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I. Introduction 

"The more complicated the system considered, the more simplified must its 
theoretical description be. One cannot demand that a theoretical description 
of a complicated atom, and all the more of a molecule or a crystal, have the 
same degree of accuracy as of the theory of the simplest hydrogen atom. 
Incidentally, such a requirement is not only impossible to fulfill, but also 
essentially useless... An exact calculation of the constants characterizing the 
simplest physical system has essential significance as a test of the correctness of 
the basic principles of the theory. Once, however, it passes this test brilliantly, 
there is no sense in subjecting it to further tests as applied to more complicated 
systems. The most ideal theory cannot pass such tests, owing to the practically 
unsurmountable mathematical difficulties unavoidably encountered in appli 
cations to complicated systems. In this case all that is demanded of the theory is 
a correct interpretation of the general character of the quantities and laws 
pertaining to such a system. The theoretical physicist is in this respect like a 
cartoonist, who must depict the original not in all details, like a photographic 
camera, but simplify and schematize it in a way as to disclose and emphasize the 
most characteristic features. Photographic accuracy can and should be 
required only of the description of the simplestsystems. A good theory of compli
cated systems should represent only a good "caricature" of these systems, 
exaggerating the properties that are most difficult, and purposely ignoring all 
the remaining inessential properties." 

J. Frenkel 

This article begins with a qualitative discussion of those fre
quently neglected aspects of the electrolyte double layer concerned 
with discreteness effects. In this discussion, details of the mathe
matical aspects of the problems associated with the system are 
subordinated in favor of a thorough appraisal of the physical 
aspects. We have attempted here to give a clear enough account of 
the situation that, were the reader to read only this part of the 
article, he would nonetheless obtain an appreciation of most of the 
phenomena active in the compact layer. The following two parts 
are intended to supplement this first part by giving much of the 

mathematical detail and apparatus omitted in the qualitative 
discussion. Particularly the latter of these two parts, titled 
"Methodology," should prove useful to the reader interested in 
performing accurate potential calculations. The final part of the 
paper is a critical review of important work in this field with 
emphasis upon comparing the various models and approximations 
used as well as the results following from these treatments. 

There have been numerous reviews published concerning 
electrolyte double-layer behavior, structure, and theoretical 
understanding. We have tried to discover and list all major 
reviews of this area which have appeared since 1935 and have 
dealt with the interface between an electrolyte solution and a 
metal. We have appended some critical assessment of the reviews 
after the listing of many of them (19,22,24,28,39-41,46,48,58,79, 
87,98,100,102,104,105,117). The list of reviews, while longer 
than any previously given, is probably not comprehensive. Further, 
since the present work is not intended to be a review of reviews, 
the assessments are by no means complete and emphasize, when 
pertinent, discussions of discreteness effects. To increase their 
usefulness to the reader, the titles have been included for all 
reviews. 

Because of the existence of the many earlier reviews on the 
general double layer, we believe it is unnecessary to give a thorough 
discussion of this general area and its background. We shall limit 
such background material to the minimum required for support 
and intelligibility of the succeeding discreteness-of-charge material 
we shall cover. We shall not be concerned herein with interaction 
of double layers, a subject with considerable literature (29,30,59, 
72), some of which is related to discreteness effects (57,73,74). A 
useful table of charge and diffuse-layer potential for NaF based on 
Grahame's (50) data has been published by Russell (112). 

II. Qualitative Discussion 

1. Gross System Considered 

A. Double-Layer Structure. A stylized picture of the two 
main parts of the equilibrium electrical double layer at the inter
phase region between a metal electrode and an electrolyte 
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solution is shown in Fig. 1. The parts are separated by the outer 
Helmholtz plane (OHP), which conventionally defines the plane 
of closest approach of the charge centroids of diffuse layer ions. 
Such ions are generally solvated and are held in average positions 
by the balance between diffusive forces and the electric field in 
the region. It may sometimes be more appropriate to define the 
OHP as the plane at the perpendicular distance from the electrode 
where the dielectric constant of the inner region rises very rapidly 
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OuterHelmholtzplane 
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Fig. 1. Schematic diagram of the usual electrolyte double layer (104). 

toward the bulk value (56,95). The inner or compact layer, which 
is thought to be a reasonably close-packed monolayer (43,56,84, 
106), contains solvent molecules and, in the case of specific adsorp
tion, contains adions as well. The adions are not considered to be 
solvated, at least in the direction toward the electrode. Thermal 
equilibrium only applies when the electrode is ideally polarizable. 
Note that the term "polarizable" will be used in two entirely 
different ways throughout this article. The first usage will always 
involve the pair of words "ideally polarizable" and corresponds 
to the standard usage in electrochemistry that the electrode is 
blocking and thus no discharge occurs there. The more frequent 
appearance throughout this review of the term "polarizable" (and 
different grammatical forms of this word) refers to the induction 
of electric dipole moments within the material of the double layer 
by electric fields present therein. 

DISCRETE COMPACT DOUBLE LAYER 

Figure 2 shows the specific adsorption situation based on Stern's 
(118) model of the inner layer. When the specifically adsorbed 
ions are of a single type, an inner Helmholtz plane (IHP) may be 
defined which marks the distance of closest approach of the charge 
centroids of the adions. The adions are held at the IHP by both 
specific, or chemical, forces and nonchemical electrostatic forces. 

Fig. 2. Schematic diagram showing positions relative to the electrode 
surface of solvated and specifically adsorbed ions (87). 

A very detailed picture of the interphase region is presented in 
Fig. 3. Although it is almost certainly wrong in some of its details, 
it well illustrates the possible complexity of this region. Note that 
it is unlikely that the average boundary between adsorbed solvent 
molecules in the inner region and the ions in the diffuse region 
should remain the same distance from the electrode in the neigh
borhood of adions (87). The OHP is therefore actually not likely 
to be a plane at all. All major calculations of double-layer 
structure have, nevertheless, ignored this complication. Such 
neglect is illustrative of the usual practice of treating what is 
actually a three-dimensional problem as a two- or one-dimensional 
one instead. 
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Fig. 3. Hypothetical detailed structure of the electrolyte double layer 
(10). 
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B. Definition of Terms. Figure 4 is a diagrammatic rep
resentation of local potential variation in the double layer in the 
direction perpendicular to the plane electrode into the solution. A 
number of quantities needed in discussing discreteness or other 
calculations are defined in this figure. The electrode surface plane 
is here denoted by ESP. 

The thickness of the inner region is d === {3 + y. It is not likely 
that {3 and y vary very much with the average charge density on 
the metal, q, or the adion charge density, ql (80,84). It will 
frequently be convenient to normalize distances with {3; the 
following quantities may then be defined: 2 = z/{3; 2 0 = d/(3; 
r - y/{3; and A = y/d === r/(l + I'). We define r-1 as B === {3/y. 

We shall denote actual local potentials or potential differences 
by the symbol 'fjJ and average potentials (appropriate for smeared 
rather than discrete charges) by V. Although Fig. 4 is drawn in 
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Fig. 4. Schematic diagram of potential variation in the double layer 
showing definitions of pertinent quantities. 
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the conventional way with the zero of potential far out in the 
solution, it is convenient to define the actual potential "P( z) so 
that "P(O) = 0, as shown. We shall not usually include adion 
self-image contributions to the potential in the quantity "P( z). 
As drawn in Fig. 4, "P( z) illustrates the local potential variation 
along a positive perpendicular line to the ESP which does not 
pass through or too near any actual charges. The perpendicular 
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Fig. 5. Hexagonal arrangement of adions on the IHP. An adion has been 
removed from point O. The letters designate various array points of interest. 

line through the point 0 of Fig. 5, where an adion has been re
moved from a rigid hexagonal array, is of particular interest, as 
we shall see later, in micropotential calculations. Note that the 
nearest neighbor separation of the array, r l , is shown on Fig. 5 
as well as the x, y coordinate system. The distances x and y may 
also be normalized with (3 to give X == x!(3 and Y == y!(3. Unless 
explicitly noted, we shall generally be concerned with local 
potentials on the line defined by X = Y = O. 

Different authors have employed many different designations 
for the various average or local potential differences (p.d.'s) shown 
in Fig. 4. We have therefore elected to use here the neutral 
definitions illustrated. Thus, "P02 == "Po - "P2 == "P(O) - "P((3 + y). 
The corresponding average p.d. is V0 2 == Vo - V2 == V(O) 
V((3 + y). 

Figure 4 also illustrates the domains of applicability of three 
dielectric constants. The use of a dielectric constant E s in the 
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diffuse layer of magnitude not much less than that of the solvent 
bulk value is usually a good approximation, especially when a 
one-dimensional treatment of the diffuse layer is itself a good 
approximation. The rapid transition (here approximated as a 
discontinuity) from an inner-region dielectric constant to the 
bulk value may not actually occur exactly at the conventional 
OHP (95) as shown. The division of the inner-layer dielectric 
constant into two separate values by the IHP (87) is intended to 
allow for the dielectric effect of a partial solvation shell of an 
adion lying between the adion and the OHP. It is customary to 
neglect this possible complication and employ a single position
independent dielectric constant, EI == EfJ == Ey for the entire inner 
layer. In some calculations (80, 84), the possibility offield-depend
ent dielectric saturation in the inner region has been included, 
but El is frequently taken independent of q and qI' The use of a 
dielectric constant at all in this region is certainly a considerable 
approximation (5,6,85,87) (see Section II-6) and can lead to 
inaccurate results even for ratios of local to average potentials. 
In such ratios, even a variable E1 introduced in the usual way will 
cancel completely; nevertheless, such results are still inaccurate 
because of errors in the potentials occasioned by the use of a con
ventional dielectric constant at all. 

Let N denote the number of adions per unit area. If N, is the 
value of N corresponding to a complete monolayer of adions, then 
N = ON., where the fractional coverage 0 satisfies 0 S;; 0 S;; 1. 
Now if z; is the effective valence of adsorbed ions and e the proton 
charge, the adion charge density, ql' is given by ql == z.e N ~ 

1.602 X 10-I3 zvN, when qI is expressed in ,ucoul!cm2 and N in em:". 
If the adions are arranged in a fixed square array, then the 

nearest neighbor distance for two adions will be N-1I 2• Actually, 
the structure that minimizes the interaction energy of adions is 
not a square array but a hexagonal one. Consequently, in all 
regular array calculations performed for the present system, the 
structure is assumed hexagonal. Note, however, that for all but 
the highest attainable surface charge densities, the difference in 
energy between these two structures is so slight that at room 
temperature equilibrium between these two phases occurs when 
the two are present in roughly equal concentrations over the 
electrode surface. For simplicity, we shall ignore the presence of 

Ohemistrv Library 
U. N. O. 
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the higher-energy structure, as its properties are almost identical 
to the hexagonal-structure properties in any case (45,85). If 
T1 is the nearest neighbor distance for a hexagonal array, then 
N = (t)l/2r~2 ~ 1.1547r~2. Alternatively, r1 ~ 43.011 x lO-S[zv/ 
q1]l/2 em, when q1 is expressed in ,ucoul/cm2. It will be convenient 
to define R I == TI/{3 and ~ == z/r I == Z/RI· 

At the point of zero charge (PZC), also termed the electro
capillary maximum (ECM), q = O. Another condition of interest, 
even though it is infrequently attained in electrolytes, is that for 
which q = -qI' Then q2 = 0, and the electrode is sometimes 
termed grounded. When q2 = 0, the value of "P(z) a large 
(or "infinite") distance from the electrode will be designated 
"Poo - V00' Here "infinite" means that z}> TI but denotes a 
distance still small compared with the minimum linear extent 
of the adsorbed charge region. 

Using an inner-region dielectric constant intended to account 
for the electronic polarizability of adions and solvent molecules 
as well as the orientational polarizability of solvent molecules 
having permanent dipole moments, one may write 

V", = 41T{3zveN/EI = 41T{3qI/EI 

C"-O 1.12941 X 107{3qI/EI ( 1) 

where in the last equation (3 is in em and qI in ,ucoul/cm 2. 

Although V00 is an average potential, it has frequently been 
denoted as "P '" rather than V",. We shall use the two designations 
interchangeably herein. Note that for q2 = 0, V", = - Vooo ' 
In general, a uniform D field contribution, "Pel is a part of any 
inner-layer local or average potential. The full local potential is 
thus given by "P(z) = "Pa(z) + "Pe(z), where "Pa(z) is the part 
arising directly from the discrete adions and their images. Note 
that V02 may be written V02 = V",[r + ZO(q/qI)]' where 
Z, == 1 + r. 

C. Experimental Methods. There are two principal ways 
of gaining information about the double layer at an ideal 
polarized electrode (22,46). The two methods are the electro
capillary method and the differential capacitance method. To 
obtain desired quantities such as charge components from 
measurements of interfacial tension or differential capacitance, 
differentiation and integration of measured curves are required. 
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These processes generally introduce some uncertainty into the 
results, but differential capacitance measurements are more 
sensitive to double-layer structure than interfacial tension ones. 

Several methods of employing the above measurements to 
yield ionic surface charge excesses have been developed (12,27,87). 
Since a statement to the contrary has been made (28), it is 
important to point out that although the above kinds of measure
ments and calculations deal with macroscopic (average) quantities 
such as q and qI, they may be appreciably affected by charge 
discreteness effects as discussed later. No theory or method of 
analyzing experimental data which is derived only from a con
sideration of average charges and potentials can be expected to 
come close to representing adequately the effects, even average 
ones, of the discrete, three-dimensional structure of the double 
layer. 

2. Discreteness Eifects 

Discreteness in the double layer is important because the 
dimensions over which the potentials and fields appreciably vary 
therein are of the same magnitude as the sizes and separations 
of the charged and polarizable entities themselves. Although we 
shall concentrate on discreteness effects in the inner layer, they 
are also important in the diffuse layer and could be of some im
portance at the electrode, since even a "smooth" liquid metal 
electrode is made up of discrete atoms and electrons on the micro
scopic scale with which we are concerned. That discreteness 
effects in the electrode are not likely to be of much importance for 
liquid metal electrodes is indicated, however, by the lack of 
much change in differential capacitance when going from liquid 
to solid gallium, mercury, and Wood's metal electrodes by means 
of a small temperature change (114). On the other hand, con
siderable difference between differential capacitance curves 
obtained with liquid mercury and liquid gallium has been 
observed (44). 

Consider the very simple case of an inner layer consisting first 
only of nonpolarizable solvent molecules each having a permanent 
dipole. Even here the discreteness of the molecules is important. 
The molecules, even though adsorbed at the electrode, will be 
continually moving in the plane and vibrating and rotating 
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because of their thermal energy. The electric field of the per
manent dipoles will interact with the conducting electrode, 
inducing image dipoles therein. By images, we mean that the 
charge distribution which is induced in the conducting layer by a 
given discrete or continuous monopole or multipole charge 
distribution outside the layer produces the same potential out
side the layer as that which would be produced if a perfect mirror 
image of the inducing distribution existed at an equivalent 
position behind the imaging plane. Since images do not actually 
exist, there is no p.d. between the imaging plane and the images 
as there would be if the image were made up ofreal charges. 

The time-average local field acting at any given dipole arises 
from several sources, including that of its own image and all 
surrounding dipoles and their images. Clearly then, the time
average dipole moment of the array (regular or disordered) will 
depend upon a self-consistent field which itself is different depend
ing upon whether all surrounding dipoles are discrete or are 
uniformly smeared into a real dipole sheet and the corresponding 
image sheet. Thus, the Vco potential arising from such a discrete 
two-dimensional array of dipoles with at least some freedom to 
rotate will depend on the discreteness of the dipoles, even though 
Vco is itself a space-average or smeared quantity. 

Next consider the important case of an array of polarizable 
ions adsorbed on a conducting electrode. Assume that the ions 
are hexagonally arrayed and that there is nothing between them, 
as would be the case for adsorption from a gas phase. I t has been 
shown (89) that, even in this simple case, the discreteness of the 
charges is crucial in determining Vco' No €1 is explicitly introduced 
ad hoc into the calculation of Vco, but the existence of a nonzero 
adion polarizability, oc, leads to an effective €1 which depends on 
adion spacing, r1• Further, the presence of adion polarizability 
leads to other influences on Vco which cannot be logically repre
sented by a dielectric constant. The Vco obtained with oc *- 0 can 
be much less in magnitude than that with oc = 0 and Vco may 
even change sign at certain adion spacings. 

In the electrolyte double layer with specific ionic adsorption, 
one has a situation even more complex than a combination of the 
above two situations. Polarizable ions are surrounded by polariz
able solvent molecules having rotatable permanent dipole 
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moments instead of by vacuum as in the adsorption from a gaS 
phase. Thus far, there have been no treatments of electrolyte 
double-layer capacitance or potentials which adequately take 
discreteness into account. This may appear surprising since 
Frumkin (38,39), in the early 1930's, seems to have been the first 
to suggest that the discreteness of the electrolyte double layer 
might be important. Although much of the succeeding discussion 
will deal with various theoretical approaches to the discreteness 
problem, it is by no means yet solved satisfactorily in the electrolyte 
case. 

Although Frumkin first drew attention to the possible impor
tance of discreteness in the electrolyte double layer, its importance 
for adsorption from a gas phase was recognized considerably 
earlier. Particularly important was the accurate calculation by 
Topping (125) in 1927 of the mutual potential energy of a plane, 
hexagonal array of ideal, nonpolarizable dipoles. The useful 
results of this calculation have been obtained in approximate 
form a number of times by authors (34,66) unaware of Topping's 
work, and even today his calculations are seemingly not well
known by electrochemists (9,10). 

In 1939, Esin and Markov (33) reported that the potential at 
the ECM (q = 0), measured versus potassium iodide concentra
tion with respect to a constant reference electrode, varied 
anomalously rapidly. In accordance with Stern's (118) theory of 
the double layer, they observed a linear dependence of the above 
p.d. upon the logarithm of concentration (or activity) but found 
a slope greater than the value kT'[e expected from Stern's theory. 
According to this theory, a tenfold increase in concentration at 
T ~ 23°C should lead to an increase of the ECM potential by 
(kTje) In 10 ~ 58 mY. The appearance ofa considerably greater 
increase has been termed by Grahame (52) the Esin-Markov effect. 

To help put in focus the attempts which have been made to 
explain the Esin-Markov effect, we will briefly review the simplest 
theory (32) of it. First let us assume at least for (j < 1 that the 
adsorption isotherm has the form ql = Aco exp {-e1P1cojkT}, 
where A is a constant, and Co is the concentration of ions in the 
bulk of the electrolyte. The p.d. "PlCO has been termed the micro
potential by Ershler (32). Next, observe that the ECM double
layer p.d., Voco , is almost surely going to be nearly proportional 
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to ql-unless there are strong nonlinearities in the dielectric 
response of the compact layer-because the p.d, across the 
(nonlinear) diffuse layer is small compared with the p.d, across 
the inner layer. Setting Vooo ~ V02' and "Pl00 ~ "P12' and taking 
logarithms, one may therefore write 

In V02!ECM ~ In Co - (ejkT)"P12IECM+ constant (2) 

Accordingly, 

dV021ECM 
dlnc o 

_ 
-

V 
02 

I {I
ECM ( 

e )d"Pl00 I dV02 I }
kT dV02 EcMdlnco ECM 

(3) 

from which one obtains 

dV 02 1 ECM _ { kT --L d"P12 I }-I(kT) (4) 
d In Co - eV021ECM I dV02 ECM e 

The point of the above result is that as IV021 increases the 
quantity IkTjeV021 will tend to become small compared with 
Id"P12jdV02IECM' and we may write for appreciable /qll 

dV02IECM:::::::::(dV021 )(kT) (5) 
d In Co d"P12 ECM e 

Under the simplest assumptions, dV02jd"P12IECM is just a constant 
geometrical factor, such as A-I == 1 + B, and we are thus led to 
expect a limiting slope for V0 21E CM vs. In Co of A-1k Tje f':::! 2k T]e. 
It is now clear that whatever the actual form of the adsorption 
isotherm, the Esin-Markov effect can be discussed in terms of the 
interdependence of Vooo and "PI 00 , or approximately of V02 and 
"P12' The ratio A == "P12jV02 is thus of much importance in dis
cussing discreteness effects and will appear frequently in the rest 
of this article. 

In 1943, Esin and Shikov (34) tried to explain the above effect 
by recourse to the discrete nature of the double layer. Unfortu
nately, as we shall see later, their model of the double layer was 
very crude and overexplained the effect, yielding about 200 mV 
instead of about the 100 mV observed by Esin and Markov. 
Parsons (l03) has analyzed the Esin-Markov effect in consider
able detail and shows that it may occur at any point on the 
electrocapillary curve, not just at q = O. Parsons also suggested 
that the failure of the Stern theory to explain the Esin-Markov 
effect arose not from the neglect of discreteness effects but from 
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the use of an incorrect form of the adsorption isotherm. We 
believe the Esin-Markov effect can only be described adequately 
with a correct isotherm, which itself takes proper account of 
discreteness effects. 

Figure 6 shows qualitatively the difference in the dependence of 
potential on distance in the neighborhood of two planes of 
smeared-out charge and two containing discrete charge. It will 
be seen that the full p.d. produced by the layers occurs just across 

Potential 

8 

8 
8 
8 
<3 

r--- Distance ~ ~ Distance ~ 
(a) (b) 

Fig. 6. Schematic diagram of the potential distribution produced by (a) 
two parallel planes of continuous charge, and (b) two parallel planes containing 
discrete charges. 

the two smeared planes of charge, but only a part of this total 
p.d. occurs between the two planes when the charges are discrete. 
Esin and Shikov's use of this reduced potential still led to an 
overestimate of the Esin-Markov effect. Ershler (32), using an 
improved model which we shall discuss later, obtained in 1946 
somewhat better agreement between theory and the Esin-Markov 
effect. 

To recapitulate, discreteness effects are almost certainly im
portant in comparing theoretical calculations of the average 
potential difference across the inner layer, V02' with experi
mentally derived values of this quantity. It follows that dis
creteness is also certain to be of importance in any theory of the 
inner-layer differential capacitance of the double layer which 
can represent the experimental situation and data adequately. 
Finally, discreteness is of great importance in determining the 
potential "PI 00 at the position of an adsorbed ion. As we have seen, 
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it is this potential, the micropotential, which appears at least 
approximately in an adsorption isotherm and determines the 
relation between q and ql' 

Suppose a given adion is removed from its place at the IHP 
into the bulk of the solution. The average energy necessary to 
accomplish this is -ZveVJlOO' provided VJlOO in Fig. 4 is measured 
along the line of removal of the ion. * Most writers in the present 
area have ignored in practice the contribution VJ200 (or V2OO ) to 
VJlOO and actually have calculated VJ12 rather than VJlOO' When the 
contribution to VJlOO arising from the potential drop in the diffuse 
layer, which is frequently small and may often be well approxi
mated by an average rather than local potential, is omitted the 
p.d. significant in determining the energy of adsorption necessary 
to move an adion from the OHP to the IHP is VJ12' This quantity 
must be a local potential difference; it depends strongly on 
discreteness effects and has also been termed the micropotential. 

Although the importance of double-layer discreteness effects 
was suggested more than 35 years ago and a good many calcula
tions have been made over the years attempting to include the 
influence of discreteness realistically, there are as yet no theories 
available which incorporate all discreteness effects (discreteness
of-charge, discrete permanent and induced dipoles, and finite
size effects of molecules and ions), especially when thermal 
motion is also included. One purpose of the present review is to 
evaluate the limitations of earlier discreteness calculations and, 
hopefully, thereby exhibit the need for and point the way toward 
improved future analyses. 

3. Types oj Imaging 

The two boundary regions of the inner or compact part of the 
double layer may be quite different under various circumstances. 

• As we have pointed out elsewhere (6,92), the energy of adsorption should 
generally include a contribution from so-called rearrangement effects (not 
included above). On the other hand, the micropotential as defined here, 
which properly excludes such effects, may still be used in a statistical-thermo
dynamic treatment of adsorption. Such a usage may be shown to be exact for 
ordered structures, and is often quite accurate even for rather disordered ones. 
We shall not take the opportunity to elaborate herein on the statistical 
thermodynamics of adsorption isotherms. 
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Such differences can have profound effects on the structure and 
behavior of the compact layer itself. In order to describe possible 
situations, we shall for the present employ dielectric constants, 
remembering, however, that their introduction is an approxima
tion which blurs some discreteness effects, especially for the inner 
layer. 

Let the effective dielectric constant of the material to the left 
of the ESP be EO' This material may be a conducting electrode, 
air, oil, or a dielectric solid. As usual, take E1 as the effective 
dielectric constant of the inner region and E. as that of the region 
to the right of the OHP. Let E 2 denote either EO or E., depending 
on the situation considered. Next, recognize that the situations 
at the two boundaries of the inner region can themselves affect 
the effective El' We therefore regard E1 as fixed but consistent 
with the boundary conditions of the inner layer. 

The region to the right of the compact layer will be considered 
to be the usual diffuse layer. Three conditions in it are, however, 
of special interest. At very high solute concentration, the effective 
Debye length in the diffuse layer will be very small compared to 
other characteristic lengths in the double layer. The diffuse layer 
is then conventionally approximated by a metallic conductor at 
the OHP. Second, when q = -ql and q2 = 0, the diffuse region 
ceases to exist on the average. Note, however, that in the neigh
borhood of adions, a field will still penetrate beyond the OHP, 
tending to create a local diffuse region ofopposite charge. Finally, 
in the limit of very low solute concentration, the concentration of 
mobile ions in the diffuse layer will be so low under some con
ditions that their contribution to electrical conductivity effects 
at the OHP and into the diffuse layer may be neglected (26). 
Then, only dielectric constant changes in the neighborhood of the 
OHP remain important. 

Table I summarizes some of the imaging situations possible. 
When EO = El = E. as in the first row, there is no imaging at 
either boundary, and we designate this situation 0-0. This is a 
limiting condition, not likely to be of physical significance. The 
first four rows in the table apply when neither the ESP nor the 
OHP is actually conducting or may be well approximated as 
conducting. The second row defines the situation where there is 
no dielectric discontinuity to induce dielectric imaging at the 
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TABLE I 

Imaging Possibilities 

Imaging Left boundary region Right boundary region 

designation Dielectric Conducting Dielectric Conducting 

0-0 €1 No €1 No 
O-D €1 No €s No 
D-O €o No €1 No 
D-D €o No €s No 

c-O Yes €1 No 
C-D Yes €s No 
C-C Yes - Yes 

O-C €1 No Yes 
D-C €o No - Yes 

ESP but where there is such a discontinuity at the OHP (i.e., 
Es =I=- E1)' 

When the ESP is conducting, the transition from a dielectric 
region to the conducting plane also induces imaging. Here, the 
image ofa charge or dipole is of the same magnitude as the charge 
or dipole moment of the real entity. When only dielectric imaging 
is present, however, the image magnitude is always less than that 
of the real element except in the limit where one of the dielectric 
constants involved becomes infinite. 

The C-C case was earlier termed "infinite imaging." It is the 
situation first defined and partially treated for adions by Ershler 
(32). As in a hall of mirrors, a real adion charge is imaged an 
infinite number of times, with each image charge having the 
same magnitude as the original charge. There are also an infinite 
number of images of each adion in the C-D, D-C, or D-D cases 
but the image magnitudes progressively decrease as their apparent 
distance from the IHP increases. Finally, in the D-O, O-D, 
O-C, and C-O cases, each adion is imaged only once, again with 
full magnitude only in O-C and C-O cases. The C-O case has been 
termed single imaging (6) and is very important for adsorption 
of ions from a gas phase (Es """ I) onto a conducting substrate. 

In conclusion, it should be mentioned that the diffuse layer will 
in general be neither an ideal dielectric nor a good conductor. 
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Then, both its dielectric aspects and its mobile ions are important 
in inducing a complicated type of imaging at and near the OHP. 
This possibility has not been included in the table and no com
pletely adequate treatment of the boundary value problem in
volved has yet been given. Luckily, there seem to be situations of 
interest where the diffuse layer can either be ignored or treated 
as a good conductor. Theoretical analysis has been carried out 
for both of these limiting conditions and some approximate 
calculations treating the intermediate situation have been made. 

4. The Question of Order 

One of the most important and difficult questions to answer 
as a prerequisite to any adequate treatment of the compact layer 
is that of how the various particles arrange themselves over the 
surface. If the electrode surface itself provides preferred sites, 
then the possibilities are greatly reduced, and the question is 
simplified once the existence of preferential sites becomes estab
lished. While certain electrode surfaces seem to exhibit this 
behavior and lead to "immobile" or "localized" adsorption, the case 
which has provided the greatest challenge and interest to workers 
in the field is the opposite situation, "mobile" adsorption. In 
particular, the liquid-mercury electrode is widely believed to be 
effectively smooth on an atomic scale; even if there should 
instantaneously exist preferential sites for ionic or molecular 
adsorption, the motion of the mercury ions on the surface of the 
electrode would eliminate such inhomogeneities on the time scale 
of macroscopic experiments. Accordingly, it is likely that the 
mercury electrode has little or no order of its own to impose upon 
the overlying adsorbate layer. The same statement should 
certainly apply to the diffuse layer as well. 

In the absence of an orderly preferred arrangement of the 
adsorbed particles relative to any given point on the electrode 
surface, there remains the distinct possibility that as a result of the 
various interactions within the compact layer, a relative ordering 
is established among the particles in the compact layer. The 
particles could still form an array, for example, which would be 
free to move relative to the electrode. It is this question of the 
relative arrangements of particles in the compact layer which we 
are going to discuss. 
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Even describing the arrangement of particles becomes more 
difficult as the number of different types of particles increases; 
one has more questions to answer. What do things look like in the 
neighborhood of a type-A particle, a type-B particle, etc.? Even a 
single question becomes manifold; in the neighborhood of a type
A particle, where are the closest type-A neighbors, type-B neigh
bors, etc.? If the complexity of the description increases rapidly 
with number of components, the difficulty of theoretical pre
diction may increase even faster. Although an adequate picture of 
the arrangements applying in the actual compact layer is our 
ultimate goal, we will do well to understand a simpler system, 
where a single species of ion is present on the surface and the 
effects of further adsorbed species, such as solvent molecules, are 
either ignored or perhaps crudely accounted for. After we have 
obtained a better insight into this idealization, we will be in a 
better position to discuss the actual system with its additional 
complexities. This plan is not overly cautious; even the idealized 
problem has thorny aspects, and no one has obtained a clear 
picture of the arrangement even in a one-component system under 
the most general circumstances. There are general statistical 
mechanical principles which apply, of course, but such principles 
alone do not always give a clear picture of the situation. One 
must usually augment these general laws with the knowledge of 
which approximations to apply, this knowledge usually proceeding 
from a fairly adequate intuitive grasp of the situation. It is this 
intuition which is most difficult to achieve in the present system. 
The usual practice, in view of these difficulties, is to make 
analogies with things we understand and have developed arith
metical procedures to cope with. Thus, we may begin by assuming 
that the compact-layer ions arrange themselves on a regular 
array as in a solid, an arrangement of great simplicity and famili
arity, and then test this hypothesis by estimating whether or not 
the disruptive influence of thermal motion is sufficient to sensibly 
destroy this arrangement. Other authors have sometimes chosen a 
different starting guess, such as an almost random arrangement, 
the interactions being considered as small perturbations which 
inflict slight regularity upon the otherwise uncorrelated particles. 
This procedure too is an analogy with a familiar system, i.e., 
with weakly nonideal gases. Yet another guess is that the system 
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is highly ordered by short-range steric forces within short dis
tances, but that at further distances the departures from random
icity of arrangement induced by the other interactions are small 
enough to be considered once again as a perturbation. Again, 
this starting point is tantamount to drawing an analogy with 
ordinary liquids. Later in this article we will indicate why the 
present system is not well described by any of these analogies, 
either as a two-dimensional quasi-solid, quasi-gas, or quasi
liquid. 

At this point it should be clear to the reader from the diversity 
of description which we note above that there is much to be 
desired in our overall understanding of the compact layer. Much 
of the published work on this subject employs one of the foregoing 
models-this is one of the major sources of difference among the 
various treatments. Too few workers have been sufficiently con
cerned with determining the appropriateness of the models 
employed, and too often a physical picture of what is happening 
is not provided. In our own work, which is not always free of the 
foregoing shortcomings, we have generally taken the regular array 
model as our starting point, a procedure which we repeat here. 
In the next few sections, however, we will attempt to examine the 
adequacy of this model as completely and carefully as is practical. 
Not only do we wish to be exempt from our own criticism above, 
but also there is much one may learn from such an exercise. After 
we have established the limits of validity of this model, we will 
consider alternatives when appropriate. Before embarking on 
this program, however, we shall illustrate what differences are 
to be expected following from different postulated arrangements 
in the compact layer. 

Consider a system in which nonpolarizable ions are adsorbed on 
an ideal polarizable electrode, and assume that they form a 
mobile adsorbed layer and that there are no additional species in 
this layer. We shall determine the potential for such a system 
assuming first that the only correlation between the positions of 

"	 different ions is that induced by a steric hard-core repulsion 
between ions; the distance of closest approach between ion 
centers is denoted by TIm' Next, we obtain the potential for an 
alternative situation where the ions are arrayed on a regular 
hexagonal lattice. It is the comparison between the results 
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obtained for these two different types of ionic arrangement which 
will provide a measure of the importance of ordering in the 
compact layer. 

In Section 11-5 of this article we discuss how the diffuse layer 
alters the potential in the inner region. However, for our present 
purposes of demonstrating how ordering may affect the system, 
it is simplest to avoid the further complexities brought about by 
the diffuse layer, and so we shall here make the incorrect assump
tion that the diffuse layer plays no role in producing and in
fluencing potentials in the compact layer. Accordingly, the 
results we obtain here are only illustrative of the general depend
ence of various system quantities upon ordering. 

Under the above conditions, the potential in the compact layer 
arises only from the adsorbed ions and the charges on the electrode 
surfaces. In fact, if the electrode is a conductor, its surface is an 
equipotential; the potential anywhere in the compact layer may 
be determined from a knowledge of the ion positions and the 
average electrode surface charge density by means of the familiar 
method of images. According to this method, the potential in 
general consists of two contributions: The first is the potential 
arising from the adions and their electrical images in the ESP 
(the images therefore lie on the plane z = -(3); the second 
contribution is a linearly varying potential, or uniform field part, 
"P.(z), arising from the excess charge density on the electrode. 
This excess charge density is the amount by which the average 
electrode surface charge density differs from that required to 
establish the field of the fictitious images. In the present C-O 
single-imaging case, where the only imaging plane is the ESP, 
this excess charge density is given by (q + ql); thus, the uniform 
field potential is given by "P.(z) = -47T(q + ql)Z. Remark that 
for the present situation there is no electric polarization in the 
compact layer, and therefore, there is no necessity to consider a 
dielectric constant here. In the remainder of this discussion we 
simply set q = -ql' corresponding in this case to grounding the 
ESP, and therefore we may eliminate further consideration of "P. 
in what immediately follows. 

If we neglect electric multipole moments, permanent and 
induced, of the adsorbed ions, then the surface-averaged potential 
in the compact layer is independent of arrangement. It is in fact 

identical to the potential one would have if the actual ions were 
evenly smeared over the IHP-this conclusion incidentally is 
independent of the role played by the diffuse layer. The average 
potential one obtains is given by V(z) = 47TzveNz for 0 <.; z <.; (3; 
for z :> (3 the potential is the constant Voo == 47Tql(3. How does 
this compare with the time-average local potential seen by any 
particular ion arising from all other ions and their images? (We 
shall ignore the potential arising from the self image ofthe selected 
ion, as this is independent of arrangement and thus can be con
sidered as a "chemical" addition to the adsorption energy, for 
example. It thus does not add anything to the present discussion.) 
When potential is measured with reference to the bulk of the 
solution, this quantity, the micropotential, does depend on ionic 
arrangement even in the present case of zero CI.. 

For the first arrangement of ions, the local potential "Pa((3) is 
that arising from a uniform surface charge ql on the IHP except 
for a circular vacancy (about the given ion) of radius rIm; the 
image of this IHP charge likewise possesses a circular vacancy of 
the same radius. It is straightforward to show that the potential 
for this case is given by 

"Pa((3) = 27Tql{[4(32 + r~m]1/2 - rIm} 

= "Poo{[4 + R~mF/2 - Rlm}/2 (6) 

where RIm = rlm/(3. We see that the potential "Pa(f3) differs from 
the average potential at the IHP, the macropotential, by the 
constant factor {[4 + Rim]1/2 - Rlm}f2. It often happens that 
interactions other than steric effects cause RIm to be larger than 
one might think. In fact, we sometimes may set R~m > 4, obtain
ing "Pa((3) '" R;}n"Poo; the micropotential is then smaller than the 
macropotential by the factor R;;-" which by hypothesis is much 
smaller than unity. Let us now compare this result with that 
obtaining for the hexagonal array. For this case the potential is 
roughly that of a hexagonal array of ideal dipoles, each of dipole 
moment 2zve(3, at a position removed from the plane of the 
dipoles by the amount (3. Carrying out the necessary sum over 
different dipoles in the array, we find 

"Pa((3) '" l8ql(32Nl/2 '" !R;I"Poo (7) 
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Thus, for this case the ratio of "PaUl) to "Poo is not even constant 
with surface density N. It is similar to the first result except that 
rIm has been replaced with the variable rl. Incidentally, this is 
our first example of the fact that an array produces the same sort 
of micropotential as a uniform sheet with a circular vacancy of 
radius more or less equal to r l • This is a fact which we will use a 
great deal later on. 

In the preceding, we have had an example of how a local 
potential may be drastically affected by arrangement, a detail of 
the system structure. This particular local quantity, "PaUl), 
essentially the micropotential, has a great influence on system 
properties, insofar as it determines the equilibrium density of ions 
adsorbed under given conditions. The reader may still be left with 
the impression that we have cheated a bit, that we have delib
erately chosen to examine that local quantity most likely to 
influence the system as a whole. He might say, "You show the 
micropotential is sensitive to structure, but once you tell me gI, 
I have no further need for the micropotential. How then can one 
assert that, given gI' the system properties are sensitive to arrange
ment?" As an exhibit that not only local potentials but also 
average potentials might be dependent on inner-layer structure, 
we consider a variation on the previous example. This time we 
let the ions possess a polarizability IX. Under this condition the 
average potential for all z > fJ is given by V = "Poo + 47TNIX{f, 
where {f is defined as the electric field acting to polarize a given 
ion. It is through the dependence of {f upon arrangement that 
the average potential becomes structure sensitive. We shall 
examine the case of no correlation for r > rIm and hard-core 
repulsion for r <: rIm' 

The field {f at a given ion in this case consists of three parts: 
the contribution from the other ions and their images, the contri
bution from the other induced dipoles and their images, and the 
contribution from the image of the given ion and its polarization 
P. The first contribution is given by 

{fl = E oo [1 + (Rlmj2)2]-I/2 (8) 

where E oo = -"P 00 jfJ· The second contribution may be shown to 
be 

{f 2 = -27TNPp-I[R;m(R;m + 4)-3/ 2 + R~;'] (9) 
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Finally, the self-image contribution is 

{f3 (4fJ2)-I[P-IP= - zve] (10) 

Upon introducing the substantive equation 

P == 1X{f = IX[ {f1 + {f2 + {f3] (11) 
( one arrives at the ugly-looking result 

fJ-I"Poo[l + (Rh nj2) 2]-1/2 + zve(4fJ2)-t 
P = -IX 1 + 27TIXNfJ-t[R;m(R;m + 4)-3/2 + R~;'] - (Jj4) (12) 

where J == IXjfJ3. Once again invoking Rtm ;;;. 2 leads us to 

V ~ "Poo - 47TNIX[2"PoojfJRlm + zvej4fJ2] 

X [1 - (Jj4) + 47TIXNfJ-I~;.]-t (13) 

Perhaps this expression for V is not very illuminating until one 
puts numbers into it. It turns out that the factor 

[1 - (Jj4) + 47TIXNfJ-IR~}J 

may become rather small; when this occurs the contribution to 
V from the polarization may be appreciable. It is only in the 
limit of low surface density that this contribution assumes a 
simple form. In this limit we find 

V . [1 - (Jj2)][1 - (Jj4)]-I"P00 (14) 

Now we find the average potential in the array situation. 
Once again V = "Poo + 47TNIX{f for all z > fJ. This time one finds, 
however, that while {f3 is the same as before, {fi + {f2 is a 
different expression: {ft + {f 2 ~ -11r~3(P + 2zvefJ). Employing 
the same substantive relation leads to 

P ~ -zve(Jj4)[1 + 88~3][1 + 1l~3J - (Jj4)]-I (15) 

We immediately obtain 

V ~ "Poo[l - (Jj4){1 + 88~3}{1 + 1l~3J - (Jj4)}-t] (16) 

Again, the expression we have obtained for V is not very trans
parent; however, we note that again there is a factor in the 
denominator which may be quite small. When we take the low 
density limit R I ~ 2, we find as we should that the expression 
for V is the same as the one found for the random arrangement. 
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How is it then that we assert a structure dependence? The point 
is that in going to the low-density limit we only consider the 
case where the polarizing field is determined almost solely by the 
self-image. The structure sensitivity can only exist in the domain 
where rt is determined by the surroundings of an ion (other than 
its self-image). Thus, we find most unpleasantly that the com
parisons should be carried out in the regime where the equations 
are fairly complicated. We therefore resort to a numerical com
parison for the particular case R1 = RIm = 4, J = 1. Upon 
substituting these values into the exact expressions, one obtains 
for the uncorrelated and array cases, respectively, V R> O.62VJro' 
and V R> O.36VJro' There is thus a 72 %change in the inner-layer 
potential drop in going from the ordered to the disordered arrange
ment in our example. The difference between the two types of 
arrangement as far as overall potentials are concerned may be 
even more than this, but generally it is much less. However, this 
example should illustrate how even an average potential may be 
structure sensitive. Remark that physically the primary source 
of structure sensitivity for such average quantites is the "feedback 
term" in Eqs. 11 and 14 for P. The feedback referred to is con
tained in such factors as 

[1 + 47TNlI.{3-1R-;:);, - (Jj4)]-1 
or
 

[1 + llkJ.3J - (Jj4)]-1
 

which result from the fact that the system of induced dipoles 
produces a field which acts back on the dipoles themselves. 
Under certain conditions, this field may be as large or larger 
than the field initiating the polarization. When this occurs, the 
polarization may grow to a large value, the value very sensitive 
to the size of the feedback. In this case, a change in structure would 
alter the feedback a bit and perhaps drastically change the 
resulting polarization, effective dielectric constant, and average 
potentials. (Had we chosen for our numerical example a situa
tion where J was closer to four, the situation would have been 
much more dramatic.) 

