous bridge between them.
Although the present paper does not include a treat-
ment of dielectric-dielectric imaging, a case {reated
to some extent by Levine et al. (7b), our present,
easily applied methods require, as we shall show
elsewhere, only simple modifications to apply to this
situation as well.

General Analysis

In the remainder of this paper we shall be primarily
concerned with the potential which results when a
single vacancy is present in an otherwise perfect
hexagonal array of adsorbed ions. As has been dis-
cussed in I and II, this leads to the interesting part
of the micropotential; the effects of omitted self-
images are independent of q and g; and may be sub-
sumed into the “chemical” part of the adsorption po-
tential. The potential y in our present work consists
of two contributions: a discrete-charge contribution
¥va which is always present whatever the charge on
the ESP and a uniform-displacement component y,
which results from an additive constant D field nor-
mal to the ESP and vanishing when the ESP is
grounded so its charge q becomes equal to —q; for
dielectric-conductive imaging. We first determine the
discrete-charge contribution y,. The basic method is
to replace the ESP and OHP interfaces with a system
of fictitious “image charges;” the particular system
depends on whether we seek the potential on the
metal side or the solution side of the OHP. Thus,
referring f{o Fig. 1, the potential between the metal
and the OHP (region I) will derive from an infinite
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Fig. 2. Cross-sectional diagram of the double layer region show-
ing effective charges and some of their virtual images applicable
for calculating potential in region If.

set of images (for each charge on the IHP) as though
the whole space were of dielectric constant ¢; refer-
ring to Fig. 2, the potential on the solution side of the
OHP (region II) will likewise involve an infinite set
of images, and the whole space of region II is to be
regarded as having dielectric constant e. The sets of
images for each charge on the IHP are chosen so that
the resulting potentials satisfy the appropriate condi-
tions on the ESP and OHP. In particular, the result-
ing potential should be zero on the ESP, continuous
across the OHP, and result in a continuous variation
in the normal component of electric displacement
across the OHP. It may be verified by inspection that
the set of images indicated in Fig. 1 and 2 lead to
potentials satisfying these conditions.

We shall set up a coordinate system as follows: The
positive z-axis is taken normal to the ESP, extending
outwards towards the OHP. The x and y axes lie in
the ESP, and the origin of coordinates is on the ESP
and the normal line passing through the vacancy.
Although the methods of the present paper may be
readily extended to give potentials for positions other
than x = y = 0, in the following we shall only be
concerned with actually calculating the potential (and
field) along this line.

Let us now define v = (e2 — €e1)/(e2 4 1), and 0
=14 o = 2¢3/(e1 + e2). Referring to Fig. 1, we see
that the array of adions and their images giving rise
to ¢a in region I form sheets of nonideal dipoles
whose centers lie on the planes z = 2z, = 2nd where n
is an integer. The separation between the positive
and negative charge of each nonideal dipole is 2p,
and the strength of the dipole sheets drops off as wlnl,
Similarly, referring to Fig. 2, it may be seen that the
potential ¢, in region II derives from a set of non-
ideal dipoles similar to those pertaining to region I
The differences between the sets for the two regions
are that the positive-n sheets are missing for the re-
gion II calculation and the dipole strengths are all
multiplied by the factor v.

If we now define y,,(x,y,2) to be the potential pro-
duced at (x,y,2) by our array of adions in the single-
image regime (the quantity known as y, in II) we
may take the foregoing into account and write
Ya(Z,Y,2) = Va0 (x,4,2)

+ ;:;1 o {Yao(x,y,2 + 2nd) — Yao(2,y, 2nd — 2)} (1]

in region I, and in region II

va(x,y,2) = (net/e2) 2_;0 W" Yao (Y2 + 2nd)  [2]
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where nei/es = 1 — w. Thus, we have expressed the
partial-image potential in terms of a single series
(instead of the double or triple series used by others)
involving the accurately known (4) single-image po-
tentials. Levine et al. (7b, 11) have employed a sim-
ilar approach (for the infinite imaging case), in which
they used Grahame’s cut-off model (8c) for the single
image potential va0(0,0,2). Similarly, defining &8s as
the electric field associated with ya in the present
regime and §ao as the field associated with the single-
imaging potential yao, One obtains in regions I and II,
respectively

83 (xyysz) = @ao (.'L','y,z)

+ 2 @ {&ao (T,;Y,2 + 2nd) + Gao(a,y,2nd — 2)} [3]

n=1

83 (xry)z) = (7151/62) 2 wh (gao (x,y,z + an) [4’]

n=0

These single-summation expressions for ¢, and &a
converge quite rapidly; even for w = 1, the expres-
sion for potential in region I converges well. As w ap~
proaches unity, the value of ¢, in region II is bounded

a = (net/e2) 2 Wy, = Ney Se2(l—w) =y,
n=0

where the upper bound, ¢, is defined as in II; thus
Y. = 4nBqi/e. In carrying out the sums for ¢,(0,0,2)
= ya(2) it was usually found to be more convenient to
use an approximate but highly accurate analytic
expression for ¥a.(0,0,2) = yao(z) than to use the exact
results obtainable from II. The approximation used and
its accuracy is discussed further in ref. (18) and in the
Appendix. Calculation of v4,(z) by this approximation
is far simpler than by the lengthy expressions given in
II, yet yields adequate accuracy. The accuracy of the
results in the present paper have, in fact, been
checked by calculating many of them with both exact
and approximate values for y,,(2).

To complete the potential, we must add the uniform
D field part, Y.. The boundary conditions at the ESP
require that, if the total surface charge density on the
ESP is ¢, then the uniform field produced is simply
4n(g + q1). Taking the zero of y. to lie on the ESP,
we obtain Y. = —(4n/e1) (q@ + q1)z for region I and
ye = —4n(q + q1) [(d/e1) + {(z2 — d)/ez}] for region
II. We note, incidentally, that if yaic and &aic (see II)
are substituted for y.. and &ao in the foregoing equa-
tions, the resulting potentials and fields are the ones
pertaining to a complete adion array.

Before presenting detailed results of our calcula-
tion of potentials, fields, and other quantities of in-
terest, we point out an interesting feature pertaining
to the limit « — 1. Intuitively one might expect v, (in
region I) to approach the infinite-image (conductive-
conductive) ¢, as w approaches unity. As it turns out,
however, this preconceived notion is entirely wrong:
The limiting behavior of the present ¥, is distinctly
different from the ¢, determined in I, which we shall
here denote as yace. Thus one cannot simply take
« = 1 herein and directly obtain ya... What does occur
for given q and qp is that the limiting value of the
present ¢y = ya -+ ve is identical to the value of
Yace 4 ye Obtained by redefining ¢ (in I) so as to
place its zero on the ESP (as has been done with our
present partial-imaging y.). In other words, the actual
limiting behavior of the present ¢, is given by lim

w—>1

Ya = VYace + (4nqi2B8/eid). In particular, at the OHP

where yue is zero, lim y, = ¢,. This behavior repre-
w—>1

sents a real physical effect and not just a trivial defi-

nition of the zero of potential. The physical origin of

the effect lies in the fundamental difference between
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a dielectric, no mattfer how “strong,” and a conduector.
Only the conductor allows charge to build up on its
surface so as to render the field inside exactly zero.

Normalized Equations

For presentation and comparison purposes, it is
convenient to deal with normalized equations when-
ever practical. We shall normalize potentials with the
¥, introduced above and shall denote such quantities
as Yao/V, and va/y, as yaoN and ¢,N, respectively. Note
that since e occurs in ¢,, a potential such as ¢ in
region II, where ¢ = ¢, is still normalized by a quan-
tity involving e, not e, in this convention. It will
prove convenient to normalize fields in an equivalent

way, gsing 8. = — 4nqi/e1. Finally, we will normalize
electric displacements with 9, = —4nq:.
From now on let us take *x = y = 0 and define

2/ and R; = ri/8. Further, let ~/8 = T,
Zo=14T = d/B, and p = 2Z,. Then the IHP occurs
at Z = 1 and the OHP at Z = Z,. For some purposes,
as we shall see, it is useful also to use the normalized
variable ¢ = Z/R; = z/71.

‘We may now omit reference to x and y and write in
place of [1] and [2]

vaN = ¢aN(Z;R1) = yao¥ (Z;R1)

+ nzlw"{yl/aoN(np + Z;R1) — vacN(np— Z;R1)} [5]
(region, 0 =Z = Z,)

0

Yal = (1 — w) Ew”\PaoN (np 4+ Z;Ry) [6]
n=0
(regionII, Z=Z,).

Equations following from [3] and [4] may be similarly
written; instead, since it proves more convenient to
plot displacements than fields, we give equations for
DaN = Da/D., equal to e18a/e18, in region I and to
e8a/e18,, in region II. To obtain &N in region II, we
need only multiply 9.N in this region by (ei/es) =
(1 —w)/ (1 4+ w). The results for ;N are

DaN = aoN (Z;R1)

4+ E_;lw"{aaoN(np + Z;R1) + SaoN(np—Z;R1)} [7]
(region I)

DaN= (14 w) 2 w"Eao™ (1o + Z;R1) (8]

n=0

(region 1I)

For use in comparing with experimental results,
it is frequently useful to have available complete po-
tentials and fields which include the uniform D field
contributions. We may write

YN = YaN + PN (91

EN = &aN + &N [10]
where N = D,N and {(1—w)/ (1 + &) }DaN in regions
I and II, respectively, and

YN =— {14 (q/q1)}Z

8N = — {1+ (¢/q1)}

YN = —{1 4+ (a/q1) }[Z, [13]
+ {(1—w)/d + w)}(Z—Zo)]}ZEZo
EN=—{1+ (¢/q)} (1 —w)/(1 + )] [14]

There is, of course, no average D field contribution
when ¢ = — g1 and the ESP is grounded.

The micropotential 1 is related to the energy re-
quired to move an ion at the OHP to its adsorbed
position at the IHP. This definition does not include
the small p. d. V2 in the diffuse layer between the

[11]
} 0=Z=27,
[12]
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OHP and the bulk of the solution. It is actually
¥1 + Vo which appears in an adsorption isotherm,
but we shall neglect Vo hereafter since it depends on
g and g; and can be added in whenever pertinent.
Remark, however, that unless the OHP is taken as an
equipotential surface, which implies conductive imag-
ing there, the usual one dimensional diffuse-layer
theory is inconsistent with the requirement that the
potential be continuous across the OHP. On the other
hand, even when the OHP is not an equipotential, the
value of Vs, now a function of x and y, will probably
be quite close to that predicted by the usual one-di-
mensional theory.

From the above discussion, we have y1 = y¢(B)
— ¢(d). We wish to compare this p. d. to the average
p. d., V3, across the inner region. The average poten-
tial itself, V(2), may be written in normalized form

as (3)
VN(Z) =—[Z(g/qD) + (Z~1)] [15]

for Z = 1. It is taken zero at Z = 0. VyN is then
—VN(Z,). It will be convenient to introduce the nor-
malized quantity A = v/d = I/(1 + T) = TZ," 1, For
1N we readily obtain

YN = N (1) — N (Zo) 4 T{1 4 (q/q1)} [16]
As in II, let us form the ratio (applicable for Z,=1)
A=y /Vy = —¢N/VN(Z,) =M (1 4 A)
__ra+ (@/q1)} + AyaN (17
T+ (1 +T)(a/q1)

where A is defined in [17] and Ay,N = ¢.N(1)
— vaN(Z,). The quantity 4, which measures the de-
viation from linear proportionality of the micropo-
tential to Vi, follows from [17] and may be written
1 —1AY.N
A + AT 1AY, (18]
r+ (14+1)(q/q1)

When q = 0, we define A = A,, where
Ag = I'1[1 4 A 1AyN] (191

Discussion of Results
Conducting ESP

In this section, we shall consider the usual electro-
lyte situation shown in Fig. 1 of a conducting elec-
trode, a compact inner layer, and a diffuse layer ex-
tending beyond the OHP. We shall, for the time being,
ignore effects arising from moveable ions in the dif-
fuse layer and shall only be concerned with the effect
of the ¢; — ez dielectric discontinuity at the OHP,

Suggested values of ¢ in the compact layer have
ranged from 6 to about 15 [see ref (1)]. The value of
e for an aqueous electrolyte can be no greater than
81 at room temperature and will likely be appreciably
reduced in the diffuse layer because of dielectric satu-
ration arising from the average field there and the
effects of closely neighboring ions (1, 19, 20). A rea-
sonable approximate lower value for e might there-
fore be 50. Those combinations of the above values
of ¢ and e which give the smallest and largest «’s
lead t0 wmin ~ 0.54 and wmax ~ 0.86. The smaller is «,
the less is dielectric imaging alone likely to approxi-
mate well to the actual electrolyte situation including
diffuse layer conductive imaging. In the succeeding
figures, however, we have shown results for a variety
of values of w between -1 and —1, for completeness,
for comparison with the results of I and II, and be-
cause some of the negative values are pertinent to
the situation discussed in the next section.

Figures 3 and 4 show the dependence of normalized
potential and displacement on normalized distance
from the ESP, ¢ for a number of « values for the
choice R; = 5 and several values of I These values
of T probably cover the experimentally likely pos-
sibilities for such electrolytes as KI. We have used
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Fig. 3. Normalized discrete potential yN = y,N vs, normalized
distance from ESP, ¢ = Z/R;, for Ry = 5 and T = v/B equal
to ¥2, 1, and 2. The parameter is v = (e2 — €1)/(e2 + ).

the parameter ¢ here instead of Z itself because we
have found elsewhere (4, 18) that for single imag-
ing (v = 0) y3N = y,oN is a function primarily of ¢
and depends only slightly on R; separately. The pres-
ent curves may thus be compared directly with others
plotted vs. & Unfortunately, when w £ 0, such virtual
independence of R; is less marked, as we shall demon-
strate elsewhere.

For greatest clarity and distinction between curves,
we have taken ¢ = —q; in Fig. 3 and 4. This choice
has the effect of making yN = y,N and DN = P,N.
Although q seldom equals —gq; in electrolyte situa-
tions of the kind discussed in the present section,
¢N and DN for q % —q; may be readily derived from
the curves given through the use of Eq. [9] and [10],
[11], and [12], and the known relations between &N
and DN. We have elected to plot DN in Fig. 4 rather
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Fig. 4. Normalized discrete displacement 8N = &,N vs. ¢ for
Ri = 5, T = ¥, 1, 2, and a variety of « values.

than &N to avoid the discontinuities which would
otherwise appear at the OHP. It is interesting to note
that discontinuities still appear in the first derivative
of DN except when w = 0. Because of the infinife dis-
continuities which occur in some quantities at w = 1
and —1, our present results do not serve to yield
&N for Z, = 1 when @ = —1, but they do show that
&N = 0 for Z, = 1 when ¢ = 1. The missing 8.N por-
tion for « = —1 can be readily calculated directly
from Eq. [8], however, by first multiplying it by
(1 — w)/(1 + ) and then letting v = —~1.