Having seen that the arrangement of particles in the inner 
layer may greatly affect various local and average properties of 
that layer, we now return to the main business of estimating the 

degree of order which is actually present in spite of the disorganiz
ing effect of thermal motion. As stated earlier, our present method 
consists in initially assuming perfect order, that is, a rigid 
hexagonal array, and then calculating roughly how far away 
from its proper site any given ion will typically move at thermal 
energies. We remark that the motion we are concerned with is 
that of the given ion relative to its immediate neighbors. There 
is no meaning to the question of how far it will be able to move 
relative to remote ions. In a three-dimensional system such a 
question admits of a finite answer; in a two-dimensional system 
the correlation between positions of two particles falls off in
definitely as the separation between such particles increases. We 
shall discuss this matter at greater length later in this article. 
We note for the present that it is really the motion relative to 
immediate neighbors which is the important thing to find any
way. Only the immediate neighbors have such an influence upon our given 
ion that their precise positions relative to it significantly affect system 
properties. We have already noted this important fact indirectly 
when we remarked upon the approximate equivalence of a 
hexagonal array and a uniform distribution with a vacancy of 
appropriately chosen radius. It turns out that the approximation 
becomes quite close when applied to the fields produced by those 
ions other than the immediate neighbors. Furthermore, when the 
alteration of potential by the diffuse layer is considered, this 
insensitivity to relative positions of other than immediate neighbors 
is greatly enhanced over what obtains when the diffuse layer 
has no effect. This too will become more apparent later in the 
article. 

Our present rough criterion for the validity of the hexagonal 
structure under completely general adsorption conditions is, in 
accordance with the foregoing remarks, the following. Consider
ing all ions except a given one to be fixed at sites on a hexagonal 
array, determine the energy necessary for the given ion to move 
"appreciably" away from its proper position. In all cases, 
"appreciable" motion is taken to mean some given fraction of the 
array spacing r1' The reason for considering appreciable motion 
as a fixed percentage of r 1 is that, ultimately, we are interested in 
finding the conditions insuring that thermal motion induces a 
moderate fractional change in the local potentials and fields 
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acting at any ion. This requires that motion relative to the spacing 
r 1 be considered. There is of course some arbitrariness about the 
actual choice of the "given fraction." It all depends on how much 
precision is to be demanded from the hexagonal arrangement. 
Clearly, if all predictions are to be good to one part in 105 

, a 
much smaller fractional motion (,,-,10-5) should be used in the 
criterion than if one demands only "good qualitative agreement" 
for the model. We have chosen the latter demand, implying that 
our criterion does not establish where the hexagonal model is 
good to one part in 105 , but rather where the model is just a bit 
better than a model which ignores the coulomb-induced arraying 
tendencies of the system. (A much clearer picture of the situation 
is obtained when one repeats the calculations for more than one 
choice of "the given fraction." This is done later in this article, 
thereby removing much of the unpleasantness associated with 
having to make arbitrary assignments.) Having established the 
energy U required to move the given ion by the significant amount, 
we next compare this energy with k T for various values of the 
system parameters. When the ratio is less than 0.1, the typical 
random-model expansion parameter, 1 - exp (-UjkT) ~ UjkT, 
is quite small and may be neglected. Under such circumstances 
this random model is quite appropriate. When the ratio UjkT 
is greater than 0.1 but less than 1.0, we assert that no clear-cut 
array is formed, but that the interactions are progressing from a 
domain where they may be considered as perturbations to a 
domain where they are too large to be so considered. When the 
ratio is about 1.0 or so, we assert that array structure is present, 
but that thermal motion exercises a nonnegligible influence of 
order exp (- UjkT). This is a difficult regime to be handled 
accurately by any model. For a ratio somewhat greater than 1.0, 
the Boltzmann factor exp {- UjkT} drops rapidly enough that 
thermal motion becomes a perturbation on the basically ordered 
arrangement. When the ratio is 2.0 or greater, the Boltzmann 
factor suggests that thermal perturbation is of the order of a 
15 % or less effect and may be ignored. We thus say that for 
ratios less than 0.1 the system is random, for ratios greater than 
2.0 the system is regularly arrayed, and the crossover takes place 
about where 

exp (-UjkT) f':::i 1 - exp (-UjkT) (17) 
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or where exp {-UjkT} f':::i i. This crossover occurs when UjkT f':::i 

0.7; however, to avoid the false implication that a sharp phase 
transition is pictured, we round the number 0.7 to unity thereby 
underestimating somewhat the pertinence of the hexagonal 
model. It will sometimes happen, as we shall see, that the range 
0.1 < UjkT <: 2.0 is associated with a very narrow domain of 

;	 certain system parameters. When this occurs, there is a more 
abrupt transition between the regimes of disorder and array 
structure, a diminishing of the significance of the difficult inter
mediate (transition) region, and a reduction in the sensitivity of 
the conclusions concerning validity of one or the other model to 
specific arbitrary assignments. 

We consider first the artificial situation where only the ESP 
images the nonpolarizable adions (the only species present)
actually this is the circumstance for adsorption from a gas phase 
of ions onto a conducting or dielectric electrode. We are interested 
in the energy required to move an adion from point a to point a' 
in Fig. 5. This (and the five symmetrically equivalent directions) 
is the direction which presents the softest potential barrier to the 
ion, and therefore this is the direction contributing most to the 
fluctuation of the given ion's position. For large enough R , one 

1
may safely approximate the ions and their images as ideal dipoles 
for purposes of calculating the potentials. With this approxima
tion, the electric field produced by the six nearest neighbors at 
point a is given by -6(2zve(3) M. The potential produced by 
these neighbors at point ain the IHP is approximately 12zve(3-1R"i."3. 
Arguing that the change in potential from a to a' should be 
roughly the same size as the potential at a and that the total 
potential should be roughly that produced by the six nearest 
neighbors alone, we find * for the energy U to move an adion 
from a to a' 

U ~ 12(zve) 2(3-1R"i."3 = (3v3j2rr) (zve)R"i."I1p 00 (18) 

Numerically, U ~ (4j5)zveR"i."I1p00; the agreement with what we 
will determine exactly in later sections of the article is very good 
considering the casual way the calculation was done. The 
approximate values ofO.08zve1Jl00 and 0.16zve1p00 for R1 = 10 and 5, 

• Both of these assumptions represent an error of about a factor of 2, but 
the errors compensate and our final answer is pretty good. 
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respectively, compare well with the correct answers, 0.086zve1poo 

and O.l3z e1p oo ' Finally, we find UjkT for T = 300
0 

and z; = 1 v 

UjkT~ 6600RI 3jf3 (A) (19) 

Picking f3 ~ 2 A, our equation tells us that Ujk T ~ 1 for R 1 ~ 15, 
or '1 ~ 30 A. The ratio becomes equal to 2 for an R 1 value only 
20 % smaller: R

1 
~ 12 or r1 ~ 24 A. These values correspond 

to very low surface charge densities. To obtain ql in practical 
units (,ucouljcm 2) , one may use the numerical relation ql ~ 
1.850 X 103zv ' 12 (A). For the values '1 = 30 A and 24 A, we 
therefore find when z; = 1, ql ~ 2 ,ucouljcm 2 and ql ~ 3.2 
,ucouljcm 2. In terms of the conventional fractional surface 
coverage e, equal to (NjNs) = (R1mjR1) 2, the above surface 
charge densities correspond to e = 2-3 %. Thus, for the present 
single-imaging case, the situation is very clear-cut. For all surface 
densities large enough to be of probable interest, the dominant 
feature of the system is its array-forming behavior; the hexagonal 
model for this case is excellent except perhaps at elevated tem
peratures. Incidentally, we see from the very strong arraying 
tendencies of this system, even at low surface densities, that if a 
neutral species is added to the surface, provided its addition does 
not significantly moderate the interaction between ions, then the 
relative positions of the ions among themselves will be fixed by the 
above energetic considerations, and the neutral species will 
simply occupy the remaining space on the surface. Thus, in this 
case the solution of the two-component problem follows im
mediately from the emphatic behavior of the one-component 
system. As for the question of the possible moderation of the 
interaction by the neutral species, this is an interesting question 
which is discussed later on. 

I[ it were not for the diffuse-layer effect upon the potential, our 
account of order in a compact layer containing only nonpolariz
able ad ions could end here with the decision heavily in favor of the 
hexagonal array. * It does not happen that way, however, for 
reasons which will only become completely clear in the next sec
tion. We therefore turn now to considering a closer representation 

• We have not actually ruled out the possibility of a different lattice structure 
and, as a matter of fact, the square array has only a slightly higher energy. 
For single imaging, the difference is 1.5%, so that the hexagonal arrangement 
is only strongly preferred for R1 ~ 4.5 or '1 ~ 9 A, an ion density which for 
reasons which will become apparent later is probably unattainable for the 
single-imaging situation. 
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of the actual situation, that where the OHP maintains itself 
as an equipotential surface to good approximation, with con
sequent effects upon the inner-layer potentials. We shall, of 
course, have to borrow certain results obtained later in this 
article; however, that is all right since we are not concerned yet 
with deriving potentials so much as we are with examining certain 
consequences of them. 

In the C-C infinite-imaging regime, the potential arising from 
a given ion and its image in the ESP is very effectively attenuated, 
or "screened," at moderate lateral distances (parallel to the IHP) 
from that ion. The potential variation in the IHP is drastically 
smoothed, and ions can move over the IHP much less inhibited 
by interactions than for the case where screening is absent. 
Roughly, the ratio of U, the energy to move the ion from point 
o to point a', to thermal energy is given for f3 = y by* 

UjkT ~ 200 X 1O-2R1 / 7 (20) 

Again desiring the value of R 1 for which the ratio equals unity, we 
obtain that the crossover condition is met for R1 f::::j 8, or for 
'1 ~ l6A. (AcloserestimateactuallygivesR1 ~ 7,or'l ~ l4A.) 
Note that the interaction is rising very rapidly, doubling for a 
change in R 1 of about unity. (Again, a closer inspection of the 
accurate variation shows that in this range of R1, the interaction 
doubles whenever R1 decreases by about i.) Since the variation is 
so rapid with R1, we seem to have an example of the circumstance 
referred to earlier where the transition region is quite abrupt and 
the decision as to the pertinence of a given model is insensitive to 
arbitrary assignments. In this case, the hexagonal model seems 
appropriate for charge densities in excess of about 9,ucouljcm. 2 

This value of surface charge density which approximately marks 
the beginning of the lattice domain is just large enough to be 
uncomfortable: It falls within the range of typical experiments, 
thereby supporting a lattice model over part of the range and 
denying its validity over the remaining part. This is particularly 
unfortunate because matters yet to be accounted for-such as 
presence of neutral species in the compact layer-in conjunction 
with the sensitivity of our conclusions to changes in system 
parameters, might alter this critical surface charge density a 
significant amount in either direction and, correspondingly, 

• As one might expect, the effect of screening depends upon the value of I"; 
we will defer a detailed consideration of the dependence upon this parameter 
until Section III of this article. 
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could affect our final assessment of the lattice model. Nonethe
less, our later considerations do not change this value very much; 
the resulting changes are probably to decrease this critical surface 
density somewhat. In essence then, we find that the array model 
does not span the whole range of experimental interest, but it 
does seem to span the major part of it (9,ucoulfcm 2 to about 
40,ucoulfcm2 ) . The fact that the entire experimental range is not 
pre-empted by the array model seems to indicate that for this 
system no one model is adequate. One must use the array model 
where appropriate, a less ordered model at lower surface coverages, 
and perhaps develop a joining procedure in the rather narrow 
transition region. * 

We may again argue as we did for the single-imaging case that 
for R1 E::: 7, the ionic interactions emphatically dominate, and 
that therefore the addition of neutral particles to the layer, 
assuming they do not reduce the interaction appreciably, will 
simply involve those neutral particles filling up the spaces between 
the ions. Whereas this is probably essentially correct, we are 
beginning to encounter problems with this picture for smaller R1 

values. The basic problem is that with R1 = 7, the separation 
between ionic centroids is about 14 A, of which perhaps 4 A is 
accounted for by the hard ionic cores. This leaves about 10 A, 
just enough room for three water molecules. For a little lower 
value of R1, one of the waters would have to find another spot. 
Clearly, when the ionic separations are only a few solvent molec
ular diameters in size, steric effects become important and our 
picture of "filling up the empty space with neutral particles" 
becomes less defined. We will have further occasion to discuss the 
interesting behavior of the compact layer with its neutral species 
in later sections. 

Finally, we consider what the state of the system is likely to be 
for much smaller surface coverages than for R1 ~ 7. It has 
already been stated that the motion of different ions is essentially 

* One interesting feature which emerges as an outcome of the rapid transition 
from disorder to order is the speculation that at the transition, just below a 
charge density of 9 fl.coulfcm2 or so, depending on actual values of f3 and y, 
there will be a large entropy-change contribution to the free energy of ad
sorption. This would tend to inhibit further adsorption, hastening the onset of 
saturation in the ql versus q isotherm. 
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uncorrelated in this regime. We now wish to consider a marten 
which will modify this conclusion slightly, but in a very interestin 
way. In the next section, we point out that as a result of the shorn 
screening distance established by the diffuse layer, two ions may 
approach each other much closer than they otherwise could; thel 
unscreened interaction energy is many times k T at those close, 
distances where the screening first begins to lose its effectiveness. 
Accordingly, at such distances, the energy necessary to move the 
ions slightly closer together may be much larger than the energy 
to reach the given starting configuration. As such increments are 
typically many times thermal energy, the ions are almost always 
unable to penetrate closer, and the effect is that of a "hard core" 
interaction between ions. Because this hard core differs from the 
"true" hard core of the ions, and because it only acts between ion 
pairs, not between an ion and neutral particle, we refer to it as 
the coulombic hard core, which is generally effective in preventing 
close approaches between ions at ordinary temperatures rather 
than the "true" hard core. We find that the radius of this coulom
bic core is nearly twice the ordinary steric hard-core radius for 
C-C imaging. We therefore find that, even at low coverages, the 
coulombic interaction plays a role, doubling the effective hard
core radius of the ions and thus quadrupling the excluded area 
per ion. This effect will be discussed later. Next, we consider the 
manner in which the diffuse layer so drastically alters the 
potentials in the system. 

5. Role if the Diffuse Layer 

We have already discussed the fact that the diffuse layer modifies 
the potential in the compact layer. There are three ways in which 
this comes about. First, the presence of mobile ions in the vicinity 
of the ORP leads to what has been termed a "screening" effect 
on the potential resulting from a given ion on the IRP. The 
mechanism for this screening is simply the strong repulsion 
between the adion and the charges (of like sign) in the diffuse 
layer. The mobile diffuse-layer ions tend to avoid coming close 
to adions of the same sign, preferring to take up those positions 
near the QRP of lower potential energy. This tendency is some
What disrupted by thermal motion, of course, but provided this 
energy is small compared with the variations of potential over 
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the OHP produced by the adions and their images in the ESP 
one may approximate the situation-at least for purposes of 
visualizing the system-by saying that diffuse-layer ions near the 
OHP arrange themselves so as to assume the lowest possible 
energy. In this respect, the ions behave like the charges on the 
surface of an ideal conductor; hence the approximate effect of 
these ions is the same as for an ideal conductor placed in the 
vicinity of the OHP. The outcome of this approximate model is 
that IHP charges are imaged conductively in the OHP, and their 
potentials fall off more rapidly with distance than in the absence 
of such imaging. This behavior of the potential, resulting from 
induced variations of charge in the diffuse layer, is, except for the 
geometry of the situation, analogous to what occurs when a 
charged object is immersed in a space-charge region, thus the 

name "screening." 
The second modification which is brought about by the diffuse 

layer comes from the fact that the diffuse layer is a dielectric 
material. Although the notion of a dielectric constant is question
able as applied to the compact layer, it is a much more justifiable 
concept when applied to the diffuse layer. Indeed, we may with 
little error regard the dielectric polarization of the diffuse layer 
as though the diffuse layer were a dielectric continuum. The 
dielectric constant of this continuum may vary as the OHP is 
approached from the solution side; however, it is generally 
assumed that the dielectric constant is constant all the way up to 
the OHP. Whatever the detailed model of the diffuse-layer di
electric constant, the effect of this polarization is again to image 
charges more or less in the OHP. This type of imaging is not 
perfect as is conductive imaging, however, the image charge 
being reduced in magnitude by a factor dependent on the size of 
the dielectric-constant variation at the OHP. 

The third effect of the diffuse layer is, via the first two effects, 
to change the degree of order of the adions. Thus, if the first two 
effects of the diffuse layer are sufficient for given coverage to 
smooth the potential variations in the IHP to magnitudes less 
than thermal energy, then the arraying tendencies of the ad ions 
will be too weak, and the arrangement of the adions will be 
somewhat random. The effect of such loss of order has already 
been discussed in Section II-4. 

Let us now estimate the potential in the compact layer assuming 
the ad ions are arrayed on a hexagonal lattice and that both the 
ESP and OHP are conductive imaging planes. We will shortly 
consider the case of dielectric imaging at the OHP. We begin by 
noting that the potential variation parallel to the IHP has the 
same periodicity as the lattice. Accordingly, we may write 

1f!(r) = constant + Az + Ikh(z) exp (ik. r) (21) 

where A is a constant to be determined from boundary conditions 
at the ESP, z is here the normal distance from the field point, 
r, to the source plane, and {k} designates those vectors parallel 
to the IHP, producing functions {exp (ik. r)} having the proper 
periodicity. Now the smallest k vector producing a function 

periodic on the array has the magnitude Ikl = (47rV3)/3r1• If 
we require 1f!(r) to satisfy Laplace's equation almost everywhere in 
the compact layer, we find that for this smallest k vector, the 

function fk is given by I.e = B exp [-(47TV3z)/3r1], where B 
is another constant. For all larger k vectors, the exponential 
decay in z is faster and we ignore these contributions in the 
following discussion. 

If one refers to the infinite imaging situation of Fig. 26(d), it is 
clear that successive nonideal dipole sheets are separated by 
Llz = 2d = 2jJ( 1 + I'}. The contributions from successive sheets 
to the part of the potential which varies in planes parallel to the 

IHP are in the ratio exp [-(87TV3)(1 + r)/3R1] . For T = 1, 
this ratio may be written exp (-29~1). Thus, for all values 
of R1 z 6.3, the contributions of successive planes are in ratios ,;;;; 
10-2, whereas for R1 Z 12.6 the ratios are ,;;;; 10-1 • Accordingly, 
we do not make too great an error if we replace the infinite 
regress of images by three nonideal dipole sheets, the first lying 
about the ESP, the second and third lying about the planes 
z = ±2d. This approximation may not be accurate enough 
for large R1 or for a meticulous treatment of the potential near the 
ESP or the OHP (for then we would have thrown away contri
butions as large as the smallest of the three which were retained) ; 
however, for most purposes it should suffice. Now if we employ a 
superscript zero to denote single imaging and define 1f!~(x,y,z) 

as the potential arising from the nonideal sheet centered at the 
ESP, then the actual C-C imaging potential 1f!~2)(X,y,z) (which 
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does not include a possible uniform field contribution arising from 
excess charge on the ESP) is given for z « d approximately by* 

"P~2)(X,y,z) "P~(x,y,z) + "P~(x,y, z + 2d)r-J 

_ "P~(x,y, 2d - z) - 47TqIz(1 + f)-I (22) 

For the present case of conductive imaging at the OHP, we may 
readily find the charge on the ESP for which there is no uniform 
field contribution. Noting that when the true potential is identical 
with "P~2), the average p.d. across the compact layer vanishes 
[because "P(2)(0) = "P~2)({3 + y) = 0], we may use Gauss's law 
to establish that q{3 + (q + ql)Y = 0; thus, there is no excess 
charge on the ESP provided that q = -Aql' Accordingly, the 
uniform field contribution, which in general must be added to the 
"P~2) of the C-C imaging case, is "Pe(x,y,z) = -47TE1

Iz(q + Aql), 
where the bogus dielectric constant EI should not be taken 
seriously but is merely a reminder that polarization effects within 
the compact layer must somehow be taken into account. In the 
absence of the diffuse-layer effects, the local potential would have 
been "P0(x,y,z) = -47T(q + ql)Z + "P~(x,y,z), where we have set 
E = I here and in the following. The whole question of dielectric 

I
effects in the inner layer will be discussed in Section 11-6. A 
comparison with our conductive-imaging result shows that the 
effect of the (conducting) diffuse layer is, for given q and 'h» to 
addapotential,"P~[x,y, z + 2{3(I + f)] -"P~[x,y,2{3(1 + f) -z], 
to that obtained when one neglects the diffuse layer. In Table II, 
we give the values of potential "P(x,y,{3), normalized in accordance 
with 'Y(x,y,{3) == "P(x,y,{3)!"Poo, for C-O single imaging where the 
diffuse layer is neglected, and for the C-C imaging situation with 
I' = 1. The potentials applying to an incomplete lattice situation 
are shown for two points in the IHP; point 0 corresponds to the 
site of a removed adion, and point a' is a point of three-fold 
symmetry before one of the three neighboring adions is removed. 

* The reader will naturally wonder where the term -41Tqlz( I + n-I 

came from. It turns out that this is the potential arising from the infinite image 
sets which have been neglected up to now. Only portions of the potential 
which vary in directions parallel to the IHP fall off exponentially by our 
previous argument. We are still left with this uniform-field part, which is not 
the same as that arising from excess charge on the ESP, 'Pe- This whole matter 
is further discussed in Section IV-I. 
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The charge density on the electrode in all cases is taken to be 
-ql; however, the difference 'Y(a') - 'Y(O) is independent of this 
choice. There are two sets of numbers listed for the conductive
imaging situation. The first numbers represent accurate data 
acquired by methods discussed later in this article, and the 
numbers in parentheses were obtained by the approximate 
method just described. One notes the decreasing utility of this 
approximation for increasing RI • The reason that the absolute 
accuracy is so poor for R I = lOis that the terms neglected in the 

TABLE II 

Normalized Potentials on the IHpa 

Single imaging Infinite imaging 

RI 'YO (0) 'J"O(a') ~'Y0 'Y(O) 'Y(a') ~'Y 

2 
5 

10 

0.556 
0.284 
0.149 

0.668 
0.413 
0.235 

0.112 
0.129 
0.086 

0.556(0.556) 
0.504(0.46) 
0.500(0.35) 

0.708(0.708) 
0.543(0.54) 
0.505(0.49) 

0.152(0.152) 
0.039(0.08) 
0.005(0.14) 

a Here, ~'Y ","'Y(a') - 'Y(O). 

model are less than 10% for a complete lattice (no vacancy). 
Since the absolute magnitude of the potential at point 0 diverges 
for the complete lattice, our 10 % figure arrived at earlier (for 
R I = 12.6) is of no use in establishing an upper bound on the 
error for this case. Happily, we have the accurate data for direct 
comparison here. 

One of the most significant features shown in the table is the 
smoothing effect of conductive imaging at the OHP. While for 
single imaging the potential variation from point 0 to point a' 
is roughly 10 %of "P 00 over a wide range of coverages, the presence 
of conductive imaging at the OHP causes this variation to drop 
to 4 %at R I = 5 and to 0.5 %at R I = 10. Thus, we see that even 
though the potential at point 0 is actually increased by the diffuse
layer imaging, the variations of potential over the IHP are greatly 
decreased; it is therefore the variation in potential which is 
"screened" by the diffuse layer. The effect of screening at given 
d naturally decreases for C-C imaging as r departs in either 
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direction from unity; from symmetry we note that for given r I , 

the unnormalized potential '/jJ~2l evaluated on the IHP is invariant 
under the replacement f3 +-+ Y and thus T --+ r- I . Later we will 
illustrate more specifically the dependence upon T'. We have used 
the data for 'Y<2l(a') - 'Y12l (O) to calculate the ratio U(2)jkT 
pertaining to C-C imaging, and this ratio is plotted in Fig. 7. 

10 I Ii f ('.1 i r i , r 1 I j I I i I I I:::J 

3 

u 
k'i' 

0.3 

0.1 

0.03 '--'---''----'--'-

tl = 1 
Zv = 1 
(J = 2A 
T= 300"K 

o 4 8 12 16 20 
RI 

Fig. 7. Normalized single adion energy in the plane of its neighbors, U/kT, 
vs. RI == TIIP, the normalized nearest-neighbor distance for a hexagonal array, 
or the pair separation distance for two isolated adions. 

Another way of seeing the diffuse-layer screening in action is 
to calculate the energy of interaction of two adions imaged in the 
ESP and OHP and separated by a distance r I . Taking T = I and 
€l = I and making use of the results derived in Appendix I, we 
obtain for exp (-7TR I) < I the almost exact C-C result 

U~21irlkT .~ [2jf3 (A)]550R1I/2 exp (-7TRr/2) (23) 

where T has been set at 300oK. This energy ratio is also plotted 
in Fig. 7 versus R I , and one notes the essentially exponential drop 
with R I • We observe that were there only two adions on the IHP, 
they would move essentially independently until they approached 
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each other to within a distance r l ~ 4.5f3 = 9 A. At this point 
the quantity (U~;lrjkT) would be about i. The energy increases 
rapidly below this distance, and the pair of ions would stringently 
avoid encounters of r I less than about 3.5f3 = 7 A, where the 
energy ratio is somewhat greater than unity and rising precipi
tously. This statement is true whatever the degree of lattice 
ordering on the surface. Two ad ions find it so difficult (at 3000K) 

to approach each other significantly closer than 7 A that we may 
here neglect such occurrences entirely for C-C conditions. In
deed, we may regard the adions as having a coulombic hard-core 
diameter, r., of about 7 A. This is the "hard-core" which is 
effective in establishing the excluded volume (or area in this 
surface problem) for the system of ad ions, even at low coverages. 
Naturally, an uncharged particle on the surface passes unhindered 
through this hard core, suffering strong repulsion only in the 
vicinity of the usual ionic surface, with radius about half of the 
coulombic radius. These facts may also be stated that two adions 
must always have enough room for a water molecule to fit between them 
when C-C imaging is appropriate. We note that we may estimate 
the maximum achievable surface density of ions at ordinary 
temperature, assuming they all maintain their charge, by the 
above consideration of the coulombic hard core. * Setting the 
minimum separation r I equal to 3.5/3, or about 7 A, the maxi
mum allowable surface charge density works out to be about 
38 ,ucouljcm2 , close to that derived from experimental measure
ments on many electrolyte systems. The fractional surface 
coverage, e, at this maximum value would be about (2f313.5f3)2, 
or approximately 33 %. 

* The foregoing argument is satisfactory as it stands for the situation where 
the particles are wide enough apart that their coulombic hard cores seldom 
touch. The following development represents a heuristic extrapolation of the 
concept to the case where the particles are being crowded together and their 
cores are touching. Our observation that the energy to "compress a hard 
core," or move particles closer together then To is large does not rule out the 
possibility of such possible compression if the adsorption energy is large 
enough. Nonetheless, our estimates indicate that in practice the adsorption 
free energy will vanish and further ionic adsorption be prevented by the cou
lombic hard core interaction before such compression can become a large 
effect. Though exceptions may exist, the concept seems generally to be a useful 
one. 
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It is interesting to compare these calculations with the analogous 
ones for single imaging. For this case we would have for large R1 

that the ratio of lateral pair interaction energy to thermal energy 

is given by Ugair/kT ~ [2/f3 (A)]550R~3 (24) 

We see from Fig. 7 that not only is this interaction much stronger 
because of the absence of screening, but it is also much "softer." 
The variation with R 1 is not as rapid as with the diffuse-layer 
imaging. Thus, the particle motions become correlated when 
R ~ 18, or r1 ~ 36 A (this occurs as an average condition at 

1 
ql ~ 1.5 ,ucoul/cm2 and e~ 1.3 %); yet they can only approach 
to within distances of about R 1 ~ R, ~ 7, or rc ~ 14 A when 
f3 = 2 A. (This pair separation occurs when ql ~ 10 ,ucoul/cm2 

and e~ 8%.) 
Based on the foregoing discussion of conducting imaging at the 

ORP, we may readily understand what is the effect of dielectric 
imaging there. First of all, if the dielectric imaging is very strong, 
that is, if w == (E s - E1) / (Es + E1) ~ 1 by virtue of Es ?> 1 (imply
ing Es ?> El), then the overall effect of dielectric imaging is 
identical with conducting imaging. If w departs somewhat from 
1, the result is that the successive nonideal dipole sheets centered 
at ±zn = Zdn are of diminished strength, wn. The shielding is 
not quite as effective as for perfect imaging. As soon as w departs 
considerably from unity, we have problems; when w is consider
ably smaller than unity, <i is comparable with Es • But for this 
case it matters very much what we take for El' Polarization in 
the compact layer plays a greater relative role, and it is no 
longer a permissible procedure to replace the actual compact
layer polarization with a bogus dielectric constant. Hence, for 
w < lone really must be prepared to throw out the picture of 
dielectric imaging based on an <i and to start again, taking 
correct account of the polarization in the inner layer. 

It is fortunate in a way that the effect of the dielectric dis
continuity near the ORP is the same as the presence of mobile 
ions in the vicinity of the ORP, that is, to image charges. If it 
were otherwise, we should have to worry more about the outcome 
when both of these situations pertained. There might have been, 
for example, a partial cancellation of the two influences, and we 
should then have had to be careful in our analysis to determine 
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the result of these influences. As it is, however, the simultaneous 
presence of the two reinforcing imaging processes merely increases 
our confidence that there is indeed an imaging plane more or less 
on the ORP, and that, even if neither of the processes is sufficient 
in itself to create perfect imaging, the combination of the two 
should make perfect imaging a fairly good approximation. 

Although the foregoing considerations allow us to be fairly 
confident of the gross influence of the diffuse layer, we are con
fronted with a more difficult matter in accurately calculating its 
effects. We shall now describe some of the complications in the 
actual physical system which we have glossed over up to this 
point and which, though not affecting the essential validity of 
the previous development, do alter the details of the influence of 
the diffuse layer upon the inner region and the system as a whole. 

First, there is actually an interaction between the processes of 
conductive and dielectric imaging; this must be so, for if the effects 
were superposable, then it would be possible that the two images 
produced by the two processes should add to give a net image 
charge greater in magnitude than that of the object imaged. The 
simplest way of considering how the two effects actually should 
add in the first approximation is simply to regard the diffuse
layer ions near the ORP as contributing to the net polarizability 
of this region of the diffuse layer-and hence to the effective 
dielectric constant Es which determines w. This is consistent with 
our implicit assumptions when we referred to the reinforcement 
of the imaging processes, and it agrees with the physically 
necessary requirement that the presence of the two processes 
simultaneously can at most cause the ORP to more closely 
approximate a perfect imaging plane. There is a physical way of 
understanding why the two effects do not superpose, the images 
produced by one process being influenced by the presence of the 
other. Although this physical mechanism is completely contained 
in the behavior referred to before concerning the "net polariz
ability," it is well hidden there beneath a lot of relationships 
which occur in the theory of dielectrics of which the reader would 
have to be ever cognizant. What occurs is quite easily under
stood; the presence of strong conductive imaging by the diffuse
layer ions would virtually wipe out the potential variations 
parallel to the ORP in the diffuse layer itself. Accordingly, the 
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dielectric polarization would be left with very little to image. 
Similarly, if dielectric imaging were quite complete, the potential 
produced at the OHP would be virtually constant even without 
the assistance of the mobile ions. These ions would no longer be 
compelled to congregate in bunches over the OHP and indeed 
would be energetically forbidden from doing so except to the 
extent necessary to level even more the slight potential variations 
which remained. These examples merely show that, given one 
imaging mode at a certain level, the other mode will adjust its 
level so that the total effect is no more than perfect imaging. The 
actual division of labor between the two and the degree of 
perfection actually achieved are matters for a detailed calculation, 
which will not be discussed here. 

There are two related complications which are more trouble
some and in fact would have to be taken into account in order to 
perform the sort of calculation mentioned in the last paragraph. 
These are the finite thickness of the diffuse-layer ionic sheath and 
the uncertainty in the position of the dielectric imaging plane. 
The first of these results from thermal motion of the diffuse-layer 
ions and involves a length of the order of the Debye shielding 
distance, AD' which may be written for z; = I as (kT€./47Tc oe2) 1/ 2, 

where Co is the density of diffuse-layer ions, and the simple 
inclusion of €s becomes somewhat ridiculous for the smallest AD 
values. One may use the density in the bulk of the electrolyte to 
calculate AD' or one may argue that the value should be that 
applying at the OHP. We shall not try to decide the matter here, 
for if the two concentrations differ by very much one needs really 
to worry about the diffuse-layer problem from the beginning, 
including, for example, finite size effects. In any case, the thick
ness is not zero but varies from hundreds of Angstroms III some 
situations to perhaps only a few Angstroms in others. Corre
spondingly, there is an uncertainty about where to place the 
effective conductive imaging plane (though with the strong 
potentials set up by the adions we should not insist that this 
uncertainty is equal to or otherwise simply related to the sheath 
thickness) . For that matter, we are sure that the thermal motion 
of the diffuse-layer ions, as small as that may be, will to some 
extent "blur" the images. The extent to which this is liable to 
occur, as well as the best estimate of the position of the conductive 
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imaging plane-somewhere on or behind the conventional 
OHP-is more properly deferred until later in this article. The 
similar uncertainty in the location and basic pertinence of the 
dielectric imaging plane is one manifestation of two more funda
mental facts. First, as we mentioned at the beginning of the 
discussion on the diffuse layer, the effective dielectric constant in 
the diffuse layer most likely varies with distance from the OHP; 
it presumably ranges from a bulk value down to a possibly con
siderably smaller and partly saturated value in the midst of the 
higher ionic concentrations and larger fields very near the OHP. 
Second, the discreteness of the diffuse-layer dipoles is contrary to 
the continuum assumed. While this discreteness is of no import
ance when viewed from far enough away, it does produce a 
somewhat different potential from that produced by the con
tinuum. This effect is presumably modest, as it tends to be 
averaged away by motion in the diffuse layer, and by an earlier 
argument we would expect the deviations induced to fall off with 
distance z measured from the OHP roughly as exp {-37TZ/I}, 
where 1 is a characteristic separation between diffuse-layer 
dipoles-probably the diameter of a molecule or so. Since the z in 
this application is almost surely no less than I, we appear now to be 
discussing an effect which is comfortably unimportant (~ e-10). 

To return to the mainstream of our discussion, we have 
described several effects which might alter the details of the role 
played by the diffuse layer. They all require for their complete 
understanding a detailed and complex treatment of the diffuse 
layer. While several of these matters will be further discussed 
later in this article, this additional discussion is to a great extent 
motivated by our duty to give at least some review of all the 
topics which are in current popularity in this field. Reminding 
the reader that representing the diffuse-layer effect by imaging is 
an approximation and that an exact theory requires an ab initio 
theoretical treatment of this complex system, we nonetheless 
believe that it is a very good, and simply applied, approximation 
in most circumstances of interest. 

6. The Concept of an Inner-Region Dielectric Constant 

We have noted several times that the representation of 
polarization effects within the compact layer by means of a 
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dielectric constant is a procedure which, though very common 
throughout the literature, is generally incorrect unless one takes 
particular pains to determine this quantity from first principles 
and to avoid extending its application beyond the realm envi
sioned in its derivation. We shall here amplify this assertion by 
giving examples of how dielectric constants could be defined for 
the compact layer and how easily such quantities, once defined, 
could be falsely applied. Before discussing the compact layer 
itself, we shall review some of the properties of dielectric polar
ization in bulk matter with emphasis upon those features peculiar 
to bulk matter which allow a simple and widely applicable 
definition of the dielectric constant. 

The case generally considered in any discussion of bulk 
dielectric effects is the following. An external electric fi-",' 11ext 

is developed across a material containing polarizable elements. 
This field is either constant in magnitude and direction or else 
varies so slowly (in all directions) over regions containing many 
discrete polarizable elements that it may be considered constant. * 
One thereby reduces the problem to that of the behavior of a 
single macroscopically small, microscopically large region of the 
material. Under the combined action of the external field and 
the field produced by the other (polarized) entities, it is next 
assumed that ',fie objects acquire an electric dipole moment 
P = <X8err, v here <X is the polarizability of a single entity and is 
a property of the individual entity, and 8 eff is the sum of the 
external field and the field produced by the other dipoles, 8 r • It is 
8 r which contains the effect of the neighboring dipoles of a given 
dipole. Note that we have already been able to incorporate a 
great simplification into the picture as a result of the uniformity 
assumed for 8 ext on this scale. All the dipole moments are taken 
to be precisely the same; similarly all the fields 8 rand 8 err at 
each polarizable element are the same. 

Next one defines the polarization f!IJ as the total dipole moment 
per unit volume arising from neutral species contained in the 
region, and again one exploits the microscopic largeness of the 
macroscopically small region in defining this quantity. The total 

* A generalization of the present discussion is to consider fields which vary 
as exp {ik • r}; the resulting dielectric constant is then a function of the wave
vector k. This description is sometimes called "spatial dispersion." 
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dipole moment contained in the given region is almost exactly 
proportional to the volume of the region and independent of the 
precise location of the boundaries; hence, f!IJ is a well-defined 
vector-at least to a precision of the order of the ratio between 
the microscopic spacing between dipoles and the smallest linear 
dimension of the given region. Next, we set 8 r = 41TSf!IJ, where 
S is a constant characteristic of the microscopic structure of the 
dielectric material, and obtain 

f!IJ = Nv<x8eff = (1 - 41TNv<xS)-lNva8ext (25) 

with N; the volume density of polarizable elements in the inner 
region, and a here the polarizability of the polarizable elements. 

All that remains in order to find the dielectric constant is to 
make the observation that the electric field produced by the 
electric dipoles fluctuates strongly on the microscopic scale; 
however, if one averages this fluctuating electric field over a 
microscopically large region, * one is left simply with an average 
field from these dipoles equal to -41Tf!IJ. Identifying 8 ext with the 
displacement field f!fi and the sum 8 ext - 41Tf!IJ with the macro
scopic field 8, we find 

8 = f!fi - 41TNva(1 - 41TNvaS)-1f!fi (26) 

from whence the dielectric constant, e == f!fiJ8, is found to be 

E = 1 + 41TN"a(1 - 41TNvaS - 41TNva)-1 (27) 

So defined, the dielectric constant enables us to determine the 
average electric field existing in the dielectric from a knowledge of 
the external field alone. 

Provided we are not interested in the potential exceedingly 
close to one of the discrete dipoles, average quantities will be 
sufficient, since under such conditions the potential seen by any 
given charge will predominantly arise from the action of the 
average field over macroscopic distances, and the fluctuation 
potential associated with the nearest discrete dipoles will be 
relatively small. Thus, one may usually calculate the interaction 
between two point charges imbedded in a dielectric material 
and separated by microscopically large distances simply by 

* The same result is of course obtained if the average is taken over precisely 
one unit cell when the dielectric material is crystalline. 
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making use of average fields; that is, by incorporating the di
electric constant into the calculation. This is an unexpected 
bonus, however, for all that was really obtained at the beginning 
by defining such a quantity was the average field; furthermore, 
it is clear that if one of the point charges resides in atypically 
close proximity to one of the discrete dipoles, the fluctuation 
potential will be relatively large and the interaction between the 
charges will be moderated by the polarization in a highly specific 
manner not accounted for by the simple dielectric constant. 

To recapitulate, the notion of a dielectric constant naturally 
arises whenever a microscopically large region containing discrete 
polarizable elements is subjected to conditions such that all field 
quantities are very slowly varying over the distances characterizing 
the microscopic structure of the region. When such conditions 
obtain, the dielectric constant provides a convenient means of 
determining average field quantities; however, the significance of 
such quantities in specific cases depends upon such details of those 
cases as whether or not special importance is attached to atypical 
points in the medium by virtue of the particular problem con
sidered. To attempt to extend the concept beyond the limits 
stated here is hazardous, and each extension must be analyzed as 
a case in itself. With these thoughts in mind, we are now ready to 
examine the dielectric constant concept as applied to the compact 

layer.
It is immediately obvious that the conditions which enabled 

one to define a useful dielectric constant for bulk matter do not 
apply to the compact layer; the adion-image fields vary rapidly 
over the dimensions characterizing the microscopic structure of 
the compact layer. Furthermore, the distances over which the 
fields act are not microscopically large. Therefore, the potential 
at any given point in the compact layer has very little to do with 
the average fields derivable from a dielectric constant. Nonethe
less, provided we exercise some care, we may still define a quantity 
for the inner layer analogous to a dielectric constant (in that it 
conveniently accounts for polarization), although its usefulness 
will not be nearly so great as that of the bulk dielectric constant. 

We shall set out to define a dielectric constant for the compact 
layer in such a way that the effect of polarization upon the average 
potential, V( Z), is properly accounted for provided 1 < Z < ZOo 

Once having found this dielectric constant, however, we may 
only use it in this way. To account for polarization effects upon 
other quantities, one would have to derive a different dielectric 
constant appropriate to the quantity considered (not always a 
possible procedure) rather than simply making use of the same 
dielectric parameter. This is a reflection of the limited usefulness 
of the concept itself as applied to this system. 

First, we observe that for all Z in the domain I < Z :::;; Zo, 
the contribution to the average potential from the compact 
layer polarization is simply 47TNP, where now P is the average 
normal component of electric dipole moment. Relating N to 
N; by N" = d~l N and defining & as the normal component of 
average polarization, we find this contribution may be written 
47T&d. Expressing this result in terms of the average field acting 
between the ESP and the plane Z = constant, one obtains the 
result that the polarization produces an average field - (Zol Z)47T& 
between these two planes. As the result depends on Z, we see 
that a single dielectric constant is insufficient even to account for 
polarization effects upon the average p.d, between the ESP and 
an arbitrary plane parallel to it. We shall be content then to 
consider the "dielectric constant" which determines the total p.d. 
across the compact layer and shall scrupulously avoid applying 
this dielectric parameter to the determination of any other 
quantity. Setting Z = Zo we find that the average dipole field is 
-47T&, just as for bulk matter. 

Again we may set P = oc8 where 8 etr is now the averageetr, 

normal component of field acting to polarize the entities, but 
lfetr is not necessarily so simple as it was for bulk matter. Things 
are not difficult providing there are no adions in the compact 
layer because for this case the fields acting on all the dipoles are 
equal, the dipoles themselves are effectively equal, and the 
external field Ifext is uniform over the whole layer. For this case 

we may again set 8 = lf + 47TS&> (28)
ex t etr 

where S will depend on imaging conditions at the ORP, various 
structural features of the compact layer, and the type of polariza
tion involved (induced or orientational). Proceeding as for bulk 
matter, we would obtain an expression for the dielectric constant 
which is formally identical to that obtained for bulk; of course, 
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the actual values of N; and S (as well as o: perhaps) would differ 
for the compact layer from the values appropriate to bulk, so 
that numerically the dielectric constant would be different. More 
important than the numerical differences is the fact that this 
dielectric constant is only applicable to one calculation: finding 
the average compact-layer potential. 

The whole situation is greatly complicated when adions are 
present in the compact layer; no longer will every dipole see the 
same field, but the fields will depend upon where the dipoles 
reside relative to the adions. Correspondingly, no longer will all 
dipoles have the same effective moment; indeed, as a result of 
this, no longer will the field ,sT be simply proportional to flJ. 
Thus, for this case ,seff is a very difficult object to determine. 
There are other problems as well. In particular, the field ,sext 

is no longer uniform; it acts differently in its roles as aD-field 
and as a contributor to the production of polarization. Illustrative 
of this is the fact that for C-C imaging the field contributes nothing 
to the average compact-layer potential difference, yet it does 
act upon polarizable matter on the IHP and therefore cannot be 
ignored as a partner in ,seff' Thus, we find for this case that even the 
limited type of dielectric constant defined before is unachievable. 
The average field is no longer proportional to the external field 
at all. For such situations, it is better to refrain from defining a 
dielectric constant, instead treating the polarization by more 

direct means. 
Though we might take a hint from the negative results of the 

last paragraph, we now turn to a consideration of an entirely 
different type of dielectric constant. We wish to consider to what 
extent the interaction energy of two ad ions on the IHP is modified 
by the presence of polarizable matter in the compact layer. This 
matter is of extreme interest because of its relevance to such 
questions as lattice stability under thermal motion, as noted in 
previous sections. For this purpose, we may set 'f/Je = 0 with no 
loss of generality whatever. 

Again we shall assume that P = rJ.,seff' When the electric fields 
present are very large and the polarization results from preferential 
orientation of permanent dipoles; however, this assumption that 
P is proportional to ,seff breaks down and the whole situation 
becomes surprisingly more complex. Under the linear assumption 

we may directly determine, formally at least, the change in the 
energy of interaction between two ions on the IHP as a result of 
polarization. Let the first ion reside at the origin and the second 
at r. The total energy for the two is then written U = zvecp(r) 
where cp(r) is the potential arising from all polarization, the 
charge at the origin, and all images; it excludes the infinite 
contribution from the ion itself at r. Now the potential cp is made 
up of several contributions: that from the images of the charge at 
r, that from the charge at the origin and its images, and that from 
the polarization and its images. The first of these is constant and 
does not depend upon r; we may discard it if we are interested in 
the interaction energy between the ions. The polarization at any 
point is the sum of what would be present if only the ion at the 
origin existed and what would be present if only the ion at r 
existed. Since the potential at r arising from the latter polarization 
is independent of r, we may disregard this contribution. Note 
the utility of the linear assumption. We are left with the following 
expression for the interaction energy 

Uint = zvecpo(r) (29) 

where CPo is the potential which would exist if the ion at r were 
removed and only the ion at the origin, its images, the polariza
tion it sets up, and the images of that polarization were present. 
The problem of finding the interaction energy between two adions 
is reduced to that of finding the potential set up by a single adion 
at the origin along with the resulting polarization and images. 

Consider the case of C-C imaging with r = 1. From the results 
of Appendix I and the asymptotic behavior of the modified Bessel 
function, Ko(x) ---+ (2Xj7T)-l/2 exp (-x), we may roughly approxi
mate the effect of C-C imaging by reducing the potentials and 
fields which would exist in the absence of imaging by the factor 
(4R)l/2 exp (-7TRj2), where R == rjp and r is here the planar 
distance from the compact-layer source point to the field point 
on the IHP. * If for simplicity we take ,sext = ,seff' always a 

• Of course, if we reduce the potential by this factor, the field should 
actually be the sum of two terms; the term we use here and the modified 
potential times {(7Tj2) - 2 (4R)-1}P-l. However, since this is only a rough 
calculation and it is the exponential factor (contained in both terms) which 
dominates the behavior we adopt the simpler procedure in the text. 
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possible approximation for small «, we find for the induced dipole 
moment at a point ri from the origin, Pi ~ r:J.zver;2(4Ri)1/2 X 

exp (-nRd2), where R, == rdf3· 
On the other hand, the effect of a given dipole also falls off 

exponentially with its distance from the field point for C-C 
imaging. The overall effect of a given dipole at a given field point 
therefore involves an exponential factor whose argument contains 
the sum of the distances from the dipole to the origin and to the 
field point. These considerations lead us to consider the situation 
shown in Fig. 8, approximately pertinent for R 1 = 5 and f3 = 2 A. 
The solvent-molecule diameter has been set to (!)f3, and all 
entities not shown may be neglected here. We note that only the
 
component of polarization in the plane contributes to the po

tential on the IHP and hence to the interaction energy.
 

To avoid a very long and inelegant calculation, since we only 
wish to roughly establish the dielectric effect here, we simply set 
the contributions from the first and third row of dipoles equal to 
that of the middle row of dipoles. Putting all the numbers together 

we find
 

cPo ~ !zveV 20 exp (-5n/2)
 

+ 6r:J.zve(13f3/4)-2(7f3/4)-2V9l exp (-5n/2)
 

_ 6r:J.z 7f3/4)-2(7f3/4)-2V189 exp (-27n/8) (30)

ve(2 

where cPo is the potential at the site of the removed positive ion 
shown dotted in Fig. 8. It will be observed that the relative con
tributions of those terms we have considered drop very rapidly 
with the sum of the distances to the field point and to the origin. 
The first term in the sum is due to the ion at the origin (and its 
images). The effect of screening is to make the negative term 
negligible, and the interaction energy is actually increased* by 
the polarization in this example. The potential cPo is approxi

mately given by 
cPo ~ 1O-4zvepl[3.47 + 6.72J] (31) 

* Since the self energy has not been included here, the total energy of the 
system is still lowered by the polarization. As a matter of interest, Fletcher 
(36) has pointed out the same basic phenomenon we observe here, in con
nection with the sign of the depolarizing field in a finite cubic lattice (a thin 

slab) of nonideal dipoles. 

where again J == r:J.( f33, and the successive dipoles (and their 
images) considered in the sum for the potential contribute much 
less than the next most important dipoles-the convergence is of 
the nature of one more significant figure for every successive set 
of dipoles considered. For typical values of J, we find that the 
potential cPo which determines the interaction between two ions 
at distance R 1 = 5 under C-C conditions may be more than 50 % 
larger than the potential in the absence of polarization. In this 
case then, the effective dielectric constant which modifies ionic 
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Fig. 8. Schematic diagram illustrating solvent-adion situation used III 

assessing planar shielding effects. 

interaction in the plane may be as small as 0.6 or so for R1 = 5. 
For smaller J values or larger R1, we expect this dielectric constant 
to increase. (Compare with the Z-dependence noted for our 
earlier "dielectric constant.") Finally, when R1 is very large this 
dielectric constant will be more akin in value to usual macro
scopic quantities. Eventually perhaps someone will make a careful 
calculation to show how the interaction in the plane is modified 
by polarization including the effects of {feff oF {fext. This is a very 
ambitious problem, however, and we must be content with this 
illustration of how screening and discreteness effects combine 
here (at small R 1) to produce a "dielectric constant" of the order 
of and possibly less than unity. 

Before ending our discussion of the dielectric constant of the 
inner region, we wish to point out some interesting properties of 
orientational polarization in the compact layer. Under most 
conditions in the double layer, the fields acting normal to the 
IHP are quite large; large enough to saturate the orientational 
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polarization. Such saturation always occurs whenever the 
dimensionless quantity Ifl~efff3kTI appreciably exceeds unity, 
for under such conditions the average dipole moment, (fl), in 
the direction of the field is roughly equal to the full magnitude 
of the permanent dipole moment fl. The contribution of this 
polarization to the average potential is, under such conditions, 
slowly varying and not accountable by means of a: usual dielectric 

constant. 
On the other hand, for C-C conditions we have seen that, 

except for the immediate vicinity of an adion, the component of 
field parallel to the IHP is quite small, certainly very much less 
than the normal component. When this inequality exists together 
with the saturation of the orientational polarization, one may 
readily calculate the component of polarization parallel to the 
IHP. Since the dipole moment is of magnitude fl aligned in the 
direction of the vector field, the parallel component must be 
given by fl times the ratio of ~II to (~f1 + ~JJ 1/2, where the 
subscripts refer to the parallel and perpendicular components 
respectively. Under such circumstances, the parallel component 
of polarization behaves as though it arose from an entity whose 
polarizability is given, for ~II ~ ~1-' by !XII "-' flf~.L· This is 
clearly less than the low field polarizability, !x o == fl2f3kT, by an 
amount dependent upon how far into saturation the field has 
taken the dipoles. We may estimate !XII most simply by noting 
that the low field polarizability applies until Ifl~efff3kTI <: I; 
the polarization approaches constancy for appreciably larger 
values of this quantity. Taking the ratio of the "critical field," 
3kTffl, to the field ~1- and multiplying by the low field polariza
bility gives us a rough estimate of !XII: !XII "-' (3kTffl~ J !Xo' These 
conditions do not necessarily hold very near an adion or if 
"Pe ~ 0; the first of these exceptions is discussed somewhat later 
in this article in connection with solvation of adions in the com

pact layer.
Two more remarks are pertinent to the question of seriously 

attempting a dielectric constant calculation for the inner layer. 
First, if one may disregard parallel components of polarization 
(because of the absence of adions or because of saturated orient
able dipoles being involved), then the C-C imaging situation 
involves a field 8 which depends on flJ through the parameter

eff 

S in a manner quite analogous to what obtains in a crystal lattice ; 
the dipoles in the inner region see image arrays of dipoles quite 
like those they would see if the whole structure were an infinite 
crystalline solid. Second, however, if one is interested in the 
dielectric constant where orientational polarization is involved, 
one must be extremely careful in making theoretical calculations 
to be sure that Onsager-type corrections are made in doing the 
thermal statistics. The point here is that, unlike the case in a 
solid, the infinite image arrays of dipoles faithfully follow the 
fluctuations of their masters on the IHP, thereby complicating 
the evaluation of the probability that a given dipole points in a 
given direction. The problem is quite difficult, and as far as we 
know, no one has attempted to treat it properly. However, it is 
very interesting, and someday such a treatment will be carried out. 

7. Complications in the Compact Layer 

A. Nonlinearities. Following our qualitative discussion of 
some of the simplest dielectric effects in the inner region, we now 
consider briefly some of the complicating features which might 
prove important in the actual system. The reader is forewarned, 
however, that these complications have never been considered in 
any treatment of the double layer thus far published; this dis
cussion represents work which is still to be done. 

In the last sections, a relationship often assumed but never 
derived was that the total energy of the system equals one-half 
the sum over all real monopole charges (not images or charges in 
dipoles) of the potential at the site of a monopole (excluding, 
however, the contribution from the monopole itself) times the 
charge of the monopole. 

u =! L QkcP(rk) (32)all "real" 
charges 

Although this relation is widely used, its implications are not 
always appreciated. The relation appears "simple," yet it conceals 
a great deal of physics, so much so in fact, that if we start to take 
a closer look at the equation, our first impulse is to say that it 
cannot be completely correct. The expression on the right-hand 
side treats "real" charges completely differently from polarization 



55 
C. A. BARLOW, JR. AND J. R. MACDONALD54 

charges, the latter being involved only implicitly through their 
effect upon c/>(r,,), yet a microscopic view of nature asserts that 
there is no fundamental difference between the two types of 
charge. Specifically, it would appear at first that we have neglected 
the dipole-dipole interactions, for example, in calculating the 
total energy. Space does not permit a full discussion of all the 
physics concealed in this expression for energy; an adequate dis
cussion of this is in preparation, and may appear elsewhere. For 
our present purposes, however, we must present some explanation 
of what is involved here. 

What terms have been apparently neglected in the expression 
quoted for total electrical energy? The image charges are not 
included, of course, but we should not be surprised at this because 
the image charges are fictitious in any case. This is not a com
pletely satisfactory explanation for their exclusion, since the poten
tials produced by the fictitious images are in fact produced by 
charges somewhere in the universe. We shall content ourselves 
with the above explanation, however, and proceed to the question 
of current interest, i.e., why have the polarization charges been 
excluded in the summation? 

If these charges were included, each dipole would contribute a 
term - iP . @eff' We have here assumed that the dipoles are ideal 
and hence have set quadrupole and higher moments to zero. The 
factor one-half is introduced to avoid counting pair-wise inter
actions twice. We have already partially counted the interaction 
between dipoles and monopoles inasmuch as c/>(rk ) includes the 
polarization potential; furthermore, since the term -iP' @eff is 
to be summed (in the proposed addition to the actual energy 
equation) over all dipoles, the factor one-half will properly do the 
accounting for distinct pairs. It even accounts for the reduction 
in interaction energy between charges and images vis avis charges 
and charges. In summary, it would appear that the extension of 
the sum in the energy equation to include polarization charges 
would make everything exactly correct. Yet there is a contribution 
to the energy which we have neglected, and which under the 
usual (idealized) conditions will exactly cancel our proposed 
addition to Eq. 32. 

When we consider the energy of a given polarizable element in 
the field @eff' we should include the energy of formation of the 

DISCRETE COMPACT DOUBLE LAYER 

dipole, Uint(p). The total energy of that dipole would be 

UT = Uint(P) - P . @eff (33) 

and the actual value assumed for P is determined by the condition 
V'p UT = O. Thus V'p Uint(p) = @eff is the equation determining 
the polarization produced by @eff' Now if we make the linear 
assumption P = lX@eff' we may write V'p Uint(P) = 1X-1P, from 
whence it follows that 

U (P) - ~N-lP2 _ l.p . Dtnt - 2"" - 2 (,jeff (34) 

But this just cancels the term we proposed to add to the sum in 
Eq, 32, so Eq. 32 is correct after all. Remember, however, that 
such cancellation depends upon the linear assumption that 
V'p IX = 0; that is, that Uint(P) is quadratic in P. Whenever this 
condition breaks down, Eq. 32 is no longer correct. (It will be 
recalled from Section II-6 that other problems arise as well when 
one leaves the domain of constant IX.) Now since the saturation of 
polarization, or departure from linearity, is more easily achieved 
for orientational than for electronic polarization, we must show 
how the foregoing remarks apply to the former type ofpolarization. 

First remark that for the type of polarization just considered, 
where Uint depends upon P and the equilibrium condition satisfied 
is that UT should be a minimum, the entropy of formation of the 
dipoles is generally zero. Accordingly, all the properties attributed 
to the energy likewise apply to the free energy: It is (most con
veniently) assumed quadratic in P and is a minimum at given 
temperature for the equilibrium condition. In the case of orienta
tional polarization, however, it is only the free energy which has 
these properties. There is in this case no internal energy involved 
in the formation of the average moment (/l), only entropy. Cor
respondingly, it is not the energy which is approximately quad
ratic in P, but the free energy. Finally (and fortunately for our 
discussion), the minimum principle satisfied at thermal equili
brium is that of the free energy. The rest of the discussion is 
exactly the same as before. When the dipoles become saturated, 
one leaves the linear regime and calculations become more difficult. 

The presence of large fields in the compact layer, partially as 
a result of the "feedback" effects noted earlier, make it likely that 
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in some cases the nonlinearities introduced by dielectric pheno
mena alone (we exclude from consideration the nonlinearities of 
the diffuse layer, or the failure of a simple imaging model to 
account for that region) may cease to be negligible. The energetics 
of adsorption as well as motion on the IHP may be significantly 
altered by this phenomenon, thereby affecting the question of 
compact layer order as well. It provides an interesting subject for 

further theoretical study. 
B. Solvation. We next consider how some of the foregoing 

observations apply to the matter of solvation of inner-layer adions. 
As stated before, the fields acting normal to the IHP are typically 
quite large enough to saturate the orientable permanent dipoles of 
a polar solvent. For example, water molecules with permanent 
dipole moments of 1.85 X 10-1 8 esu will saturate in fields of the 
order 105 esu, or 2 X 107 V/cm. Such a field in undoubtedly 
attained within the experimental range. Furthermore, the field 
parallel to the IHP at the position of a water molecule immedi
ately adjacent to an adion is also of this order of magnitude. Thus, 
in the absence of the large normal component offield, the solvent 
molecules immediately surrounding an adion on the IHP would 
be saturated by the field of that adion. In the presence of the large 
normal field, the field of the adion only manages to perturb the 
already saturated surrounding dipoles so that they no longer 
point directly perpendicular to the IHP. Whether or not this 
perturbation is small enough to be treated by a linear approxima
tion depends on the actual numbers involved, but we see that, 
under the conditions applying in the compact layer, the free 
energy of solvation of adions will exhibit the complexities discussed 
above. It is therefore of interest to obtain an expression for the 
free energy of an orientable permanent dipole in the orienting 

field	 Helf. 
Proceeding as before, we argue that the equilibrium condition 

is satisfied whenever 
"VpF

T 
= "VpFint(p) - Helf = 0 (35) 

where FT is the free energy of the dipole and F int is its internal free 
energy. Rewriting slightly and integrating by parts leads to 

r"elf (36)Fint = P . Helf - Jo P(H') • dH' 
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Now if we make use of the classical Langevin result 

IPI = <ft) = ft{coth (ft l6"elfl/kT) - (ft l6"elfl/kT )- 1} (37) 

then integration yields 

F int = ft !6"elfl{coth (ft l6"elfl/kT) - (ft l6"elfl/kT )- 1 

X [1 + In {(ft l6"elfl/kT )- l sinh (ft I6"elfl/kT ) }]} (38) 

Finally, by adding the energy of interaction -p. Helf, we obtain 
the free energy of the permanent dipole in the orienting field 

FT = -kTln {(ft l6"elfl/kT )- l sinh (ft l6"elfl/kT)} (39) 

Expanding for small values of the argument gives us the following 
relationship exactly as anticipated, 

FT . -tkT(ft l6"elfl/kT )2 = -l<ft) l6"elfl (40) 

For large values of Ift6"elf/kT/, the situation of current interest, 
we find the asymptotic result 

FT ~ -ft l6"elfl + kTln (2ft J6"elfl/kT) (41) 

The first term is just the asymptotic expression for the energy of 
the saturated dipole, and the second term follows from the entropy 
removed upon orientation of the dipole. The first term is the 
larger of the two for large l6"elfl (in the ratio of a large number to 
its logarithm), implying an attractive interaction between the 
permanent dipole of a water molecule and adions of either sign. 
Note that, expressed in terms ofP and Helf, the free energy asymp
totically approaches twice the value predicted by the linear (low
field) model. 

Though we shall not do so here, the above results should be 
employed in any adequate classical treatment of adion solvation. 
The solvation of compact-layer ions and the steric effects accom
panying this process is but another example of a process involving 
polarization of the neutral species which is not adequately repre
sentable by means of a dielectric constant. 

III. Quantitative Discussion 

1. Introduction 

In the second section of this article, we have attempted to give 
a clear account of the principal effects active in determining the 
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structure and behavior of the compact double layer; at the same 
time, we have tried to subordinate the arithmetical details in
volved in actually performing accurate calculations to the more 
important matter of portraying the principal physical features of 
the double layer with reasonable fidelity. 

In the present part, we turn to somewhat more quantitative 
matters. We shall herein augment our previous discussion by 
giving more attention to the quantitative aspects of two previously 
discussed subjects: the question of order and the role of the diffuse 
layer. We are still interested primarily in results rather than the 
methods for obtaining them, however, and it is not until Section 
IV of this article that we shall become primarily concerned with 

computational methods. 

2. Examining the Question of Order 

At this time of writing, the authors are aware of only two serious 
attempts to evaluate the appropriateness of the hexagonal array 
model for a system of adsorbed ions. The first of these is by the 
present authors (88) and titled "Thermal Stability of an Adsorbed 
Array of Charges in the Einstein Approximation"-hereafter 
referred to as TSE. The second, the paper by Bell, Mingins, and 
Levine (8) is "Cell and Hexagonal Lattice Models for Adsorbed 
Ions in Electrical Double Layer Theory," which will be hereafter 
referred to as CHM. A somewhat preliminary form of the latter 
treatment was presented at the Fourth International Conference 
on Surface-Active Substances (76) and contains most of the 
principal ideas of the expanded version. 

In essence, both treatments parallel the qualitative discussion 
given earlier. A given ion is considered to move in the field pro
duced by all other ions regarded as fixed at the sites of a hexagonal 
array. The given ion, which would reside at one of the array sites 
in the absence of thermal motion is considered to fluctuate about 
that position at finite temperatures. The central problem within 
this Einstein-type approximation is to determine the conditions 
necessary in order that the fluctuations are "small." 

The actual criteria used in both TSE and CHM differ in detail 
somewhat from that discussed earlier in this article. In our earlier 
discussion, we considered a certain fluctuation in position equal 
to the distance from point 0 to a', hence equal to r1jV3. Exploiting 

the fact that the activation energy for greater fluctuations than 
this amount rises very steeply with distance from the "proper" 
site, we assumed that the crossover between array structure and 
quasi-random arrangement should occur when the activation 
energy for such a fluctuation equals k T. In TSE, a somewhat 
smaller fluctuation was considered; the fluctuation distance was 
essentially taken to be (3j4V3)r1 for reasons which will become 
clearer later. On the other hand, the fluctuation distance involved 
in CHM is (3j16172) 1/ 4r1~ 0.37lr1> again for reasons which will 
emerge in later discussion. We shall refer to these three fluctuations 
generically as "critical fluctuations." Another slight difference 
between the criterion in our earlier discussion and the two treat
ments of interest is in how the critical fluctuation enters the criter
ion for lattice breakdown. In our earlier discussion we asked 
when the critical fluctuation requires energy k T. In TSE, however, 
we ask, "When is the critical fluctuation equal to the actual 
r.m.s. fluctuation?" Finally, CHM considers the matter by 
asking, "When does the probability of exceeding the critical 
fluctuation equal one-third?" As one might expect, the overall 
criteria for lattice stability employed in TSE, in CHM, and in our 
earlier discussion are so similar that the results are essentially 
equivalent, and there is no strong reason for preferring one over 
another. 

Apart from these slight differences, there are additional details 
in which the TSE and CHM treatments differ. Whereas C-O 
imaging was treated in TSE, CHM contains a variety of imaging 
conditions, C-C, C-D, O-D, and D-D. A number of useful 
quantities are tabulated for each case. Second, the CHM treat
ment approximates the potential "Pa(x,y, {J) by a quadratic cir
cularly symmetric potential. Such an approximation strongly 
overestimates the probability of moderately large fluctuations, 
particularly along principal lattice directions. The TSE approach, 
on the other hand, is to calculate the exact r.m.s. fluctuations 
along particular lines of special interest and then to estimate the 
r.m.s, fluctuation radius from a knowledge of the fluctuations 
along the selected directions. This method has the advantage of 
properly accounting for strong variations, when they occur, from 
symmetric, parabolic dependence of "Pa upon x and y, yet it 
requires an additional step to obtain from the data along the 
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selected lines the Lm.S. fluctuation radius in the full two-dimen
sional problem. Such an additional step becomes completely 
trivial as soon as the circular-symmetry assumption is employed. 
Finally (most important from the point of view of the final con
clusions reached), the numerical values assumed in the TSE and 
CHM treatments for such quantities as ~, y, and, most critically, 
€1 are different. In TSE (applying to the C-O imaging case), 
the values generally assumed for €1 for adsorption from a gas or 
aqueouS phase, respectively, were €1 = 2 and €1 = 6. On the other 
hand, the smallest value assumed for €1 in CHM was 10; data are 
even quoted for €1 = 15 and €1 = 28. In view of our earlier dis
cussion, we now feel that for these purposes, the appropriate 
dielectric constant must surely be of the order of unity. In sum
mary, the important differences between TSE and CHM are in 
the more generally applicable imaging assumptions of CHM and 
the more nearly correct (although probably still excessive) esti
mates of €1 in TSE. We next consider these treatments in more 

detail.
As noted before, the TSE treatment incorporated accurate 

results for the C-O imaging potential 1f'~(x,y, 1) along selected 
lines to obtain the Lm.S. vibration amplitude along such lines. All 

distances in this treatment are normalized by h = (\/3T1/2), the 
altitude of a basic triangle of side T1 in the hexagonal array. For 
present purposes, we set the zero of potential at the "proper site" 
of the given adion on the IHP, taken here to be the origin. Denoting 
the normalized distance from the origin* along a given line on the 
IHP by l == (actual distance)/(vl 3T1/2), we may write the nor
malized Lm.S. fluctuation amplitude L according to Boltzmann 

statistics as max
l2 exp {-zve1f'~(l)/€kT} dl)1/2 

L == (U)1/2 ==" 0 (42){i
1

{max exp {-zve1f'~(l)/€kT}dl 

The quantity € is here an effective dielectric constant intended to 
account for polarization effects in the IHP; lmax is the maximum 

'" In the work cited, not all lines passed through the origin, so a different 
definition was used for these lines; obviously, such lines are not as interesting 

as the ones passing through the "proper site." 
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excursion permitted the given ion along the selected line-it is 
either infinity or, for lines passing through other charge sites where 
the potential becomes infinite, equal to the normalized distance 
from the origin to the nearest such charge site. 

What is the relationship between the actual two-dimensional 
problem and the TSE treatment which only considers one-dimen
sional motion along various lines? It may appear that because 
only one-dimensional averaging is carried out, the treatment only 
applies to a particle constrained to fluctuate along a line. Actually 
this is not the case; however, the relationship between the one
dimensional averaging and the proper two-dimensional averaging 
is somewhat subtle. Consider two limiting cases. In the first case, 
the potential is circularly symmetric, and the normalized fluctua
tion amplitude is equal for all directions. In this situation L~ = 
Li + Li = 2Li, where the subscripts here refer to the dimen
sionality of the problem considered; that is, L 2 is the Lm.S. ampli
tude in the two-dimensional problem and L 1 is the corresponding 
value in the artificial one-dimensional problem actually con
sidered. In this case, which is the "worst" in the sense that all 
directions are equivalent and particle confinement the least, the 
relationship is simple; L 2 is obtained from L 1 by multiplication by 
V2. Consider next the opposite extreme where the potential is 
far from being circularly symmetric and confines the particle 
motion to a narrow strip about one of six equivalent directed lines. 
In this case, the particle actually does confine its motion effectively 
to one-dimensional traversal along the "easy" directions; once on 
one of the easy lines, it remains there until it passes near the origin, 
when it canjump to one of the equivalent easy lines. For this case, 
one would expect L 2 to approximate to L 1 ; this is the "best case". 
The actual situation lies somewhat between these two extremes. 
For small excursions about the proper site, the potential approxi
mates to a circularly symmetric one; for large fluctuations, motion 
directly towards other charges in the lattice is strongly inhibited, 
fluctuations in these directions are strongly bounded, and the 
principal contribution to L 2 arises from L 1 calculated along an 
easy direction, a binary axis of the basic hexagonal array. As 
seen from Fig. 9, the difference in potential between the easy and 
hard directions is almost 0.1 V, or about 4kT, at l = 0.6 for 
R1 = 5, ~ = 3 A, and € = 1. The difference is close to kT for an 
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l value in the vicinity of 0.5. Since the L 2 value considered critical 
is also 0.5 in this treatment, the circular symmetry assumption is 
seen to be fairly good for all fluctuations of interest. (Exactly 
where one should regard the symmetry assumption as being no 
longer adequate would, of course, depend on the values of f3, E, T, 
and R1 as well as imaging conditions.) This serves to justify the 
relationship actually employed to convert from L 1 to L 2 ; if one 
can believe that one may carryover this result from the C-O case 
to the C-C case, this also partially justifies the much simpler and 
more tractable approach later published by Bell and co-workers 
in the CHM treatment. One should of course distinguish in prin
ciple the question of circular symmetry from that of the quadratic 
behavior with l of the potential, assumed in CHM. The latter 
behavior implies the former but is not a necessary consequence of 
it. Nevertheless, as a practical matter, the two conditions seem 
to go hand-in-hand. As we shall see later, Bell and co-workers 
justified their approximation to the potential in an analogous but 
different way. _ 

When we combine the relation L 2 ~ v2L1 with the TSE 
criterion for stability, L 2 < 0.5, we obtain the stability criterion 
in terms of L 1 

V (p2) == hl.; < (2V2)-lh ~ 0.35(V3 r1/2) ~ 0.306r1 (43) 

The values obtained for L 1 (along the easy direction) are shown 
in Fig. 10, where E has been set equal to the (excessively large) 
value of 6 in obtaining that data. Both the exact results and for 
comparison the results based on an {2 approximation to the form 
of the potential, are shown for the C-O imaging case considered. 
Also shown for comparison are the C-D imaging results of Bell 
and co-workers. The data were obtained from the conference 
paper (76) adjusted to a dielectric constant value of6, and divided 
by V2 for comparison with the L 1 values obtained in TSE. The 
greater fluctuations induced by diffuse-layer screening are quite 
apparent in the results. 

When one incorporates the data for L 1 obtained in the TSE 
treatment into the lattice stability criterion, the results may be 
expressed in terms of the critical temperature for loss of hexagonal 
ordering. For f3 = 3 A and C-O imaging, a lattice with R1 = 5 is 

00 
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stable up to a temperature of approximately 1760!€oK, while one 
with R = 7 is stable up to about 760!€oK. Since the critical 

1 
temperature is approximately quadratic in fJ, the above data 
imply that for fJ = 2 A, the critical temperature for a lattice with 
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3R~F/2 vs. R1 "" TlffJ (88). 

R = 7.5 is about 785!€oK, while for R1 = 10.5 the critical tem
perature is about 338!€oK, somewhat above room temperature 
for € = 1. We would therefore expect the hexagonal lattice to be 
stable at room temperature provided R1 Z 11, according to TSE. 
This conclusion, which only applies in the C-O situation, is in 
substantial agreement with our earlier discussion oflattice stability 

in the C-O regime. 
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Unfortunately, no treatment along the lines of TSE has been 
published heretofore for the C-C and C-D situations. Accord
ingly, the only source of prior calculations pertinent to these cases 
is the treatment of CHM. Still, the approximations made there 
are likely to be quite adequate, and so with more likely values for 
the dielectric constant, this work should be a fairly reliable guide 
to the lattice stability situation in the electrolyte double layer, 
where single imaging seems inappropriate. It is therefore of great 
interest to examine this work in somewhat greater detail. 

TABLE III
 
Results of the CHM Treatment for the C-C Case
 

N-l (A2) T1 (A) R1 A' (E = I) V(1) (A) L2 

50 7.6 2.5 243 1.3 0.20 
70 9.0 3.0 108 1.9 0.24 

100 10.75 3.6 46 2.9 0.31 
200 15.2 5.1 7.5 7.3 0.55 

As we have mentioned, the CHM treatment involves approxi
mating the potential energy variation on the IHP in the vicinity 
of the origin by a parabola of revolution: Zve1jJa "-' A'p2 + con
stant, where A' is a parameter which is obtained by expanding the 
accurate potential expression near the origin. In carrying out this 
calculation, the direct image summation method was employed 
by Bell and co-workers, and results were compared which involved 
truncation after 30 and 40 terms in the image series. In all cases, 
the 90 nearest neighbors and their images were included. In 
Table III we give results for X taken from the CHM treatment for 
C-C imaging, modified here by taking € = 1 rather than 15. 
The value of fJ is 3 A. 

There is a particular utility to the parabolic approximation 
used in CHM. When the potential varies quadratically with 
distance p from the origin, the integrals involved in the theory 
may be carried out analytically. The result is that we recover the 
equipartition result applying to quadratic contributors to the 
energy. Indeed, the expression for Lm.S. fluctuation simplifies to 
the result (p2»1/2 = (kT!X)1/2. In the last two columns of 
Table III we show the normalized and unnormalized Lm.S. 
fluctuation amplitude following from the CHM treatment for 

1 



66 
67 DISCRETE COMPACT DOUBLE LAYER 

C. A. BARLOW, JR. AND J. R. MACDONALD 

c-c imaging. Thus, we see from a comparison of the critical r 1 

value implied by Table III (a little less than 15.2 A) with our 
earlier estimate (about 14 A) that the major difference between 
the CHM treatment and that contained earlier in this article is 
primarily not so much one of principle as what value of dielectric 
constant to use in the present context. The difference in viewpoint 
on this one matter is sufficient to cause strikingly different ap
praisals by the present authors vis avis Bell et al. concerning the 
domain of validity of the hexagonal model. The CHM treatment 
actually considers several quantities other than the ones we have 
discussed here; these are all associated with the cell concept 
employed in that treatment, and it is most interesting to consider 
some of the features of this approach. 

The CHM treatment invokes a concept familiar in solid state 
physics, that of the proximity cell. * By definition, the proximity 
cell associated with any given hexagonal lattice site is the locus of 
all points on the IHP closer to that lattice site than to any other 
lattice site. From its definition, it is clear that the proximity cells 
surrounding each lattice point are hexagons and completely fill 
the surface (except for a set of measure zero) like a pattern of tiles. 
The area of each proximity cell is equal to the average area of 
surface available per adion, and hence is equal to the reciprocal 
of the adion surface density N. One of the basic assumptions of 
the CHM treatment is that all the ions, including the given ion, 
are confined to the interiors of the proximity cells associated with 
their respective proper sites. We believe that there is no good 
reason for making such an assumption: first, because as we shall 
explicitly see later, the actual particle array does not maintain 
spatial correlation over indefinite distances (unlike a three
dimensional solid), and the hexagonal ordering is therefore only 
local (88) ; second, since each particle is not bound to a true fixed 
hexagonal site determined by the boundaries of the array and the 
remote particles as well as the near neighbors, particle motion 
eventually can transport a given particle indefinitely far from its 
original neighbors. This latter process can occur even though the 
local surroundings of a particle remain hexagonal during most of 
the time; nevertheless, the identity of the neighbors will have 

changed.
* In solid state physics, the term used is Wigner-Seitz cell. 

Because the hexagonal boundary of the proximity cell is in
convenient in performing calculations, Bell and co-workers borrow 
another trick from solid state physics, this time originated by 
Debye in his theory of specific heats and later more explicitly 
employed by Wigner and Seitz to calculate approximate wave 
functions in solids. The hexagonal proximity cell is replaced by a 
circular region centered at the lattice site and having the same 
area as the true cell. The radius, r1\1' of this circular cell is clearly 
(7TN)-V2, orr11I = (V3j27T)1/2r1 ==ro; it plays the same rolein the 
statistical integrals as did lmax in the TSE treatment. Clearly, from 
its definition, the quantity lmax represents a true limit to the par
ticle motion for the situation considered, whereas r1\1 represents 
an artificially imposed restriction. The use of r1\1 rather than lmax 

has the effect of underestimating the magnitude of fluctuations 
by constraining the particles to the interiors of their cells. On the 
other hand, the error made is quite small unless there is significant 
probability for fluctuations larger than r1\1; when this situation 
occurs the fluctuations have broken down the lattice structure in 
any case and the whole calculation is pointless. As a practical 
matter then, the use made of r1\1 is permissible provided one does 
not apply the calculation in the regime where the Einstein model 
itself is nonsense, the quasi-random regime. Since the treatment is 
only intended to demonstrate approximately where the hexagonal 
lattice begins to break down and not the properties of the system 
after that disorganization has been significantly accomplished, 
logical consistency is maintained. 

Next, the CHM treatment defines a critical fluctuation radius 
equal to (2)-1/2 r1\1' This radius has the property of dividing the 
circular cell into two equal-area halves. Bell and co-workers 
finally assert that the lattice structure will break down when the 
probability of the ion's occupying the outer half (the annular ring) 
is just greater than one-half the probability of occupying the inner 
half (the interior of the circle ofradius r1\1jv2). Defining the ratio 
of the probabilities of occupation as p (termed "p" in CHM), we 
have p == (probability of occupying outer half) j(probability of 
occupying inner half). The CHM criterion for lattice breakdown 
is then p > i. Actually, the probability of exceeding the critical 
fluctuation radius is, in terms of p, equal to p(l + p)-I. Thus, 
the CHM criterion is somewhat more stringent than it first might 
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appear and perhaps more stringent than intended. The probability 
for exceeding the critical fluctuation must be greater than 

A(I + .1)-1 or I2 2' 3'Finally, Bell et al. use a peculiar procedure to test the validity 
of their parabolic approximation. They calculate the potential at 
various points on the IHP arising only from the six nearest neigh
bors, excluding the contributions from images. They then compare 
this potential with the value obtained from their parabolic approx~ 
[mation at various points. They conclude from the fact that agree
ment is fairly good within most of the proximity cell (whose 
boundary is the inner hexagon in Fig. 11), that the parabolic 

Fig. 11. Contours of equal electrostatic energy of interaction between a 
mobile ion and its six nearest neighbors (without images) in the region between 
the central lattice point and the six nearest lattice points. Full curves are 
accurate energy contours; dashed curves are energy contours following from 
parabolic approximation. The energy of interaction at the center is 6z~e2/Elrl 
and the numbers correspond respectively to (1) 6.02, (2) 6.1, (3) 6.2, (4) 6.3, 
(5) 6.4, (6) 6.5, (7) 6.6, (8) 7.0, (9) 7.5, (10) 8.0, (II) 8.5 in units of z~e2/Elrl' 
The heavy hexagon shows the boundary of the central proximity cell (8,76). 

approximation likewise applies to the full C-C problem. Un
fortunately, we cannot agree with Bell and his co-workers that this 
argument is a cogent one. The effect of imaging is to alter strik
ingly the potential variation in the plane as we have already seen 
(refer also to Section V). For exampie, if one com putes the actual 
C-C potentials for a hexagonal array with R1 = 5 at the points 
c' and a', these (normalized) potentials are respectively 0.0177 
and 0.0395 higher than that at point O. Since the distances of these 
two points from the origin are in the ratio of 1:2, the potentials 
relative to the origin should be in the ratio of 1 :4 if the parabolic 
approximation is valid. Instead their ratio is I: 2.23, and if an 
exponent is derived from this, one finds that the average power 
law applying from the origin to a proximity cell vertex is 
V'(p) = Al + A 2pl.16, where Al and A 2 are constants. This 
points up the desirability of a closer check on the CHM 
treatment. 

As a short digression, we remark that there is a much simpler 
method of determining the parameter A' than that used by Bell 
et al. From Laplace's equation as it pertains to a point on a sym
metry line parallel to the z axis, we may write immediately 

V'(p,z) ~V'(O,z) - H02V' (0,Z)/ OZ2]P (44) 

where p is the distance of the field point from the symmetry line, 
and thus the argument "zero" in V' on the right-hand side desig
nates that the quantity is to be evaluated on the line of symmetry. 
This equation, essentially a recipe for A', is more general than any 
recipe applying only at the IHP or on the line through O. It 
applies for any z and on any axis of n-fold rotational symmetry, * 
the only place where such a parabolic behavior may apply. Its 
particular advantage lies in the relative simplicity of calculating 
values of V' on lines of symmetry as compared with calculating V' 
at a general point. Things are particularly simple if we retain only 
the leading term in the separated form of the general solution of 
Laplace's equation under C-C imaging conditions. The leading 
term has a z-dependence given by sin (Tr z]d), whence 02"1'/0 Z2 = 

_(Tr/d)2V'. Introducing this approximation into Eq. 44 yields the 

• We exclude the trivial case n = 1; for n = 2, A' depends on direction, and 
Our formula gives the average value. 
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beautifully simple 

1p(p,z) "-' 1p(O,z){1 + (7Tpf2d)2} (45) 

From this result it follows that ;" "-' (7Tf2d)2 zve1p (0, z). 
To conclude this section on lattice stability, we shall briefly 

point out the interesting possibilities for applying another type 
of basic approximation rather than the Einstein model. In the 
Einstein model, the different ions were considered to move inde
pendently in the potential provided, on the average, by the other 
ions. For small motions of the ions, we even ignore the small effect 
upon the time-average local potentials of the smearing out of all 
the ions into small neighborhoods of their proper sites. In a three
dimensional problem, we should have argued that since the slight 
smearing is almost spherically symmetric, there will be no effect 
anyway. In the present system we are not so fortunate, for the 
potential arising from a small disk of charge is only approximately 
equal to the potential obtaining when all such charge is regarded as 
concentrated at the center. Furthermore, the screening effect of 
the diffuse layer will cause the approximation to be even poorer. 
Nonetheless, being a bit lazy, we prefer to argue that for small 
enough fluctuations, the alterations brought about by this effect 
will be negligible, that it is a "higher-order effect." This is by no 
means an unprecedented approach-it is not necessarily all bad, 
it simply has its limitations. 

Rather than embark upon a laborious program for correcting 
the "small" errors in the Einstein model, it might be just as easy to 
employ another approach which to some extent takes into account 
the correlations in particle motions as well as the simultaneity of 
their motions. This approach is the phonon picture, harmonic 
approximation, or normal-mode method (14, 109, 110, 132). 
What it involves is a solution of the coupled equations of motion 
for small displacements; it generally describes the vector displace
ment directions and frequencies versus wave-vector k for wave 
disturbances proportional to exp irk . r}. At thermal equilibrium, 
the energy contained in each mode is determined from an Einstein
Bose distribution, and for all modes for which the circular fre
quency t» is much less than kT'[h, the equipartition principle 
applies. The energy in each such mode is k T. 

Consider such modes, which can be analyzed classically. 
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The total energy contained in a mode will be given by E = 
iiNomw; /Ai /2, where m == the mass of each particle, No == total 

number of particles in the system, os, == circular frequency of the 
mode, and Ai == complex amplitude of the mode. The equiparti 
tion principle tells us that IA i l2 = 2kTjNomw;. Given this fact, 
the frequencies {w;}, and the reasonable assumption that the 
phases of the different modes are uncorrelated, one can in prin
ciple determine many thermal-equilibrium expectation values for 
various quantities of interest. We shall not say much more about 
this here, but we are presently working along this vein and hope 
to present a detailed treatment in the future. For the present, we 
shall merely illustrate some particular consequences of the phonon
approach. 

Let us ask what is the mean-square fluctuation in the position of 
the particle whose proper site is the origin according to the 
phonon picture. Each mode contributes its Ai to the displacement; 
the expectation value for the square of the particle displacement
is therefore 

(p2) = Ii Ii (AiA:) = Ii (IA i /2) (46) 

the sums being Over modes and the expectation values for cross
terms, (AiA;> with i '# j, vanishing by the random-phase assump
tion. We next consider the contribution to (p2) from the "acoustic 
branch," modes for which w = SK, where S is the speed of the 
wave with wave-number K. We find 

(p2) = Ii 2kTfNomw; = (2kTjNomS2) Ii Ki2 (47) 

Now the number of acoustic modes with wave number between
 
Kand K + d« will be proportional to No and to K: something like
 
(27TN)-lNoK dK, where N is the surface density of particles.
 