Although the present method of calculating yN and
ON for any pertinent values of w, Z, and R, is suffi-
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ciently simple that no computer need be used to
achieve 1% or better accuracy, we have required
for this paper so many values of these and other
related quantities that we have, in fact, used a com-
puter for their calculation. We have made a careful
comparison between the results of the approximate
formulas for ya,N and §aoN given in the Appendix and
very accurate values of these quantities calculated as
in IL. This comparison shows, for example, that Ry =
5 the use of the (3/3) approximant for p(z) given as
(a) in Table I of the Appendix yields values of y,N
for any reasonable Z, T, and » choices which generally
differ from the accurate ones by only a small amount
in the fifth significant figure. The results for y,N are
thus at least as accurate as those for p(¢) itself and
are usually more accurate. This approximant, or an
even simpler one given in ref. (18), can be used in
calculating results such as those shown in Fig. 3 and
4. An approximant such as the (2/3) one given for
F (&) in the Appendix is also required in calculating
DN by the modified cut-off method. When an ap-
proximant for p(¢) derived for Ry = 5 is used to cal-
culate values for yuoN or §a0N when R; -« 5§, almost as
high accuracy as with R; = 5 can be expected when
R; > 5 since, as stated, yo0oN depends very little on
R; alone but primarily on & In particular, Ry = 5
values are very close to Ry = o values of y,N for a
given £ (18). When R; is < 5, there is somewhat more
dependence on Ry, although the difference is still small
even for Ry = 2, the smallest value of R; that usually
need be considered (18). For example, using the R;
= 5 (8/3) p(¢) approximant to calculate values of
vaN for Ri = 4 leads to deviations between accurate
and approximate values of y.N which usually occur
in the fourth significant figure and rarely in the third.
As discussed and listed in ref. (18), even simpler
approximants than those given here in the Appendix
may ordinarily be used to obtain adequate accuracy
in calculated fields and potentials.

In order to achieve high accuracy in the present
computer results, we summed such series as those of
Eq. [5] to [8] to fairly high order and/or used the
epsilon algorithm (21) to extrapolate to accurate
final values when necessary. The series are all very
rapidly convergent when » << 1. They are generally
most slowly convergent when » = 1 so we examined
this limit. When « = 1, the series of Eq. [5] is only
conditionally convergent. Even so, it generally con-
verges quite rapidly. Thus for Ry = 5, T = 1, and Z
= 1 we find that ¢,N is within 1.7% of its final value
when only three (accurate) terms of the series are
used. With five terms the percentage is 0.71, and if
the epsilon algorithm is used on these five terms, the
percentage drops to 0.28.

Since [5] is only conditionally convergent when
o = 1, rearrangement of its terms should change its
value. We have found that this circumstance ecan be
put to good use in calculating AysN = y,N(1) —
¥vaN¥(Z,) in the infinite imaging case where « = 1 and
convergence is slowest. Ordinarily this quantity would
have to be calculated by two separate evaluations
of yaN using [5]. After a slight rearrangement of the
terms of [5], we find the surprising result, however,
that

AgaN = Yaol (1; R1) — yaoN (p — 1; R1)

«©

+ _2{%0"‘('@ + 1; R1) — o™ [(n 4 1)p—1; R11} [20]

n=1

(0 = 1 only)

a series whose convergence is still generally good.
The above is a lucky result; even it is unnecessary,
however, if we note that when o = 1, ¥ ,N(Z,) = 1.
Thus, when « = 1, Ay¢,N can still be calculated using
[5] only once to first obtain ya¥(1).

In I, we noted the extraordinary constancy of §(d)
for 8 = 34, w = 0, and T = 2/3 over a wide range of
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gq. There, Grahame’s (22) values for q; as a function
of q, determined from measurements on a 1N KI
electrolyte at 25°C, were used in calculating &. The
above result suggested to us that it would be worth-
while to examine the field at the THP, &(g), for several
T and » values. Results are shown in Fig. 5. We have
chosen to look at the field at Z = 1 since its value at
the site of a removed ion is pertinent to ionic polar-
ization, dielectric saturation, and ionic compressibility
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Fig. 5. Full electric field at the tHP, £(8), vs. average electrode
charge density, g, using Grahame’s Kl qi(q) data for 1IN and

0.025N concentrations; T' = 13, 1, 2; B = 2A; and several values
of w.
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effects (1). We show resulis in Fig. 5 using Grahame’s
q1(q) data for both 1N and 0.025N concentrations for
the choice 8 = 2A, which we now believe is a more
likely value than the 3A used in II. The results in
Fig. 5 were calculated using the (b) and (c) approx-
imants of Table I in the Appendix. The (b) approx-
imant for p(¢) is particularly appropriate here since
Z is fixed at one for these calculations and R; varies.
The resulting approximant is therefore somewhat su-
perior to that in (2) where Ry is fixed at 5 and Z
varies to produce changes in ¢ Since F(¢) is a small
correction term, its Ry = 5 approximant is quite ade-
quate in the present case.

It will be seen from Fig. 5 that §(8) remains quite
constant when w = 0 and remains so also even when
w~1lforT = 2. Forr = 1, §(8) for the 0.025N con-
centration goes through zero in the experimental
range of ¢ when « is about 0.4 or greater. Finally,
when T' = %, all of the curves shown change sign
in the experimental range except those for v = 0.
If we assume that the I appropriate to the actual ex-
perimental situation is 1 or less and that 0.7 < w = 1,
then it is evident that §(8) will vary sufficiently over
the g range, for either 1N or 0.025N concentrations,
that it will not be a good assumption to take & com-
pletely saturated and equal to 6 over the entire g
range. For I' = 1, w = 0.9, and this constant value of
¢1, the appropriate curve shows that §(g) varies from
about 3.5 x 107 v/em to 4 x 106 v/em as g goes from
—18 to +18 uC/cm?2 With e becoming less saturated
and thus larger as §(8) decreases (20), £(8) at ¢ =
18 xC/cm? might be as small as 2 x 106 v/cm. We
remark again, however, that the introduction of an ¢
at all in the present situation is a considerable approx-
imation, making any conclusions about its variation
uncertain.

Figure 6 shows the nonlinearity parameter A, for
the usual values of I' and many positive values of «.
These results form a bridge between the w = 1 re-
sults of I and the w = 0 results of II. Here and else-
where in this paper all w = 1 and « = 0 results agree
excellently with those previously given in I and II
We can now follow in detail the continuous change
from one limiting case to the other, however. It should
be noted that in the present paper the w values 0 and 1
represent only limiting situations and are not exam-
ined in detail; more results for these specific values
thus appear in I and II than are given here.

It will be noted from Fig. 6 that, except for o
values equal to or very near unity, A, is by no means
negligible over most of the range of R; shown. At
the top of Fig. 6a is shown a g scale following from
the R; scale when g = 24, probably a reasonable
value for the KI system. The R; = 2 value, which is
the smallest possible Ry for close-packed spherical
adions, corresponds to a q; of 115.6 xC/cm?2 for this
choice of 8. On the other hand, the largest value de-
rived from Grahame’s (22) experiments is about 43
#C/cm? (corresponding to R1 ~ 3.3 for § = 24), in-
dicating a maximum adion surface coverage of about
37% for these experiments.

The dashed and dotted lines of Fig. 6b are calcu-
lated for the usual cut-off model of the inner region
(8c, 18), not for a hexagonal array. They use values
of ¢aoN obtained from Eq. [A-1] with constant p val-
ues, and [A-1] is applied for all Z and R; combina-
tions since [A-4] is only applicable to the hexagonal
array. The dotted-curve value p = (1/3/2rn)1/2 =
0.5250376 is Grahame’s original figure. It is the value
appropriate for a smeared array of charges and is
thus also the value for the fixed hexagonal array
when ¢ - oo. It is the smallest value of p possible
for such an array. The dashed-curve value P = 4n/
o\/3 == 0.65752059, where ¢ == 11.034175, is the value
appropriate for an array of ideal dipoles when ¢ —
0 [see ref. (18)]. This p is thus the largest value
possible with a hexagonal array. It is interesting that
over much of the Ry scale of interest, the accurate
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Fig. 6. The nonlinearity parameter A, vs. Ry for T = 15, 1, 2
and positive values of «. Dotted lines were calculated using
Grahame’s cut-off model involving the constant value of p, p, =
0.5250376. Dashed lines were calculated similarly with p again
constant and equal to p, == 0.65752059. The nonlinear g1 scale ot
the top of (a) is applicable for the choice 8 = 2A only.

hexagonal-array results lie between those obtained
with the above two limiting values of p. On the other
hand, in the region of appreciable IHP charge density,
say 2 = R; < 6, where the fixed hexagonal array

model is most appropriate at room temperature, we
note regions of very appreciable deviation of the
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2o T T T IV T P T 11 It lating A from Eq. [17]. For a given g, the correspond-
" w=°|, 0 . ing q; was used to calculate Ry, using g = 24, then

~ |04 04 T2 ' AyeN was calculated and was finally used in Eq. [17].