Changing the sum to an integral then yields 

(p2) = (kTj7TmNS2) i K m ax 

K-1 d« (48) 

where actually we are not interested now in the factor outside the 
integral but only in the form of the integral. The quantity Kmax is 
determined from the microscopic structure of the system; this does 
not interest us here either. All that we are concerned with here is 
the logarithmic divergence of the integral coming from the lower 
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end of integration (where our expression for OJ applies). There is 
no way of arguing the lower limit of integration effectively away 
from zero provided we are dealing with a truly macroscopic 
system. The prediction is unequivocable. The long wavelength 
types of collective motion contribute a divergent amount to the 
thermal motion of a given ion away from its proper site. This 
would not have occurred in a three-dimensional system, where 
the number of modes in the wave number range dK about K is 

K 2,proportional to but here we are definitely stuck with the 
divergence. 

But what is the physical meaning of such powerfullong-wave
length oscillations? Such motions merely translate large sections 
of surface relative to other very remote sections of surface without 
significantly affecting the relative positions of closer neighboring 
particles. Hence, these modes do not affect the local environment 
of a particle even though they do allow it (and its neighbors) to 
work its way through the large collection ofparticles in a Brownian 
motion fashion: many "microcrystals" moving relative to each 
other, diffusing away from their starting points, occasionally 
exchanging member particles where their (fuzzy) boundaries 
meet, but each one a microcosmos, containing whatever internal 
order in its constituent particles is allowed by the amplitude of the 
short-wavelength modes, which, of course, do not contribute any 
divergences (88). Such is our physical picture of the two-dimen
sional system we treat, this picture obtained in the most painless 
way from the phonon method. 

3. Diffuse-Layer Screening 

In the previous sections, we have repeatedly been concerned 
with the screening effects the diffuse layer provides, both from 
dielectric imaging and from the effects of mobile ions near the 
OHP. In the present section, we examine a few aspects of such 
screening which did not seem appropriate to include in our earlier 
discussion. First, we will consider the effect upon screening of 
r *- 1. Next, we examine the restrictions on the validity of the 
Poisson-Boltzmann equation (23,55), in connection with the 
statistical treatments of the diffuse layer. Finally, we shall briefly 
discuss the usual sort ofapproximations involved in such statistical 
treatments. The discussion of the diffuse layer will be brief, first 

~ 
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because this article is really concerned primarily with the compact 
layer, and second because the usual approximations seem to us to 
be so unphysical and inappropriate that the subject itself is not 
one of our favorites. 

'Ve have already pointed out that for given d, the combined 
causes leading to diffuse-layer screening have their maximum 
effect for r = I and for C-C imaging are invariant under the 
interchange {J f---t 'Y. Therefore, in the preceding discussion where 
the choice {J = 'Y, or r = I, was made the diffuse-layer screening 
effects were at their maximum, particularly significant with 
regard to lattice stability. What we now consider is how the 
screening effects depend on y for given {J. 

It is most convenient to return to the matter of the interaction 
energy between two adions separated by the distance r and con

l
ductively imaged both by the ESP and by the OHP. We shall take 
El = I for our present discussion. Using the results of Appendix I, 
we have calculated the normalized interaction Ulk T as a function 
of Tl for various values of 'Y, T = 3000K and {J = 2 A. (The inter
action energy is proportional to {J-l for given R, = rl/{J and r, so 
the conversion to another temperature or {J value may be easily 
accomplished.) As anticipated, the approximately exponential 
drop in interaction energy with particle separation is characterized 
by a "relaxation length," or characteristic screening distance of 
the order 2d/n. Hence as 'Y is increased, the slope ofln (U/kT) vs. 
R l decreases in absolute value as anticipated. An interesting 
consequence of this behavior is that for larger and larger values 
of r the critical value of Rl> termed here R , at which U/kT

e 
becomes unity is shifted upwards. Based on our earlier discussion
 
of U/kT for C-O imaging, we would anticipate that as r __ 00,
 

the value of R, should approach the C-O result: R, __ 8.2. The
 
results for R, summarized in Table IV seem to verify this limiting

behavior. 

In Table IV we have also shown values of the function G( I') = 
Rc/3.6, which is the ratio of R, for a general value of r to that for 
I' = 1. It should be a reasonable approximation to obtain r.m ,s. 
fluctuation distances, crossover values ofR , coulombic hard-core

l 
diameters, and the like for r *- I simply by multiplying the 
appropriate r = I value by the function G(r). Note that the 
value of R, for r = I differs slightly from that used elsewhere in 
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this article; the present value, R; = 3.6, is the more accurate. 
Because of the possible usefulness of G(f), we have also obtained 
a Chebychev rational function fit to the tabular data with the 

result 117 + 0.24f (49) 
G(f) ~ 2.28 - 65.4 + 10.8f + f2 

Such a function will prove particularly significant for any situation 
where the effective imaging plane differs appreciably from the 

conventionally defined OHP. 

TABLE IV 

Effect of r upon Screening 

r Rc G(r) r Rc G(r) 

t 
1 
p~ 

2 
2 
21 

2 

2.7 
3.6 
4.25 
4.8 
5.25 

0.75 
1.0 
1.18 
1.33 
1.46 

3 
6 

12 
24 
00 

5.6 
6.93 
7.75 
8.0 
8.2 

1.56 
1.93 
2.15 
2.22 
2.28 

Much of the theory of the diffuse layer has invoked the poisson
Boltzmann equation (13,16,37,62,63,67,68,71,78,116,120,122,129, 
131), so we will now examine briefly the approximations inherent 
in such an equation and attempt to assess its validity in describing 
the diffuse layer in the vicinity of adsorbed charges on the IHP. 
Much of our discussion here is directly analogous to that concern

ing the concept of a dielectric constant. 
In using the Poisson-Boltzmann equation, one first ignores 

discreteness of charge in the statistical assemblage of particles, 
approximating the actual particle distributions in that assemblage 
by continuous smoothly varying functions. For positive ions the 
spatial distribution function may be written p+(r); for negative 
ions, p: (r). Thus, in this section p denotes a particle number 
density, not a distance. The charge distribution is therefore taken 
to be the smoothly varying function ep+(r) - ep_(r), where for 
convenience we consider only a uni-univalent electrolyte with 
\z,,1 = 1. Note that although we still may allow for the presence 
ofdiscrete charged particles, such as adions, which are not regarded 
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as part of the present statistical assemblage, the diffuse-layer ions 
are smoothed out into a continuous distribution. The smoothed 
electrical potential therefore obeys the equation 

\121p = (47TejEs)[p_(r) - p+(r)] (50) 

The next step is to assert that the distributions obey the Boltzmann 
law, which we write approximately in a form consistent with our 
smoothed potential 

P± = Po exp {~e1p(r)jkT} (51) 

where we have defined Po to be the density of either species at a 
point where the potential vanishes, taken here to be the remote 
bulk of the electrolyte. 

On combining the two equations, one finds the usual result, 

\721p(r) = (87TP oejE.) sinh {e1p(r)jkT} (52) 

This equation is so often employed as the starting point for 
statistical theories of the diffuse layer that it seems almost heretical 
to remark its approximate character. Nonetheless, there are 
clearly several assumptions* involved if the Poisson-Boltzmann 
equation is to adequately describe the system. 

First, if "local field corrections," or "fluctuation potentials" as 
they are sometimes called, are to be unimportant, we require that 
the potential at r arise predominantly from those charges other 
than the closest neighbors. If this condition were not fulfilled, then 
the actual potential at r would have very little to do with p±(r) 
but would mainly involve the detailed locations of the close 
neighbors to r. Since the actual potential at r and not some sort of 
smoothed 1p is what properly enters into the Boltzmann expression, 
we clearly require that over most of a microscopically large 
neighborhood of r, the actual potential should not fluctuate by 
an amount significant compared with (kTje) if the Poisson
Boltzmann equation is to hold. From this restriction, we obtain 
two necessary conditions. Since the fluctuation potential is at least 
epl/3jE., where p is the larger of P+ and p_, we find that P±must no
where exceed the value implied by the inequality (e2 pl/3jkTEs) <: 1. 

• We will allow here the assumption of a well-defined dielectric constant 
E., inasmuch as this type of approximation has been flogged enough herein 
already. 
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Introducing the concept of a local Debye length 

An(r) = (kTEs/47Te
2)1/2{lp+1 + /p_j}-1/2 (53) 

we may rewrite the above inequality in the form h/An(r)] <: 1 
where r1 is here the mean separation distance between diffuse-layer 
ions. The Debye sphere of radius ).n(r) must everywhere contain 
many ions. The second necessary condition follows from the con
dition for validity of the Boltzmann statistics, that 1p should be 
essentially constant over a microscopically large region, a region 
containing many particles. We have that p-1/3\V1p1 <: kTje. How
ever, 1p includes the effects of external charges; so specializing to 
the case of a single adsorbed adion imaged in the ESP, we would 
have 1pext(r) ""'--' 2zve{Jz/E sr3, where the origin is at the ESP on the 
line connecting the adion with its image. (Note that we do not 
consider the effect ofdiffuse-layer ions here; there is no need to do 
so, since we are only determining roughly the rapidity ofvariation 
of 1p near an adion, and the effect of the diffuse layer is to increase 
the rate of such variation in any case.) We find that 

jV1pj = 21zvl e{J(l + 3z2jr2?/2/Esr3"-/ 3 IZvl e{JjE sr3 (54) 

Finally, our necessary condition for this case becomes 
2{Jr(3 Izvl e 1/Esr3kT) <: 1 (55) 

where the meaning of r 1 here is the same as just above. Again 
using the concept of a local Debye length, this time evaluated in 
the vicinity of the adsorbed ion, we find that in order for the 
Poisson-Boltzmann equation to apply it is necessary that we con
sider no values of r smaller than those satisfying the inequality
3r ~ {Jr~(rl/An)2. Finally, the maximum density of ions must not 

be so large that short-range forces become important. 
When all of the foregoing conditions are satisfied, the Poisson

Boltzmann equation approaches exactitude. Unfortunately, in the 
vicinity of the OHP, particularly near an adsorbed ion, these 
conditions fail very badly in almost every case of interest, thereby 
vitiating all theories based on this approach in this regime. 

In spite of the limitations of the Poisson-Boltzmann approach 
for our present system, we go on to consider a popular approxi
mate method of solving this equation when an infinitesimal per
turbation is applied. The method is useful when it is applicable; 
again, because the actual "perturbations" involved near adsorbed 
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ions happen to be quite large (we leave this for the reader to 
verify), the method seems inapplicable here, even if the Poisson
Boltzmann equation itself were a good approximation. 

The essence of Loeb's linearization method (77,78,129) consists 
in the following. Suppose we have found a solution to a Poisson
Boltzmann problem which we designate by a superscript O. That
is, 

p~ = Po exp {~e1pO(r)lkT} (56) 

V21p0 = -(47TejEs){p~(r) - p~(r)} (57) 

What will occur if we change 1p by an infinitesimal amount by 
bringing up * an external charge? The potential 1p will become 
1p0 + 01p, the particle densities will become p~ + r'Jp±, and pre
sumably the Poisson-Boltzmann equation will still apply to the 
modified quantities. 

On writing p~ + oP± = Po exp {~e[1p°(r) + o1p(r)JjkT} and 
expanding for Ie o1p/kT/ <: 1, one obtains 

p~ + oP±~ Po exp {~e1pO(r)/kT}{l ~ e o1pjkT} (58)
therefore 

OP± "-/ ~ Po exp {~e1pO(r)/kT}e 01p(r)jkT 

= ~ ep~ o1p(r) jkT 
(59) 

The linearity of the Poisson equation gives 

V2(01p) = (-47Te/Es){op+(r) - Op_(r)} (60) 

Combining these equations leads to an equation for the perturba
tion potential 

V2(01p) = (47Te2jEskT){p~(r) + p~(r)} r'J1p (61) 

It is readily seen that in terms of the local Debye length, this
 
equation may also be written V2(01p) = An2(r ) 011', clearly exhibit

ing the perturbation approach from which it was obtained.
 

We next mention another type of perturbation procedure 
favored by some (17,121), but which in its application here 
generally suffers from the same drawbacks. The typical expansion 
parameters are not small, but often much greater than unity. 

• For simplicity, we only consider regions in the system where the external 
charge density vanishes; the approach is not restricted to this, however. 
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The approach in question is commonly known as the cluster 
expansion method, was introduced by Ursel, Yvon, Mayer, and 
others, and represents a brick in the rapidly growing edifice of 
modern statistical mechanics. There are several related com
putational techniques in this field, and each technique has its 
own set of boring (but useful) theorems, graphical representations, 
and proponents. The general outlook for the growth in our ability 
to do the bookkeeping and arithmetic associated with many-body 
systems is very hopeful. However, there is always the danger that 
some of us will learn the arithmetic and the formalism for per
forming the bookkeeping, and give insufficient attention to the 
physics of the situation, the validity of the approximations, etc. 
This is a temptation which is hardest to resist when the formalism 
itself has a certain beauty and the investigator the sophistication 

to appreciate it.
The cluster expansion method relies upon the fact that the 

Ui i partition function !!r involves the pairwise interactions 
between particles i and j in the following manner 

!!r = ! exp {- UtotaJ!kT} 
All System

configura.tions 
(AS C) 

(62)= !exp {__1 ~ Ui'} 
ASC kT i,i ' 

U<i) 

One defines the Mayer J-bondlii according to the equation 

(63)Ii; exp {- Ui;/kT} - 1C'= 

from whence we find 

!!r =JcTI (1 +Iij) = r1Jd rN TI(l +hi) (64)Jd 3 3rz . ' .Jd
3 

(i<i) (i<;) 

Now the cluster expansion procedure extracts out of the product 
of N(N _ 1)/2 factors all of those terms containing zero, one, two, 
three, ctc., I-bonds. All but a few of the integrations may be 
carried out for these early terms in the expansion (yielding system 
volume raised to a power) and one is left with "simple" integrals 
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to do, involving the interactions between only a few particles. The 
method is particularly suitable for short-range forces. One notes 
that I/;JI is guaranteed to be less than unity, so there is no great 
problem there. Occasionally the method is used in conjunction 
with approximations to Iii, however, and then the expansion 
obtained may actually be in terms of a large parameter. For 
example a possible but hazardous procedure is to replace the 
proper definition of the .fbond by the linearized approximation
Iii ~ -U;;!kT valid for /Uiil <. kT. This is most dangerous for 
strong long-range interactions such as the Coulomb interaction 
Uint- (Uint/kT) is roughly 500r-1 for two charges separated by 
distance r (in Angstroms) at 3000K with E = 1; for E = 80, the 
quantity Uint!kT is greater than unity for all r < 6.25 A. In any 
given problem, one must naturally consider the strength of the 
interactions, including the moderating effects present, before 
making approximations of this kind. Finally, it sometimes happens 
that the basic cluster expansion is very slow to converge, even 
without making the linearized approximation. This occurs 
whenever hi drops off so slowly with particle separation (as a 
result of a long-range interaction) that for the first terms in the 
duster expansion the growing number of equivalent permutations 
(among the ij indices involved in a product of I-bonds) dominates, 
and the magnitudes of successive terms may at first actually 
increase. This behavior is similar to what occurs when a large 
number L is considered in the series expansion of eL = 1 + L + 
(2 !)-1[2 + (3 !)-1[3 + .... Under such circumstances the duster 
expansion method becomes difficult to apply in a meaningful way. 

To close this section on the diffuse layer, we give a crude deriva
tion (using the foregoing types of approximations which we do not 
believe in) of the effective plane modification presumably first 
calculated by Levine, Mingins, and Bell (77). The presentderiva
tion is our own; it is so crude that we feel compelled to claim it lest 
Levine and co-workers or some other innocent persons be unjustly 
associaterl with it. Still, we believe that the present derivation 
Contains most of the basic ingredients contained in the other more 
carefully prepared treatments. 

Consider a single adion on the IHP and for simplicity consider 
"the ESP as nonimaging. Let the ion charge density (not number 
density) in the diffuse layer be given by p(r). Now assume that 
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per) is approximately of the form 
(65)p(r) = -ex(x,y,z)f(z) 

where -ex(x,y,z) is the surface charge density which would be 
induced on a perfect conductor by a charge e at the point (0,0, -y); 
the origin is taken here as lying on the OHP. Under such circum
stances, each plane slab of the diffuse layer of thickness dz acts like 
a metal conductor, except that the images produced are not of the 
usual full magnitude. The total potential is evidently 

~ = e{x2 +y2 + (z + y)2}-l!2 

_ e{x2 +y2 + (z +y)2}-1/2ff(') d' 
(66) _ef"d'fW{[2' + y - Z]2 + x2 +yZ}-1/2 

Using the fact that
 f' fez) dz = 1
 

we rewrite Eq, 66 as 

~ = er'f( ,) d'{[x2 +y2 + (z + y)2]-l!2 
_ [x2 +y2 + (2' + y - Z)2]-1/2} (67) 

Specializing to the case x = Y = °and expanding for large y, we 

obtain the simple approximation 

~?=' 2ey-2f"dUe ,) (' - z) (68) 

But since X(O,O,z) = [27T(Y + Z)2]-1 and the charge density ob
tained from linearizing the Poisson-Boltzmann equation is 
p r-J -2coe2~jkT, where Co is the bulk ionic concentration, we 

obtain fez) [47Tcoe(y + z)2jkT]~ (69)r-J 

On inserting our expression for ~, we find the integral equation 

fez) = (87Tc 2jkT)(1 + 2zjy) f'd'(' - z)fW (70)oe

""
 But 
fZ f{f (71) f
Z d'(' - z)fm == "" dr "" dr'f( C)
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therefore by neglecting 2z compared with y, consistent with our 
earlier approximation, we are able to write down a very simple 
differential equation for f 

2 2)(k Tj81Tc oe )( ayj az = f (z) (72) 

from whence it follows that 

fez) = AD1 exp (-ZjA D ) (73) 

where AD is here the bulk Debye length. The average plane of the 
induced charge thus lies a distance AD behind the OHP. Within 
our approximations, to the left of the OHP the total potential is 

~ r-J e{x2 +y2 + (z + y)2}-1/2 - e{x2 +y2 + (z - 2AD)2}-1/2 

(74) 

This essentially represents the modification in the effective position 
of the imaging plane derived by Levine et al. The only real dif
ference between our result and that of Levine and co-workers 
is that in the latter work the Debye length which is involved is 
evaluated at a point in the diffuse layer where the potential 
reaches a certain finite value. In view of the approximations 
involved in the approach, this distinction is not likely to be of 
practical significance. 

IV. Methodology 

1. Some Exact Array Methods 

In the discussion up until now, we have suggested that provided 
the arrangement of adions on the IHP is known and the actions 
of the electrode and diffuse layer is representable by some type of 
imaging at the ESP and on or near the OHP, the determination 
of the local potential becomes simply a matter of arithmetic. 
While this may be true, the arithmetical problem of computing 
such potentials is a practical matter of some difficulty. Several 
procedures have evolved for performing such calculations readily, 
and we here present the most widely used methods in just enough 
detail that the reader may recognize possible applications to other 
problems as they arise. References 86 and 126 contain useful 
reviews of the subject. 
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The least useful method of all, generally speaking, is to perform 
the unmodified array sums coming out of the image treatment. 
These sums too often converge so slowly that accurate results are 
difficult to obtain even with the aid of large digital computers. 
The simplest array sum to perform, it would appear, would be the 
expression for the field at point 0 arising from an array of adions 
singly imaged in a conducting electrode, considered to form with
 
their images an ideal dipole array. Yet, the first evaluation of this
 
quantity seems to have been by Topping (125), who employed
 
analytical methods based on formulae of Lennard-Jones and
 
Ingham applying to the generalized zeta-functions of Epstein.
 
According to Topping, the field at a vacancy site in an otherwise
 
complete hexagonal array of dipoles, each of moment P, is given
 
by g ~ _11.034176Pr~3. In Section IV-2 of this paper, we shall
 
see how knowledge of this exact but rather limited result is of
 
great assistance in developing approximate methods for computing
 
potentials in a much wider class of imaging situations and for
 

other than ideal dipole arrays. 
We shall be discussing methods of obtaining potentials for 

C-C and C-D imaging. Before doing so, it is necessary to point 
out a somewhat troublesome distinction between the discrete 
adion-image potentials appropriate in the C-C case and the 
potentials appropriate for C-D imaging in the limiting case 
€s __ 00. We have already remarked that given the arrangement 
of adions on the IHP and the mean charge density q on the ESP, 
the total potentiallf' = If'a + If'e is the same for C-C imaging as it 
is for the C-D case with €s -- 00. On the other hand, we have seen 
that the condition If'e = 0 for C-C imaging obtains when q and ql 
are related by q + Aql = 0; in contrast, the If' e = 0 condition is 
met under C-D imaging when q + ql = O. Thus the If'a potentials 
for C-C and C-D imaging, though both referring to the potentials 
produced by the ad ions and the infinite set of images, equal the 
total potential under different ESP charge conditions. Put another 
way, if the ESP is grounded and the OHP is the surface of a 
dielectric whose dielectric constant is as large as we please, the 
surface charge density on the ESP is just the negative of ql 
provided there is no free charge on the dielectric surface. This is a 
description of the conditions pertaining under C-D imaging 
conditions when If' = If'a' If instead of a dielectric, a perfect 

or 

DISCRETE COMPACT DOUBLE LAYER 

grounded conductor is substituted, charge will flow between 
the two conductors such that only the fraction rid of the charge 
-ql will remain on the ESP; the remainder will reside on the 
OHP. Under these new circumstances If' = If'a again, and we have 
C-C imaging. To distinguish these two different If'a potentials, we 
shall refer to the C-C imaging If'a with a superscript two, thus If'~2); 

similarly, the t» = 1 C-D 00 If'a will be designated If'~I). The relation 
between the two is readily obtained in a number of ways with 
the result (91) 

If'~2)(X,y,Z) = If'~I)(X,y,z) - hql(1 + Q-lz (75) 

In normalized form this relation becomes 

'Y~2) = 'Y~I) - 2/20 (76) 

Now which of the two potentials one obtains if he sets the C-D 
imaging parameter t» == (€s - €1) I(€s + €1) directly equal to 
unity, rather than taking the limit w -- 1, depends upon how the 
calculation is carried out. It turns out that the series we shall 
develop for the C-D imaging case are only conditionally conver
gent at t» = 1; however, the particular grouping of terms actually 
employed will always give If'~I), even for w == 1. Physically a 
dielectric, no matter how strong, is fundamentally different from 
an ideal conductor; only the latter has mobile free charge on its 
surface, and the boundary conditions applying at the surface of a 
dielectric of arbitrary strength are different from those applying 
at a conductor. But the important thing to know here is not just 
why If'~I) and If'~2) should differ, but which of the two our equations 
are producing at any given time. It would be disastrous to com
bine If'~I) with a If'e == -47T( q + Aql)z to get a total e, for example; 
this is the reason we tossed in the "extra" uniform field part in 
Eq. 22 early in this article. 

The method of calculating C-C, C-D, and D-D potentials 
which seems most popular, particularly among the Russian 
workers (60,71,131), is what we shall term the Green's function 
approach (GFA). In the GFA one first determines in some manner 

other an expression for the potential everywhere due to a 
single unit charge on the IHP; this potential is required to be an 
actual solution to the problem in the sense that all boundary 
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conditions are satisfied, yet we must not write this solution in the 
form of an infinite-image sum. The last restriction is simply to 
avoid arriving back at our starting point, an infinite-image array 
triple summation. We have already employed this single charge 
solution, or Green's function, for the C-C case. It is the solution 
derived in Appendix I; it still involves a single summation, but 
the summation is now a rapidly convergent one and generally may 
be truncated after the first few terms. * The actual array potential 
is then obtained from a further two-dimensional sum. Thus, if
 
the Green's function evaluated at r is designated <»(r,r'), where
 
the charge is placed at r', then for an array of charges whose
 
positions on the IHP are the set {r:"n } , the discrete potential is
 

1p~2)(r) = zve ~m ~n <»(r,r:"n) (77) 

In our C-C imaging case, Appendix I gives 

<»(r,r:"nl = 4d-1 I sin (-.!!L) sin (7Td-1zP)Ko(7Td-1PPmn) (78) 
1>=1 1 + r 

where 
Pmn == {(x - X:"n)2 + (y - y:"n)2}l/2 (79) 

(80)
r == (x,y,z)
 

and
 
(81) r:"n = (x:"n,Y:"n,fJl 

The GFA would be unattractive were it not for the fact that 
the remaining sum over the two-dimensional array may generally 
be truncated after a few terms as a result of screened behavior of 
<»; that is, <» rapidly approaches zero for large p. One has reduced 
the problem to that of evaluating a triple sum, rapidly convergent 

in all indices of summation. 
The GFA applied to the C-D case is less attractive from the 

point of view of actually performing computations. The problem 
lies, of course, in the less convenient form of the Green's function. 
It is now a Fourier-Bessel integral rather than a discrete sum, and 

* The only way to fully appreciate the improvement over the direct image 
sequence is to attempt a hand calculation of the potential using both the image 

series and the Green's function series. 
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is given by 

<»(r,r~n) - - i''' d).Jo(l'Pmn){[w - exp (2Ad)]-1 

X [{w - exp (2A)I)} exp {-A(z - fJ)} 
+ w[l - exp (2AfJ)] exp {A(z - fJ)}] 
- exp {-A [z - fJl}} (82) 

Since the Green's function must still be summed over m and n, it 
is questionable how much has been accomplished by this 
approach. * 

An easily applied method of computation pertinent to the 
regular lattice structures for the C-C imaging case, which has 
been employed by the present authors, derives from the Ewald 
method for calculating lattice sums in crystals (35). This useful 
method was placed in a broader, more general perspective by 
Nijboer and de Wette (99) and stimulated by their work several 
generalizations have recently appeared, notably by Adler (I) 
Grant (54), and the present authors (5). The basic approach 
involved in the generalized Ewald method (GEM) is described 
below. 

First one writes the sum to be evaluated, 

s == ~k j(Rk ) 

in the form 

S = ~kj(Rk)<I>(Rk'S) + ~kj(Rk){1 - <I>(Rk,s)} (83) 

where the sums are over the three-dimensional regular lattice 
points {Rk}, and the function <I> is chosen so as to make the second 
sum converge rapidly; this function may depend on a parameter 
s which is chosen conveniently. The remaining problem is to 
evaluate the first sum, which still converges slowly. 

This may readily be accomplished with the aid of a three
dimensional analog to the Poisson summation formula. Writing 
the Fourier transform ofj(R) <I> (R,s) 

= fd3Rj(R)<I>(R,s) exp {27TiA' R}G(A,S) (84) 

this analog reads 
1,Lkj(Rk) <I> (Rkos) = la1 • a2 x a31- ~k G(AkoS) (85) 

* Notice, however, that in principle the GFA may be applied even when the 
adions do not form a regular lattice, hence its popularity in statistical theory. 
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where the vectors {Ak} are the reciprocal lattice vectors and aI' a 2, 
and aa are the basic lattice vectors of the actual array. In terms of 

the a vectors 
Ak == la aal-1 {k aa + k2a a x a 1 + kaa 1 x a 2} (86)• a 2 x 1a2 x 

1 

where k
1

, k 2, and ka are integers.
 
Finally, one chooses s such that the convergence of
 

Lkf(RkHl - <I> (Rk,s)} 

as well as
 
la

1
• a 2 x aal-1 Lk G(Ak'S)
 

is rapid.
We have applied these steps to find the potential arising from 

a hexagonal array of ions under C-C imaging conditions 
omitting the effect of the ion on the line through the origin but 
for reasons of convenience retaining the effect of its images. The 
function <I> was chosen to be the error function. After considerable 
manipulation and choosing the origin ofcoordinates at the missing 
adion site, the result is the following (5).
 

ePa(r) = I
1
(r ,s) - zve 1(1 + f)-la a + r\-1
 

"" {erfc (77112s- 1 IRk - rl)
 
+ zve ~k \ IRk - rl 

_ erfc (77112s- 1 IRk - (1 + f)-la a - rl)} (87) 
IRk - (1 + f)-la a - r\ 

where the summation excludes the point at the origin, the vector 
aa lies in the z direction and is of length 2d, and 

2 (88)erfc (x) = 1 - erf (x) == 1 - 277-112rexp ( -t ) dt 

The quantity II is evaluated by taking Fourier transforms
 
2 2}


I (r ,s) = tzved-lV3 L~ 77-1 IAk\-2 exp {-77S \AkI
1

X {exp {-277iAk . r}
 
_ exp {-277iAk' [r + (1 + f)-la a) }}
 

_ 77-1I2zve[lrl-l y( l, 77S-
2 Ir1 2) 

_ y(l, 77s-2Ir + (1 + f)-la aI2)] (89) 
Ir + (1 + f)-la al 
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Again the sum excludes the point at the origin; the ,,(-function 
in general is related to the incomplete I'<function: y(n,x) == 
f(n) - r(n,x); for n = t, y(~,X2) 77 1/ 2 erf (x). 

Having come so far, the work is not finished, as one still 
requires convenient expressions for the vector dot products and 
cross products which occur. This is a matter too boring to discuss 
here, and the reader is referred to the original literature. 

Having found ePa in order to find VJa' one must still subtract out 
the effect of the line of images through the origin. There are 
special means of doing this in terms of VJ-functions for special 
choices ofr; however, in general we may make use of the Green's 
function discussed earlier to effect this subtraction, provided we 
are careful to note that the Green's function includes the potential 
of an ion at the origin. As a practical matter, more heroic efforts 
may be needed in determining VJa from ePa very near the missing 
adion but not on the normal line through its site. Again, such 
details are inappropriate to consider here. 

As we shall see, the C-D imaging case is most easily treated by 
summing C-O imaging results, therefore we next consider exact 
methods for computing C-O imaging potentials. 

Although the GEM with certain modifications is applicable to 
the case of C-O imaging, we have found that the best technique 
for this case is one described for other series by van der Hoff and 
Benson (127), presumably originated by Mackenzie (93), which 
is based on Jacobi's imaginary transformation for theta-functions. 
The method converges most rapidly for R1 --+ 0 and results in an 
almost closed form expression for the potential, with the remaining 
summations contributing small amounts generally. The basic 
ingredients of the method, denoted here as the MHB method, are 
described below (6,86). 

First, one writes all inverse powers of distances, which occur 
in the image sum for potential, in terms of an integral by means of 
the identity 1 

r 
00 

tnx-n = - - 1 exp ( -xt) dt (90)
r(n) Jo 

which follows from the definition of the I'<function. The number 
n is typically one-half, and x is here the square of the distance 
between the field point and a given source point (adion or 
image). 
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The next MHB identity which one finds handy if he is alert to 
the opportunities present is 

00 00

Z exp {-(m + a)2t} =' (njt)l/2 Z exp {-n2m2It} cos (2nam) 
m= -00 m=-OO 

(91 ) 

This quantity will come from the factor exp ( -xt) in the integral, 
and one will be left with something akin to 

1/2 100 n 00 

tn-3/ 
{ -k2t n2m2}Z -- 2exp - -- dt 

m=-oo r(n) 0 t 

where additional factors independent of t may appear. 
Third, one exploits the fact that the integral is expressible in 

closed form; it involves the ubiquitous modified Bessel functions 
of the third kind. In particular 

rootn-3 2 { n (n /m l)n-1I2J / exp -Pt - -t
2m2} 

dt == 2 -k- Kn_1/ 2(2nk 1m!) 
o 

(92) 

Finally, one performs the summations; one of the original 
indices of summation remains, and the other summation has been 
accelerated by the transformation effected by the MHB. Again 
the double sum remaining is rapidly convergent in both indices. 
The "almost closed form" of the expression for potential is 
associated with the single sum over the leading term (m = 0) of 
the transformed series. Generally, some care is required to 
evaluate this leading term, taking proper limits and that sort of 
thing; however, the final result is well worth the effort. With this 
road map we now exhibit in greater detail how the MHB has 
been used to find the potential "PaiC(r) arising from a complete 
lattice of adions singly imaged in the ESP. It is of course a trivial 
matter to relate this to the incomplete lattice potential v.. 

If we place the origin of coordinates on the ESP as is the usual 
convention in this article and express the adion-image summation 
in rectangular coordinates we may write 

00 00 

"PaiC(r) = zAJ-1 Z Z [S~ - Sri + Si - Si) (93) 
1=-00 m=-X) 
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where 

r)2 (Y _ V3)2 (2 ± 1)2J-1/2Sr± == [(-X - l - - + - - V3m - _ r + _ 
~ 2 ~ 2 ~ 

(94) 

If we define P,/:, == [S,/:,] -2, then the expression for "Paic involves 
(P,/:,)-1/2 and we may use the first of our identities 

"PaiC(r) = n-1/2ri1zvel~~00 m~_Jfo [exp (-P;t) - exp (-Prit) 

+ exp ( - Pit) - exp ( - Pit)]t-1/2 dt) (95) 

We next perform the summation over l only by factoring out of 
the exponentials that part which is independent of l and employ
ing the second of the identities. This yields 

00 00 Joo 
"PaiC(r) = zverilmIoo sX oo 0 {exp (- V~) - exp (- Vri) 

+ (-l)S[exp (- Vi) - exp (- Vn]}t-1cos (2m :) dt (96) 
1 

where 

V3)2 (2 ± 1)2J n2s2Vr± == [(RY 
1 

- V3m - T r + ~ t - -t- (97) 

Next, we use the third identity to evaluate the integral, and 
obtain 

00 00 

"PaiC(r) = 2zveri 1 Z Z {Ko(T;;.o) - Ko(T;'o) 
m=-co $=-00 

+ (-l)'[Ko(T;';l) -Ko(T~1)]}cos(2ns~) (98) 
where 

T;;'r == 2n lsI {[V3(m + ir) _](;1Y]2 + [](;1(2 ± 1)]2}l/2 (99) 

Ifone now evaluates the s = 0 terms by taking limits, it is possibl 
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to rewrite 'Paic in the form 

'Paie(r) = 4zverl1L~00 i cos (27TS ~J {Ko( T;;;o) - Ko( T~o) 
- Ko(T~l)]} + t i In 1~:0~:1))+ (-l)s[Ko(T;;;l) m- 00 \ mO ml 

(100) 

The final single summation may be expressed in closed form as 

00 {T+ T+ )
2zver11 L In :0 :1 

m=- 00 T-."o T m1 

= zPll1nfcosh {47T(Z + 1)/R1V~} - cos (47TY/Ri
V3)\ (101) 

lcosh {47T(Z - 1)/R1V 3} - cos (47TY/R1V 3)J 

The above expression is the MHB closed form part of 'Paie which 
generally dominates; it only applies for Z *- 1 when Y = 0, and 
special procedures are necessary to transform the result to a form 
useable for Z - 1 = Y = O. These procedures merely involve 
taking several limits, and will be allowed to rest undisturbed in 
reference 6, where the interested reader may find them detailed. 

Finally, we consider the case of C-D imaging. It should be 
abundantly clear from an examination of Fig. 1 of reference 91 
that the potential 'Pa applying in the C-D regime is expressible in 
terms of a superposition of C-O potentials. This type of super
position was also employed qualitatively by Grahame in his 
treatment (52) of C-C imaging. The present superposition must 
take the diminishing dipole moment magnitudes into account. 
In particular, in the inner region, the infinite set of apparent 
nonideal dipole arrays lying about the planes z = ±2nd produces 

the potential 

L00
wn{'P~(x, y, z + 2nd) - 'P~(x, y, 2nd - z)} 

n=l 

The real adions and their direct images produce the potential 
'P~(x,y,z) ; hence the total 'Pa potential is given by 

'Pa(x,y,z) = 'P~(x,y,z) 

+ L00 
wn{'P~(x,y, z + 2nd) - 'P~(x,y, 2nd - z)} (102) 

n~l 
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If one has an adequate method of obtaining 'P~, the C-O 
potential for a lattice with a single vacancy, then one may 
readily determine the C-D potential. But of course we have just 
described a method of determining 'Paic, from which 'P~ is obtained 
trivially by subtracting out the potential due to a single adion and 
its image. Therefore, the MHB method provides us with the 
solution for the C-D case as well as the C-O. (As a matter of 
interest, note that the potentials 'Paic could be used in the C-D 
summation and the line of images of the missing ad ion itself 
subtracted out of the final answer in one step by use of the C-D 
Green's function.) 

To complete our C-D imaging discussion we note from Fig. 2 
of reference 91 that in the region z > d, the potential 'Pa is simply 
due to the "apparent nonideal dipole arrays." Thus, in this 
region 00 

'Pa(x,y,z) = (?JE1/Es) L wn'P~(x,y, z + 2nd) (103) 
n=O 

where ?JE1/ES = 1 - w. 
To complete this section on exact methods, we merely remark 

that there are always certain inelegant procedures available for 
exact computation when all the clever methods have failed. We 
may always perform an unmodified sum for awhile and approxi
mate the remainder by an integral, for example. This method is 
somewhat related to certain approximation techniques discussed 
in the next section. Another approach is to modify the terms in 
the series by a convergence factor, calculate the sum for several 
values of the parameter involved in this factor, and extrapolate 
through the range where the sum becomes slowly convergent 
again, all the way to where the convergence factor becomes unity. 
Such extrapolations are often long, and one frequently needs 
recourse to an extrapolation aid such as the s-algorithm (83) in 
order to carry it through. Such methods as these last described 
may not be as elegant as some, but for some future problems we 
may need to depend on them nonetheless. 

2. Approximate Methods 

The first part of this section will be concerned with approxi
mate methods of calculating potentials arising from fixed, known 
distributions of ions. For several cases of prime interest in the 
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93 
electrolyte situation, the methods discussed later in this section 
are much superior to those first discussed, and therefore, the 
initial discussion will be relatively brief. 

One way of evaluating a lattice sum is just to numerically sum 
the terms of the original series until the remainder becomes 
negligible. This method is unavailable for the triply infinite 
series of the hexagonal-array C-C imaging situation. The series 
is only conditionally convergent, and many millions of terms 
would be required to be summed with very great accuracy (in 
the proper sequence) before the remainder could be neglected 
for R1 values of interest. In this case, then, the methods discussed 
in the preceding section of transforming a series to one of more 
rapid convergence are essential if accurate numerical values are 
required (5). 

Grahame (52) has applied the direct summation method for 
single imaging, where the series involved is only doubly infinite. 
His results are approximately 4% too small in magnitude, showing 
that summation was ended too soon. 

Another method, which has been widely applied both for single 
imaging (45,1l9,123) and for NaCl-type solids (126,127), is that 
of direct summation of the first few terms of the series in question, 
then the approximation of the remaining terms by an integral. 
This method thus smears out the charges whose contribution is 
replaced by the integral. Although this approach should be 
capable of good accuracy, it has sometimes led to rather poor 
correspondence between accurate and approximate results (6). 

Stigter (1l9) has applied the above method to find the potential 
at point 0 and Z = 1 for a plane hexagonal array of charges. He 
first divided the array into equivalent charge groups by means of 
a series of concentric circles centered at O. Each circular annulus 
contained only charges of equal distance from O. Stigter then 
compared the results obtained for the contribution of successively 
distant groups of equivalent neighbors calculated by direct 
summation and by integration. The normalized results, written 
as (exact, smeared), found were (10.39, 13.20), (5.20,5.17), (7.86, 
7.73), and (5.77,5.93) for the first 6, next 6, next 12, and next 12 
equivalent charges. We see that there still remains almost a 3% 
error between the discrete and smeared results for the last group. 
Further, the error in the last group is nearly twice as large as that 

present between the two results for the preceding group. Never
theless, Stigter concluded that sufficient accuracy could be 
obtained by summing only the contributions from the first six 
(nearest) neighbors, then accounting for the rest of the charges 
by smearing and integration. Had a nonideal dipole single-image 
situation been appropriate, much better results could have been 
obtained from this general procedure, as we shall see. 

Since the simplest way to calculate potentials and fields for 
ta i= 0 is to make use of (I) 0 single-imaging results, as we have=-0 

demonstrated in Section IV-I, it is important to have available 
as simple methods as possible for calculating the underlying single 
imaging quantities needed when w i= O. In the general case of 
X, Y,Z arbitrary, the complicated exact w = 0 results discussed in 
Section IV-l must be used for hexagonal-array calculations. 
When ~ ;> 1, the series contributions become negligible, however, 
and only an easily handled closed form expression remains. 
Further, for X = y = 0 (point 0) or point a and a few other high 
symmetry positions, a much simpler and approximate, but highly 
accurate, approach may be used which applies for all ~. 

The approximate method is based on Grahame's (52) pioneer
ing cutoff approach but extends it considerably. Grahame 
considered a single-imaging situation such as that of Fig. 26b; 
Le., O-C imaging. For convenience, we shall instead illustrate 
the approach using imaging at a conducting ESP, C-O imaging. 
Grahame replaced the discrete planar distributions of nonpolari
zable adions and their images by smeared uniform charge sheets, 
each containing a colin car, circular, charge-free hole having its 
center on the line through O. His method is thus a degenerate 
form of the summation-integration approach already discussed. 
He used a hole radius, '0' associated with the average circular 
area available to a single charge. Throughout this article, we 
shall use '0' and R o == 'o/(} for this Grahame radius, which neces
sarily satisfies the relation rrr~N = L We may also write ql .::::::::: 
51Ozv, ;)2when ql is expressed in ,ucoul/cm2 and '0 in Angstroms. 
We shall frequently use the hexagonal-array nearest-neighbor 
distance, '1' as a convenient measure of qI even in situations where 
a rigid array is not appropriate. Then '0 = (V3/2rr)1/2'I ~ 
0.5250376 'Il and qI .::::::::: 1850zv,~2 with qI in ,ucoul/cm2 and '1 in
Angstroms. 
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Although the Grahame model takes discreteness into account 
to some extent, its applicability to a real situation needs establish
ing. Grahame himself pointed out the way to do this by com
paring cutoff model predictions with those of a hexagonal array. 
As we shall see later, his treatment was approximate and incorrect 
in part but his general idea was correct. In most of the work of 
Levine and his associates, the Grahame cutoff model has been 
used without adequate examination of its applicability and 
sometimes without reference to Grahame. Recently, however, 
Levine, Mingins, and Bell (77) have examined the applicability 
of the model to some extent, and generalized it in a semiquantita
tive way. This work will be discussed at some length in Section 
V-2-D. 