~ Iy Ty -l - This calculation of Ay,N, and also most of those for
1 08 B2k — A, in Fig. 6, used the Ry = 5 (3/3) approximant for
- I - p(¢) discussed in the Appendix together with Eq.
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Fig. 7. Quantity A = y1/V1 vs. Grahame's derived qi{q) for
8 = 2A, T = ¥, 1, 2, and several positive values of w. Dashed
lines denote negative values.

fixed-p results from the hexagonal array results. In
such a region, the hexagonal model is definitely pre-
ferable to a constant-p cut-off model. The exact
charge density where the latter might be more pre-
ferable is difficult to determine [see (7,17)], however.

Figure 7 shows the ratio of the micropotential to
the macropotential, A = y1/Vy, vs. q1 for T = 1%, 1,
and 2, and several values of «. Here again Grahame’s
(22) q1(q) values for 1N KI were employed in calcu-

0.025N concentration, but calculations for this case
showed them to be quite similar to the 1N curves.
We have elected fo show A curves here instead of the
corresponding A curves given in I and II because A
turns out to be very appreciable for most of the
curves (nonlinear distance dependence of yN) and the
ratio A is itself then of most direct interest.

Equation [17] shows that when A = 0, A = A. This
is, of course, the case at the right of the A curves in
Fig. 7 where q1 ~ 0. Dashed lines are used in Fig.
7a to indicate negative values of A. These arise be-
cause Vi may change sign, leading to a pole in A
near q; = —35 uC/cm?2, Although both ¢y and V; are
continuous, their ratio need not be. The peculiar be-
havior of the @« = 1 curve in Fig. 7a is evidently pro-
duced by a zero in y1 near but not at that of V.

The quantity of most interest for adsorption iso-
therms is yi itself. It can, of course, be readily ob-
tained from the A values given here by multiplying
by calculated values of V4. In this paper, we shall not
be directly concerned with adsorption isotherms and
with the yi1 which enters them, reserving such dis-
cussion for another place (17). It is worthwhile to
point out, however, that when A is neglected (often
a good approximation for infinite imaging) and y;
is then taken as AV, Grahame (22) and Grahame and
Parsons (23) have found that the yy derived by using
experimental results in a simple adsorption isotherm
leads to a variable A. Although this specific approach
can probably be improved, it does lead to A variation
with q or q; of much the same form as that of A in
Fig. 7b and c. In particular, » is found to increase
continuously for KI as q increases from —18 uC/cm?
to 18 uC/cm?2, Reasonable values of T and « can even
be selected that lead to A variation quantitatively
very similar to that found for A, but we do not wish
to stress this agreement even though the Grahame-
Parsons A(=¢1/V1) determined as above is formally
fully equivalent to our A and they both equal the
constant A (a ratio of distances) of the present paper
when q1 = 0.

Dielectric ESP

While in the foregoing work metallic imaging is
assumed to occur at a conducting electrode and di-
electric imaging at the OHP, our mathematical model
also pertains approximately to an entirely different
system: At an electrolyte-dielectric interface, we
may also have a surface phase in which ions are
hexagonally arrayed on an “IHP.” Separating this
phase from the bulk electrolyte would be an “OHP;”
separating it from the bulk dielectric would be an
“ESP.” While external charged electrodes might be
present near the surface layer, producing a uni-
form field ¢., these electrodes need only be a micro-
scopically large distance removed from the layer (a
probable situation here) for their effect upon v, to
be negligible.

Our model in the present situation is that the OHP
approximates to a metallic imaging plane and the
ESP forms a dielectric imaging plane. Clearly, the
OHP will approximate better and better to a con-
ductive imaging plane the higher the concentration
of ions in the diffuse layer. To maintain our pre-
vious equations with minimum change requires that
we now define g as the IHP-OHP separation, v as
the IHP-ESP separation, g as the total surface
charge density on the OHP, that we measure z from
the OHP (thus z = 8 + v at the ESP), and that we
define ¢; and e to be the effective dielectric constants
of the surface phase and bulk dielectrie, respectively
(see Fig. 8).
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SURFACE REGION
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Fig. 8. Cross-sectional diagram showing appropriate situation
and distances when the OHP is taken as a conducting plane.

There still remain certain differences between our
system and the original compact layer for which our
equations were derived. Most important of these is
that the adion density on the IHP will now depend
on the potential difference between the IHP and the
conductive plane; thus, y1 = y(8) — y(0) = y(8),
where “g” here is probably numerically equal to the
“y” of our original system. The reason for the pres-
ent involvement of the conductive plane potential,
which is of course zero, is that in this system the ions
are presumed to originate (again neglecting V)
from the conductive (outer Helmholtz) plane whereas
earlier they originated from the dielectric imaging
plane, and there the finite potential at the dielectric
discontinuity had to be incorporated in the micropo-
tential. Finally, apart from the numerical differences
expected between new and old g's, v’s, ¢’s, and so
forth, we may now obtain with greater likelihood
negative values for the parameter . Levine et al.
(7b, 11) have discussed, to some extent, a situation
where e is taken as 15, pertaining to silver chloride,
and e taken as 10 or 15. In these cases, » = 0.2 and 0,
respectively. On the other hand, the important air-
electrolyte interface is a more common situation. For
et = 10 and 5, v is about —0.82 and —0.67, respectively,
for such a boundary,

We have already plotted in Fig. 3 and 4 normalized
discrete potentials and displacements for ¢ = —q;
and negative values of w. To make use of these curves
in the present situation, however, we must interpret
the plane marked OHP in those figures as being the
ESP, and the plane ¢ = 0, in the earlier case the ESP,
as the OHP. The IHP is the same in both situations.
The different interpretations now given to g and «
result in probable changes in the numerical values
appropriate {o these quantities; correspondingly, the
numerical value of y, is likely to be different. Note
that if the numerical values of v and g are simply
interchanged in going from a conductive ESP to a
dielectric ESP situation, then I in the dielectric
situation has a magnitude which is just the reciprocal
of that in the usual situation. Although we have only
shown curves of potential and field applying when
q = —qi, the extension to the more general case is
straightforward. The expression for y. in the present
situation is identical to that given for the case of a
conducting electrode.

Finally, we wish to define and calculate a quan-
tity A analogous to that defined for our original sys-
tem. In the present situation, we shall again define

A=9/Vi=y9(B8)/Vy=yNA)/VN(Z,)
[1+4+ (g/q1)] —v¢aN(D)
'+ (14 T)(a/q1)

This equation shows that when q1 = —q A > (1 +
)1 = Z,~! = I'~1A as Ry » o for fixed g. Special~
izing now to the case most interesting and pertinent
for the present situation, ¢ = —q1, we find A = ¥,N(1),

[21]
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just the discrete-charge contribution to the normalized
potential at the IHP. The choice ¢ = —qi means
that the charge on the IHP is entirely balanced by
that in the diffuse layer, here taken to be on the (con-
ducting) OHP. One would only expect g £ —q; in
the present situation when the inner layer was ex-
posed to an externally applied field.

We have plotted curves for A vs. Ry in Fig. 9. For
completeness and because some authors have taken
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Fig. 9. Quantity A = y1/V1 appropriate when the OHP is taken
conducting vs. Ry for T = 14, 1, 2 for a full range of « values.
Here q = —qi1 and A = v4(B)/y,, pertinent to the conducting
ESP case as well.
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the OHP to be a metallic imaging plane in situations
where the material beyond the ESP may lead to a
positive value for w, we show curves for positive w
values as well as negative ones. It will be noted that
as R, increases all the « = 1 curves approach the
limiting value (1 4+ T')~-! = 8/(8 + «~). In this situa-
tion, Y1 = y,(B) is just the proper linear proportion,
B8/(B + v), of Vi = ¢, and A, here defined through
A = T-1W(1 4 A), would be zero as it should be.
Again, we have presented curves of A rather than A
since we believe A to be more significant in the
present case.

The curves of Fig. 9 are particularly valuable since
when ¢ = —qi, A = va(B8)/¢., and the curves show
immediately how large the discrete-charge potential
at the IHP is compared to the total potential (at
large distances) set up by the array, y.. These re-
sults for y,N(1) are, of course, just as appropriate for
the situation of a conducting ESP discussed in the last
section since they immediately give the relative v,
at the IHP in this case as well. Note further that
since the average potential at the IHP, V(g), is also
¥, for ¢ = —qjy, the curves show in addition how v.(g)
differs from the average potential at the IHP.

In the present paper, we have made calculations
based on a model in which there is one conductive
imaging plane and one dielectric imaging plane (and
have also included results appropriate for two con-
ducting planes). These calculations were referred to
two physical situations. In the first situation treated,
the electrolyte was assumed to behave like a simple
dielectric, mobile ions in the diffuse layer were not
explicitly taken into account, and the OHP therefore
was considered a dielectric imaging plane. In the
second situation, the OHP was considered effectively
to be a conductive imaging plane, and the dielectric
imaging occurred elsewhere, at the surface of a true
dielectric. How valid is our model for these two situa-
tions?

The theoretical difficulties associated with the first
system have already been discussed somewhat and
preclude a precise answer to this question for this
case. However, we may make some reasonable guesses
as follows. Inasmuch as the ions in the diffuse layer
will cause the OHP to become to some extent a con-
ductive imaging plane, we anticipate that the present
model will not accurately portray the first system
except possibly at ionic concentrations so low that
the effective Debye lengths are larger than other
characteristic dimensions of the system (e.g.,, 8 and
71), concentrations which are often lower than those
of most interest. Note that the Debye length for 0.025N
at 25°C is about 20A. If g = 2A, this corresponds to
R; = 10, and complete neglect of any diffuse layer
conductive imaging would probably then only be
justified for R; values appreciably smaller than 10
for this bulk concentration. Although one might be
tempted to apply the present model by using an ef-
fective w, larger than that calculated on the basis of
dielectric constants alone, which hopefully would ap-
proximately take into account the mobile ions, we
do not here advocate this procedure as an entirely
satisfactory solution to the problem for two reasons:
Our own estimates of the importance of conductive
imaging at the OHP for ionic concentrations such as
1N would imply effective v values exceedingly close
to unity, for which the Ershler model is appropriate.
Furthermore, any actual small difference between the
predictions of the Ershler model and those of the
present model with « ~ 1 would probably be no
larger than the errors introduced into the present
treatment by the attempt to subsume the action of
the diffuse-layer ions into an effective w. Neverthe-
less, the present approach adequately illustrates for
the first time the effects of the ever-present underly-
ing dielectric imaging.

Concerning the second system considered, where the
OHP is taken to be a conductive imaging plane, our
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evaluation of the model validity is accordingly con-
siderably higher. The foregoing arguments which fa-
vor taking the OHP as just such an imaging plane are
as encouraging in this situation as they were dis-
couraging in the former one. We therefore feel that
the present treatment pertains to a dielectric ESP
(for the usual appreciable ionic concentrations) fairly
well. If an accurate future theory should demon-
strate that our present opinions are overestimates of
conductive imaging at the OHP, then we would have
to interchange our evaluations of the apphcablhty of
the present model to the two situations.
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APPENDIX

In another paper (18), we have discussed in some
detail how Grahame’s (8c) cut-off approximation for
single imaging discreteness-of-charge potential cal-
culations can be modified in a simple way to yield
highly accurate results for hexagonal planar arrays
of ideal or non-ideal dipoles. Here, we thus shall only
quote results used in the present "work.

For yaoN and G we may write

yao = % {[(PR1)? + (Z + 1)2]1/2
—[(pPR1Z+ (Z—1)2]V2} [A-1]

Z +1— [(pRI¥Z]F

[(pR1)2 4+ (Z 4 1)2]1/2
Z —1— [(pR1)2/Z]F
[(pR1)2+ (Z.__]_)2]1/2

In these equations, p and F (which are constant
and zero, respectively in Grahame’s work) are pri-
marily functions of ¢ = Z/R; but depend slightly on
Ri1 as well (18). Here F = —dlnp/dint Using Cheby-
chev rational function approximation methods, we ob-
tained in ref. (18) very accurate, yet simple, approx-
imations of the p and F functions which make [A-1]
and [A-2] exact for hexagonal arrays. This method
of approach was used because it was found that p
changed only over a limited range for any fixed R;
when ¢ varied from 0 to o and F was small over most
of the range, reaching a maximum of about 0.14 near
§=1, .

The rational function approximations for p and F
are all of the type

5o = 2 aig / 2 bt

and may be termed (n/m) approximants. Note that

1. In Table I we give the coefficients of (3/3)
and (0/2) approximants for p(¢) and of a (2/3) ap-
proximant for F(¢). Coefficients of other simpler ap-
proximants are given in ref. (18). Here, we have
used more complicated approximants than would nor-
mally be necessary in order to ensure accuracy of at
least several decimal places in all the results calcu-
lated. In Table I, (a) values are for a fit which min-

GaoN = 1/2{

b ora-2

[A-3]

Table 1. Rational function coefficients for (a) p(¢) (R1 = 5 fit),
(b) p(&) (Z = 1 fit) and {c) F(&) (Ry = 5 fit)

(a) 6r = 1.355 X 10-¢ (b) §a = 1.261 x 10-3
(c) 84 = 3.965 x 10-2

i ai b

0 (a) —41.607035 —63.857680
(b) 6.2168220 9.4332222
(e) 0 —3.3083430

1 (a) 27.059236 41.149777
(b) — 0.72151658
(c) —0.21067153 6.4039198

2 (a) —33.039613 - 5?%85095
(b) — K
(c) 0.058259894 —5.2036756

3 (a) 0.75227306 1.0

(b) — —
(©) —_ 1.0
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imized the absolute value of the relative deviations,
dr, while (b) and (c) values were for fits which min-
imized the absolute values of the absolute deviations,
6{4, between accurate values and approximate pre-
dictions, Values of the pertinent 8z and di’s are
shown in the table and illustrate the high accuracy
of the approximants.

We have used the above expressions for y.,N and
8ao™ for a hexagonal array for Z < 1 4 3R;. When
Z = 1 4 3Ry, however, the results of II reduce to

YaoN == 1 — (/3/4n) [Re2/ (22— 1)] [A-4]

8aoN = (1/3/2n) [ZR:2/(Z2 — 1)2] [A-5]

accurate o about eight figures when Z = 1 4+ 3R; and
becoming even more accurate as Z/R; increases fur-
ther. Therefore, these simple expressions were em-
ployed in place of [A-1] or [A-2] when Z =1 + 3R,.

and

GLOSSARY
Basic Parameters of System
e Charge of proton
a1 Average surface charge density on IHP
q Total surface charge density on conductive
plane
Zv Effective valence of surface-layer ions
€1 Effective dielectric constant of surface region
€ Effective dielectric constant of dielectric region
<] Distance from IHP to conductive plane
5 Distance from IHP to dielectric imaging plane
d 8 + v = thickness of surface region
71 Lattice spacing of surface-layer ions
w (e2 —e1) /(es + €1)
n 14 w=2es/(e2 + €1)
A v/ (B + %)
T v/8
° 2d/8
(x,y) Coordinates in a plane parallel to IHP, gen-

erally set to zero here

z Coordinate of position normal to ESP
Z z/B

Ry ri/B

Z, 14+T=4d/g

¢ Z/Ry = 2/r1

Unnormalized Potentials and Fields

¥ ¥a + Ye = actual potential at a point (x,y,2)

ve  Portion of potential arising from a uniform elec-
tric displacement

va  Portion of potential arising from discrete sys-
tem of charges and images

¥ao Discrete potential in single image regime

Yacc Discrete potential in infinite image regime
Actual electric field, associated with y

Ea  Field associated with v,

Gao  Field associated with ya,

Da Displacement associated with ya

Potential Differences, Average Quantities, and
Normalizing Factors

¢¥1  Micropotential = y(at IHP) — ¢ (at OHP)

Vi1 Average potential drop across surface layer

V2 Potential drop across diffuse layer

V (z) Average potential in a plane z = constant

Y (4nBq1/e1) = average potential drop arising from
discrete array of charges and images; used as a
normalizing factor

€ Normalizing quantity for fields = — y,/8

¢, Normalizing quantity for displacements = &,

Normalized Potentials and Fields

\bNN v,
Va N Ya/¥,
Vao Vao/ Ve
Weg Ve/ Vo
Y1 N 2
Vi Vi/y.
VN(Z) V(2)/y.
AyN Yal () — ¢aN(Z,)
N &/8,
&Ea &Ea/ &,
gaﬁN 830/800
5 o/ G
DaN Da/ D
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Other Quantities

A Y1/V1 = a quantity measuring ratio of micro-
potential to full surface layer average p.d.