The present authors (90-92) have followed Grahame's lead and 
shown in detail some of the deficiencies of the ordinary cutoff 
model and how it may be modified to yield hexagonal-array 
potentials and fields with high accuracy and concomitant ease of 
calculation. Consider a cutoff model with two parallel circular 
areas of the same but arbitrary radius, T b' I t is easy to show by 
integration that when q = -q1' one obtains 

'F~( Z,Rb) = H[R~ + (Z + l) 2]1/2 - [R~ + (Z - 1J2]1/2} (104) 

where the superscript 0 again denotes single imaging, 'F~ == "P~/"Poo, 

R; ~ Tb/f3 , and Z == z/f3 is measured from the imaging ESP as 
usual. This result applies to a nonideal dipole situation; of course 
the equation will still apply when one array of charges is not 
made up of images but of real charges. It is also useful to consider 
the transformation of Eq. 104 which takes place when the non
ideal dipoles formed by an adion and its image become ideal 
dipoles. To effect this change, let f3 -- °and R1 -- co but hold 
the dipole moment, tt "'=' 2zvef3, constant. Then "Poo, originally 
47TzveNf3/€1, becomes 27TNtt/€1' and Eq. 104 transforms to 

'F~(Zh) = [1 + (Tb/Z)2]-1/2 (105) 

We have termed the use ofa cutoff model with a disposable T b, 

not necessarily equal to To, the modified cutoff approach (90,91). 
Let us now see what form the modifications take for a rigid 
hexagonal array of nonideal (and ideal) dipoles. Let us write 
p(~) == Tb/T1' where ~ == ziTI' equal to Z/R1 when f3 # O. For 
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numerous values of ~ and R1, we have used (90) our accurate 
hexagonal-array single-imaging results (6) to calculate the 
function p( ~,R1)' usually abbreviated here as p(~) or even p, 
which allows the above cutoff formulas with T replaced by p( ~)T1 

b 
to yield highly accurate hexagonal lattice potentials. Some of the 

pm 
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Fig, 12. The hexagonal array function P($) "'" r for R = 2, 3, 5, and 
b!r1 1

(X) (ideal dipoles) plotted with an expanded ordinate scale (90). 

results of such calculations are iIIustrated in Fig. 12. The smallest 
possible value of T1, TIm' enforced by the steric hard-core repulsion 
between ions, is usually approximately an ionic diameter. 

Note the expanded ordinate scale of Fig. 12. Evidently, p(~) 
need not vary Over a very wide scale to allow the modified cutoff 
formulas to yield hexagonal-array results. Further, the variation 
with R1 is even much less than that with ~. The R = co curve is 

1for ideal dipoles; the p(~) shown enters Eq. 105 through (Tblz) =:= 

(Tdz)p(~) = ~-lp(~). The smallest value of p is Poo === T = 
V3 olTl( /27T )1/2 ~ 0.525, which follows from Grahame's choice for To' 
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This value is only appropriate when ; -- 00 (hence the sub
script for p), a condition of practical importance only when 
z ?> r . But when z ?> r , 'Y ~ 1; thus, the original Grahame

l a 

value,l Pro, is hardly ever needed when dealing with a hexagonal 
array. In contradistinction, the; -- 0 limiting value of the ideal 
dipole curve, Po '=' 47TjV30' ~ 0.6575206, turns out to be quite 
appropriate since many actual double-layer situations may be 
well approximated by the ideal dipole limit. Here, the quantity 
0' ~ 11.0341754 is the Topping lattice sum (125,127) given by 
0' '=' r~ Li r: 3 • The distance r, is that between the ith point in a 
fixed plane hexagonal array of nearest-neighbor distance r l and 
point 0 of the lattice. The index i ranges over all points in the 

infinite array but o. 
In the present article, we omit much discussion of field cal

culations. It should be mentioned, however, that the original 
paper (90) discusses how hexagonal-array fields may be obtained 
from the modified cutoff approach using p(;) and its logarithmic 
derivative -F ==' dlnp(;)jdln;. Further, when it is desired to 
simplify the calculation of 'Y~ by ignoring the variation of p 
completely, the earlier work gives best least-squares values of P 
to use in various situations. A best choice for all ; and R, com
binations of experimental interest is 0.607, not very far from Po· 
Although the curves of Fig. 12 should yield sufficiently accurate 
values of p(;) for most calculations, occasions arise when greater 
accuracy is needed. We have, therefore, published (90,91) a 
number of rational function approximations of the Chebyshev 
type to p(;) and F(;) for several fixed values of R, (; variable) and 
for Z = 1 (R variable). These provide even greater accuracy in 

l 

single image calculations when needed. 
The curves of Fig. 12 need not extend beyond ; = 3.5 because 

for larger values exceedingly accurate closed-form expressions for 
the point 0 may be derived from the exact single-image results (6). 

These expressions are (90) 
'Y~(Z,Rl) ~ 1 - (V3j47T)[Rij(Z2 - 1)] (106) 

and 
'Y~(z,rl) ~ 1 - (V3j47T);-2 (107) 

for nonideal and ideal dipoles, respectively. They hold to within 
one part in 107 or 108 for Z ~ 1 + 3R l in the nonideal case and 
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for ; ~ 3 for ideal dipoles and are even more accurate for larger 
; values. 

We have seen how the cutoff approach may be modified to 
deal with a rigid hexagonal array. It turns out that its applicability 
may be extended even beyond the hexagonal-array regime. We 
have stated elsewhere (90,92) and show explicitly in Appendix II 
that the mean distance, (r l ) , of nearest neighbors for a random 
array without interactions between the discrete elements of the 
array is (4N)-1/2. If we set (r l ) = r b for such an array, then the 
corresponding p is approximately 0.465, even smaller than Pro. 
We do not expect to see such behavior, however, even at the 
highest possible temperatures because of the hard-core repulsion 
between adions. In the high-temperature limit (abbreviated 
HTL) situation, the nearest distance of approach of adsorbed 
ions will be rIm. Let us consider identical, spherical adions with 
charge centroids at the sphere centers. The presence of a given 
ad ion at point d then ensures that the charge centroids of neigh
boring ad ions remain on or outside a circle of radius rIm centered 
on d. Further, at high temperatures, the planar motion of the 
adsorbed charges may be considered quasi-random; the discrete 
charge will be smeared, or space averaged, over the time required 
for a measurement. Notice now, however, that we have just 
described the physical conditions ofa cutoff model with rb = rIm. 
Thus, in the HTL, the cutoff model with rb = rIm should be 
fully applicable, not approximate (92). Observe that with this 
value of r band Z = 1, the cutoff Eq. 104 reduces to the expression 
already given for this case, Eq. 6. 

If a fully close-packed adion array could be achieved, it would 
be hexagonal with rl = rIm. The corresponding value of r, would, 
however, be P(~l1Jrlm here, where t; ~ zjr lm. We have taken this 
full monolayer condition to correspond to e= 1. V\Te may 
therefore write e === Iqdql maxi === (rImjr1) 2, or (RIm!Rl) 2 for non
ideal dipoles. As we have seen, however, the e = 1 limit will 
not usually be reached in an electrolyte adsorption situation 
because of Coulomb repulsion between adions. The earlier 
discussion shows that such repulsion leads to a coulombic hard 
core of diameter r.. Although r e varies with temperature, reducing 
to rIm in the HTL if rc > rIm at low temperatures, and with ESP 
and OHP shielding conditions as well, it is a useful concept. 
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If rc > rIm' as seems to be the case except for the largest ions 
under C-C imaging, then the maximum possible value of (j at 
a given temperature will be about (Tl mITe) 2. If one tries to in
crease N beyond this limit, breakdown and discharge will occur 
and the electrode will not remain blocking to charges. 

At ordinary temperatures and closest enforceable packing, the 
ad ion array will be essentially hexagonal with T1 equal to the 
larger of TIm and Te• We shall assume Te the larger from now on. 
As we have seen, as N decreases at constant temperature from that 
corresponding to r., a value will be reached where hexagonal 
structure begins to disappear. Then occurs a transition region 
where long-range coulombic interactions still remain of some 
importance. Finally, even smaller Nor Iqllleads on to the quasi
random region, which we shall term the low-density limit (LDL) 
regime. In this region, the widely separated adions move essenti
ally independently except for the short-range coulomb inter
actions represented by re which come into play when two charges 
happen to approach one another closely. We see that this situation 
may also be represented, essentially exactly, with a cutoff model 
for which r, == r.. We qualify the word "exactly" here because 
there is a certain arbitrariness in the definition of re• The ESP
OHP shielded coulombic hard core is not as hard as the steric 
one; that is, the coulombic two-particle interaction energy is not 
as rapidly increasing a function of interparticle distance as is the 
steric interaction. It thus becomes somewhat a matter of what 
definition one wishes to use to define a useful r., 

The foregoing results for Rb(Rl ) are illustrated in Fig. 13. We 
have elected to portray a C-C imaging situation since we believe 
this is approximately the condition which will obtain in the 
electrolyte inner layer, especially at high solute concentrations. As 
we have seen, C-C imaging is physically equivalent, as far as the 
overall potential conditions are concerned, to C-D imaging with 
t» = I, a situation which can be treated using a summation of 
w = 0 results. We use the value f3 = 2 A, reasonable for KI, have 
taken y = P, and have employed the value R, = 3.5 calculated 
for C-C imaging in Section II. The R l values at the two boundaries 
of the transition region are also taken from the results in Section 
II and are therefore somewhat uncertain as well but are quite 
adequate for illustrative purposes. The Rl = 7 value is that which 
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makes the U/kTofEq. 20 equal two. (U/kTis essentially unity at 
Rl = 7 when it is calculated more accurately for this case; see 
Fig. 7.) This crossover value of Rll where the hexagonal array 
begins to go, is somewhat fuzzy; we believe, however, that the 
value is accurate to within about ±0.5. For R values somewhat 
smaller than 7, there will be a good hexagonal 

l 
array; for values 

somewhat greater than 7, the array will be poor. 
The R1 value of 12.6, where the LDL regime begins, is the 

most uncertain of all. It is the value of R, which corresponds to 
U/kT.::::: 0.1 using the proper curve of Fig. 7. Actually, the array 
will be nearly random here, not hexagonal, but the hexagonal 
array result should give a much closer estimate, nevertheless, of 
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the transition value of R
l 

than should the two-ion result of Eq. 23 
which neglects the moderating effect of the other charges (and 
their images) present at the IHP. For comparison with the R I 

values of 3.5, 7, and 12.6 used in Fig. 13 for the C-C case, had we 
considered single imaging instead the corresponding RI's would 
have been approximately 7,15, and 32. 

At the top of the figure, a qi scale has been added appropriate 
for (J = 2 A and z; = 1. The corresponding escale is also shown 
and indicates that the hexagonal regime covers the largest part 
of the adsorption range of interest. Note the rather good cor
respondence of the qlmax value of 37.7 f-lcoul(cm2 with the 
maximum !qII of 42.61 f-lcoul(cm2 found from experiments on 

IN KI by Grahame (51).
In Fig. 13 the dash-solid-dash line gives the value of Rb ~ p( ~)Rl 

appropriate for a rigid hexagonal array. Since Z = 1 here, 
~ = Nil. We have taken RIm = 2; since R, = 3.5 at the tempera
ture shown, the minimum value of R; will be R; and the lower 
dashed part of the p( ~)Rlline is largely beyond that experimentally 
possible. Similarly, the upper dashed line is within the transition 
region where the hexagonal p(~)Rl should no longer apply well. 
It is interesting that the full p( ~)Rl curve is almost exactly a 
straight line. Although p(~) varies here from about 0.62 to about 
0.653 as R varies from 2 to 10, the variation is very nearly of the 
formp(~) I 

= a - u, where a and b are independent of~. It thus 
follows that over the range shown RIP(~) ~ aRl - b, the linear 

dependence evident.
We have set R; = R, in the LDL region and have shown four 

possible dash-dot lines joining the p( ~)RI curve of the hexagonal 
region with the limiting value Re• Since no theory presently 
exists which can take us very far into the transition region from 
either side, we are forced to join the regions of known R; behavior 
by guessed interpolation curves. For the values of R l shown 
defining the transition region boundaries, we believe that curve 
b is most plausible. Certainly for these R I values and R, = 3.5 
there is a very high probability, we believe, of a peak in Rb 

exceeding the limiting value R • On the other hand, had R, beene
considerably larger, raising the horizontal R, line, or had the 
right hexagonal region boundary occurred at a smaller R I value, 
there might very well not have been a peak but only a monotonic 
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rise in R, from p(R--;l)Reto R; as RI increased from Re. Nevertheless, 
we believe that our value of R; and the transition region boundary 
R] values are sufficiently accurate for the case considered that there 
will be a peak in this situation. Since o/~ at fixed Z decreases as 
R; increases, the presence of a peak in R; leads to a minimum in 
o/~. 

Ifwe assume that the curve for R b in Fig. 13 which involves the 
choice b is a good approximation to the actual dependence of R b 

on R I or IqII, of what use is it? Since it was constructed for a C-C 
imaging case, it may be used in Eq. 102 with w = 1 to calculate 
"Pa( Z,Rl ) , equal to "P~II (Z,Rl ) here, for infinite imaging. The 
series requires different effective values of Z at constant R l ; thus, 
different known values of ~ will also be involved in the P(~)Rl 

hexagonal lattice part of R b • There will probably also be some 
(unknown) changes with effective ein at least part of the curve 
spanning the transition region as well. Thus, as we shall see later, 
we can calculate accurate 0/a curves for the hexagonal array 
region of the C-C case. Accurate values of 'F a ( Z,RJ may also be 
obtained in the LDL regime when R, is known, but current 
uncertainty in Rb values in the transition region precludes 
accurate potential calculations there. Note that R b curves like 
those of Fig. 13 are required for 'Y a calculations for every value of 
w of interest and that R; and the transition region boundary R l 

values will all be functions of co (and of any ionic shielding as well 
when w < 1). 

The line PooR I == Ro is shown dotted in Fig. 13. Notice that it 
differs appreciably from p(~)RI and greatly from the likely full R; 
curve. In the region where Ro < Rb, the use of the Grahame Ro 
will result in an overestimate of 'Y~ and vice versa mutatis mutandis. 
In the transition and LDL regions where R o may exceed R; very 
appreciably, the use of Ro will result in a great error in o/~. In 
most of their work (75 and earlier references given therein) 
Levine and co-workers have, however, used Ro in these disordered 
array regions, assuming that the cutoff model with R b = Ro will 
allow thermal disordering effects to be taken into account some
what, if only in a temperature independent way. Although we 
see that this approximation is indeed somewhat better than the 
Use of a fixed hexagonal array in these regions, since Ro < P(~)Rli 

there, it remains a very poor approach. In fact, it has been shownl 
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above that only when ~ ---+ 00 does p(~) ---+ Pro and R b ---+ Roo At 
fixed Z, however, this corresponds to R1 ---+ 0, the opposite end of 
the R region from that considered by Levine and co-workers. 

Finally, the nondegenerate cutoff model, or summation
integration method, may be used quite conveniently to obtain 
approximate values of hexagonal array potentials and fields at 
high symmetry points other than O. Suppose we wish the potential 
at point a of Fig. 5, i.e., for a complete hexagonal lattice. Since 
there are three symmetrically situated nearest charges, we may 
obtain the potential at a by calculating the cutoff potential with 
a circle ofradius r , where Trr~N = 3, then adding to the result the

t 
potential at a arising from the three neighboring charges and their 
images. The larger the circle of removed charge (and hence the 
more charges taken into account in a discrete fashion), the more 
accurate will the potential calculated by this method be. As an 

example, for R
1 

= 5 and R, == rt/~ = V3 PooR1, the relation 
appropriate for point a, the above method yields for this point 
and Z = 1, '¥~ 0.529 as compared with the accurate value of r-..J 

0.5193. 

V. Discussion of Results: Nonpolarizable Adions 

1. Local Potentials 

A. Single Intaging. The discussion herein on local potentials 
starts with the simplest case and progresses through more com
plicated situations. Therefore, it cannot, perforce, follow the 
historical development in proper order. Field variation will not 
be examined in detail but does appear in some of the basic 
papers (6,60,61). We shall first be concerned with C-O imaging 
(6) produced by perfect conductive imaging of an array of discrete 
monopoles in the electrode. All effect of the diffuse layer 
is ignored; thus, the dielectric constant in the diffuse region, lOs> is 
taken equal to 10 1 and there is no specific OHP. The situation is 
therefore not very close to that usual in a real electrolyte double 
layer but does provide a useful limiting case for comparing with 
more complicated situations. Further, it is close to the actual 
situation expected for adsorption of low polarizability ions from 

a gas phase. 

The zero of local potential is taken at the imaging plane. No 
potential variation thus appears for Z < O. Were the images 
real, however, there would be variation in this region. The 
present results may easily be extended to the situation of two 
matched arrays of real charge of opposite sign, as in Fig. 6, by 
extending potential curves into the - Z region in an antisymmetric 
fashion. Thus, "P( -Z)/"Poo = -"P(Z)/"Poo' We shall initially be 
concerned only with the potential variation perpendicular to the 
ESP along a line through point 0 of Fig. 5, the position of a 
removed adion in a hexagonal array, or the center of the circular 
disk of removed charge in the cutoff model. In this case, X = 
y= O. 

Figure 14 shows a comparison of normalized average and local 
potential variation in the Z direction for a fixed, hexagonal array 
of adions for the value R1 = 10, which corresponds to the low 

,	 coverage () = 0.04, assuming RIm = 2. The average potential may 
be expressed as 

V(Z) = - Voo[Z(q/q1) + (Z - l)uo(Z - 1)] (108) 

where uo(<0) = 0 and uo(>O) = 1. The top curves are pertinent 
when q = - q1 and thus show the discrete charge and image 
contributions to the normalized potential: "P(Z) - "Pa(Z), Com
pare the qualitative curves of Fig. 6 starting at the center and 
progressing to the right. The uniform D field contribution, "Pe( Z), 
equal to - VooZ[l + (q/q1)] in the present single imaging case, 
enters also in the q = 0 bottom curves and greatly changes their 
character. Note that the 10 appearing on this and later figures is 
101, the inner-layer dielectric constant. The "P(Z)/"Poo curve in 
Fig. l4b is almost but not quite a straight line, and there will be 
more and more curvature as R1 decreases. 

Figure 15 presents results for the actual potential variation for 
three pairs of associated q, q1 values. The q1 values appropriate at 
each q correspond to small, medium, and maximum anion ad
sorption derived from Grahame's (51) IN KI data and analysis. 
Further, the curve denoted "Pi( Z) (== "P( Z) + cPiZ) includes the 
contribution to the local potential arising from the image of a 
given adsorbed anion, cPiZ = -zve/2E1~Z, This image contribu
tion, of course, becomes more and more important the closer and 
closer to the imaging plane an adion moves. Of course, the adion 
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actually moves no closer than the IHP; thus, those parts of the 
1f'i(Z) curves lying at Z < I are not of physical significance. Note 
that for convenience e ~ € l has been taken as unity in Fig. 15. The 
potentials given there should, therefore, be reduced by a factor 
arising from polarization effects. At position 0 in the IHP, there 
is a field (including the image contribution) of about -8 x 107h 
Vfcm urging anions away from the IHP for the conditions of 
Fig. 15a. The actual small adsorption present would, therefore, 
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arise from overriding specific, "chemical" forces if the present 
model were actually completely applicable. The field is about 
-7 X 1Q7/ El V/cm and +5 X 1Q6/ El V/cm for the situations in b 
and c respectively, showing that the field behavior at the IHP is 
indeed consonant with increased adsorption as one goes from a 
to c. 

The value fJ = 3 A used in Fig. 15 has been extensively used by 
Levine et al. (8,75,77) but seems inconsistent with Grahame's 
IN KI data. The value Iq11 = 42.61 f-lcoul/cm2, the largest 
derived from the data, leads when fJ = 3 A to R1 ~ 2.196, overly 
close to the limiting value of about 2. These figures, in fact, 
correspond to (jmax ~ 0.83. It therefore seems necessary that fJ 
be somewhat less than 3 A. If one takes fJ = 2 A, the smallest 
value likely for an anion such as 1-, the q1 value in c, the maximum 
jq11 observed, leads instead to R1 ~ 3.294, corresponding, for 
RIm = 2, to (j ~ 0.37, a plausible value. 

Figure 16 illustrates the dependence of the normalized local 
potential, as in Fig. 14, upon Z for a variety of R1 values in the 
grounded electrode case, q = -q1' It is of considerable interest 
that these curves almost coincide when the variable ~ == zlr, = 
Z/R 1 is used instead of Z. Figure 17 illustrates important limiting 
conditions using this variable. The R1 = 2 curve represents the 
smallest R1 value that generally needs to be considered. The 
R1 = 00 curve is that for an array of discrete ideal dipoles, the 
limit of nonideal dipoles of charge-image separation 2fJ when 
fJ -+ O. The near coincidence of the two limiting curves means 
that for many purposes, either a distinction between ideal and 
nonideal dipoles need not be made or all nonideal dipole nor
malized potential curves may be calculated versus ~ using an 
intermediate value of R1, say R1 = 4 or 5, provided the actual 
R1 value is used in obtaining Z from ~. 

What happens to the single-image local potential when either 
'1 becomes so large at fixed temperature that a rigid hexagonal 
array no longer exists (the LDL) or the array disappears because 
at fixed '1 the temperature is too high to allow a reasonably stable 
regular array (the HTL)? We have already seen that in the HTL, 
where the cutoff model is funy appropriate, p -- 'lm/'l' Then in 
the nonideal dipole case pRl -+ RIm, while for ideal dipoles 
P/ ~ -+ 'lm/ Z. In neither case does the normalized potential depend 
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on Tl itself in this limit. Let us therefore introduce the new nor
malized distance variable ~m = Z/rIm (or ZIR 1m for nonideal 
dipoles), analogous to ; = ZiTI' Then, for the HTL we may write, 

when q = -ql 
1I 2 

(109) 
lfi(Z)I"Poo = [1 + ;:;n-
lfn(Z)/"Poo = H{Rim + (Z + 1)2}112 - {Rim + (Z - 1)2}1/2] 

(110) 

where the i and n subscripts here denote ideal and nonideal, re

spectively.
Figure 18 illustrates the predictions of the above formulas. Also 

plotted is the ordinary nonideal-dipole curve for R1 = 3. It is 
included not because it is theoretically appropriate for tne HTL 
case but because when the Rl = 3 normalized potential is plotted 
versUS ~m = Z/2, it lies, as shown, surprisingly close to the very 
differently calculated HTL curves. We have not included a 
RIm = 4 curve in Fig. 18 because it falls between the ideal and 

Fig. 18. Normalized local potential nnder HTL conditions vs. ~m ~ 
zhm with q = -qi for ideal and nonideal dipole (RIm = 2) situations. The 
fixed hexagonal lattice R, = 3 curve is included for comparison. 
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nonideal curves, and, in fact, lies very close to the ideal-dipole 
curve throughout. As RIm ---+ 00, the ideal dipole curve is ap
proached uniformly. Further, as the figure shows, the relative 
difference between the ideal and nonideal curves decreases 
towards zero as ~m or Z increases at fixed RIm' 

Although the adion array may also become virtually random 
at low coverage and fixed temperature, the minimum average 
distance of approach between adions, Te, will be somewhat larger, 
as we have seen, than the steric limit, TIm' because of "hard-core" 
Coulomb repulsion effects. The above HTL cutoff model results 
therefore apply as well in the LDL case with RIm replaced by 
R; 0::: rc!fJ and I;m by l;e = z!re• Since R; > RIm, the ideal dipole 
curve will usually be a good approximation to the actual situation 
in this case. Note that at constant temperature the curves of Fig. 
17 will apply well for sufficiently large e while those of Fig. 18 
must apply for sufficiently small e that the adion distribution is 
essentially random. There is, as yet, no accurate interpolation 
theory available to cover the intermediate range of 8's between 
these values. Further work should fill this lacuna. 

Next, we shall consider variation of the normalized potential 
(including all image contributions) for a complete, fixed; hex
agonal array and compare, where appropriate, with correspond
ing results for an array with an adion (and its image) at X = 
Y = 0 missing. In all the succeeding single-image curves we shall 
take q = ~ ql' Figure 19 shows the variation of normalized 
potential with R I at various points (see Fig. 5) located in the 
IHP. The closer one is to a charge, of course, the less rapid the 
decrease of normalized potential with R I • The curve marked 0 
corresponds to the incomplete array and is appreciably different 
from the others because of the larger distance ('1) from point 0 
in the plane Z = I to a neighboring charge. 

The R I scale of Fig. 19 probably extends to somewhat larger 
values of R I than are likely to be associated with a good hexagonal 
lattice, the structure for which the curves were actually calculated. 
At extreme values of RI , probably considerably larger than those 
illustrated, LDL behavior will be appropriate for adion adsorp
tion from either a gas or electrolyte. Equation 110 with RIm 

replaced by R; shows that in this case the conditions Z = 1 and 
R; = 4, for example, lead for point 0 to lfn(l)/lf", "-' 0.236. 
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Since this value is somewhat larger than those achieved by 
R I ~ 15 for the point 0 hexagonal model curve, it appears that 
the actual normalized potential curve for point 0 may reach a 
minimum as R] increases, then increase to ~O.24 and remain 
constant for larger R]. Since '!p", decreases as R12, the actual 
potential, '!pm will continuously decrease as R I increases. In the 
HTL or LDL situations, the distinction between points a, b 
and c disappears. For the HTL case where RIm ~ 2, '!pn(l)/'!poo~ 

v2 - 1 -=-= 0.414, an even larger limiting value. 
Figure 20 illustrates the variation with normalized distance 

$ of the normalized potential for lines perpendicular to the ESP 
through the indicated points in the array. With the $ distance 
variable used, there is very little difference in the R I = 5 and 
R1 = lO curves. The short vertical lines on the curves indicate 
the position of the IHP. 

Let us next examine potential variation in Z = constant planes. 
Figure 21 shows such variation along the line from d to b of Fig. 
5 for Z = 1 and 2. Since the potential is identically zero for 
Z = 0, we have shown instead the normalized field variation in 
this plane. For these field curves, we have normalized with 
E oo - -41TQI!EI' The normalized distance LI is defined as 
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of (6). L 2 0= 4X/3R

1 
(6). 

2XjR1
• Thus, L1 = 1 corresponds to point b. The potential

variation is symmetric around this point. 

Similar curves appear in Fig. 22 except that here the planar 
line along whieh variation is calculated is that defined by dcab 
of Fig. 5. Since L2 ~ 4:Xj3Rl> L2 = I again corresponds to point 
b. These Curves are not very different from those ofFig. 2 I except 
that there is a shallow minimum at point a, as indicated on the 
abscissae scales. The table in Section III shows some values of 

, 



C. A. BARLOW, JR. AND J. R. MACDONALD 
114 

E ==' El times the full array potential at X = Y = °and Z = 2. 
The R = 00 value is just that arising from a single positive charge 

1(valence unity) at (0,0,1) and its image at (0,0, -1). The present 
results all apply to O-C imaging as well as C-O, of course. Further 
single-imaging potential curves appear in the next section for 
comparison with results calculated for other imaging conditions. 

B. Other Imaging Conditions. As we shall see in a later
 
section, there has been much more work on micropotential
 
calculation in complicated imaging situations than on variation
 
of local potential under such conditions. Krylov (60,61) seems
 
to have been the first to publish an explicit expression for "Pi (Z)
 
pertaining for the following types of hexagonal-lattice imaging:
 
C-C, O-C, and D-C (w = -1 only). In this work Krylov approxi

mated the diffuse layer as an equipotential plane lying at z = 

~ + y (i.e., Z = Zo)·
Krylov uses the dielectric imaging parameter 

w ==' (EO - E1)/(EO + El) 

introduced by Levich and Krylov (69) in an earlier micropotential 
paper. The condition w = 1 is implicitly taken as C-C imaging, 
not D-C with EO = 00. As we have seen earlier, an interesting 
distinction may be drawn between these two cases. Further, 
whenever w < 1, Krylov implicitly considers only an uncharged 
dielectric-solution boundary at the ESP and a charge q = -ql 
on the equipotential OHP. He assumes a complete hexagonal 
lattice and calculates "P02 - "PJ Z) for °<; Z <; ZOo His expression 
for this potential difference may be divided into three parts: 
a constant field potential"Pe; a part arising from a line of images 
which is only nonzero for points on the line X = Y = °passing 
through point d of Fig. 5; and, for the cases w = ± 1, the compli
cated triply infinite sum of modified Bessel functions we have 
already discussed in connection with the GF A. As we have 
mentioned before, the GFA is not at all attractive for w =I=- 1, 
involving as it does complicated integrals of Bessel functions; 
accordingly, for \wl =I=- 1 Krylov reverts to the unmodified adion 
image summations but carries out calculations only for w = 0. 

In view of the above assumptions and restrictions, Krylov's 

"Pe becomes v, = - V 00 (l1"'[)' + (q/ql)][Z - Zo] (111) 
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which is only nonzero when w = 1, for which the Kronecker 
01'" = 1. This agrees with Krylov's implicit choice of q = -ql 
when w *- 1. For further reference, it is useful to give an expression 
for "Pe(Z) here which applies generally both for C-C, C-D, and 
C-O (and D-C and O-C) imaging. Taking the zero of potential 
at Z = °as usual, we find 

"Pe(Z) = - VooZ[l + (qlql) + (A - 1) 0ex] (112) 

where 0ee == 1 and (lex == °for x =I=- C. It will be seen that this 
more general result agrees with Eq. III when it is remembered 
that the latter is written for zero potential at the OHP rather 
than at the ESP and applies when w =I=- 1 only for q = -ql' The 
q = -ql condition is almost always appropriate when the ESP 
is nonconducting (e.g., D-C or O-C imaging), but it is not 
necessarily appropriate for the C-D imaging or the C-O imaging 
of Section V-I-A. 

Probably because of the very considerable difficulty in evaluat
ing his triple series, Krylov does not present many calculated 
curves of potential variation. Those that he did publish are shown 
in Figs. 23 and 24. These results were calculated with the specific 
choices q = °for w = 1 (C-C imaging) and q = - ql for w *- 1. 
The lengths fJ and y were taken as equal (T = 1). The () == 
(2/R1)2 values shown are (implicitly) based on the usual value 
RIm = 2 and correspond to choices of R1 = 4 and 20. Figure 23 
shows the variation of normalized potential perpendicular to 
the plane along a line through point a of Fig. 5. The normalizing 
potential is "P 00 for all the conditions considered. The normalized 
abscissa scale extends from the ESP at the left to the IHP at the 
center and to the OHP at the right. Note the increased curvature 
of the curves as one goes from w = 1 to °to - 1 and from () = 1% 
(not a condition under which a z; = 1 hexagonal electrolyte 
double-layer array could be stable at room temperature for any 
w) to () = 25%. The w = -1 case corresponds roughly to an 
air-solution interface. For example, if EO = 1 and El = 6, w~ 

-0.71. A table containing a few values of normalized potential 
for the perpendicular line through point d is also included by 
Krylov. 

Finally, Fig. 24 illustrates the variation of normalized potential 
in the plane Z = 0.5, a strange choice since ad ions do not move 
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Fig. 23. Variation of hexagonal array normalized local potential with 
position along a line through point a of a complete lattice for r = 1 and various 
imaging conditions. Here x{fi is equal to our (Z - 1){2 and w 1 to our w. The 

zero of potential is taken at the OHP (60,61). 

into this plane. The variation is that along the line connecting 
points A (our d) to B (our a). Notice that although none of the 
curves quite reaches zero at a, the variation in the plane is of 
considerable magnitude. The w = 0 curves here are in general 
agreement with those presented in Section V-I-A. (remember the 
different positions of zero potential chosen) but cannot be 
quantitatively compared with them because neither R 1 = 20 
nor R = 4 was a chosen value there. The value of normalized 

1potential for Z = 1 and R 1 = 4 taken from curve a of Fig. 19 
of Section V-I-A and the present w = 0, () = 25% curve of Fig. 
23 agree very well, however. A complicated but very rapidly 
convergent (except for R

1 
< 2) triple series for the discreteness 

potential contribution, 7J!~2)(X,Y,Z) in the C-C case, was pre
sented by the authors (5) but only used to calculate micro-

potentials, not local potentials. 
Using a method involving only a single, rapidly convergent 

series and expressions for C-O single-imaging potentials (which 
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can be readily calculated from the modified cutoff approximation 
at small $ and from very accurate limiting expressions for appreci
able $), we have recently investigated the hexagonal lattice C-D 
imaging situation in considerable detail (91). The quantity w 
was defined as ("2 - "1)/("2 + "1) and "2 was taken either as "s 
(C-D imaging) or "0 (D-C imaging). In view of the relationship 
given in Eq. 75, the results also include C-C imaging. Figure 25 
illustrates potential variation results obtained for the complete 
range of w, for q = -q1' R1 = 5, and three values of I' probably 
encompassing the range of I' likely in most electrolyte situations. 
Here the normalized potential e " is 7J!(Z)/7J!oo and pertains to the 
usual line through point O. The normalized distance $ = Z/R1 is 
again employed for the abscissa scale. Although only incomplete 

x= -to 
I, W1 =1 
2, W1 = 0 
3, W1 = -1

50 

40 

8= 1% 2 

30 
~ 

'¥ 

20 

10 A B 

o 
A B 

Fig. 24. Variation of hexagonal array normalized local potential with 
position along the line between points A and B (our d and a, respectively) in the 
plane Z = t for r = I and various imaging conditions (60,61). 
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Fig. 25. Hexagonal array normalized potential vs. ~ ~ Z/R1 for q = -Q1' 

R = 5, several T values, and the complete range of w (91). 
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array potentials, particularly useful in discussing the micro
potential, were calculated, the paper discusses how potentials for 
any X and Yand an incomplete or complete array can be obtained 
with much less work than needed using any previous methods. 
Further, the method is sufficiently general to apply to any cutoff 
model as well as the hexagonal array. It may therefore be used to 
investigate HTL and LDL conditions for any pertinent co, 

As Fig. 25 indicates, there is a discontinuity in field (but not 
displacement) at the OHP (102 == 108 ) or ESP (102 == EO) for all t» 

values but zero. Further, a larger and larger proportion of '!Pro 
occurs outside the inner region the more w departs from unity. 
When 102 108 and C-D imaging is considered, the largest likely 
value of 10 8 in an aqueous solution is about 80, leading, with 
101 = 6, to w ~ 0.86. Even this large a value of w does not give a 
very close approximation to w = 1 behavior, but one should 
remember that C-D imaging alone ignores the shielding arising 
from mobile diffuse-layer ions and is therefore applicable only 
at low solute concentrations unless I' ~ 1. 

2. Micropotentials 

A. Early Work. The first attempt to explicitly calculate the 
work of adsorption (or, equivalently, the micropotential) for a 
discrete electrolyte double-layer system was that of Esin and 
Shikov (34). Their model, illustrated in Fig. 26a, applies only for 
q = 0 and corresponds to the 0-0 case of Table 1. They consider 
that rigidly associated with each adion located at the IHP there 
is a counterion at the OHP. Each such ion pair thus forms a 
finite-separation dipole, and Esin and Shikov assume an infinite, 
hexagonal plane array of such dipoles. Although they devote 
some attention to the effect of thermal motion, their main calcula
tions assume a rigid array. Even though we have seen that this 
approximation can be a good one under many conditions of 
interest, the additional approximations of neglecting the effect 
of the electrode and subsuming all diffuse-layer effects in 
rigidly associated counterions are inadequate under almost all 
conditions. 

Esin and Shikov essentially calculate the p.d. '!PoP == '!Po - '!Pp 
between points at the centers of the dotted circles marked 0 and 
p of Fig. 26a. Let the average p.d. produced by the entire dipole 

1 
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Fig. 26. Discrete charge models for early micropotential calculations. 
Image charges are shown dotted and the pod. of interest is that between points 

oand po 

layer be VO' This is the drop across it if all charges were smeared; 
it is also the pod. across a discrete array between two points at 
distances from the array large compared to r1 (see also Fig. 6). 
This p.d, is given by 

Vo = 4rrYQ1/E1 == rv 00 (113) 
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where as usual E1 is intended to account for the dielectric constant 
contributions arising from solvent molecules in the inner layer and 
possibly also those arising from ad ion polarizability. The quantity 
Vo is not quite logically equivalent to the V00 introduced earlier. 
For V co, layer spacing was 2{3 rather than the present y, and half 
of the layer was composed of images. The p.d. sought in that case 
was measured from the center of the array to "infinity." These 
differences so compensate that V00 is, however, just the above Vo 
with y changed to {3. 

We have earlier introduced the normalized distance R1 = 
r11{3 appropriate for an array of adions and their images a distance 
2{3 away. Here, the adion-counterion separation is y, so it is 
convenient to redefine R1 for the present situation as 2r1/Y, 

structurally the same quantity. We may now express the basic 
Esin-Shikov result as 

A == "PovlVo = 0.74ylr1 = 1.48R11 (114) 

Note that the effective dielectric constant E1 has cancelled out in 
this ratio. 

In their actual calculation of the ratio A, Esin and Shikov 
tacitly assume ideal dipoles rather than charge pairs a distance 
y apart. Their method is thus logically correct only in the 
associated limits y ---+ 0, R1 ---+ 00, and ~-+ O. In addition, not 
knowing of Topping's earlier accurate calculation of the sum a, 
Esin and Shikov established the following bounds to it (termed 
K3 by them) by partial summation: 10.8 < a < 11.1. Unfortu
nately, they actually used 10.8 in their calculations rather than 
their upper limit, which is close to the more exact Topping-van 
der Hoff and Benson (127) value a ~ 11.0341754. When this 
value is employed, one finds that the proper R1 ---+ 00 limiting 
behavior of A in the present situation is 

A = (POR1) - 1 r-v 1.5209R11 (115) 

This may be compared with the result of the approximate analysis 
given earlier in Eq. 7. 

Equation 115 is represented by the bottom straight line in Fig. 
27. We shall explain the other curves subsequently. At this point, 
we only remark that the bottom dotted line marked B = 00 

is the accurate solution of the Esin-Shikov problem without the 
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Fig. 27. The mieropotential quantity A ~ lpop/Vo vs. R1 for various 

situations and values of B ~ ~/y. 

approximation of ideal dipoles. It was obtained using our highly 
accurate modified cutoff method for hexagonal arrays. 

Figure 27 illustrates that the asymptotic law of Eq. 115 is 
reasonably accurate for R1 ~ 8. For R1 as small as 3, however, 
where a rigid hexagonal lattice is an excellent approximation, 
the results of the asymptotic line are about 18% high. When Esin 
and Shikov compared their result, Eq. 114, with the Esin-Markov 
experimental findings, they obtained a value of Ylr1 corresponding 
to R ~ 2.6, a result they considered to correspond to an im

1
probably high adion surface coverage density. For example, with 
y = 2 A., \q1\:::: 280 flcoulfcm2

, much too high a value. The 
same data lead to an even larger value of Iq 11 when the accurate 
nonideal dipole treatment is used. 

Esin and Shikov ascribed the failure of their treatment to 
explain the Esin-Markov results entirely to their neglect of 
thermal effects. More important, we believe, is the general 
crudeness of the model used, which neglects the effect of the 
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electrode, oversimplifies the effects of the diffuse layer, smears out 
discrete dielectric constant contributions in the inner region, and 
treats nonideal dipoles as ideal. In spite of these deficiencies, 
which are easy to see in retrospect, the Esin-Shikov treatment 
was a pioneering attack on the problem of discreteness effects 
in the double layer. 

Ershler's (32) treatment is strongly founded on that of Esin 
and Shikov but makes a number of valuable modifications. The 
three different models considered by Ershler are illustrated in 
Fig. 26b, c and d, where the circles denoting image charges are 
shown dotted. 

The model of Fig. 26b is based on imaging of adions in the 
diffuse layer. As Ershler points out, the regular array of counter
ions at the OHP assumed by Esin and Shikov will be disorganized 
by thermal motion and, if the concentration is sufficiently high, 
the charge in the diffuse layer may be well approximated as all 
lying in the OHP. The resulting imaging of the adions is of the 
O-C type of Table 1. This conductive single imaging in the OHP 
(rather than in the electrode) should be distinguished from the 
different, perfectly polarizable (E s = (0) dielectric imaging 
(O-D) with which it might possibly be confused. In the latter 
case, there would be no real charge at the OHP. 

For the model of Fig. 26b, Ershler obtains the result 

A = 0.74(2yfr1) = 2.96R11 (116) 

V'Ve have maintained here and will continue to maintain the 
meaning of y as the distance between IHP and OHP. In the 
present case, it is only half the distance between charge layers, 
whereas it was the full distance in the Esin-Shikov model. Never
theless, it is convenient to retain the same definition, R1 0= 2r1/y, 
in the two cases, allowing direct comparison between them. 

The result of Eq. 116 arises because both 'PoP and the average 
p.d., here identified with the quantity V 00 defined earlier (with 
(J replaced by y), are measured only over half the distance between 
charge layers, since one of them is here composed of image 
charges. Thus Eq, 116 is fully equivalent to Eq. 114, since 2y 
here measures the distance between layers which was given by y 
in the Esin-Shikov treatment. Numerically also, the actual layer 
separation is, in the present case, twice that in the former. The 



124 C. A. BARLOW, JR. AND J. R. MACDONALD DISCRETE COMPACT DOUBLE LAYER 125 

use of the more accurate value of a changes the factor 2.96 to 
3.0418. On employing this number and y = 2 A as before, the 
Esin-Markov results lead to Iq11 ~ 70 ,ucoul/cm2, still considerably 
too large a value but much closer to a reasonable result than 
before. The nonideal dipole curve for this model is that marked 
B = 0 in the figure. The derivation of this result will be discussed 
later. Since it lies below the asymptotic solid straight line, 
accurate treatment of the model does not improve agreement 
between theory and experiment. 

In order for calculations taking some discreteness into account 
to explain the Esin-Markov effect, it is necessary for A to be larger, 
for reasonable values of /3 and y, than predicted by the last two 
models. Ershler's next attempt [Fig. 26c] reverted back to the 
real charge pairs of the Esin-Shikov model. He added conductive 
imaging in the ESP of the nonideal dipoles formed by these 
charges. This, then, is singlc imaging of nonideal dipoles rather 
than single charges, but Ershler actually again treats them as 
ideal dipoles. Ershler shows that, in this limit, the asymptotic 
result is again given by Eq. 114 and is independent, in the limit, 
of /3. Thus, this calculation also cannot explain the Esin-Markov 
effect. 