A A quantity measuring departure from a strict
proportionality between yi1 and V). When the
ESP is conductive, A = L(1 + A); when the ESP
is dielectric, A = 'L (1 4 A)

Ao Valueof Aforg =20

p,F  Quantities used in our modified cut-off approx-
imation for y, and &a
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Discussion

H. D. Hurwitz: It must be stressed that the value of
the micropotential is not sufficient to account for the
total coulombic interaction among adsorbed particles.
This is shown easily by deriving, as indicated next,
the total coulombic energy of interaction for a set of
charges of species « adsorbed at the inner Helmholtz
plane (IHP), assuming as usual that: 1, the interac-
tion a-solvent is implicitly stated in the definition of
the local dielectric constant ¢ and of the pair correla-
tion function g1,2 introduced below; 2, the interaction
a-diffuse layer charge is described by a simple aver-
age electrostatic effect in which the ionic distribution
in the diffuse layer is smeared out over parallel planes
to the electrode; 3, the dielectric discontinuity near
the outer Helmholiz plane (OHP) leads to partial or
total reflection of the charge e, of a.

Under these conditions we assume that the surface
density of « is p,. Hence pql gives the probability to
find « at one given position, 1, of the IHP. The proba-
bility to encounter a neighbor to « at position 2 is
then by definition g1,2 p2 where ¢1,2 is the radial
distribution function. The coulombic interaction be-
tween these two particles is (e2,/e)v1,2 where 71,2
represents the reduced coulombic potential at 2 cor-
responding to an isolated charge located at the IHP
at 1. The quantity 1,2 includes the effects of partial
or total infinite reflections into the dielectric dis-
continuities of the model.

The probable pair interaction for positions 1 and 2 is

ez,

71,2 91,2 pal po2 [1]

€o

Let us sum over all particles on the IHP considered
to interact with o« at 1 and over all central posi-
tions, 1, in order to get finally the total interaction
energy

ez,

2271,291,2pal po2 (2]

€o

(Because of symmetry of 41,2 g1,2 the quadratic sum
is divided by 2.} Instead of summing over all 1 and 2
we may integrate over-all distances s;3 between 1
and 2 and over-all positions 1 in order to get finally

e

2
& —— [ g1,271,2 p2a dsss [3]
2¢0

where Q is the total area of the IHP.

The change of interaction energy on introduction of
one particle « is obtained through differentiation of
[3]1. Therefore

ey 3]
v(s12)
2¢o f 2 9 Pa

It is clear that [4] is the contribution of eoulombic
interactions among specifically adsorbed charges to
the change of potential energy of adsorption..A more
convenient way to write [4] is to decompose this ex-
pression in the following manner

(g (s12) P%0) dsiz [4]

eu (2
« [pa S v(s12)ds12 4 p, E—'f'v(slz) [g(s12) — 1]d812]

g(si2)dsia [5]

+ % p2 e i) =
2 — fy(s1
* € f ? 'ap'a

In view of the fact that the first term in [5] corre-
sponds to the effect at [1] of charges uniformly dis-
tributed over the IHP, it is readily inferred that by
definition this term pertains to the average electro-
static potential (macroscopic potential).
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The second term is then a correction which results
from discreteness-of-charge effects [g(sj2) is different
from unity] and the first and second term together
represent the so-called micropotential.

At this point we have to realize that whenever we
introduce in our system at position 1 an ion « we
do not alter only the local density p,, but we modify
simultaneously the radial distribution of particles.
This in turn gives rise to some interaction energy.
The last term of [5] reflects such an effect of radial
redistributioni. The contribution of this effect to the
free energy of adsorption has yet been considered only
from a qualitative viewpoint!:2 and is generally ne-
glected. However, a careful evaluation based on a
simple model for ¢gl1,2 has led? to the conclusion that
such work of redistribution is not negligible at all and
may even be of the order of magnitude of the dis-
creteness-of-charge correction as given by the second
term in expression [5]. In the crude hexagonal lattice
approximation of Ershler, in which no allowance is
made for thermal motion, the gl,2 functions are rep-
resented by delta Dirac functions.

C. A. Barlow, Jr.: Three points seem to have been
raised here, First, “that the value of the micropotential
is not sufficient to account for the total coulombic in-
teraction among adsorbed particles;” second, “that the
work of redistribution is not negligible at all and may
even be of the order of magnitude of the dicreteness-
of-charge correction;’ and third, that the hexagonal
lattice approximation is crude, the use of exact two-
particle correlation functions being preferable.

We disagree with the first point; however, the dis-
agreement possibly stems merely from a different use
of words: We assertt that the total coulombic energy
U(N) of a system of N charges is given by a sum
over all particles of the local potential times one-
half the charge; in other words, we agree entirely
with Dr. Hurwitz's Eq. [2] within the approximation
of the model. Now except for a contribution, Vs, from
the diffuse layer, the “local potential” occurring above
is just the micropotential. To equate the two involves
the neglect of Vs in the micropotential, to be sure,
but this is discussed in our present paper just after
Eq. [14], and this doesn’t seem to be Dr. Hurwitz's
objection. His objection, as seen from the second point
raised, is that we are somehow neglecting rearrange-
ment energy. This is not true; in the first place, in the
present paper we did not need to calculate the energy
of adsorbing one additional ion, AU = U(N + 1) —
U(N). We have shown explicitly* that, having found
the micropotential, we have a means of calculating
the related quantity U(N) in accordance with the
foregoing. In the second place, our approach does lead
to the redistribution energy in essentially the same
way that it arises in Dr. Hurwitz's discussion when
one finally gets down to the business of calculating AU,
the energy of adsorption. The only difference in ap-
proach is that we initially calculate U(N) and save
the differencing with respect to N until the very last
(as may be seen from our paperss$ where we deter-
mine the total energy for adsorbing an additional

1D, C. Grahame, Z. Elektrochem., 62, 264 (1958).

2. A. Barlow, Jr. and J. R. Macdonald, J. Chem. Phys., 43, 2575
{1965).

2 H, D. Hurwitz, Z. physik. Chem., To be published.

4C. A. Barlow, Jr. and J. R. Macdonald, J. Chem. Phys., 43,
2575 (1965).

§J. R. Macdonald and C. A. Barlow, Jr., “The Penetration Pa-
rameter for an Adsorbed Layer of Polarizable Ions,” J. Appl.
Phys., To be published in 1966.

6J. R. Macdonald and C. A. Barlow, Jr., Can. J. Chem., 43, 2983
(1965).
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ion). We agree with Dr. Hurwitz’s statement about
orders of magnitude; we were, in fact, the first {o
make a correct quantitative study of redistribution
energy in the present system. Indeed, although this
question was considered quantitatively by us in the
work cited by Dr. Hurwitz¢ and a curve plotted to
show the numerical magnitude of the effect for a
wide range of surface coverages, in his discussion
Dr. Hurwitz only references his own unpublished
work to support “the conclusion that such work of
redistribution is not negligible at all and may even
be of the order of magnitude of the discreteness-of-
charge contribution.” It is of interest to note that in
our previously published workt we explicitly state
that the work of redistribution is of the same order
of magnitude as the full adsorption energy and is
not at all negligible, Dr. Hurwitz seems to have missed
noticing the significance of the quantity n in our
paper,* since he refers to this paper as considering
the question “only from a qualitative viewpoint.”
Further quantitative treatment of this matter will
soon appear.’

Finally, that the hexagonal model may be “crude”
camqot be denied. We have already presented a dis-
cussion of just how crude it may be under some con-
ditions.® If the proper correlation functions were
known, they would certainly be preferable to the
8-function lattice model. They are not known, how-
ever, so our approach has been to try to keep the
following statement (concerning statistical physics)
of Richard Feynman? in mind:

“Anyone who wants to analyze the properties of
matter in a real problem might want to start by
writing down the fundamental equations and then
try to solve them mathematically. Although there
are people who try to use such an approach, these
people are the failures in this field; the real successes
come to those who start from a physical point of view,
people who have a rough idea where they are going
.and .then begin by making the right kind of approx-
imations, knowing what is big and what is small in
a givgn complicated situation. These problems are so
complicated that even an elementary understanding,
although inaccurate and incomplete, is worth while
having....”

We believe the hexagonal array approach to be the
“right kind of approximation” for a ¢y range of prac-
tical importance.t

Richarc} Payne: According to the results in Fig. 1,
jche ratio of y1/Vy is uniformly larger for the single
Imaging limit than for the infinite imaging limit. This
does not seem consistent with the Esin and Shikov
anq Grahame calculations for the single imaging case
which overexplained the Esin and Markov effect (i.e.,
}bl/V.l too small); whereas Ershler’s treatment of the
infinite imaging case gave larger values of vi/ Vi It
seems, therefore, that the trend in Fig. 7 as « varies
is inverted.

J . Ross Macdonald and C. A. Barlow, Jr.: The apparent
discrepancy pointed out by Dr. Payne is not signifi-
cant for several reasons. First, the single-imaging
treatments of Esin and Shikov and Grahame not only
treat a physically very different situation than the
present single-imaging one but the situation treated is
much less physically appropriate than is ours. Second,
we properly include the uniform D field contribution
to the single-imaging micropotential, omitted by other
authors. The Esin-Shikov and Grahame treatments are
not really single-image ones at all since they consider
fixed arrays of adsorbed ions each with a rigidly paired
counterion in the diffuse layer. The counterions are
n'ot taken as images of the adions but as real asso-
ciated ions a fixed perpendicular distance from the

7R. Feynman, R. B, Leighton, and M. Sands, ‘“The Feynman Lec-

t(;;ggzs;)on Physics,” Vol. I, p. 39-2, Addison-Wesley, Reading, Mass.
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adions. Ershler has modified this approach by con-
sidering single imaging of the adions in the diffuse
layer, a preferable assumption. This is indeed a single-
imaging treatment, but it necessarily still disagrees
with our « = 0 results in Fig. 7 since there we take
imaging in the electrode instead of the solution, take
q variable, and include the D field contribution.

The significant point regarding Fig. 7 is that for
reasonable T values the w = 1 curves generally yield
micropotential values which are smaller than they
should be to explain the Esin-Markov effect (4 too
small) while the w = 0 results yield micropotentials
which are too large to explain it. For an appropriate
value of TI', it appears possible to pick a « value near
but less than unity which will lead to results which
will explain the Esin-Markov effect (within the lim-
itations of the present treatment) better than will
results with either w = 1 or 0.

Richard Payne: It is not clear why grounding of the
electrode should affect the charge on the metal since
the whole system is electrically neutral. If the effect
of grounding the electrode were to eliminate the uni-
form displacement component ., then it would be
possible to determine the point of zero charge simply
by measuring the potential of the grounded electrode
with respect to a reference electrode.

J. Ross Macdonald and C. A. Barlow, Jr.: Actually one
could not measure the ecm potential in this way with-
out additional information about the system: The
condition that the electrode is grounded is not the
same as the condition of zero charge. The charge on
the electrode which produces the ground condition de-
pends on the imaging situation which applies, as well
as the adsorbed surface charge density. Specifically,
for single and for dielectric imaging the condition is
that ¢ = —qi, whereas for infinite-conductive imaging

qi at the ground condition. How-

we have q = —

ever, if one knew the physical (imaging) situation and
measured q; with the electrode grounded, one might
be able to infer from the average poiential drop
across the compact layer what the ecm potential is.

Richard Payne: I think it is important to point out
that A in the Grahame-Parsons analysis is not fully
equivalent to ¢1/V: in this treatment as stated by the
author for the following reason. In the Grahame-Par-
sons analysis L is obtained from the experimental re-
sults by investigating the concentration dependence
of the adsorption energy at constant charge in the
electrode. A is therefore an average value over a
range of concentrations and amounts adsorbed. In
other words, the imaging conditions in the diffuse
layer are not kept constant during the calculation
whereas the calculations given here refer to definite
imaging conditions in the solution.

J. Ross Macdonald: Our A = ¢1/V; is formally equiv-
alent, as stated, to Grahame and Parson’s (yi — y°) /y*,
which they set equal to A on the basis of an approx-
imate infinite-imaging treatment. Experimental re-
sults seem to indicate that the ratio (¢! — ¢°)/y#* de-
pends only slightly, if at all, on the concentration.
It therefore seems reasonable to compare our the-
oretical results, which assume a definite degree of
dielectric imaging at the OHP, with experimentally
derived results obtained using various concentrations.
We do not expect much change of w with concentra-
tion, and the change in the average charge density
in the diffuse layer apparently does not affect the
ratio with which we compare appreciably. The com-
parison thus appears useful even though there are
approximations involved which preclude perfect
agreement between theory and experiment.
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Richard Payne: The authors have pointed out that
the value of . (and hence y1) obtained in the Gra-
hame-Parsons analysis is dependent on an assumed
form of the isotherm which I think is an important
point. Incidentally, I would also like to point out
that . also depends on whether the anion activity or
the salt activity is used in the isotherm.

In this context, it seems to me that the Frumkin
isotherm or better the Flory-Huggins modification
of the Frumkin isotherm introduced by Parsons offers
an excellent starting point for the experimental study
of discreteness of charge effects for the following rea-
sons. If we write down the Stern form of the isotherm,

T, =% exp [ (¢1 + @) F/RT] f1]

and compare this with the Frumkin isotherm in the
form

o ax X[ AG® A] 5
1_0—Psep—RT + f(q) — As [2]

it seems reasonable to equate the specific adsorption
potential ® with the standard free energy of adsorp-
tion at zero coverage —AG?©, i.e.

P& = —AGe — InT, [31

and to write ¢ as
T _ ) — a0 (4]
rT ¢ ‘

where f(q) is the form of the charge dependence of
the standard free energy of adsorption at zero cov-
erage and A is the lateral interaction coefficient of the
adsorbed anions. I think it is clear from [4] that the
Frumkin isotherm with a constant value of A repre-
sents the infinite imaging limit to a close approxima-
tion since the adsorption energy is linearly dependent
on the amount adsorbed. Deviation from the linear ¢
dependence of the lateral interactions, e.g., a 63/2
dependence for single imaging should show up as
variation in A when the Frumkin isotherm is applied.
It is interesting to note that apparent variation of A
is often found for adsorption of anions from sclutions
of a single salt.

A further point I would like to make here is that
the infinite imaging case also leads to linear charge
dependence of —AG® providing the effect of replace-
ment of oriented solvent dipoles is neglected and
providing the dielectric constant is assumed constant:

’ ¥ v ¥ 4n[ + 1]
1= —4  — .
B+vy - Bt e pry TP
Ty 4n 2
=__q+____. .ql
€ e Bty

Deviations from the linear charge dependence of
—AG® can arise (i) from replacement of oriented di-

poles which would contribute a term 4mnu/e to Vi
where n is the number of dipoles replaced by each

ion and « is the mean normal component of the dipole

moment and (ii) through deviations of y;/V; from

constancy resulting from imperfect imaging in the
solution.