When the dipoles and their images in the metal are no longer 
treated as ideal, it is of interest to examine the resulting curves for 
A, which will, in this case, depend on B 0= /3ly as well as Rl" 
To do so, we shall use the modified cutoff model. For the present 
model with conductive single imaging of nonideal dipoles, it 
leads directly to the following expression 

A= (~l) [2 {[{P(R11)P + (2R11)2]1/2 - P(R1l)} 

+ [{p(4BR~ l)f+ (4BR11)2T/2 

_ [{p(4BR~ l)f+ (4BR~ 2rJ l / 2 

- [{p(4BR~ 3)f+ (4BR~ 2rT/2 

+ [{p(4BR~ 3)f+ (4BR~ 4rr/] 
(117) 

The first term in curly brackets arises from the right dipole 
layer and the remaining square-root terms all originate from the 
left (image) layer. This expression involves the nearly constant 
function p(~) introduced earlier for fixed hexagonal arrays. 

The broken-line curves of Fig. 27 illustrate results calculated 
from Eq. 117 for several values of B. In these calculations, P(~) 
was obtained from a 2-2 rational function approximant in order 
to yield high accuracy. It was found, however, that for this 
particular expression for A, the ~ = 0 (R --+ CX)) value of p, 
Po :::::: 0.6575206, yielded results within 3% 

1 

of the accurate ones 
for all B values shown over the range 2 ,;;;; R ,;;;; 30. It may,

1 
therefore, be used in practical calculations of this type with a 
great gain of simplicity and insignificant loss of accuracy. Note 
that all the broken-line curves go to unity as R --+ O. 

1 
The B = OC! broken-line curve was calculated from Eq. 117. 

In this case, imaging disappears and the model reduces to that 
of Fig. 26a for a single nonideal dipole array of real charges. 
Note that the B --+ CX) limit must be taken before the R --+ CX) 

1
(ideal dipoles) limit used in obtaining the bottom straight line. 
Thus, the B = CX) broken line is asymptotic to the bottom 
straight line, while all finite B Curves are asymptotic to the top 
solid line. It is evident that no distinction need be made between 
the B= 2 and B= CX) curves when R

1 
« 4. Since all the B 

curves lie below the top solid line, the accurate treatment does 
not lead to a better explanation of the Esin-Markov effect. 

The B = 0 curve of Fig. 26c is of special interest because when
 
/3 = 0 the central (-ql) - (ql) dipole charges coalesce and
 
vanish. The model then becomes essentially equivalent to that
 
of Fig. 26b (separation of charge layers 2y). An excellent internal
 
check on the accuracy of the results is afforded by the recognition
 
that the B = 0 curve can be derived from the B = CX) Curve by
 
picking a given R}, finding the point on the B = CX) curve at
 
R l/2 (because when y --+ 2y, R1 --+ R1/2) and then moving this 
point back to the line defined by the original R choice. This 

1
is equivalent, of course, to moving a given point on the B = CX) 

curve horizontally to the right by a factor of 2. We find very close 
agreement between the curves when this process is carried out 
even though the actual B = CX) curve was calculated with only 
the first part of Eq. 117 and the B = 0 curve with the entire 
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formula involving p( ~)'s with several different values of ~. This 
agreement, of course, establishes a complicated relationship 
among the p( ~)'s, since it is possible to set equal the A formula 
for given R and B = (JJ with the more complex A formula for 

1 
B = 0 and R

1 
half the B = 00 R1 value. 

The last Ershler model, Fig. 26d, corresponds to the infinite 
imaging, C-C case of Table 1. Ershler does not really treat this 
case as an infinite imaging problem, however. Instead, by a 
judicious averaging of results obtained from some of his earlier 

models, he obtains
 
A = 0.5[1 + 0.37(y/r1)] = 0.5[1 + 0.74R~1] (118)
 

This result, like the earlier ones, was taken to apply only for q = 0 
and is appropriate only for {3 = y. If we use y = 2 A and the 
Esin-Markov result A ~ 0.58, we find from Eq. 118 that R 1 ~ 4.6 
and \qll ~ 86 ,ucoul/cm2 • The Iq1l value is still too large; for it 
to be as small as 30 ,ucoul/cm2, y must be about 3.4 A, probably 

too large a value. 
Ershler used his result in a simple isotherm to explain the Esin-

Markov results. (See Section 11-2.) Although he obtained reason
ably good agreement with experiment, he took y/r1 < 0.1, 
probably too small over much of the experimental range, and of 
course, made the specific and not necessarily accurate assumption 
y = (3. These approximations, taken together with most of those 
discussed in connection with the Esin-Shikov calculations, make 
Ershler's agreement with experiment quite suspect. Such agree
ment may also arise from the use of an inadequate isotherm. In 
spite of these strictures, the Ershler treatment was a long step 
forward, and, in particular, provided the seed for the flowering 
of the modern single- and infinite-imaging treatments. 

Grahame (52) was next to carry out significant discreteness 
calculations. He first considered a single-imaging situation with 
discrete charge layer separation of b = 2y, as in Fig. 26b. In this 
work, Grahame compared results of his cutoff treatment with p.d, 
results obtained by directly summing the contributions from a 
finite number of hexagonally arranged ions and their images in 
the diffuse layer. For the cutoff model, he used the value P = Pro ~ 
0.5250376, which we have seen is only appropriate for a fixed 
hexagonal lattice when ~ ---->- 00 (since we are presently dealing 
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with imaging in the diffuse layer, ~ ---->- 00 is equivalent to r1 ---->- 0 
and/or distance measured from the imaging plane at z = d 
approaching "infinity"). By comparing "Pop values obtained from 
the cut-off and summation methods, Grahame found that as 
R1 == 2r1/y became sufficiently large, the summation result 
approached about 0.805 of the cutoff prediction. 

Now in the limit R1 ---->- 00, ideal dipole results should be ob
tained. In this limit (~ ---->- 0), the appropriate P is not Pro but that 
of Topping: P = Po ~ 0.6575206. The ratio Pro/Po is about 
0.7985, close to Grahame's value of 0.805. Part of the difference 
arises because it has been shown (6) that Grahame's direct 
summation results for "Pop are about 4% too small. 

Grahame did not recognize that in order to employ the cutoff 
approach to yield accurate values of "POP> one should use (90) Po 
for R1 ---->- 00 and Pro for R1 ---->- O. He instead used Pro throughout, 
and, for reasonably small y, merely multiplied the Pro cutoff "Pop 
result by 0.805. Except for the minor difference between 0.805 
and 0.7985, this procedure should be valid for sufficiently small 
rlr, that only the first-order expansion term in the cutoff model 
(involving y/r1) be significant. Grahame expanded to second 
order, however, and obtained 

A ~ 3.064R~1 - (3.5465~1)3 

~ 3.064R~1 - 44.6lR~3 (119) 

Expansion to second order of the cutoff expression for "Pop using 
P = Po actually leads for R 1 :?> 3 to 

A ~ 3.04l8R~1 - (3.04l8~1)3 

~ 3.04l8~1 - 28.l44~3 (120) 

Grahame's result is quite close for the number in the first-order 
term, but his second-order term is too large and needs to be 
multiplied by the factor (0.7985)3/0.805. Grahame would have 
obtained nearly the correct second-order term also had he 
applied his factor 0.805 twice more to it instead of using this 
factor only to multiply the P = Pro cutoff expression for "Pop. 
Actually, the second-order term should not be given anyway 
because by the time R1 is sufficiently small that the second-order 
term becomes a significant fraction of the first-order one, P(~) 

itself can no longer be accurately approximated by Po. 
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Grahame also carried out a semiquantitative calculation of the 
C-C infinite imaging situation. His treatment, while seminal, 
contained several errors (6) and even though some of them 
compensated for others, he arrived at the result (see Fig. 26d) 

A = "Pop/"Poo = "P12/V02 = A == y/(f3 + y) (121) 

supposed to hold exactly for all q and ql combinations. This 
result corresponds to the assumption of a constant field in the 
inner region. It actually neglects the direct contribution to "P12 
from the discrete adions themselves and implies "P12 = V1 2• 

Thus, the potential varies linearly across the inner region and V12 

is reduced from V02 by just the proper distance ratio A. 
When q = 0 and Rl is sufficiently large, we shall see later that 

an exact treatment of this problem (5) shows that Eq. 121 is 
indeed a good approximation. On the other hand, the constant 
field approximation may be very poor for q and ql values found 
experimentally with, for example, l.ON KI in water. Then Eq. 
121 becomes a poor approximation. We will now revert to the 
more usual definition, R l = T l /f3 . 

B. Conductive-Conductive Imaging. The first exact treat
ment of a simplified double-layer model taking discreteness of 
charge in the inner layer into account seems to be that of Levich, 
Kir'yanov, and Filinovsky (70), presented at a symposium 
honoring David Grahame in 1960. An almost identical paper by 
Levich, Kir'yanov, and Krylov (71) appeared a few months 
later. Besides the replacement of Filinovsky, the only important 
change in the published version is that the original conclusion 
of "insufficiently close agreement" between some of the theoretical 
results and known experimental data is converted to "quite close 
agreement." Can we conclude that Filinovsky was cautious and 
Krylov optimistic? Insufficient results are presented in the paper, 
unfortunately, to allow one to answer this question readily. 

The Levich et al. calculation deals with the C-C infinite 
imaging case for an infinite fixed, plane hexagonal lattice of 
adions. An inner-region dielectric constant is introduced and a 
general analytic expression for "P12 is quoted. Few details of the 
calculation are included, but the authors seem to use the GFA 
Fourier-Bessel integral technique (115) which finally leads to a 
triply infinite sum of modified Bessel functions of the third kind. 
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This series is difficult to evaluate and no numerical results for 
"P12 or A ==' "P12/ V02 were given. Although it is thus difficult to 
check the correctness of their series against later accurate values 
of A calculated by simpler methods (see later discussion), the 
authors reached the Ershler-Grahame conclusion that A "-' A 
for adion surface coverages of 25-30%, corresponding, they 
believe, to the maximum found experimentally. 

For the C-C case, where the deviation in linearity ofthe potential 
may indeed be small, it is convenient to introduce the quantity 
~ through 

A ==' "P12/ V0 2 = A[l + ~] (122) 

where ~ measures the relative deviation from linearity. The 
potential difference "P12 is made up of a uniform D field part, 
"Pe(l) - "Pe(Zo)' and a part arising from the discrete adions 
themselves: "Pa(l) - "Pa(Zo) = "Pa(l) ==' "P~2)(1), in the present 
case. On noting that "Pe(l) - "Pe(Zo) = AV02 ==' rvoo(A + (q/ql)], 
we obtain 

~ = "P~2) (1)/AVo2 (123) 

The various Russian writers have usually expressed the de
viation from linearity in a slightly different fashion. They write,
for w = 1 

"P12 ==' AV02 + rxrV00 (124)
 
from which it readily follows that
 

o: = Bo/~2) (1) = [A + (q/ql)]~ (125) 
where o/~2)(1) ==' "P~2)(1)/"P00. Note that this a. has nothing to do 
with the polarizability a. used earlier. When q = 0, let ~ - ~o 
and when y = f3 define ~ ==' ~o. Most authors have dealt prim
arily with the combined case, for which ~ = ~g and o: = 0.5~g. 

We now see that the Levich et al. conclusion A .:::::::: Ais equivalent 
to neglecting ~ compared to unity or, equivalently, the term 
involving rx, at least when q = O. For () = 0.30, RIm = 2, f3 = 

y = 2 A, we find Tl "'--' 7.3 A and work to be discussed later 
yields ~g ~ 0.04 for the hexagonal-array situation, not entirely
negligible but nearly so. 

The next significant work on C-C imaging was that of Levine 
et al. (75) who used the Grahame cutoff model with Grahame's 
constant p value, P00" The micropotential "Ploo was written as 
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VI ex> + <P;' where <P; is a self-atmosphere perturbation potential. 
Since <P; is written as <Pl(O,O) by Levine in later work (77), we 
shall here denote this quantity by <PI" We may write 

"P12 == V12 + <PI = f"Poo[l + (q/ql)] + <PI (126) 

showing how "P12 differs from the average value V12• Further, 
Levine et al. (75) introduce the quantity g through 

cPl = -)."Poog (127) 

and write g as g",(rp) in later work (77). We shall use the simple g 
designation.

On comparing Eqs. 122, 123, and 126, one readily discovers 

that 
(128) <PI = "P~2) (l) - AV00 

and 
g = 1 - ).-1'Y~2)(1) (129) 

We may also write 

6. = [1 - g][f + ZO(q/ql)]-l (130) 

and 
(131) o: = ),[1 - g] 

Note that when q = 0 and y = fJ, 6. == 6.~ = 20c = 1 - g. 
Since 6.~ varies from 1 to 0 as R1 changes from 0 to 00, g will 
correspondingly change from 0 to 1 in this case. Since they are 
almost exclusively concerned with <PI and g, Levine et al. do not 
generally specify q when they deal with ql' Nevertheless, q and ql 
cannot really be separated and should be considered together. 
The above relations show how terms involving q enter the 
various equations when q is arbitrary and is not necessarily 
taken as zero. 

In order to treat the C-C case with the restriction fJ = y, 
Levine et al. (75) summed an infinite number of cutoff model 
single-image potentials in a way which follows directly from 
Grahame's (52) more qualitative treatment of C-C imaging. 
After applying the Poisson summation formula, they obtained a 
result which may be written 

6.g = (8r/7T) L
00 

(2m - 1)-lKl[(2m - l)7Tr] (132) 
m~l 
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where K l is a modified Bessel function of the third kind and 
r == To/d == PooR l /2. Thus, R l /'-' 3.8093r, and R l /'-' 0.6349 x 
108T0 when fJ = 3 A. For R1 ;> 5, it is a reasonably good ap
proximation to retain only the first term in the series and replace 
K 1 by its asymptotic expansion. One then obtains 

6.~ /'-' (4/7T) (pooR l ) 1/2 exp [-7TpooR l /2] (133) 

where (7TP ",/2) /'-' 0.8247. Thus, for R1 ;> 5, the linearity param
eter 6.~ rapidly decreases and soon becomes negligibly small. 
No numerical values of g (or 6.g) vs. r or R l were given by Levine 
et al. It should be stressed that the above results for 6.g apply for a 
cutoff approximation only, not for a hexagonal array; thus, 
R l == (To/PoofJ) is just a normalized distance measure, not a 
hexagonal nearest-neighbor distance, in this case. The constant-p 
cutoff approximation smears out much but not all of the discrete
ness contributions to the potential. It is not possible to use 
Levine's method for a hexagonal lattice approach to C-C imaging 
because p must vary with ~ in this case. Each term in the original 
series then requires a different p, since each pertains to an image 
plane at a different Z, and the Poisson summation formula is 
inapplicable. 

On the other hand, since p is independent of Z in either the 
HTL or LDL situation, the above limitation does not apply 
in these cases. The Levine series and its asymptotic approxi
mation will, therefore, apply for these conditions if we replace 
To by TIm or Te, P<>o by R1m/R1 or Re/R1, and T by R1m/2 or Re/2 for 
the HTL and LDL cases, respectively. For example, the choices 
R; = 2, 4, and 7 in Eq. 132 with Rcl2 replacing T lead to 6.g /'-' 
0.087, 5 x 10-3 , and 6 x 10-5, respectively. These results 
indicate virtual linearity of the local potential for 0 < Z < Zo 
when R, ;> 4 in the LDL case. Note that they are independent 
of R1 provided the latter is sufficiently large that the LDL con
dition is indeed appropriate. 

In 1962, Levich and Krylov (69) gave new expressions for the 
hexagonal lattice micropotential (Iwl = 1) pertaining when 
fJ = y. No numerical results for "P12 or o: were given, possibly 
because complicated triply-infinite series were involved, but the 
series were, in fact, used to derive curves to compare (for w = ± 1) 
with data illustrating the Esin-Markov effect. Using a Henry 
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(Boltzmann) isotherm, Levich and Krylov achieved qualitative 
agreement with experiment provided they allowed y to vary 
from 0.847 A to 0.780 A over the experimental range of V0 2 

from zero to maximum IVo21in the os = 1 case and from 2.112 A 
to 1.860 A in the w = -1 case. Further, in these cases €1 varied 
as well from 14.11 to 13.00 and 28.16 to 24.80, respectively. 
The use by Levich and Krylov of an overly simple isotherm, the 
choice fJ = y, and probably unjustified magnitudes and vari
ation of y and €l all combine to render the qualitative agreement 
found of little if any significance in our opinion. 

Later, Krylov and Levich (64) applied their results to a con
sideration of surface tension for (J) = ± 1. Calculations using 
hexagonal and cutoff (p = Pac,) models were compared, and it 
was found that interaction between adsorbed charges led to an 
increase in surface tension with increased coverage. The cutoff 
increases were somewhat smaller than those following from the 
fixed hexagonal lattice situation. Further, the changes were 
greater for (J) = -1 than for w = 1. 

The hexagonal array model was next used by the present 
authors (5) to treat the C-C imaging case. A modification of the 
Ewald method was employed to yield a rapidly convergent 
triply infinite series for ¥,~2) (1), and many curves of L\ vs. T1 or 
R1 were presented. This work was not restricted to the conditions 
q = 0 and fJ = y. Figure 28 illustrates, however, the results 
obtained for this simplified case. The cutoff model curves, shown 
dashed, were calculated using Eq. 132. It is clear that in the 
range of possible T1 values, from perhaps T1 = 5 or 6 A on, L\~ 
is small and decreases almost exponentially with increasing Tl' 

For large TIl there is substantial difference between the hexagonal 
and cutoff curves but such difference is of little or no significance 
in this region where L\~ is too small anyway to be important. 

To illustrate the fJ i= y, q i= 0 case, we include Fig. 29 which 
uses Grahame's 1N KI ql' q results (51). Here z; = -1, and the 
L\o curve shows the behavior if q were zero for each ql value. 
When corresponding ql and q values are used, the L\ curve given 
is obtained. It has a pole at the point where V0 2 changes sign. We 
thus see that when experimentally derived pairs of q and ql 
values are used, ¥'12 may be far from the proportion A of V0 2 ' 

Nevertheless, ,¥~2) (1) may actually be quite small over the entire 
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Fig. 28. Dependence of the C-C imaging, r = I, q = 0 linearity deviation 
parameter Dog on '1 and ql for f3 = y = 2 A and Zv = I. Solid lines: fixed 
hexagonal array; dashed lines: ordinary cutoff model (5). 
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range ofql' For example, at ql = -42.61 ,ucoul/cm 2, rl '" 6.59 A. 
When B = 3, we then find that the hexagonal A, is approximately 
0.09. Since 6.0 === 'f~2)(1)/),r, we obtain in this case 'Y~2)(1) '" 
0.0075. On the other hand, the corresponding 

,¥~1)(1) == 'f~2)(1) + ),B 

is approximately 0.7575. This value is close to the fraction 
B), === 1 -), = 0.75 which the local potential 1J!~1)(1) should be 
of 1J!00 for OJ = 1 in the q = -ql case (see Fig. 37) provided the 
potential variation is linear. 

It is of interest to show how 'Y( 1) === 1J!( 1)/1J! 00 may be readily 
obtained from published C-C and OJ = 1 values of 6.0 for q i=- 0 
and fJ = y. Since '¥(1) ~ 'f~1)(1) + {1J!e(l)/1J!"J, we may use the 
above relation between ,¥~1I (1) and ,¥~2) (1) plus the identity 
'f~2)(1) === ),r6.o to obtain 

,¥~l)(l) = ),[r6.o + B] (134) 
and 

'f(1) = Z;;-1[r26.
o - r{1 + (q/ql)} - (q/ql)] (135) 

This result of course only applies for C-C imaging or for C-D with 
OJ = 1. In the above KI case with B = 3, q = 18 ,ucoul/cm 2 

when ql = -42.61 ,ucoul/cm2• The quantity 1J!e(l)/1J!oo then turns 
out to be about -0.578. Thus, 'Y(1) itself is about 0.18 in this 
case. In the single imaging case, '¥(1) is much smaller, less than 
0.01, since most of the potential variation lies beyond the IHP 
for this situation. 

Next, Krylov (61) extended some of his earlier results and 
calculated values of o: for the fJ = y case. His results are shown in 
Fig. 30 and compare the hexagonal lattice and ordinary cutoff 
model predictions for ~ for both OJ = 1 (~l scale) and OJ = -1 
(~2 scale). Note that for OJ = 1 and fJ = y, o: == ~l = 6.U2. The 
abscissa scale measure, biro, equals 2fJ/rl == 2/R l in our notation. 
For the choice RIm = 2, biro thus also equals vo. We have 
compared some 2~1 values with the corresponding hexagonal and 
cutoff values of 6.g shown in Fig. 28 and find good agreement even 
though the methods of calculation differed tremendously. The 
OJ = -1 results for 1X2 will be discussed later along with more C-C 
and OJ = 1 imaging results included under partial imaging. 
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Fig. 30. Dependence of the Krylov discreteness parameter IX (IX ~ <Xl for 
C-C imaging; <X "'" <X 2 for w = -1) upon biro"" 2(R

l 
• Here, curves marked 

"hi" refer to a hexagonal array and those marked "cd" to the ordinary Grahame 
cutoff model (61). 

Finally, it should be mentioned that Levine et al. (77) have 
recently given an expression for the C-C quantity g, for {J not 
necessarily equal to y, which involves three separate singly infinite 
series. It was derived using the ordinary cutoff model with an 
arbitrary ro, denoted Tp' Thus, this expression may be used in the 
HTL and LDL situations as well as in the ordinary Grahame 
ease for which Tp = To andp = Poo' 

Although no Curves ofg vs. l' =" Tp/d are given by Levine et al., 
they do present some numerical values of (1 - g) for six r's lying 
between r = 1 and 2 for fJ = 3 A and y = 1 and 2 A. When 
plotted, one finds that in both cases (1 - g) is very nearly 
proportional to exp (-2.851'). 
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C. Single Imaging. Let us first consider C-O imaging with a 
conducting electrode. All imaging effects of the diffuse layer are 
thus necessarily neglected, valid if fE. = fEt and the solute concen
tration is very low. There is good reason why the micropotential 
VJl2 rather than VJtoo should be considered in this case. When 

q =F	 - ql' the uniform field potential 
(136) 

VJe(Z) = -VJooZ[l + (g!qt)] 

is nonzero and is of infinite magnitude when Z = 00. Thus, it is
 
preferable to consider the theoretical p.d. VJt2 and, when pertinent,
 
add to it the actual small p.d. across the diffuse layer VJ200 (or
 
V derived from experimental results.

2oo)
We	 may now write 

VJl2 = VJa(l) - VJa(ZO) + VJe(l) - VJe(ZO) 
(137) 

=	 VJatZ + fVJoo[1 + (q!ql)]
o 

where VJatZ VJa(l) - VJa(ZO)' It then follows that==0 

o 

A	 = VJl2 A( 1 + ~)==0 

V0 2	 (138) 
rEI	 + (q!qt)] + ~'Ya 

r + Zo(q!qt) 

where ~'Ya VJatz.lVJoo' The quantity ~ may now be written==0 

~ = 1 + (1 + B) ~'Ya (139) 
r + Zo(q!ql) 

These results also apply for partial imaging (C-D type) provided 
~ 'Ya is calculated for the pertinent imaging situation. 

For O-C imaging with the ORP approximated as a conducting 
equipotential surface, specific adsorption still involves transferring 
adions from the ORP to the IRP. In this case, however, it is 
almost always pertinent to take qt = -q2' a grounded ORP 
situation. If we measure potential and Z from the ORP rather 
than from the ESP, as in the C-D case, the actual situation is 
equivalent to that of C-O imaging with q = -ql and a conduct
ing ESP except that the roles of ~ and yare reversed. Further, the 
potential is then zero at the ORP and thus VJt2 = VJ( 1) = VJa(l) 
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for this situation. It then follows that 

==0A	 = VJu/V20 = VJa(1)jfVJoo 'Ya(l) (140) 

In this equation V20 equals - V0 2 except that the roles of y and ~ 

must be interchanged. If, for convenience, we maintain our usual 
definitions of I' ==0 y!~, B Ny, and A ==0 fj(l + f), changing==0 

from C-D to D-C imaging as above causes VJoo to change to fVJoo. 
Since Z, however, is now measured from the ORP, it is logical to 
take Z z!y; then Z = 1 still corresponds to the IRP. It will be ==0 

clear that Eq. 140 applies for either O-C or D-C imaging if 
VJa(1) is calculated for the imaging pertinent. Clearly, A values 
for -1 <: OJ <: 1 D-C imaging lead directly to the normalized 
potential at the IRP. If they are given as a function of Rt , then 
Rl must be interpreted as rtjy in this case. The same values of 
A(R l ) may be used to obtain 'Y a(1 ) directly in the C-D case also 
provided that in this case Rl is once again interpreted as rlj~ and 
D-C imaging I' values are transformed to numerically identical 
C-D B values and vice versa. 

The early work of Esin and Shikov (34), Ershler (32), and 
Grahame (52) already discussed, involves various approximations 
to O-C or C-O single imaging. Before discussing further work in 
this area, it will be valuable to summarize the modified cutoff 
model predictions for quantities such as A and ~. For simplicity, 
take q = -qt. Then for C-O imaging we obtain 

'Ya(1) = H{(pRI)2 + 4}1/2 - (pR t)] 
,...., (pRI)-l - (pRt)- 3, (pRt ?> 2) (141) 

in agreement with Eq. 120 if the R l 2y!rt used there is replaced==0 

by 2~!rl before comparison and the p here set equal to Po. Similarly, 

'Ya(Zo) = H{(pRl)2 + (Z, + 1)2}1/2 - {(pR l)2 + (Z; - 1)2}1/2] 

,...., Zo(pRl)-1 - HZ~ + Zo)(pRt)- 3, 
[(pRt) ?> (Zo + 1)] (142) 

Using these results and Eq. 138, we find for pRt ?> (Zo + 1) 

A = -~'Ya ,...., f(pRl)-t - Hzg + Zo - 2)(pRt)-3 (143) 

for q = -qt, and for q = 0 

~	 ==0 ~o = B[l + (1 + B)~'Ya] 

,...., B - (1 + B) (pRt)-t (144) 
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We see from Eq. 144 that the limiting value of ~o is not zero but 
B, also the limit for C-O imaging when R, -+ O. If R, )< 7, the 
appropriate value of p in these formulas is Po' Finally, we should 
point out that in view of Eq. 140, in the O-C case A is given by 
just the 'Y 1) ofEq. 141 provided R, in this equation is interpreted

a(
as Tl/Y·In 1961, Mott and Watts-Tobin (94) carried out an approxi
mate C-O single image treatment in which the discrete adion
 
images were completely smeared while the adion array itself was
 
treated by the cutoff method with a hole of the usual Grahame
 
radius, To = ('TTN)-1/2. Such a treatment retains very little of the
 
original discreteness of the system. Further, it includes the image
 
of an adion at point "d" but smears out this image over a circular
 
region, making its potential contribution erroneously depend on
 
Nand T In calculating the energy equivalent to VJ12 with the
 

l•self image energy included, Mott and Watts-Tobin should have 
properly considered the difference [rPiZ(l) - rPiZ(ZO)]' which 
allows the image of an ion being adsorbed to move with the ion as 
it progresses from the OHP to the IHP. Instead, they considered 

only rPiZ( 1) and smeared its effect. 
We have shown (6) that the Mott and Watts-Tobin model leads 

to the following expression for A when q = - ql 

A = -VJ12/VJoo = -~'Ya 
= nf + (PooR ) - {(p ooR l ) 2 + f2}l/2] (145)

l 

where we have replaced To/~ by pooR l • In the limits pooR l > I' and 
pooR ~ I', the above equation reduces to approximately 

l 

A nf _ (f2/2)(PooR (pooR l > f) (146)r'-J l)-1], 

A ![(pooR ) - (pooR l ~ f) (147)r'-J 

and 
(PooRl)2(2f)-1],l 

Mott and Watts-Tobin implicitly considered only the condition 
pooR > I' from the outset and obtained Eq. 146. Discreteness is so 

llittle evident that the corresponding VJ12 p.d. does not depend at all 
on~. The cutoff model for this case leads to Eq. 143 withp = Poo' 
In addition to the difference in the sign and magnitude of the 
coefficient of (PooR ) -1, there is an additional term in Eq. 146 which 

l 
does not disappear as R, -+ 00. This term arises from the overly 
approximate treatment of the self-image charge, not included in 
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the cutoff model but easily incorporated in it properly when 
desired. These results indicate that the Mott and Watts-Tobin 
result is less appropriate even than the earlier Esin-Shikov (34) 
expression. When I' >pooRll the image term becomes of negli
gible importance. In this case, in fact, the cutoff model leads to 

A t[(pooRl ) - {(Z~ + 3)/4(Z~ - 1)}(pooRl)2] (148)r'-J 

the same to first order as Eq, 147 and nearly the same to second 
order when I' = 1. 

Next, Levine et al. (75) used the Grahame cutoff model to 
examine an O-C situation for which EO (pertaining to a colloid 
plate region to the left of the ESP) was taken as 15, as was 101, 

Further, lOS was assumed infinite as well and the OHP taken as an 
equipotential surface. Since the average potential at the IHP will 
be f'lJ!oo for O-C imaging, again measuring Z and potential from 
the grounded OHP, we may write in the spirit of Levine's 
approach 

'lJ!a(1) = f'lJ!oo + rPl = f'lJ!oo - A'lJ!oog (149) 
and 

'Y a(1 ) "= A = 1 - ABg (150) 

where we have used Eq. 140. It follows that 

g = (1 + f)[l - 'Ya(l)] (151) 

considerably different from the equation for g in the C-C case. 
Had C-O imaging been considered, Eq. 151 with (1 + f) 
replaced by (1 + B) would have obtained. Both Eqs. 150 and 151 
apply for -1 < w <: 1 as well as w = 0 provided 'Y a (1 ) is cal
culated for the pertinent w value. 

It is important to remember that in equations such as Eq. 151, 
which involves defined quantities taken from treatments by differ
ent authors, all constitutive parameters such as g and 'Y a (1 ) 
must refer to the same model. Thus, ifin Eq. 151 'Ya (1 ) is given by 
Eq. 141 withp equal to the Grahame p j., then the corresponding 
g refers to the ordinary cutoff model. Note that since 'Ya(1 ) = 1 
and 0 when R l -+ 0 and 00, respectively, g changes from zero to 
(1 + r) over the full range of RI • Levine et al. (75) give a curve 
of g vs. T = pooRl/2 from T = 2 to T = 10 for ~ = y. By T = 10, 
g is nearly (1 + f) = 2. 
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In 1963, Bockris, Devanathan, and Muller (10) derived an 
isotherm (the BDM isotherm) intended to account for inter
actions between anions and the metallic electrode and those 
within the anion layer. Discussion of their result is of special 
interest because they found rather good agreement with experi
ment using this isotherm. In this C-O treatment, Bockris et al. 
state that the work of transferring an ion from the OHP to the 
IHP was neglected. Instead, the potential at the OHP was 
neglected, in that the quantity 1p( 1) was used where the difference 
1p( 1) _ 1p( 2 ) should have been. Thus, their treatment essentially 
involves only 0 the single imaging 1p( 1). Their expression corresponds 

to 47TqfJ Me ofJ2(7T N )3/2 [1 _ !fJ27T N] (152)
 
1p(1) = -E- - 4E
 

e 

where E, E , eo and M are undefined. Bockris et al. used the 
einconsistent relation 7TN(,1/2)2= 1 in arriving at this result. This 

differs from the relation between these quantities for a hexagonal 
lattice by a ratio of about 0.68. Although these authors do not 
mention the adion array structure they consider, it will become 
evident later that their approach is only logically consistent with 
a fixed hexagonal array. The use of the above relation between 
Nand '1 means that Eq. 152 is not fully related in a logical 
fashion to the model from which it was derived. Since Eq. 152 
was apparently used in comparing theory and experiment, how
ever, we shall compare it as is rather than derive the expression 

corresponding to the model begun with. 
The matter of the meaning of undefined and unspecified 

parameters in reference lOis somewhat clarified in later work by 
Wroblowa, Kovac, and Bockris (130). There, E and Ee are written 
as E, the dielectric constant. Unfortunately, the region of applica
bility of E and its value are not discussed; we shall take it as El' 

the effective dielectric parameter for the inner layer. Although 
eo is still undefined, we assume it to be the magnitude of the 
electron charge, e. Finally, M is defined as a two-dimensional 
analogue of the Madelung constant. It was taken as 11.4 on the 
authority ofLangmuir (66). Langmuir considers a fixed hexagonal 
array of ideal dipoles and obtains 11.044 by a summation
integration method. The value 11.4 must, therefore, be a misprint, 
and we hazard a guess that in the comparisons with experiment 
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carried out by Bockris et al. the value 11.044 was used. It is now 
clear that Eq. 152 must involve a hexagonal lattice model and 
that M actually equals the Topping quantity we have denoted 
G (~ 11.034). 

In the later paper, the term (7TN) is written as (7TqlN/F), where 
N is Avogadro's number and F must be the Faraday. Now ql is 
negative for adions, so F must also be negative to avoid the appear
ance of imaginary numbers. Then qIN/F = Iql/el, equal to our 
N, the adion surface density, for [z.] = 1. 

There is one remaining difficulty before Eq. 152 may be com
pared with other approaches. The second term in Eq. 152 is 
negative there but positive in the later work (130). Equation 8 
in the Wroblowa paper indicates, however, that the plus sign 
must be a misprint. 

We shall compare the modified cutoff model prediction (with 
P = Po) for 1p(1) with Eq. 152. To maintain the same order of 
approximation, we employ the form of1pa(1) valid when PORI ~ 2. 
Note, however, that the unexpanded form of 1pa(1) with P = p(~) 

would yield higher accuracy for smaller R1 values. We obtain 

1p(1)	 = 1pa(1) + 1pe(l) 
~ [(POR1) - 1 - (P OR 1)- 3 - {I + (q/ql)}]1poo (153) 

Let us now take z; = -1 and express the above result in terms of 
N where appropriate. We obtain 

47TqfJ 47TqlfJ
1p(1)	 = 

E1 E1 

3	 3/2G2)3 /
4G)efJ2N3/2 [ (3 2-----l--fJNJ (154)(	 257T2v2 E1 

which may now be directly compared with Eq. 152. 
It is first evident (see also Eq. 136) that the constant field 

contribution 1pe has been incorrectly taken into account in the 
BDM expression for 1p( 1). Since ql < 0 for the present case, it 
turns out, however, that - (47TfJ/E 1)(ql + q) will generally remain 
positive and vary qualitatively with q roughly like the BDM term 
(47TfJ/E)q for q > O. Next, taking M == G, it is evident that we 
should compare (7T3/2/4) and (33/4/V2). These numbers turn out 
to be about 1.39 and 1.61, respectively, adventitiously close to 
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one another. Similarly, for the N5/2 term we should compare 
(37T/4) and (33/2(12/257T2). Most surprisingly, these numbers are 
also accidentally close, about 2.36 and 2.02 respectively. Further, 
the term involving (12 involves Po2

, but Po is only strictly the right 
value for a hexagonal array (if it could exist) with Rl -+ 00. For 
R l ~ 2 but finite, P is slightly less than Po, leading to a decrease 
in the difference between the last pair of numbers above. 

We thus see that in spite of its theoretical inconsistencies and 
inadequacies, the BDM 'lJ'(l) turns out to be reasonably close to 
the C-O hexagonal lattice 'lJ'( I). Nevertheless, the use of single 
imaging, of a hexagonal array (at the lower concentrations), the 
introduction of El' a PoRI ~ 2 expansion over the entire range of 
Rl , and the neglect of the potential at the ORP are such in
admissible approximations that the usefulness found by Bockris 
and co-workers of the BDM 'lJ'(I) as the micropotential in an 
adsorption isotherm can only be considered fortuitous. No valid 
theoretical basis for the use of this 'lJ' (1) in an electrolyte adsorption 
isotherm should be asserted. While its empirical usefulness has 
been unquestioned, its considerable agreement with experiment 
nevertheless does not allow one to infer from it much of significance 
about the structure and behavior of the electrolyte inner layer. 

Recently, the present authors (6) have presented a C-O single
imaging treatment of the hexagonal lattice micropotential for 
comparison with C-C results. Using an accurate summation 
method, many curves of A, ~o, and ~Z were calculated and 
presented. It was found, for example, that ~Z varied from about 
0.4 at Rl = 2 to unity as Rl -+ 00. As expected for single imaging, 
A departed considerably from its approximate value A pertinent 
with C-C imaging and appreciable R l • In fact, since ~'¥a -+ 0 as 
R l -+ 00, '¥12 becomes dominated by ['lJ'e(l) - 'lJ'e(Zo)]/'lJ'ro in 
this limit, and A thus approaches unity when q = O. Although 
the micropotential results of this paper (6) were calculated using 
a rather complicated formula, similar accurate results may now 
be obtained in a much simpler fashion using Eqs. 141 and 142 
and the appropriate p(~ = Hil ) and p(~ = Zo/Rl ) functions. 

In Fig. 31 we have presented single-imaging ~ and ~o curves 
calculated using Grahame's (51) l.ON KI q,ql pairs. These curves 
should be compared with the corresponding C-C curves of Fig. 
29. As expected, both ~ and ~o values are generally larger in the 
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single-imaging case. They are not as pertinent to the real situation, 
however, as are the C-C ones since the actual inner-layer Con
ditions must approximate C-C imaging more closely than C-O. 
In fact, were single imaging appropriate in the electrolyte case, 
the large r, pertinent in this situation would limit the maximum 
!ql/ to a value considerably smaller than that derived from 

-8 o 

experiment. The value Tc = 14 Adiscussed earlier corresponds to a 
maximum /ql/ of only about 10 ,ucoulJcm2. 

Single imaging represents only one point on the continuum of 
C-D imaging possibilities ranging from -I « w « I. Although 
it is the only imaging case of importance for adsorption from a 
gas phase, it is primarily of significance in the electrolyte case 
only for historical reasons and as a special limiting case for which 
the analysis becomes simpler. As we have seen earlier, however, 
although not of much physical significance for the electrolyte 
double layer, single imaging is of mathematical importance 
because results of w = 0 calculations can be combined to yield 
potentials and fields for any other pertinent co values. Such a 
mode of calculation, using the ordinary or modified cutoffmethod 
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to calculate the input single-imaging potentials, represents 
probably the simplest method of calculating w *- 0 results. Such 
partial imaging situations are considered in the next section. 

D. Other Imaging Conditions. Some D-C partial imaging 
results based on the ordinary cutoff model were given in the 1962 
paper of Levine, Bell, and Calvert (75). The method of calculation 
was not described, but curves were given of g vs. T for (3 = y and 
w = 1, 0.9, 0.7, 0.5, 0, and -0.5. This g is that of Eq. 151 of 

Section V-2-C.
Buff and Stillinger (17) then published a complicated statistical 

theory of the double layer with specific adsorption. This theory, 
applicable for -1 <: w <: 1 at the OHP, made use of the GFA 
Fourier-Bessel integral technique (17,77,115) to sum up the 
contribution to the potential from an infinite line of images. A 
doubly infinite sum of integrals had then to be carried out to 
account for every adion in the IHP. Buff and Stillinger bypassed 
this sum by means of a cluster theory approach which included 
only low-order interaction-induced correlations in adion position. 
They then considered only the thermally averaged, or expectation 
value, potential. Although this approach accounts properly for 
short-range forces, long-range forces are treated as a small 
perturbation, and all Mayer J-bonds are linearized in the long
range interaction. This treatment is valid, therefore, for a highly 
disordered situation, either the HTL or the LDL, but is inapplic
able when an array with appreciable long-range order begins to 
form. Even in the applicable quasi-random situation, however, we 
believe that our modified cutoff methods are as valid as the above 
approach and are far easier to apply. It is perhaps significant that 
Buff and Stillinger present no numerical results at all and no 
assessment of the range of applicability of their analysis. Although 
the Buff-Stillinger approach might help one penetrate a short 
distance into the difficult transition region between quasi-random 
and regular array behavior, it cannot be expected to contribute 
much in its present form to bridging the gap. Were it generalized 
to include higher-order interactions, both analysis methods and 
computational techniques would be strained outside the realm of 

present practicality.
Next followed Krylov's (61) 1X1(W = 1) and 1X 2(W = -1) 

hexagonal lattice and cutoff curves already presented in Fig. 30. 

These results also pertain only for (3 = y. The w = 1 IX = 1X1 

curves have already been discussed. For w = -1, Krylov deals 
with a D-C imaging situation and writes IX = 1X 2 and 

"P12 = IXr"P 00 (155) 

Comparison with Eq. 140 of Section V-2-C shows us that 1X 2 == 
'Ya(l) in this case. Comparison of Krylov's hexagonal lattice 1X 2 

values with our corresponding 'Ya(l) values calculated entirely 
differently also yields good agreement. Note that as in the C-C 
case, the p = p 00 cutoff IX's always exceed the hexagonal array 
ones. 

Levine, Mingins, and Bell (77) next presented an extension of 
the earlier work of Levine, Bell, and Calvert (75). This new 
treatment is also based on the Grahame cutoff method, but the 
cutoff model hole size variable, To = (7TN)-1/2, is often replaced 
by Tp, a quantity which may vary with T1 differently from To' 

This replacement leads to what the authors term the revised cutoff 
model, equivalent :a principle to our modified cutoff approach if 
their Tp is identified with our general cutoff model radius variable, 
Tb• Since no complete qualitative or quantitative relation between 
Tp and Nor T1 is presented, the authors frequently use To in place of 
Tp and sometimes seem to confuse the two quantities. Although 
some curves and tables are given with Tp as the independent 
variable, the results cannot be related to the appropriate values of 
q1 without a definite relation between Tp and N. 

In the new work, Levine et al. included dielectric imaging at 
both the ESP and the OHP, took the ESP either conducting or 
insulating, and also investigated the effect of diffuse-layer screen
ing as a function of the solute concentration and the potential 
drop across this layer, V2 00• Their treatment is thus both ambitious 
and comprehensive-and correspondingly complex and approxi
mate. Although Levine and his co-workers have applied the cutoff 
model primarily in the regime where thermal motion is of some 
importance, the model can be extended outside this range, as 
we have shown in the prior discussion of cutoff approaches, by 
using T1m for Tb in the HTL case, r, for Tb in the LDL situation, and 
P(~)T1 for Tb in the rigid hexagonal-array case. 