J. Ross Macdonald and C. A. Barlow, Jr.. We do not
agree that y; is given by

Vi only that the uni-

v
form field part is given by this quantity in the infinite-
conductive imaging situation. The linearity of y; with
charge on the electrode, g, is independent of this, how-
ever, and in fact does not depend on the type of imag-
ing present. We only refer to the explicit dependence
of y1 on q. Since evidently as q changes qi will gen-
erally change as well, we do not include all g-depend-
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ence in the present discussion. We are in fact referring
to the linearity of y; with ¢ under hypothetical cir-
cumstances where the constitution of the compact
layer is held fixed and only q is allowed to change. Ac-
cordingly, we agree with the statement that y; will
be explicitly linear with g, but disagree with the
reasoning which led to this conclusion and with the
comments concerning causes for “deviations from the
linear charge dependence of —AG®” On the other
hand, the remarks about “deviations ... (etc.)” are
interesting and pertinent if by ‘“charge dependence”
is meant “dependence on q¢i.” Note, however, that if
one is concerned with the dependence of y; on qi, he
must include the contribution from the discrete ions
and their images (ya), and that such inclusion will
itself destroy the linearity without the addifional
help of the two effects cited by Dr. Payne.

Roger Parsons: I think it is fair to say that the gen-
eral idea of the discreteness of charge effect is widely
accepted and is supported by several pieces of experi-
mental evidence. However, it is much more difficult to
demonstrate experimentally the fine details of the
models proposed, e.g., whether imaging is partial or
infinite, whether the hexagonal lattice or the dis-
ordered models provide the closest approximation to
reality. I should emphasize the importance of at-
tempting to verify these models by experimental test.
We have tried to examine imaging in the diffuse layer
recently® and suggest that it is not complete. How-
ever, this work does not test the efficiency of imag-
ing in the dielective jump.

In connection with the problem of thermal motion,
is it correct to say that some of the difference be-
tween you and Levine et al. is due to the fact that
you assume a lower dielective constant in the inner
layer? A value of 6 or 7 seems more reasonable
than 15.

I would like to point out that the variable A ob-
tained by Grahame and Parsons was further analyzed
by Parry and Parsons? and an improved model sug-
gested.

Finally, I think it is interesting to note that the
elegant method of summation proposed in this paper
has some relation to the intuitive way in which David
Grahame discussed the potential drop in the inner
layer1o,

J. Ross Macdonald and C. A. Barlow: We believe this
difference of opinion as to the proper value of the
dielectric constant to use in these circumstances is
the only significant disagreement between Levine and
his co-workers and ourselves although there are
small perturbations on the final numbers for lattice
stability coming from slight differences in stability
criteria, etc. In a recent paper by Bell, Mingins, and
Levinell the inner-layer dielectric constant is taken
to be 10. As you have pointed out we have generally
taken 5 or 6 to be more typical of the inner-layer
dielectric constant, to the extent that one can define
such an object. This choice’ was motivated by our
prior work on differential capacitance in the electrical
double layer. However, in later theoretical studies on
electrode work function change, we calculate that the
dielectric constant in some systems may be completely
different from bulk values insofar as work function
effects are concerned. The significant phrase is “inso-
far as work function effects are concerned.” It turns
out that the use of a single dielectric constant to
characterize dieleciric effects in the inner layer is
incorrect, since this region is so completely different
from three-dimensional bulk matter. We have re-

8 E, Dutkiewicz and R. Parsons, J. Electroanal. Chem., 11, 100
(1966).

9 J. M. Parry and R, Parsons, Trans. Faraday Soc., 59, 241 (1963).
10 Fig, 5 in Z., Elektrochem., 62, 264 (1958).
1. Bell, Mingins, and Levine, Trans. Faraday Soc., 62, 949 (1966).
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cently estimated the dielectric constant effective in
reducing the lateral interaction between adions and
find that it is no greater than 2, and more likely to
be closer to unity. So you see the question of the proper
dielectric constant to use is a rather confused one.
It seems to us that all previous estimates of lattice
stability in the inner-layer (including our own) have
employed a dielectric constant which is at least 3
times too large, and possibly much worse than that.

It is completely correct that our image summation
method stems from that originally used (for « = 1)
by Grahame. We have generalized the approach to
include the |w| < 1 case. In this connection, we think
it is interesting to note a certain difficulty not fully
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appreciated by Grahame which froubled us for a
while: Whereas the summation technigque used here
is absolutely convergent for all |o| < 1, the series is
only conditionally convergent for w = 1. As it hap-
pens, the particular arrangement of terms employed
by Grahame and ourselves in the « = 1 case leads to
the potential appropriate for g = —qi1. Since this does
not coincide with the condition ¢ = — vagi/ (8 + 7v)
obtaining when both imaging planes are at zero po-
tential, this accounts for Grahame’s conclusion that
the infinite set of images and the adions contribute
to the total p.d. across the inner layer, an incorrect
conclusion for the model with conductive imaging at
the OHP.

The Adsorption of Aromatic Sulfonates at a Mercury Electrode

I1. Sodium p-Toluenesulfonate—An Example of Two-Position Adsorption
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ABSTRACT

The adsorption of the p-toluenesulfonate ion on a mercury surface from
aqueous solution has been studied by measuring the interfacial tension and
the capacity of the electrode as a function of concentration. An interpretation
of the results is proposed in terms of two orientations of the adsorbed ion.
A simple model of this type of system is proposed, at first neglecting inter-
action between adsorbed ions other than due to their space-filling properties.
A very approximate allowance for interaction is introduced, and it is con-
cluded that consideration of interaction is essential for a full description of

the system.

In the previous paper of this series (1), we de-
scribed the adsorption of the benzene m-disulfonate
(BMDS) ion which may be treated by methods
closely analogous to those used for simple ions such
as the halides. This is essentially because adsorption
of this ion occurs with the plane of the benzene ring
oriented parallel to the plane of the mercury solution
interface over the whole of the experimentally ac-
cessible range. As we mentioned previously, the be-
havior of the p-toluenesulfonate (PTS) ion is more
complicated and, as we shall show in the present pa-
per, it cannot be analyzed by using the surface pres-
sure in a simple way. This is due to the existence
of the adsorbed species in more than one orientation,
and we believe that this system provides a clear-cut
example of two position adsorption. This problem
has been discussed in a qualitative way by Damaskin
et al. (2); here a more quantitative description is at-
tempted.

Experimental

Measurements of differential capacity and inter-
facial tension were carried out as described previously
(1). Sodium p-toluenesulfonate was recrystallized
three times from equilibrium water; it crystallizes as
the hemihydrate from concentrated solutions. The
water content was determined by heating and weigh-
ing and also volumetrically after exchanging the Na+
for H* on an ion exchange resin.

Results

The concentration dependence of the capacity at
constant temperature is shown in Fig. 1. It is evident
from these data that the behavior of PTS is qualita-
tively different from that of BMDS as shown in Fig.
1 of ref. (1). At the lower concentrations up to 0.1M
the capacity curves for both ions are similar in
showing a marked peak at a pofential of about —0.6v
(SCE). However, as the concentration is increased
above 0.1M this peak is lowered, eventually being

:tPresent address: Tyco Laboratories, Inc., Waltham, Massachu-
setts.

Fig. 1. Differential capacitance per unit area of a mercury
electrode in oqueous solutions of sodium p-toluenesulfonate at
30°C plotted as a function of potential with respect to a saturated
calomel electrode: a, 0.0113M; b, 0.0227M; ¢, 0.0567M; d, 0.113M;
e, 0.227M; f, 0.567M; g, 1.134M; h, 2.268M.

replaced by a minimum, while a higher and narrower
peak develops at more negative potentials (up to
—1.4v vs. SCE). These results suggest that at low bulk
concentrations the PTS ion is lying flat on the mer-
cury surface like the BMDS ion while at higher con-
centrations re-orientation occurs to allow closer pack-
ing of the PTS ion.

The capacity curves were integrated numerically
using a digital computer (Elliott 803) as described
previously (3). The integration constants were'ob-
tained from the electrocapillary curves and are given
in Table I. The potential of zero charge was found
from the electrocapillary curve by extrapolating the