Since the quantity Tf3 is of considerable importance to the 
Levine et al. approach, it warrants additional discussion. Using 
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a grand canonical ensemble, Levine and co-workers arrived at the 

(approximate) result 
S*(p) = Ql(exp (- V(p) fkT) - l] (156) 

where S*(p) is the fluctuation surface charge density, p the distance 
between two ions in the IHP, and V(p) the potential of mean 
force between the two ions under the actual conditions applying 
in the inner region. They used this result to obtain 

r~ = 2fo'''p[l - exp (- V(p)fkT)] dp 

= rim + 2{:P[l - exp (- V(p)fkT)] dp (157) 

where the condition V(p) = 00 for p <; rIm, consistent with rIm 

(denoted a in the paper in question) being the minimum distance 
of approach in the plane because of hard-core steric effects, was 
used to arrive at the second form. It is clear that when V(p) = 0 

for p > TIm as well, Tp = TIm' 
For sufficiently small \qll, the authors approximate V(p), a 

function of ql and the imaging-shielding conditions as well as p 
by Vo(p), the interaction energy of an isolated pair of adions 
separated by the distance p in the presence of the diffuse layer. 
The above equations are probably most appropriate in this 
limit. By means of an approximate treatment of the effect of the 
diffuse layer, they then calculate for various imaging conditions 
first Volp) then (TII)O, which is the quantity corresponding to Til 

when V(p) is replaced by Vo(p), itself independent of ql by 
definition. Asserting that V(p) will decay more rapidly than 
Vo(p), Levine and his associates interpret (Tfl) 0 as the upper limit 
to the value of Til' This limit must clearly be applicable only when 
ql -+ 0 and r

l 
-+- 00, the LDL regime. Thus, one concludes that 

Til must vary from some minimum value to (rll)o as Iqll decreases 
from its maximum possible value towards zero. 

Since we may identify RII == TIlIP with the Rb of Fig. 13, we may 
compare our conclusions concerning its variation with those of 
Levine and co-workers. The latter authors take rIm <; Til < To, or 
RIm <; R < R ' They seem to be primarily concerned with the 

II o
quasi-random region and perhaps somewhat with the transition 
region, although they do not discuss the existence of the latter 
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region explicitly. Certainly, they do not intend their treatment to 
cover the regular-array region. 

From their definitions, it is clear that our R, and (RII) 0 = h)o/P 
are identical in principle, even though the ways used to calculate 
them by ourselves and Levine et al. differ. For given imaging 
conditions, R, is approximately the minimum distance of 
approach of two isolated ions. It is generally greater than TIm 

because of the coulomb repulsion effective under the given con
ditions. In our calculations of an approximate R" diffuse-layer 
shielding has been ignored for C-O single imaging, while it has 
been included in our C-C imaging treatment and in the work of 
Levine and his associates. 

Reference to Fig. 13 shows us that indeed Rp < Ro, as expected 
by Levine et al., in the quasi-random region where RII - Re, a 
constant. We also see, however, that while R; is the ql -+ 0 
limiting value of RtJ, it is not necessarily the upper limit of RII as 
stated by Levine et al. Depending upon the value of R; and the 
widths of the hexagonal and transition regions, RtJ mayor may 
not reach a greater value than Re• For the C-C imaging con
ditions of Fig. 13, it almost certainly exhibits a peak, as shown. 

Using our modified cutoff approach, we are able to extend 
consideration of RII into the regular-array region. In this region, 
we have seen that the cutoff equations can be made to represent 
a hexagonal-array model provided T0/P == Ro is replaced by 
p(~)Rl' This quantity, R b , is only equal to Ro when p(~) = Poo, 
Grahame's value, which we find to be appropriate for the 
hexagonal array only for ~ ;> 1. Figure 13 was calculated for 
Z = I; thus, ~ ( = It;l) ranges from 0.5 down towards zero. For 
this range, p(~) varies only from about 0.62 to 0.657, nearly equal 
to Po. Therefore, in the available hexagonal-array region, from 
Rl = R, to the transition region, RII = R/) is roughly 0.64Rl , not 
equal to Ro, which is given by 0.525R l • In this range we see that 
R(J > Ro> opposite to the Levine et al. conclusion. If the adions 
could actually be close packed in the plane, Rl would equal RIm, 

but the appropriate R(J which should be used in the cutoff model 
formulas would be P(~m)Rlm' about equal to O.62Rlm = 1.24 
for RIm = 2. 

Let us compare our and Levine's results for Te for as analogous 
situations as possible. Initially, let us restrict attention to the 
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situation where the dielectric constant of the region to the left of 
the ESP is taken infinite. This appears to correspond in the Levine 
et al. treatment to taking the ESP electrically conducting. In 
this case, with ~ = 3 A, «, = 80.1, tOI = 10, and T = 20°C, 
Levine and his co-workers obtain (T~) 0 = 9.5 A for y = 1 A, 
a solute concentration of 0.1 moles/liter, and the potential V2ro 

taken zero. They further find (T~) 0 = 9.3 and 11.0 A for y = 2 A 
and concentrations of 0.1 and 0.01 moles/liter, respectively, again 
with V = O. The situation considered approximates that of

2roC-D imaging with tO 00 and hence perfect infinite imaging.
s""" 

In this case, concentration changes should be relatively un
important, as indeed was found by Levine et al. 

It is interesting to compare the above results with the values 
To ro.J 6.9 Afor ~ = 3 A and y = 1 A and To ro.J 9.2 A for ~ = 3 A 
and y = 2 A obtained from the results of Appendix I in the 
simpler and more physically transparent manner discussed 
previously for the C-C case. These results are surprisingly close 
to those found by Levine and his associates, although the variation 
with y is opposite. We believe that the degree of agreement is 
primarily an accident, however. Not only were our Te'S and 
Levine's h) o's calculated in quite different ways for slightly 
different situations, but our analysis used a shielding dielectric 
constant of unity, a value we believe to be close to that appropriate 
in the situation, while Levine used "1 = 10. 

Although no value of (Tp) 0 for O-C single imaging is given by 
Levine et al., they do present values for O-D imaging with 
". = 80.1 and some ionic diffuse-layer shielding. The combination 
of this high value of tOs and some conductive shielding may again 
be taken to approximate conductive imaging quite closely. If 
we convert from O-C to C-O imaging (y - ~), then the input 
values used by Levine and co-workers in this case correspond to 
~ = 1 and 2 A, T = 20°C, a solute concentration of 0.1 mole/liter 
and "2 = "1 = 15. The quantity (Tp) 0 was found to be 15.8 A 
for ~ = 1 A and 16.4 A for ~ = 2 A. In contradistinction, our 
semiquantitative single-imaging result, appropriate for tOI = 
". = 1, leads to 9.5 A for ~ = 1 A and To ro.J 15 A forTo ro.J 

~ = 2 A. We note especially the considerably smaller value of To 

for ~ = 1 A and the lack, in the Levine results, of much depend
ence of (T ) 0 on ~. We believe this virtual independence to be 

p 
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incorrect. Had we also used in our calculation a value of 15 for 
the dielectric constant effective in shielding the interaction, our 
values of To would have been reduced by a factor of more than 
2.4, making the above disagreement even more pronounced. 

Lack of space prohibits us from giving a detailed discussion of 
the lengthy and courageous work of Levine, Mingins, and Bell 
already discussed. We believe, however, that the following 
additional brief comments are worthwhile. Since a general form 
of V(p) valid for all qI is not given, Tp cannot be calculated as a 
function of qI or TI. When IqII is sufficiently large that Vo(p) is no 
longer a good approximation, we believe that Eq. 157 is also no 
longer likely to be an adequate approximation even were the pair 
interaction potential V(p) known exactly. Certainly this equation 
is inadequate when a regular array forms; we believe the combina
tion of it and the cutoff model to be also inadequate over most of 
the transition region as well. Next, the treatment of diffuse-layer 
screening is based on the linearized Poisson-Boltzmann equation. 
The inadequacy of this equation for many pertinent electrolyte 
double-layer situations has already been discussed at length in an 
earlier section. It is easy to show that the linearization used by 
Levine et al. depends on the perturbation potential at the OHP 
being much less than 1.7(kT/e), about 42 mV at 20°C. No check 
of the validity of this stringent condition was presented; it is not 
likely to be satisfied, for example, when 1V2 ro i = 97 mY, a value 
frequently used by these authors. 

Finally, of less basic but of considerable practical importance is 
the lack in the Levine, Mingins, and Bell work ofany experimental 
or theoretical correlation between q, qI' and q2' No values of q 
are given and potentials are calculated as functions of Tp or To, 
hence presumably of Nand qI' The potential V2ro , related to q2' 
is taken, however, as an independent parameter not directly 
associated, as it should be, with appropriate values of q and qI' 

In Figs. 32 and 33 we reproduce results for ep; and ti.epI calcu
lated by Levine et al. The fluctuation potential epI(O,O) - epI 
already discussed is written as epi(O,O) + ti.epI(O,O). The quantity 
« is calculated for an infinite Debye length; then ti.epI represents 
the correction arising from the ionic screening produced by 
mobile ions in the diffuse layer. The ordinate designations of 
both curves should be multiplied by -e, as should similar 
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quantities presented in the tables included in the paper. In the 
text of the paper, the abscissa is referred to as Tp, not To' Informa
tion received by private communication makes it clear that To 

was actually meant here. 
Note that had a more realistic value of 101 ~ 6 been used in 

0
calculating the curves of these figures instead of the values of 1
and 15 actually used, the maximum values of ~1 would have been 
about twice as many times (kTje) as shown. The perturbation 
potential at the OHP would then be even less likely to satisfy 
the condition of being much smaller than 1.7(kTje). Incidentally, 
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Fig. 33. The Levine et al. (77) diffuse-layer screening correction t1rf>1 vs, 

To(A). The ordinate designation should be -et14>I!kT. Here £s = 80.1, T = 
20cC, 

£0 = 15, £1 = 10, {3 = 3 A, y = I A. (A.) MIlO; (B.) M/IOO; (C.) 
M/IOOO. The numbers 4, 3, 2, 1, and 0 refer to the value of I~dl, equal to 
IV2<XJ1/24.36 when V2<XJ is in mY. 

Levine, Mingins, and Bell expect the results shown in these 
figures to be most reliable for the smallest T{J values. They seem
ingly set Tp = To in some of their work and calculate ql from the 
Grahame cutoff relation ql = zvej7TT5' Their minimum value 
To = Tp = 5 A then corresponds to about 20,ucouljcm2, the 
Iqll region where they expect a hexagonal lattice to start to form. 
Since we believe their approach does not adequately span the 
transition region, we feel that their curves are most appropriate 
near the LDL region specified by To == (T p) 0 where a smeared
charge model is most applicable. 

There is a further interesting anomaly. It is clear from the form 
and derivation of Eq. 157 for Tp that Levine et al. expect TIm to 
be the minimum value of Tp' But TIm is the close-packed hexagonal 
array nearest distance of approach of ion centers, enforced by 
steric effects. On the other hand, Tp is a mathematical cutoff model 
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variable which specifies the radius of the circle of removed charge 
in this model. It is thus not limited in the same way that r1 is, 
and instead of taking rp min = rim' Levine et al. should have used 
rpmin = P(~m)r1m' a considerably smaller quantity. Since a close
packed array is not attained experimentally nor expected theo
retically for either C-C or o-c imaging, this matter is not ofgreat 
practical importance. It is confused, however, by Levine's choice 
of the minimum value of Tp (or To) as 5 A, a value he and his 
associates also use consistently as that ofT1m. IfT1m were equal to 
5 A, the corresponding Iq1! would have the far-too-large value of 
74 J-tcoulfcm2• 

The most recent work on partial imaging is that of the present 
authors (91). The entire range of -1 <:: 01 <:: 1 was covered for 
both C-D and D-C imaging. Calculations for 01 =I- 0 were made 
by the method described earlier which sums individual single
image contributions. It thus involves only a single infinite series 
for 01 =I- 0 and converges rapidly for small os, Convergence is 
slower the larger ~o == ZOfRb and the closer 1011 to unity. It may 
be greatly speeded up, when needed, by application of the 
epsilon algorithm (83). 

Figure 34 shows some ~o results obtained for ordinary C-D 
imaging, covering the range 0 <:: 01 <:: 1 of interest in this case. 
The dashed and dotted lines of Fig. 34b were calculated using the 
ordinary cutoff model, not a hexagonal array (solid lines) for the 
fixed values P = Pcc (dotted) and P = Po (dashed). The differences 
between these curves and the corresponding hexagonal-array 
lines is not great out in the large R1 region where they all run 
approximately parallel. The difference is large, however, for 
smaller R1 values and becomes greater the smaller R1 (R] ;> 2) 
and the closer w to unity. Because Po and Pro are the largest and 
smallest values, respectively, attained by the P(~) of a fixed 
hexagonal array, it is not surprising that the limiting hexagonal 
lines lie between those for Po andpro' Since the region of maximum 
deviation between the cutoff model predictions and those of the 
hexagonal array is for small R1 where the hexagonal array is 
likely to be the best approximation to the actual structure, 
the hexagonal array results are definitely preferable in this region. 

Comparison in the case 01 = 1 is interesting. Let us temporarily 
denote the present C-D ~o for w = 1 as ~~1) and the C-C imaging 
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Fig. 34. The nonlinearity parameter for q = 0, tl. ' vs. R ~ Tl/P for a o 1hexagonal array, three r values, and ;;;. O. Dotted lines were calculated(J) 

from the cutoff'model using the Grahame P = Pro and dashed lines with P = 

Po- The ql scale at the top of the figure is only appropriate for the choiceP = 2 A (91). 
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(51)Fig. 35. The micropotential quantity A 0= 'Pl21 V02 vs, Grahame's 
1N KI derived ql (q) for f3 = 2 A, three F''s and w :> O. Dashed lines here 

denote negative values (91). 
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Ll Oof Section V-2-C as Ll~2). Since ,¥~I)(ZO) == 1, comparison of 
the relevant definitions shows that Ll~ll and Ll~2) are identical, 
as they should be. Comparison of numerical values of the two 
Llo's calculated from 1fJ~I) and 1fJ~2) values obtained by tremendously 
different series, bears out this identity. To obtain the normalized 
potentials from Ll ovalues, we need only use either ,¥~2)(1) = ArLlo 
or ,¥~I) (1) = A[r Llo + B]. Finally, note that for any w but unity the 
limiting value of Ll o is B as R I ---+ 00 or O. For w = 1, Ll o ---+ B 
only for R I ---+ O. 

Figure 35 shows C-D curves of the micro/macro potential ratio 
A calculated for several w values using the paired values of q and 
ql which follow from Grahame's (51) 1N KI data. Here, A is 
presented both because it is more directly significant than Ll in 
the present case of many w values and because it lends itself to 
the interesting comparison discussed below. The dashed lines in 
Fig. 35a denote negative parts of the curves and arise because the 
theoretical V02 passes through zero for r = t within the ql 
range covered. Note that all curves go to the limiting value 
A = Awhen ql = 0 and there is no adsorption. In the opposite 
limit of large Iqll, A ---+ 1, again when q = O. The curves of Fig. 
35 cover the full range of ql derived from the data. 

In Fig. 36 we show the results of some calculations by Grahame 
and Parsons (53) using their KCl data and the above Grahame 
KI data. The quantity A = y/(f3 + y) given as the ordinate 
designation in the figure was calculated in two different ways. 
The lack of agreement found bespeaks one or more inconsistencies 
in the model and equations used to obtain A. The curves marked 
"equation 8" were calculated from experimentally derived values 
of ql' V02' and V200 using a simple Boltzmann distribution adsorp
tion isotherm. The quantity obtained, although termed y/(f3 + y), 
is operationally equivalent to 1fJ12/V02 == A in some sense, how
ever. 

Let us write V~2 for the experimentally derived V02 and V~2 for 
the theoretical V02which enters our A. Further, employ the same 
superscripts for 1fJ12' A, and A. Then the"A" obtained with the aid 
of "equation 8" is actually 

N = (1fJ~2/ V~2) = (1fJi2/ V~2)( 1fJ~2/1fJi2)( V~2/ V~2) 

= N( 1fJ~2/1fJi2)( V~2/ V~2) 
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Fig. 36. The putative quantity A ~ y/({3 + y) vs. q for KI (51) and KCI 
(53), calculated from experimental results by two different methods (53). 

If the last two ratios were each unity, Ae would equal the 
theoretically calculated A. There are a number of difficulties. 
First, even if the proper value of w were known the resulting 'lpi2 
would probably differ from 'lp;2 because of inadequate treatment 
of diffuse-layer screening and the use of the dielectric continuum 
assumption in the inner region. Second, (V~21 V~2) is not even 
unity, as we shall see later, when q and qi vary together. At 

V0 2 present, we cannot even calculate the average quantity
 
sufficiently accurately to achieve agreement with V~2' Third,
 
Ae is derived from an isotherm which is certainly incorrect for
 
the higher \q I values. Note that if the Ershler-Grahame linearity


I
condition applied, as assumed by Grahame and Parsons, then 

e 

A = A and "equation 8" would indeed give an estimate of A , 

still not likely to equal At. Finally, the determination of N 
requires its independence of qi when q is held fixed and qi varied 
by changing solute concentration. Although such independence 
was found, this restriction does not give us great confidence that 
the resulting Ae, which involves variable diffuse layer screening 
as pointed out by Payne (108) will be a good approximation to 
At calculated using experimental data taken at constant con
centration and with q and qi varying together. Although the 
diffuse-layer shielding will also vary in this latter situation, it may 
be expected to vary differently from that involved in N. If 
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dielectric imaging is dominant (w R::! 1), however, such a dif
ference in diffuse-layer shielding behavior will be unimportant. 
Finally, it should be mentioned that Parry and Parsons (101) 
have suggested an improved, but still nondiscrete, method of 
calculating 'lp12 which seems to yield somewhat better agreement 
between the A obtained from an adsorption isotherm and that 
obtained by the method of "equation 11" discussed below 
(101,107). 

Although the "equation 8" Ae curves cannot be expected to 
agree closely with our theoretical A curves for the reasons already 
discussed it is still of interest to compare them. In making such a 
comparison, note that the At curves of Fig. 35 are plotted versus 
qi while the Ae's of Fig. 36 use q as the abscissa. In the range 
q > 0, where most of the variation in the "equation 8" curves 
occurs, -qi and q are approximately proportional. Thus, the 
difference in scales is not of much importance here. Comparison 
shows that for KI reasonable values of rand w, such as 1 and 0.9, 
respectively, can be selected that yield at least semiquantitative 
agreement between At and Ae. Nevertheless, too much should 
not be read into such agreement. 

The curves marked "equation 11" were derived in a different 
way. It is found possible to derive the average quantities 'lpv = 
r'lp00 and 'lp02 == (qlql) Zo'lp 00' which together make up our usual 

directly from manipulations of the experimental results.V0 2 ' 

Then, if'lpv and 'lp02 are well approximated by the above equations, 
the ratio (qlql) ('lpv 1'lp°2) is (TIZo) == A. The result is thus really a 
measure of A, not A as is the other approach. It is helpful that the 
A obtained from "equation 11" is nearly independent of q, in 
keeping with one's expectations that y and ~ should not vary very 
much with q and might tend to vary together if they did depend 
on q appreciably. Although the two sets of curves do not generally 
measure the same quantity, as we have seen, they should become 
identical at the right, where qI---+0 and N---+A t ==y/(~ +y). 
Although such identity is by no means perfect, we note con
siderable tendency for the curves to come together on the 
right side of the figure. We shall further discuss these results in 
Section VI. 

Finally, in Fig. 37 we present some curves of A( ==N) taken 
from our partial imaging work (91) calculated for the D-C case. 
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Fig. 37. The micropotential quantity A, here equal to 'Ya(l), vs. R 1 for a 
hexagonal array and a full range of w values. For C-D imaging, q = -ql and 
R == T1/fJ, while for D-C imaging ql = -qz and R1 == T1!Y· C-D imaging: 
(a)1 r = t; (b) r = 1; (c) r = 2. D-C imaging: (a) B = t; (b) B = 1; 

(c) B = 2 (91). 
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In this situation, the OHP is taken conducting and a dielectric 
discontinuity (except at OJ = 0) occurs at the nonconducting 
ESP. As we have seen earlier, in this case A == 'Ya(l). Thus, the 
curves shown give the normalized potential at the IHP directly 
for the case of overall neutrality, ql = -q2' Note that for D-C 
imaging, the quantity R1 is T1/Y. 

If, as before, we keep the same definitions of fJ and Y for both 
C-D and D-C imaging, such quantities as rand B also retain 
their usual definitions in passing between these cases, but their 
numerical values change. If fixed values of Band T are used first 
in a C-D calculation, then in a D-C one, the value of r appropriate 
in the first case becomes equal to the value of B in the second, and 
vice versa. The same curves may thus be used for either C-D or 
D-C situations with the proper changes of r, B, and Rl' The 
pertinent values of these quantities for both cases are shown in the 
caption of Fig. 37. Note that in order to obtain the actual un
normalized potential "Pa(l) from the A values shown in the figure, 
one must multiply A by r"Pro == 47Tyql/€1 in the D-C case and by 
"Pro == 47TfJql/€1 in the C-D situation. When OJ = 1, the final 
limiting value of A[ ='Y(~)(I)J, is Je for D-C and BJe for C-D 
imaging. The curves shown span the entire range of OJ since the 
partition -1 <; OJ <; 0 is usually of most pertinence in the D-C 
case and its complement 0 < OJ <; 1 of corresponding interest 
for C-D imaging. 

The results of Fig. 37 may be used to assess the magnitude of the 
fluctuation potential ~l used by Levine et al. (75,77) . Normalizing 
as usual with r"Poo for D-C and "Pro for C-D imaging, we may write 

<fJ 1 = 'Ya(l) - 1 (158) 

Note that when 'Ya(l) 0 the fluctuation potential ~l is nearlyR::; 

equal in magnitude to the average potential. This result is, of 
course, in agreement with g <: 1 + r (O-C imaging) or (1 + B) 
(C-O imaging) in the same situation of negligible 'Ya(l) . 

In this part of the article, we have considered potentials and 
micropotentials over R1 ranges which frequently cover the low 
R1 excluded region, span the hexagonal-array region, and some
times even reach through the transition region into the LDL 
regime. No real effort has been made by anyone thus far to try 
to bridge the transition region properly; currently the most 
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advanced approach, albeit still somewhat qualitative, is that 
contained in the present work, leading to Fig. 13 for Rb(R1) · 

Although a full and adequate account of discrete-element 
dielectric effects in the inner region may be long in coming, 
perhaps even longer than an accurate treatment of the transition 
region, we believe that something useful can be learned by con
sidering how some of the curves of Fig. 37 would change if some 
account were taken of the transition and LDL regions. We can 
readily do this for the w = 1(T = 1) and w = 0 cases using the 
Rb(R ) numbers discussed in Section IV and curve b of Fig. 13. 

1
The peak of curve b of Fig. 13 occurs at R1 ~ 7.4, where
 

R ~ 4.4. This value of R; leads, eventually, to 'Y~l)(l) ~ 0.5014,
 
bvery nearly the same as the corresponding w = 1 value shown in 

Fig. 37b. Similarly, the LDL value of R b, 3.5, which is pertinent 
for R ~ 12.6, leads to 'Y~l)(l) ~ 0.5052, again very nearly equal 
to the 

1 
w = 1 final limiting value }..B = 0.5 shown in Fig. 37b. 

Thus, in this case, the change in the w = 1 curve using R; 
instead ofp( ~)Rl is negligible. 

Calculations are simpler in the w = 0 case. We estimate that 
the peak value of R; is about 9.6 and occurs at R 1 ~ 16. As R1 

increases beyond this point, R b will decrease towards its final 
limiting value of 7, appropriate for R 1 ~ 32. For the two values 
R, = 9.6 and 7, we find 'Y~(l) ~ 0.10 and 0.14, respectively. 
Thus, the normalized IHP potential will reach a shallow minimum 
of about 0.10 near R

1 
= 16, then finally increase to 0.14 by R 1 = 

32. For this case, only for R1 > 16 will there be appreciable 
difference between the hexagonal array 'Y~(1) and the LDL 
'Y~(l), providing our estimate for the value of R 1 at the crossover 
between the hexagonal-array and transition region, R 1 ~ 15, is 
reasonably close to the correct value. An interesting project for 
future work would be the calculation of curves like those ofFig. 37 
covering the full range of w, indicating excluded, hexagonal, 
transition, and LDL regions for each curve (the boundaries all 
change with change of w), and using the most plausible inter
polation values of Rb(R1) in the transition regions. 

There has, thus far, been little experimental evidence directly 
bearing on the question of the importance and type of imaging 
at the OHP. Dutkiewicz and Parsons (31) have, however, carried 
out differential capacitance studies of the specific adsorption 
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behavior of the KI + KF system at constant overall ionic strength. 
In such a system, the Debye shielding length should remain 
constant with KI concentration change, as opposed to its variability 
in a simple KI system. Dutkiewicz and Parsons conclude that 
although such an experiment is unlikely to provide information 
about dielectric imaging, which is expected to remain relatively 
unchanged when the Debye length varies, it should allow some 
conclusions about the effect of diffuse-layer mobile-ion shielding 
with change in Iv adsorption. 

In the mixed system, both types of imaging should be essentially 
independent of Iv adsorption, while for adsorption from a simple 
KI solute, conductive imaging at the OHP should change with KI 
concentration and Debye length. By comparing their results for 
the mixed system with Grahame's KI results (51), Dutkiewicz and 
Parsons in fact conclude that ionic imaging in the diffuse layer 
must be taken into account and is imperfect at least in solutions 
of lower ionic strength. If these conclusions are correct, we may 
further conclude that dielectric imaging is also imperfect and/or 
takes place on a plane further from the ESP than that associated 
with the conductive imaging effect of the diffuse-layer ions, since 
if it were perfect and took place at least as close to the ESP as the 
conductive imaging, changes in diffuse-layer imaging potentiality 
would have no effect on the overall (perfect) imaging present. In 
spite of these conclusions, we believe that the overall imaging at 
the OHP is likely to be much closer to perfect (or infinite) imaging, 
even at low ionic strengths, than to the single-imaging situation 
of no imaging at the OHP at all. 

VI. Discussion of Results: Average Quantities 

1. Permanent/Polarizable Dipoles 

We have already discussed some of the difficulties which occur 
when two or more different discrete kinds of entities are present 
in the inner region. Here we shall briefly and approximately 
consider the dielectric effects of a single species, namely solvent 
molecules, and shall usually take these to be water, the species of 
greatest interest. The situation we therefore consider is appro
priate in the absence of specific adsorption, thus probably in NaF 
over most of the q range. 
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Since a review of work on some of the dielectric properties of 
a monolayer of water molecules has already been given elsewhere 
(87) we shall here discuss the subject only briefly. Grahame (49) 
seems to have been one of the first to suggest that the high electric
field strength generally present in the inner layer produces some 
dielectric saturation and compression of the material therein. In 
spite of an implication to the contrary by Bockris, Devanathan, 
and Muller (10), one of present authors (80) was the first to treat 
the above qualitative suggestions of Grahame quantitatively and 
consider dielectric saturation in both the inner layer and the
 
diffuse region. By including compression as well, good agreement
 
with the results of differential capacitance measurements (50) on
 
NaF was obtained for q < O. From this work, it was found that
 
the effect of dielectric saturation in the diffuse layer, but not the
 

inner layer, was negligible.
This early work further introduced the value E oo = 5 for the 

completely saturated part of the dielectric constant. It was 
pointed out there (and also several times later independently by 
other authors) that E 

oo 
should not equal n2 

, the square of the 
optical index of refraction, which only includes electron polariz
ability, and that it should include no permanent dipole orientation 
contribution. It should differ from n2 because of inclusion of 
unsaturated librational and atomic polarization effects. The 
actual value of E 00 is of considerable importance in calculating 
inner-layer behavior and that of molecules immediately adjoining 
ions in solution. The value E 00 = 6, which we introduced some
what later on the basis of new experimental evidence (82,84) has 
been widely used thereafter. Now, however, recent evidence (18) 
seems to indicate that the high-frequency limiting value of E for 
water at 20°C (appropriate at frequencies below those where the 
librational and atomic polarization effects begin to relax) is about 
4.3--4.6. These measurements, which were carried out at wave
lengths between 0.1 and 0.01 em, yield values which, in at least 
an approximate sense, may be identified with the orientationally 
saturated value of E, E 00' We therefore currently incline to a value 
of E 00 for water at 20°C somewhere between 4.5 and 5. 

The earlier paper (80) also introduced for the first time in this 
context the concept that a completely unsaturated monolayer of 
water dipoles should exhibit a dielectric constant, EO' much below 
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that of bulk water. One reason suggested there for the low value 
of about 15 which was found necessary to achieve agreement with 
experiment near q ~ 0 was the absence of the usual bulk number 
of water molecules surrounding a given monolayer molecule. 
Considerably later, Watts-Tobin (128) [without reference in this 
connection to the earlier work of Macdonald (80)] and the 
authors (82,84) independently carried out at essentially the same 
time detailed treatments of the matter which largely explained 
the low effective value of EO in terms of the different surroundings 
of the monolayer of water and the concomitant likelihood of low 
association between molecules. 

Actually, Watts-Tobin's treatment involved a two-state treat
ment of the dielectric effects of a water molecule. It was assumed 
that the molecule would lie against the surface with either a 
lone-pair bond or a proton bond to a surface mercury atom. Later, 
Mott and Watts-Tobin (94) adopted the somewhat simpler 
picture of the full dipole moment of the water molecule lying 
perpendicular to the surface, either parallel or antiparallel to the 
normal field. A similar model was later used by Bockris, 
Devanathan, and Muller (10) and Bockris, Green, and Swinkels 
(11). In contradistinction, the earlier treatments of the authors 
(80,84) allowed all intermediate positions of the adsorbed water 
molecule and used either an empirical saturation law proposed 
by Grahame (47) and/or in the later work (84) a Langevin 
function or a more complicated function which took some account 
of imaging of the water dipoles in the mercury electrode. Although 
we now believe that the two opposite orientations of the water 
molecule at the surface are the most likely states, other less likely 
intermediate positions should not be entirely neglected. The actual 
differences in behavior of the different saturation functions may, 
however, be sufficiently small that distinction between them is 
unimportant at the present level of attainable experimental 
and theoretical accuracy. 

One of the present authors (81) also suggested that there would 
be a "natural" field, tffn' present at the surface of the electrode 
and directed perpendicular to it, even at the ECM, which would 
tend to orient dipoles along it. This effect was incorporated into 
the later treatment (84,87) and used, in part, to explain the 
appearance of a hump on the q > 0 side of the NaF differential 
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capacitance curves. Such an explanation required that the water 
molecules lie with their positive poles next to the electrode at 
the ECM. Frumkin et al. (42), however, suggest on the basis of 
other evidence that the orientation is with the oxygen (negative) 
pole toward the mercury at the ECM. 

In our treatment of the differential capacitance in NaF (84), we 
suggested a number of causes for preferential alignment of an 
adsorbed molecule at the ECM (all of which were subsumed into 
the natural field or anisotropy energy). Among such causes may 
be mentioned nonspherical molecules, molecules having their 
effective dipole at a noncentral position, the influence of 
inhomogeneous polarization of the molecule, quadrupole and higher 
moments, electron overlap and bonding, and the nonplanarity 
of the metallic surface on an atomic scale. The appreciable 
electron wave-function overlap at the surface of a metal will tend 
to polarize adsorbed molecules with their negative poles inwards 
(84). There is another interesting effect which tends to produce 
the same response. A metal will tend to image negative charges 
better than positive ones because as a result of the Pauli exclusion 
principle, or statistical degeneracy of the conduction electrons, 
a depletion region can be formed near the surface of the 
metal with less expenditure of energy than can an accum
ulation region of electrons. Thus, a dipole directed outwards 
from theenetal would be imaged at less expense than one directed 

toward it. 
Bockris, Devanathan, and Muller (10, see also 11) have also 

suggested that the outward orientation is the more likely for 
adsorbed water dipoles because the oxygen atom is closer to the 
surface of the molecule, allowing that end of the dipole to be 
nearer the metal than would be possible for the positive pole in 
the opposite orientation. Further, measurements by Parsons and 
Zobel (106) also suggest that when the water molecules are most 
free to rotate, their natural orientation is with the oxygen toward 
the mercury. We now believe that the weight of the evidence and 
mechanisms discussed above are against the possible explanation 
of the hump we have given, and thus that the water dipole is 
more likely to lie with its negative pole toward the electrode at 
and near the ECM. Hills and Payne (56), on the basis of the results 
of differential capacitance measurements carried out under high 
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pressures, believe that the occupation of the surface by water 
molecules in a nonadsorbed electrolyte situation increases (at 
constant external pressure) with increasing positive polarization. 
This is one possible effect that we can't claim we suggested and/or 
treated first in earlier work, although our treatment of electro
static compression in the inner layer considered a reduction in the 
thickness of the layer as the field there increased in magnitude. 
Finally, Frumkin et al. (44) ascribe the appreciable differences 
in the differential capacitance curves they obtain with liquid 
mercury and gallium electrodes in part to differences between 
the two metals in their orienting effects on water molecules at 
the ECM. Such differences would probably involve different 
natural fields. 

The foregoing discussion indicates that even the "simple" 
case of a monolayer made up only of water molecules is still far 
from being understood in its entirety as far as its electrical prop
erties are concerned. We shall conclude this section by giving a 
general expression (85,87,89,90) for the average p.d., V0 2 , 

across a layer of such discrete elements in the C-O imaging regime, 
ignoring compression effects but including the polarizability of 
the elements, «, and their permanent dipoles, treated as ideal 
dipoles. We ignore the Onsager-type corrections here which 
should be included when permanent dipoles are involved. 

In order to account for possible changes in the surf~e density 
of adsorbed molecules, take their number per unit area as N, 
assume a regular hexagonal array (exact on close packing when 
N = Ns ) , and write '1 = (j)1/4N-l/2, the nearest-neighbor distance. 
Note that in most of this article '1 has measured the average or 
hexagonal nearest-neighbor distance between adions. Here, we 
have switched to molecules. Let ~ V c= -417:?Jid be the difference 
in the potential at the electrode when the adsorbed layer is 
present and the potential in its absence. Here :?Ji is the average 
volume polarization of the layer and d is its thickness. Then it is 
readily shown that V0 2 = 417qd + ~ V. Note that ~ V is the change 
in the average electron work function of the surface on establish
ment of the layer. 

Although we shall not give the derivation of in detailV0 2 

(85,89,90), it is worth pointing out that single imaging of the 
induced and permanent dipoles is taken into account accurately 
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and the treatment employs a self-consistent field. Work is in 
progress to extend this treatment to the infinite image regime. 
Let {3 be here the distance between the effective centers of the 
(ideal) dipoles (both induced and permanent) of the adsorbed 
molecules and the electrode imaging plane. Then again R I = 
T /{3 , and we shall here take RIm = 2 so that e = 4(R~. We use 
Ithe modified cutoff method to deal with the hexagonal 

array of image dipoles. The field inducing dipoles in adsorbed 
molecules is thus required a distance 2{3 in front of the image array, 
at the position of an adsorbed entity. Thus, ~ == Z(T 1 becomes 
2{3(T = 2IRI' and for the choice RIm = 2, e = ~2. Since our 

I
result involves p(~) and F(~), we shall express it entirely in ~
 
rather than in terms of N, e, T1, or RI • Then
 

V = 4rrqd - (27T( \1'3) ~2E~1 
0 2 (159) X [J{3 (4rrq + 6"nl) + {3-2 (fl (6" 2) )] 

where 
E == 1 + J[((](8)~3 - i + (~) {p(~)}2{1 + F(~)}J (160) 

I 2\1'3 [1 + g-lp(~)}2]3/2 

The above equations contain a great deal of meat which we 
shall expose bit by bit. First, J == rx({33 as ever. Since rx for water 
seems (15) to be about 1.3 A3 or more, J R:i 0.53. On the other 
hand, rx for cesium atoms may be (7,96) as large as 55 or 60 A3 
and {3 R:i 2.35 A. Using this value of (3 and rx R:i 53 A3, J R:i 3.85 
and might (90) possibly exceed 4. The quantity EI is here an 
effective dielectric constant arising entirely from the polarizability 
rx. Note, however that this "dielectric constant" does not enter 
into the expression for V0 2 in the usual way; in general, it is not 
possible to meaningfully define a monolayer dielectric constant 
which does enter in the usual way. Taking J = 0.53, ~ = 1, and 
evaluating p(~) and F(n for the ideal-dipole situation, one finds 
that the maximum likely value of EI for water is about 1.7. The 
three terms within the square bracket in Eq. 160 arise, going 
from left to right, from the induced dipoles in the plane with a 
given dipole, the image of that dipole, and from all remaining 

induced dipole images. 
The quantity 6"nl in Eq. 159 is the natural field effective in 

inducing polarization in adsorbed polarizable molecules when 
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q = O. The field acting to orient permanent dipoles, 6"2' is 
approximately 6"n2 + n-26"eff ' Here 6"n2' not necessarily equal to 
6"n1' is the natural field orienting permanent dipoles at q = 0 and 
n2 is a shielding factor taken here to be the square of the optical 
index of refraction. Using the proper expression for 6"eff' we 
obtain 

6"2 = 6"n2 + n-2E~I[47Tq + rx-1(1 - E1){rx6"n1 + (fl(6"2)}] (161) 

Since 6"2 occurs as the argument of (fl( 6"2), this equation must 
generally be solved for 6"2 by iteration when the form of (fl( 6"2), 
such as a two-state or Langevin function, is known. This process 
is of course unnecessary when the dipoles are completely pinned 
and l(fl(6"2)1 = fl, the full dipole moment. We still require 6"2 
in this case, however, in order to see whether full pinning is 
likely. 

Let us return now to the expression for V0 2 for water adsorbed 
on the electrode. Then ~ <:: 1, and we find (85) that the two main 
terms in the equation are opposite in sign and nearly equal in 
magnitude at the extremes of the q range. Thus, although ~ V may 
be quite large, several volts or more, V0 2 will be much smaller, as 
observed, throughout the full variation of q. We have found, in 
unpublished work, good but not excellent agreement between the 
predictions of Eq. 159 and experimental determination of V0 2 (q) 
for NaF using both two-state and Langevin functions for (fl( 6"2)' 
Slightly better agreement can be produced if compression effects 
are included. If any variation of e (or ~) with q were present and 
known, Eq. 159 could be used to account for this effect as well. 
Finally, it could be used, at least as a fair approximation, to 
account for the effects of displacement of solvent molecules on the 
electrode by adions during specific adsorption. 

Although the permanent dipole moment of water of about 
1.85 X 10-18 esu dominates its induced polarization, it is of 
interest to examine briefly the different situation of an inner 
layer composed of polarizable molecules or atoms with fl = O. 
The present description which ignores Onsager corrections is 
most appropriate for this case, as no such corrections are necessary 
for induced polarization. Such a system occurs, for example, 
when cesium or potassium atoms are adsorbed from a gas phase 
onto a conducting electrode such as tungsten. Equation 159 
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Fig. 38. The normalized C-O imaging electron work function change, 

~ V, vs. (J for a hexagonally arrayed adsorbed layer of polarizable molecules or 
atoms with It = O. The parameter is J oc/~3 (90).0= 

simplifies considerably in this situation, and we have presented 
in Fig. 38 some resulting curves of D.. VID.. V (e = 1) for several J 
values. Here D.. VID.. V (e = 1) becomes just eEl (e = 1)h, and the 
curves are appropriate for q zero or a constant. It is assumed that 
e is independent of e. The curves for J;4 2 show peaks, in 

n l 
agreement with experiment for such a material as cesium on 
tungsten. Note that the treatment breaks down (90) when J > 4. 
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2. Nonpolarizable Adions 

In this section, we shall be less concerned with discreteness 
effects than with indicating some of the deficiencies of the simple 
space-averaged treatment of V0 2 which we have used throughout 
most of this work when adions are present in the inner region. 

Consider nonpolarizable adions and smear the dielectric effects 
(moderated by appropriate imaging and screening) of the 
surrounding water molecules to yield the "« and E of Fig. 4.

1 
For greater generality, we shall not initially take Ep = E = E1• As

1 

usual, however, we assume that Ep, E Y and f3 are independent of
1, 

q. Then, simple electrostatics yields 

V0 2 = (41Tqly/E),) + 41Tq{(f3IEp) + (y/El')} 
== 41Tq1S [W + (1 + w)(qlql)] 
== 41Tq1[t + (s + t)(qlql)] (162) 

where we have set s == f3IEp, t == Y/Ey, and w (ylf3) (EplEy) = 

tis = (EplEy) r. Note that when Ep = Ey , W becomes simply r. 
We have used Grahame's (51) IN, O.lN, and 0.025N V0 2 ' q, 

and ql results for KI to calculate values of sand t by a least
squares procedure. Some of the results obtained are presented in 
Table V. In this table, sand t are expressed in Angstroms. The 

TABLE V 
Parameters Obtained from Least-Square 
Fitting of V02 Formula Using KI Data 

Normality 

0.025 0.1 

s 

w 
,1.1 
a 

0.1805 
0.1306 
0.7234 
0.4197 
0.0135 

0.2017 
0.1389 
0.6885 
0.4085 
0.0250 

0.2459 
0.1493 
0.6071 
0.3777 
0.0586 

s 

w 
,1.1 
a 

0.21 
0.1518 
0.7229 
0.4196 
0.0239 

0.21 
0.1418 
0.6752 
0.4031 
0.0250 

0.21 
0.1482 
0.7055 
0.4137 
0.0746 
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quantity Al is defined as w/(l + w), equal to the ordinary A 
when the assumption E~ = Ey is made. Finally, a is the standard 
error obtained in the fitting. Its units are volts. It may involve 
contributions from both random and systematic experimental 
errors as well as systematic deviations arising from inadequacy of 

the model.
The first set of results in Table V was obtained with sand t 

both free to vary. In the second set, s was held fixed at 0.21 A 
and the least-squares t obtained. Twelve data points were used 
for the 0.025N calculation, 14 for 0.1 N, and 20 for 1N. In each 
case, they covered the q range where \qII was sensibly greater 
than zero. Although the a's seem reasonably low, the degree of 
fit between theory and experiment was actually rather poor. For 
the top set of results shown in Table V, the greatest deviations 
between predicted and experimental values occurred roughly at 
the ends and middle of the q range and amounted to about 10% 
of V for all three concentrations shown. 

0 2 We note from Table V that none of s, t, or w is very constant 
with concentration change. Further, when it is free, s varies even 
more strongly than t, a surprise since a possible change in the 
average imaging plane distance with concentration might have 
been expected to affect y more than ~' In fact, it seems reasonable 
to define the OHP operationally as being located at the average 
imaging-shielding plane. The results in the table show that pro
vided E remains relatively constant, y apparently increases with 

y
increasing concentration, contrary to the expected behavior. 

Another anomaly appeared when we looked at the correlation 
factor, 1 , obtained between sand t. These quantities may very

st 
well be correlated, since if they do vary with q and qI' one would 
expect them to depend in much the same way on the same 
physical factors. We found that 1 s t was 0.7309, 0.5122, and 0.0553 
for concentrations ofO.025N, O.lN, and IN, respectively. Guessing 
that the vast changes in 1 with concentration might depend ins t 
part on the different number of points and parts of the q range 
employed in the fitting for these three cases, we investigated the 
IN situation in more detail. Table VI shows the results obtained 
with different selections of the data, all within the range where 
IqII > O. We see that taking every other point makes relatively 
little difference in the results, but that restricting the fit to the 
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high end of the q range makes a great deal of difference. This 
same effect was doubtless operating to affect the results obtained 
in the variable concentration case of Table V. 

Least-squares fitting has also been carried out for similar KCl 
data (53). In this case, sand t were roughly 0.3 and 0.1, re
spectively, but again they showed considerable variation with 
concentration and generally poor fits between theoretical and 
experimental values of V0 2 ' The variation of 1 st was again wild, 
changing from essentially zero at 2.449N to -0.53 at 0.02N. 

TABLE VI
 

Parameters Obtained from Fitting of 1N KI Data
V02 

Data choice 

We can conclude quite unambiguously that sand t should 
really depend on q and qi and that the equation for V0 2 used here, 
even with its unusual generality of taking E{3 * Ey, is quite in
adequate for representing the data well. It is not even a good 
caricature of the system. Delahay and Susbielles (25) have also 
stated that an equation of the form of Eq. 162 is not justified for 
the cation specific adsorption situation they investigated. 

In Section V-2-D, we discussed the method of obtaining A, 
considered purely as the distance ratio y/(~ + y), by the average 
"capacity-ratio" method denoted there as "equation 11." To 
emphasize that the result is a distance ratio some authors (101,107) 
have written (x2 - X I)/X 2 in place ofy/(~ + y). We prefer, how
ever, to use (J and y as nothing but distances in all our work, so 
do not need to make this distinction. 

If E{3 * Ey, the "equation 11" approach actually yields, to the 
degree that Eq. 162 is appropriate at all, 

Al w/(l + w) = E{3Y/[Ey~ + E~Y] (163) 
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rather than A. The quantities Ef3 and Ey might be expected to 
decrease, (probably somewhat differently) with increasing Iqll 
because of the displacement of neighboring water molecules 
which contribute their dielectric effects to produce Ef3 and Ey• 

We must emphasize, however, that the model really seems too 
crude; an all-discrete treatment (without direct introduction of 
dielectric constants at all) of all entities present in the inner 
region is a greatly preferable approach. Although the actual 
procedure of the capacity-ratio method involves using the ratio 
of average quantities, such quantities can depend very appreciably 
on the presence of discrete particle interactions, and we have no 
real assurance that the Aor Al which results from the procedure 
has much connection with a simple distance ratio.
 

One must also be particularly suspicious because the> ' 'Or Al
 
which results from the "equation 11" approach or the least
squares procedure (which yields nearly the same results) is 
considerably larger for KI than for KGl, yet the radii are about 
2.05 and 1.64 A, respectively (65). If y were about 1.5 A in both 
cases, Afor KI would be about 0.42, near the value obtained, but 
the KGl Awould be about 0.48, a change in the opposite direction 
from the value of 0.2 or less found for this system by the above 
approaches. Although one could think of many reasons to explain 
this result, we 1,elieve they should not be invoked unless a much 
more exact t'reory of V

0 2 
yields similar anomalies when compared 

with experiment.
As we have stated before in this article, an equation is still 

needed even for such a space-averaged quantity as V0 2 which 
adequately takes into account the contributions to the polarization 
arising from all discrete entities in the inner layer, moderated by 
imaging and shielding effects present at the boundaries. Although 
no such equation is currently available and obtaining it will be a 
most difficult task, it is clear that it will not subsume overall 
polarization effects entirely into either constant or variable di
electric constants. Further, until an average quantity such as 
V can be calculated accurately, it seems misguided for one to 

0 2 
spend much more time refining a discreteness-of-charge model to 
calculate V'12 or V'loo' We believe that the current uncertainty 
concerning both the proper form of V'loo and the form of the 
adsorption isotherm for adion adsorption combine to make it 
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more important first to improve the theory of V0 2 (and so of the 
differential capacitance), and only when this is in a satisfactory 
state then to apply the models developed and insights gained to 
evolve a much improved theory of V'loo' 

3. Polarizable Adions 

In this section, we consider the situation of an adsorbed layer 
populated only by polarizable adions which only undergo C-O 
imaging (85,89). The results will apply therefore primarily to 
adsorption of ions from a gas phase, although they shed light on 
the behavior of an array of adions adsorbed from solution in 
situations which approximate C-O or O-C imaging when all 
effects of inner-region solute molecules are neglected. For ex
ample, the present results will be relevant in the O-C situation of 
high ionic concentration where the OHP can be well approxi
mated as an equipotential and the (nonconducting) ESP dielectric 
constant approximately matches that of the inner region. 

The expression for V'oo == V 00 we have used throughout this 
article applies, for E1 = 1, when the polarization of adions (and 
all effects of solute molecules) is completely neglected. How much 
will the space-average quantity V'oo change when a; here the ionic 
polarizability, is taken into account in a treatment which properly 
includes discreteness effects? This question will be answered in 
this section. The approach used is very much like that employed 
for polarizable molecules in Section VI-I; thus, we shall give the 
principal results and explain their genesis rather than setting out 
the entire somewhat complicated calculation in detail (89). 

First, let us consider V0 2 for arbitrary q and ql' It is straight
forward to show that in the present case 

V0 2 = 4rry(q + ql) + 4rrf3q - 47T[1Jd (164) 

where [1J is the average volume polarization of the layer. It is 
given by 

[1J = (ct.Njd)[tS"711 + tS"d + 4rr(q + ql)] (165) 

In this equation, tS"d is a depolarizing field made up of five distinct 
contributions arising from: (a) the image charge ofa given adion; 
(b) the image of the induced dipole ofthatadion; (c) the induced 
dipoles of the adions surrounding and in the plane with the given 
one; (d) the nonideal dipoles surrounding the given adion and 
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arising from the other adions and their z"e images, and; (e) 
the dipole images of the induced dipoles of all adions in the plane 

with the one considered. 
The calculation of f?J and V02 is carried out on the assumption 

that the induced dipoles are ideal and leads to 

1p~[r + ZO(qjql) + g(R 1)] (166)V02 = 

where 1p~ == 47Tql~' the proper expression for 1p00 when o: = 0 and 
there are no surrounding solute molecules. From now on, we shall 
use the symbol 1p00 to denote the generalized quantity which 
applies when o: i:- O. Further, let 'Y 00 == 1pooj1p~· It turns out that 

'Y 00 - 1 - g(R 1) (167) 

and that when q = -ql' V02 == -1p00' consistent with our general 

definition for 1p00' 
All that now remains is to give an expression for the complicated 

function g(R ) . To do so we shall again use the modified cutoff 
1

method and assume a hexagonal array of adions. Here, we must 
distinguish between P(~) for nonideal dipoles, which we denote 
Pn(~) and that for ideal dipoles, Pi(~)' The arguments of these 
functions are somewhat different, so we shall write the entire 

result in terms of R1• We find 
(168) g(R 1) = (Jj2€1)[(87TjV3)R12Mo + l - S] 

where (169) S == 2(~jz.ve)(~tff nl) 
1)]2Fn(Rt

1)_
M = 2 - [R1Pn(Rt [R (R:l)F (R:1)] (170) 

o - IPn 1 n 1[{R1Pn(R1l)}2 + 4]1/2 

and
€ == 1 + J[aR-a _ + (~)[PJ2Rtl)]2[1 + F i(2Rt1)]J 1 

1 1 4 2 V3 [1 + {R1P;(2R1l) j2}2J3/2 

(171) 

Here, the expression for €1 turns out to be identical with that 
given in Eq. 160; it is merely written in terms of R1 in Eq. 171. 
For many purposes, sufficient accuracy will be maintained if the 
small F, and F; terms are ignored and all Pi and Pn's are replaced 

by Po == 47TjV3a or even by 0.607. We have not given before the 
accurate expression for g(R 1) above but have instead essentially 
made the above simplifications in our prior work (89). 
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When R1 - 00, it is easy to show that €1 - 1 - (Jj4) and that 
g(R 1) - g( (0) == J(l - 2S)j(4 - J). The quantity J == ocj~a will 
never approach 4 for ions and will usually be of the order of unity 
or less. Further, lSI will probably not exceed 0.25 for reasonable 
values of tffn1, ~, and z; = 1. Thus, g(oo) is not likely to exceed 
0.5. The quantity g(R 1) may, however, approach and even 
exceed unity for small R 1 and J <:' 2. Thus, we see that under 
favorable conditions, the inclusion of adion polarizability may 
affect V02 quite appreciably. 

In Fig. 39 we show how 1pooj(1p~ at R1 = 1) == Rt2'Y 00' here 
termed I'l' varies with Rt2 

• The ordinate is thus proportional to 
1p00' The abscissa may be converted into a e scale by multiplying 
by R~m' The solid curves were calculated with S = 0 from Eq. 167 
with essentially the slight simplifications mentioned above (89). 
The dashed curves are very approximate, do not include all the 
proper contributions to tffd , and approximate nonideal dipoles by 
ideal dipoles. We see that even J values considerably less than 
unity can make 1p00 considerably different from 1p~ (see the J = 0 
curve). Note that to represent 1p00 as 1p~j€, where € is even a 
"variable" dielectric constant, would be stretching the concept of 
a dielectric constant past bearing when 1p00 changes sign and 1p~ 

doesn't. 
If Ll V is the change in average electron work function on 

establishing the adion array, then for the q = -ql grounded 
electrode situation appropriate for adsorption from a gas phase, 
LlV = -1p00' Thus, Fig. 39 also shows how the work function 
change depends upon surface occupation. Note that we here 
define Ll Vas the difference in the potential at the electrode (with 
reference to "infinity") with the adion array present and that 
with the array absent (a bare electrode). 

In earlier work (89), the foregoing formula for 1p00 was fitted to 
experimental data for the adsorption of cesium (as ions) on 
tungsten. A good fit to the data could be obtained for the range 
5 < R 1 <; 00 using reasonable values of the parameters. The 
tungsten temperature was sufficiently high that the appropriate 
single-imaging Rc' even including the effect of nonzero ionic 
polarizability, should be less than 4, however. Thus, the R1 '): R; 
restriction still allows R1 values as small as the smallest values 
contained in the good fit range. Note that the room-temperature 
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Fig. 39. The hexagonal array quantity r i ='= 1/'00/[1/'/1, at R; = 1] vs. Rl 


for C-O imaging of a hexagonal array of polarizable ions (\ zv\ = 1) adsorbed 
on a conducting electrode. The parameter is J ='= (1./~3; note the R i scale at the 
top. The dashed lines were calculated using an overly approximate theory (89). 

R. ~ 7 value does limit the applicable parts of the curves of Fig. 
39 to the extreme left region where R-:;2 ~ 0.02. 

We now believe that the following situation is likely for gas 
phase adsorption, at least at room temperature. In the initial 
phases of adsorption when R1 is large, we believe it will be 
energetically favorable for the discrete entities to be adsorbed as 
ions. When R becomes smaller than about 15, the adion array

1
should tend to become hexagonal and Eq. 167 should apply 
quite well. Finally, when the surface occupation is high enough 
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that R1 approaches 7, we believe that either the entities will be 
adsorbed as atoms, or electrons will be shared with the electrode 
and [z.] will begin to decrease (decreasing R.), or perhaps both 
processes will occur concomitantly. In any event, for R; < R. 
and approaching Rim, we believe that most ifnot all of the discrete 
adsorbed entities can be considered to be atoms. Thus, in the 
range R1m < Ri ~ R., the polarizable atom or molecule results 
of Section VI-l should apply. 

Finally, it is of interest to give some results for J for ions of 
interest in electrolyte situations. We shall use some recently 
calculated (Ill) values of o: and shall use the radii of the ions for 
{J (65). The most likely choices of o: and {J then lead to J ~ 0.15, 
0.27,0.38,0.56,0.67, and 0.73 for Na+, K+, cs-, F-, cr-, and 1-, 
respectively. Particularly because of uncertainty in appropriate 
values of {J (which enters as (J3) to use, these values must be 
considered very crude. The values used probably lead to the 
smallest likely values ofJ. Using more favorable but probably less 
likely values of o: and (J, we found elsewhere (89), for example, a J 
of about unity for Cs". 

VII. Discussion of Results: Local Potentials

Polarizable Adions
 

In this concluding section, we shall discuss briefly the potential 
variation through point °arising from an array of polarizable 
adions. The difficult case of partial or infinite imaging of a 
polarizable array has not yet been treated in detail; thus, again 
we consider only the C-O imaging situation of a layer consisting 
only of polarizable adions. The potential with which we are 
concerned,1p(X,Y,Z) = 1p(O,O,Z) , is actually 1p~(Z) since we shall 
take q = -qi here and it is a single imaging situation; for sim
plicity, however, we shall omit both the superscript and subscript. 

Again we shall use the modified cutoff approach and shall write 
the equation for ,¥(Z) == 1p(Z)/1poo on the basis of a regular 
hexagonal array of adions. Some consideration of the LDL 
situation will follow. The quantity ,¥(Z) is made up of a part 
arising from the nonideal dipoles formed by the adions and their 
monopole images and another part stemming from the induced 
dipoles and their images. Let us again make use of the Pn(~) 
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and Pi(~) functions and introduce the function 

Btu) =0 [{RIP;(~)}2 + (Z ± 1)2]1/2 (172) 

Then, it turns out (92) that 'Y(Z) may be written 

'Y(Z) =	 UB;,(ZjR1) - B";.(ZjR1)
 

_ g(R1){(Z + l)[Bt{(Z + 1)jR1}]- 1
 
+ (Z _	 l)[Bj{(Z - 1)jRd]-1}][1 - g(RI)] - 1 (173) 

where some of the Z dependence is not shown explicitly since 
only the Z's occurring in ~ appear in the arguments of the B 
functions. The function g(R1) appearing here is that of Eq. 168. 

Figure 40 shows curves of 'Y (Z) calculated from Eq. 173 with 
the relatively good approximation of setting Pn(~) = PiU) = Po· 
Note that the abscissa scale is ZjR 1 and that we have taken 
S =0 o. The most interesting feature of these curves is that for 
J ~ 1, 'Y(Z) can exceed unity over part of the ZjR 1 range. The 
table in Fig. 40a shows 'Y co =0 1proj1p~ for various situations, where 
again 1p~ = 41rq1~. Since 'Y co =0 1 - g(RI ) , the values listed may 
be used to illustrate how g(R1) varies as well. 

The work on which the curves of Fig. 40 were based was carried 
out before we realized that R, for single imaging is likely to be of 
the order of 7 for room temperature. The R1 = 5 curves shown 
apply, therefore, only for temperatures sufficiently high that 
R <;;; 5 and yet a hexagonal array is maintained and the HTL 

c
is not reached. The R = 2 curves are really nonphysical. For

1 
R = R;	 = RIm = 2, the HTL situation should apply, not the 

1
regular hexagonal array on which these curves were calculated. 
At room temperature, a regular hexagonal array with R1 ;? 7 
would lead to curves which showed a peak only for appreciable 
J values, probably beyond the experimentally likely range. It 
should be further mentioned that even when 'Y ro exceeds unity, 
the quantity 1p(Z)j1p~ decreases for all Z as J increases. 

Let us now define 1 as the ratio of the change of ionic work 
function to the change of electronic work function (92). Then 
one relatively crude definition off, which we shall term 11, states 
thatil == 1 - [1pa(l)j1pro] = 1 - 'Ya(l). Compare the Levine per
turbation potential <1>1 of Eq. 158, which is, of course, written for 
(1. = O. Ifwe write 1~ for11 when (1. = 0, then <1>1 =0 - 1~· The quan
tity 11 may be readily written from our foregoing equations and is, 
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J if~;';"2. 
R l-2 Rl-5 

o 1.0 1.0 
0,5 0.4596 0.7873 
1.0 0,2305 0,5493 
1.25 0,1592 0.4192 
1.5 0,1038 0,2809 
1.75 0.0595 0,1336 
1.85 0,0442 0,0719 
1.90 0,0370 0,0404J 
1.93 0,0328 0,0214 

R I = 2 
8=0 

2 

I ---11 _ I IV \ I 2 
3 
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~ :;; 
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Fig. 40. The normalized local potential 'Y(Z) == 'P(Z)/'Pro ' equal to 'Pa(Z)/ 
'P 00 here, for C-O imaging of a hexagonal array ofpolarizable adions (Izvl = I) 
vs. e == Z/R1 for two different R1 values. The parameter is J == rx/f33 (92). 

R; =5 
8=0 

I I I I 
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o . 
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for a regular hexagonal array 

j =" hO - g(RI)[ 1 - 0.5{1 + [RIPi(2/RI) /2]Z}-l/Z] (174) 
I 1 - g(RI ) 

where 
hO =" 1 + 0.5RIPn(](;I) - {1 + [RIPn(](;I)/2]Z}lIZ (175) 

It turns out that a definition for 1 which takes nonzero polariza
bility into account more fully is1z ==11 + T, where 

T =" (V3/6417)R~[l - g(RI)]-I[g(RI) - g(oo)] (176) 

None of the abovej'?s includes redistribution of the adion array 
upon removal of an adsorbed ion. As we have mentioned, re
distribution effects should not be included in the mieropotential 
used in an adsorption isotherm. On the other hand, redistribution 
exerts an effect on the energy necessary to remove to infinity an 
adion from a regular array provided the redistribution occurs in 
a sufficiently short time that the adion being removed is still 
within the influence of the surface array during the rearrangement. 
In such a case, redistribution makes it easier to remove the ion. 
Naturally, if the adion is removed from the neighborhood of the 
surface so rapidly that little or no redistribution has time to take 
place, redistribution effects are unimportant and 1 = 12' Let 
us denote the r which includes redistribution as1a. 

Figure 41 shows curves of1z and1a vs. () for RIm = 4 (probably 
appropriate for cesium on tungsten) and S = O. Also shown as 
broken lines are two curves derived from cesium-tungsten experi
mental data (124). We see that the agreement between theory 
and experiment is not excellent. Although the adsorbent tem
perature was sufficiently high that R, <: 4 and thus there was 
no R, restriction leading to () < 1, we believe, as mentioned in 
Section VI-3, that for some nonzero () appreciably less than unity, 
Z", may begin to decrease and/or additional adsorption will occur 
as atoms, not ions. Since these possibilities were not incorporated 
in the calculation of the theoretical curves of Fig. 41, agreement 
with experiment beyond a maximum of () R:; 0.6 should not 
necessarily be expected. Further, the agreement should be poor 
also at very small (}'s because the curves were calculated for a 
fixed hexagonal array, not the transition region and LDL situation 
pertinent for () less than 0.1 or 0.2. 
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Fig, 4 I. Comparison of experimentally derived curves for cesium on tung
sten with theoreticalfresults for RIm = 4, Zv = 1, S = 0, and various J values 
(92). 

Although we shall not illustrate how the curves would change 
in the transition region, we will point out how the theory may be 
modified to calculate such curves. The quantity RIPn(~) occurs 
in 1~ and g(R]) while RIPi(~) occurs in 11> 1z, g(RI) and 101' All 
that is necessary to effect the transformation is to replace all these 
R]p's by Rb, a function of N (or R]). The quantity aR;3 which 
appears in 10] merely needs to be written as 417R;2/V3PoR1

, then 
replaced by 417](;Z/v3R

b
• 

We shall illustrate the result for12 in the LDL, where R =" R ,
b e

first for the specific choice R; = 7. One might think that in this 
limit only the RIA's should be replaced since they only are 
associated with the monopoles and their images. The induced 
dipoles are a part of the ad ions, however, and are thus also 
restrained from approaching one another any closer than R • 

Thus, all RIPi terms should also be replaced by R •
e 

e 
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In the LDL case, one first makes the R; = R. replacements 
discussed above, then lets R1 --... 00 keeping R. constant. One 
finds then that £1 --... 1 - (J/4) and g(R 1) --... g( 00). The quantity 
T does not go to zero, however, but to 

J/{4(4 - 2J)[1 + (R./2)2]l/2} 

For J = 0.5 and R. = 7, T~ 0.011, essentially negligible. For 
R. = 7, we findf~ ~ 0.86 and 

I, ~ [0.86 - 0.863g( 00)]/[1 - g( 00)] 

For this value of R" therefore, it turns out that f1 ~ f~ unless 
g( 00) is very near unity. Even for g( 00) = 0.5, the largest likely 
value of this quantity, f1 ~ 0.857. The largest likely value of f2 
is thus about 0.87. For the more reasonable choice of R. = 4 
in the present high-temperature situation, we find f~ ~ 0.764, 
and on using J = 0.5, f1 ~ 0.761, and f2 ~ 0.780, in excellent 
agreement with one of the experimental curves at () = O. Inci
dentally, on taking ()( = 0, the appropriate expression for fg 
leads to about 0.825 for R. = 7 and to 0.705 for R, = 4. These 
results suggest that redistribution does not appreciably affect the 
f values determined from experiment in the present case. 

Finally, it seems pertinent to discuss briefly the appropriateness 
of the classical image force law used throughout this article and 
in most treatments of ionic adsorption. We have taken the 
electrostatic potential at z = {3 arising from the image, at z = -{3, 
of a charge of effective valence z; at z = {3 to be 1JiZ = - zve/2{3. 
No contribution from the charge at z = fJ appears in 1JiZ' How 
applicable to the actual adion situation is this expression for 1JiZ? 

First, quantum-mechanical calculations (4,21,113) indicate 
that the classical image potential may be too large in magnitude 
by about 9% for fJ as small as 1 A. Further, no deviations in 
emitted current from the Fowler-Nordheim theory of field 
emission, which is based on the classical image law, were observed 
experimentally by Barbour et al. (3, see also ref. 97) until the 
field magnitude exceeded about 5 x 107 V/cm. Even at 108 V/cm, 
the deviation was only 4 to 5%. Cutler and co-workers (20,21) 
have discussed a correction to the classical law which would lead 
to 1JiZ ~ (-zve/2fJ)(1 - 'Y}{3-1). Values of the constant 'Y} used 
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ranged from about 0.07 to 0.09 A. For {3 = 2 A, the correction 
amounts therefore to about 4%. 

Although a correction of the above form has been suggested as 
appropriate for ions by Andersen and Bockris (2), it is important 
to note that the correction and the above discussion all pertain 
only to electron imaging. There is perhaps some room for doubt 
concerning the applicability of electron-derived criteria for the 
usefulness of the classical image potential to cation adsorption 
situations. For fJ ); 2 A, we believe, however, that it is as appro
priate to use the classical law as the corrected one for simple ions. 
Even were the corrected potential the more appropriate, the 
correction could be neglected compared with the greater uncer
tainties which abound in the inner layer. 

There is, however, an ion correction to the classical image law 
which should be mentioned. An ion is not a bare charge and its 
charge will tend to be somewhat self shielded. Such a reduction 
in epiZ is likely to be very small for the usual ions of interest in 
electrolyte situations and can either be ignored to good approxi
mation or incorporated, again to good approximation, by a small 
field-independent change in the ion-image distance. Finally, we 
have already mentioned the possibility of a difference in the 
imaging by a metal of positive and negative charges. This effect 
too may be small enough to neglect to good approximation, 
although the situation is not so clear for permanent dipoles 
inasmuch as any slight difference would exhibit itself as a contri
bution to the natural field ,g'n2' 

The treatments of discreteness effects discussed in this article 
have been meant to help expose and elucidate a number of gross 
features of the equilibrium double-layer system without incor
porating all high-order effects which could be imagined. Although 
double-layer theory is still in an early stage of development, we 
hope this article will help advance the subject a step closer to 
maturity. 

Appendix I 

C-C Imaging for a Single Charge 

We first consider the potential produced by a point charge at 
x = y = 0, z = fJ between two perfect imaging planes each a 
distance fJ from the charge. This corresponds to the potential 
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produced by a charge on the IHP and its infinite regress of 
images in the C-C imaging situation for (3 = y. The first derivation 
here is extremely simple and relates back to some of the physical 
arguments in the main text, but unfortunately it is somewhat 
difficult to generalize; a less amusing but also more generally 
applicable method is considered afterward. Throughout this 
Appendix the dielectric constant €1 is taken as unity. 

According to the method of images the potential at r == (x,Y,z) 
is given by 

'" 
cP(r) = zve I (_l)n[p2 + (z - {3 + 2n(3)2]-l/2 

n=-OO 

where p == (x2 + y 2) 1/2. This expression for cP is not very useful as 
it stands, since the convergence rate is extremely slow. Therefore, 
we seek another expression for this potential. According to 
Laplace's equation 

02cP -1 0 ( ocP)-+p-p-=o
OZ2 Op op 

everywhere in the domain 0 < z < 2{3 except at the site of the 
charge. Separating the variables and requiring that cP vanish at 
the two imaging planes z = 0 and z = 2{3, one obtains 

cP(r) = i' An si~ (n7Tz/2{3) Ko(n7T
P) 

n~l sin (n7T/2) 2{3 

where for convenience the unknown constants have been written 
An{sin (n7T/2)}-l, the function Ko is a modified Bessel function of 
the third kind, and the particular way we have written the 
unknown constants requires that the sum extend only over odd 
values of n as indicated by a prime on the summation. (Thus, that 
we are able to live with our "convenient" manner of writing is 
somewhat fortuitous.) 

We now determine the values of An such that the potential 
properly behaves as zve[p2 + (z - (3)2]-1/2 very close to the 
charge. * Taking z = {3 we require 

'" (n7TP)I' AnKo -2 ..:.- zvep-l, as p -+ 0 
n~l {3 

• It turns out that it is easier to maintain rigor by requiring that the field 
behave as zve[p2 + (z - tJ)2]-1 close to the charge, but the results are the same 
in any case. 
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Now defining Xn - (2{3)-ln7Tp, LlX == {3-~p as the difference 
between successive values of Xn in the sum, we find 

'" (n7TP) '" 
n~: AnKO 2{3 = (7Tp)-l{3 n~: A(Xn)KO(Xn) LlX 

..:.- (3(7T P)-li"'A(X)Ko(x) dX 

provided the function A(X) is smoothly varying as p -+ O. We shall 
verify that this is indeed the case, for we shall obtain that A(X) _ 
A, a constant. 

Write 

l"'A(X)Ko(X) dX = Al"'Ko(x) dX = 17TA 

where we have employed the frequently useful relation. 

l"'Ko(t5 X) cos (eX) dx = (7T/2)(e2 + 152)- 1/2 

which applies for real eand 15 provided 15 > O. Thus our condition 
on the potential near the charge implies ip-1{3A = p-1zve; therefore, A = 2zve{3-\ and 

7Tp)cP(r) = 2zve{3-1 i' si~ (n7Tz/2{3) K
o(n

n~l sin (n7T/2) 2{3 

The more mundane (and more rigorous) derivation of cP for the
 
more general case, (3 and y not necessarily equal, proceeds from
 
the appropriate expression for potential obtained by the method
 
of images 

'" 
cP(r) = zve I {[p2 + (z - {3 - 2nd)2]-l/2 

n=-OCl 

- [p2 + (z + {3 - 2nd)2]-1/2} 

where d = (3 + y. We prefer to write this sum in the form 

'" 
cP(r) = (2d)-l zve I {g+(n) r) - g-(n I r)} 

11=-00

with 

g±(nI r) = [(p/2d)2 + {n - (2d)-1(Z -F (3)}2]-1/2 
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Next, we define the Fourier transforms G± (k I r) 

G±(k Ir) == L: d~ exp (21Tik~)g±(~ Ir) 

= 2 exp {i1T(kjd)(z =f (J)}KO(1T p Ikljd) 

Finally, we use the Poisson summation formula, relating the sum 
of the g-functions to the sum of the G-functions to obtain 

c/>(r) = (2d)-l zve I
00 

{G+(k Ir) - G-(k Ir)} 
k=-OO 

This is readily shown to give 

zve ( r) 1 ~.m ( 1Tn ) . (1Tn Z ) K ( 1TnP )
c/>(r) = 47f 1 + - ::IS 1 + r sin 1 + r 0 1 + r 

where here P = pj{J.
When r = 1, all terms of even n vanish, and our earlier result 

is recovered. As a simple corollary to our general equation above, 
we find that the potential on the IHP (Z = 1) is given by 

00. ( 1Tn) (1TnP)
c/>(P, 1) = 4(zvej{J)(1 + I'):" ~ sin" y-r x, tr 

n--l + + 
We note that the potential on the IHP is invariant under the 
interchange of (J with y, as it must be for C-C imaging. All the 
foregoing series involving the modified Bessel functions converge 
quite rapidly, and usually the summations may be truncated after 
several terms with little loss of accuracy. 

Appendix: n 
Distribution Function for Nearest Neighbors without Interaction 

Define per) dr as the probability of finding the nearest neighbor 
of a given particle somewhere in the annular ring of width dr and 
inner radius r about that particle. In order for such a situation to 
obtain, two conditions are necessary: (1) the nearest neighbor 
must not lie within the circle of radius r, and (2) the nearest 
neighbor must not lie outside the circle of radius r + dr. The 
probability that the first condition is satisfied is evidently given 
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by the expression 

1 - I:P(~) d~ 

Given the first condition, the probability of realizing the second 
condition depends upon the correlation between particle positions; 
however, if it is assumed that no correlation exists, that is that the 
particles do not interact, then the probability of realizing the 
second condition is simply given by 21TNr dr, where N == mean 
surface density of particles. We obtain 

per) dr = 21TNr dr {I -ir
P(~) d~} 

from whence 

per) == ~ {fp(~) d~} = 21TNr {I - Iorp(~) d~} 

Solving the differential equation for 

fp(~) d~ 
produces 

I:P(~) d~ = 1 + A exp (-1TNr2
) 

where A is a constant yet to be determined. Differentiating, we 
find 

per) = -21TNAr exp (-1TNr 2) 

and integrating again we may determine A from the normalization 
condition on P(r). When such a normalization condition is 
imposed, we find * A = -1, and therefore 

per) = 21TNr exp ( -1TNr2) 

Now we use the distribution function just obtained for nearest
neighbor distances to find the expectation value ofnearest-neighbor 
distance in the absence of interaction-induced correlations. 

* Had there been a hard-core interaction excluding particles from the circle 
of radius rIm' the lower limits of integration would have been rIm' A would 
become -exp (1TNrim) , and P(r) would be 21TNr exp { -1TN(r2 - rim)} for 
r > rIm and zero for r < rIm' 
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Writing this expectation value as (r 1) , we find 

2 2)(r ) == 1'0rP(r) dr = 27TNf' r exp (-7TNr dr 
1 

On transforming the variable to ~ == 7TNr2
, we obtain 

(r ) = (7TN)-l/2fo''' ~1/2 exp (-~) d~ = (7TN)-l/2r m 
1

Finally, noting that q!) == ~v;, we may write 

(r 
1

) = ~N-1/2 

which is a very simple result. * 

List of Symbofs 

Abbreviations 

All system configurations
 

BDM
 
ASC 

Bockris, Devanathan, and Muller
 
Cell and hexagonal lattice model: the approach of Bell,
CHM
 

Mingins, and Levine
 

ECM Electrocapillary maximum (potential) 

ESP Electrode surface plane 

GEM Generalized Ewald method
 

GFA Green's function approach
 

HTL High temperature limit
 

IHP Inner Helmholtz plane 
LDL Low density limit 

Mackenzie, van der Hoff, and Benson: a method forMHB 
transforming lattice summations 

OHP Outer Helmholtz plane 

• Again, were we to consider a hard-core interaction, the lower limits of 
integration would become finite and the final resulting expression for (r1) 

would become
 
(r1) = r1m(-,rNr~m)-1/2 exp (7I"Nr~m)r(!,1TNrrm)
 

= r1m(7I"Nr~m)-1/2o/( -t, -t; 71" Nrrm) 

where the first manner of writing involves the incomplete gamma function and 
the second, the confluent hypergeometric function. The function X-

1
/
2 

X 

0/( -t, -t, X) diverges as V1T/4X for small values of the argument; for large 
values its asymptotic behavior is as 1 + (2X)-1 + O(X-2

) , while for X = 1,2, 
and 3 its values are approximately 1.36, 1.21, and 1.14, respectively. 

PZC 

TSE 

C-o, C-C, etc 

erf (x) 

erfc (x) 
In(x) 
Kn(x) 

r(x) 

r(x,y) 

y(n,x) 
lp(a,b;x) 

Co 
d 
~ 

e 
S, <I 

Sext, «; 
Sere,8eff 
e; 8 r, s, 

8 11, S1

Eoo 

f,11'/2'/3 

F 
g 

Point of zero charge: according to theory, equivalent to 
ECM 

Thermal stability according to an Einstein approximation: 
the method of Macdonald and Barlow 

Such abbreviations refer to the imaging conditions 
applying in the double layer; the first letter pertains to 
the ESP, the second to the OHP. The letter 0 desig
nates that the plane in question does not image; the 
letter C designates ideal conductive imaging, and D, 
dielectric imaging. 

Standard Mathematical Functions 

Error function == 271"-1/2 i"'exp ( -t2) dt 

I - erf (x) 
Bessel function of the first kind 
Modified Bessel function of the third kind (Macdonald's 

function) 

Gamma function = Loot"'-1 exp (-t) dt 

Incomplete gamma function - J,oot"'-1 exp (-t) dt 

I'(x) - r(n,x)
 
Confluent hypergeometric function
 

Main Symbols 
Ionic concentration in the bulk solution 
fJ + y == compact layer thickness 
Electric displacement 
Protonic charge 
Generic symbols for local electric field; when the symbol 

is not boldface, it generally refers to the component 
normal to the ESP. 

External field 
Field effective in polarizing elements 
Depolarization field arising from dipoles 
Field components parallel to and normal to the ESP, 

respectively 
-lpoolfJ, a normalizing quantity having dimensions of 

electric field 
The penetration parameter, the subscripts referring to 

specific situations 
- -dlnp(~)ldln ~ 
A discreteness parameter used by Levine et al. to character

ize the perturbation potential 
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g(Rl ) 

G(r) 

(f)(r,r;"n) 
h 
J 

k,k 
k 
l 

lmax 

i, £1' £2 

N 
N v 
NO 
N, 

P ==p(e),po,poo 

p 

P,P 

fiJ, fY' 
q 

ql 
q2 

r, r, r', r i 

'1 
('1> 

r l , r 2, r a, ... r» 
'0 

'b 

r0 

'M 

A function involved in the effect of nonzero ionic polari

zability upon 'Poo 
A function characterizing the effect of r upon critical 

fluctuation lengths 
Green's function at r for charge placed at r;"n 
Height of a basic array triangle == (3)1/2'lf2 
A parameter measuring the increase in effective polariz

ability as a result of imaging == IXff3a 
Generic symbols for wave-vector, wave-number 
Boltzmann's constant 
Characteristic distance in the compact layer; also 

normalized distance from symmetry line == pfh 
Maximum normalized motion allowable along given line 
r.m.s, normalized (with h) fluctuation distance: the 

subscripts refer to one and two dimensional motion, 
respectively; the symbols £1 and £2 also refer to a 
normalized variable in the IHP applying to Figs. 21 

and 22. 
Particle surface densi ty 
Particle volume density 
Total particle number 
Maximum possible particle surface density for a mono

layer 
Ratio of cutoff-model radius, 'b, to '1 for hexagonal 

array; the subscripts 0 and 00 refer to the values 
pertaining when e~ 0 and e~ 00 respectively. In 
particular, Po ~ 0.65752, Poo ~ 0.52504. Sometimes, 
the subscripts i and n are used with P(e), e.g., Pi(e), to 
indicate ideal and nonideal dipole situations. 

A probability ratio defined by Bell and co-workers = 
(probability of occupying outer half of proximity cell) f 
(probability of occupying inner half). 

Dipole moment of an element; a subscript refers to which 
element is involved. 

Polarization ~ volume density of dipole moment. 
Charge density on ESP 
Charge density on IHP 
Charge density on OHP 
Variously used as an unnormalized position variable 
Nearest-neighbor distance 
Mean nearest-neighbor distance 
Positions of particles in statistical assemblage 
Grahame cutoff radius: 1TN,~ == 1 
Generalized cutoff radius 
Coulombic hard-core diameter 
Quantity analogous to lmax used in CHM and there set 

equal to '0 
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Minimum possible value allowed for '1; usually the hard
core diameter 

R Normalized ,(== ,ffl) 
R l Normalized value of '1: generally Rl == 'If(3. However, 

when no hexagonal array is presumed, Rl == ('ofPoo(3) 
in the cutoff model. For D-C imaging, Rl == rdr
When y is the separation between discrete layers of 
charge, we have also used Rl = 2'lfy. 

'1m 

Ro == 'off3
 
Rb == 'bffl
 
Ro Normalized To (==Toff3 )
 

RIm Normalized TIm (== Tl m ff3) 
Rk Vector position of k'th lattice point 

S Structure factor relating rffr to !!P. 
2(flfzvc) (fltffn l ) ' 

T Absolute temperature 

Also the quantity 

U 

v 

Vo 

x 
X 
y 
y 
z 

Zv 

Z 
2 0 
fl' 

IX, (to' IXII 

Generically employed to designate interaction energy: 
a superscript zero refers to single image conditions; 
a superscript two refers to C-C conditions; the subscript 
"pair" designates that a single pair is being considered; 
Ui; is the interaction energy between the i'th andj'th 
particles; Utotal is the total interaction energy; UT is 
also used for total energy; Uint is sometimes used to 
mean interaction energy, and sometimes, internal 
energy. 

Generically employed for average potentials and po
tential differences. A single subscript determines the 
plane where the average is taken: (0, 1,2, "00") refers 
respectively to the ESP, the IHP, the OHP, and" 00" 
(see discussion concerning" 00" in the text). A double 
subscript denotes a potential difference; for example 

== etc.V02 Vo - V2, 

This is also used to designate the average p.d. across 
charge layers. In terms of the definitions above, Vo is 
analogous to V02 ' 

Component of r parallel to IHP 
Normalized x: == xf(3 
Component of r parallel to IHP 
Normalizedy: = ylf3 
Variously used, but most often the distance from the ESP 
Effective adion valence 
Normalized value of z: =" zf(3 
Value of Z at OHP =" 1 + r == df(3 
Partition function 
Polarizability of an element; low field limit == p,2/3kT for 

permanent dipoles; "parallel component" of polariz
ability givingdipole-moment component parallel to IHP 
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oc, exl' eta 

P 
B 
y 
r 

/i1p,op± 

tl 

tl'Ya 

E 

'YJ 
e 
A 

AD 
AD(r) 

A' 

Ak 
A 

u, (II) 

~ 

~m 
~c 
p 

(p2( 
P 

Pmn 

Po 

Potential parameter used by Krylov and Levich. The 
subscripts I and 2 refer to co = + I and co = - I, 
respectively. 

Distance from ESP to IHP 
Pfy ~ the ratio of two dimensions 
Distance from IHP to OHP 
The ratio yfP 
Small perturbation in the potential and positive and 

negative diffuse-layer ion number densities, respectively 
A parameter measuring the nonlinearity of the potential 

in the compact layer. A subscript 0 refers to the situation 
q = 0; a superscript 0, to the condition P = y. 

The difference between the Z = I normalized potential 
at point a' and point 0: tl 'Ya ~ 'Y o(a') - 'Y 0(0) 

Generic symbol for dielectric constant. Subscripts P and 
y refer to the values pertinent for the regions °< Z < 
I and I < Z < Zo' respectively. ES pertains to the 
region to the right of the OHP (Z > Zo). EOpertains to 
the region to the left of the ESP (Z < 0). El is the value 
pertinent to the compact layer when Ell and Ey are 
considered identical. The quantity E2 is either EO or Es 

depending on which plane is considered to be a di
electric imaging plane. Eelf is a quantity involved in the 
C-O imaging calculation of tS'elf' 

A dielectric imaging parameter: 'YJEI/E2 ='= I - co 
Fractional surface coverage"" NfN. 
The ratio yf(P + y) =0= r(l + r)-1 ~ rZ(jl 
The Debye shielding length ~ (k TESf+rrcoe2) 1/2 
A local Debye-length for a uni-univalent electrolyte: 

AD(r) ~ (kTE sf+rre
2)I/2{p+ (r) + P>(r)}-1/2 

The coefficient in the parabolic approximation to the 
the potential on a line of s-fold symmetry 

Reciprocal lattice vectors 
A potential ratio playing a central role in the theory of the 

double layer: A ~ 'P12/V02 
Magnitude of the permanent dipole moment and thermal 

average value of its z-component, respectively 
The dimensionless ratio ZfTI 
The ratio ZfTH • 

The ratio ZfTe 

Used both as a radial coordinate and as a charge density 
Mean square unnormalized fluctuation distance 
Radial distance from line of symmetry 
Radial distance from (m,n) lattice point: 

Pmn ='= {(x - x;"n) 2 I- (y - y;"n)2}1/2 

Equivalent to Co 

P± 
P~ 

p 
a 
T 

<P 

<PO 

<Piz 
q,P'<Pll <PI (0,0) 

'P 

'Y 

'Yoo 

'Pe 
'PalZo 

'Paic 

'Pi 

'Pi 
'Pn 
'Pc 

'Po' 'PP 

Positive and negative ion number densities 
Positive and negative ion number densities pertaining 

when 'P = 'Po (before a perturbation is applied) 
Normalized radial coordinate ~ pIP 
Topping's parameter ~ 11.034 
A parameter used by Levine et al.: T "" PooR1f2 
A generic symbol for potential when it is desired to avoid 

identification with one of the more specific 'P potentials 
An artificial potential used to calculate interaction energy 

of a pair in the presence of polarization 
Potential arising from the image of a charge at (O,O,z) 
These symbols are various representations of the self

atmosphere perturbation potential of Levine et al. <PI is 
generally used in the present article. 

A generic symbol for local potential and for p.d. There 
are many variations on this symbol, and not all will be 
listed here. The basic rules for interpretation are as 
follows: (I) a capital 'Pdesignates that the unnormalized 
potential has been normalized by 'P ; (2) a superscriptoo 
zero usually refers to C-O' imaging (except when the 
quantity 'P~ is the value of 'Poo for IX = 0; (3) a super
script (1) refers to the C-D limit co ---... I; (4) a super
script (2) refers to the C-C imaging situation; (5) a 
subscript a designates a lattice with a single vacancy; 
(6) single subscripts (0,1,2, co) designate respectively 
the ESP, IHP, OHP, and" co," as for the case of the 
V's; (7) doubly subscripted symbols containing two 
numbers out of the set (0, I,2, co) refer to the appropri
ate potential difference along a line through point 0, 
analogous to the usage in the case of the V's. Thus, 
'P12 "" 'PI - 'P2 ~ 'P(l) - 'P(Zo)· In addition to these 
general rules, we have the following specific definitions. 

Normalized potential =0 'P(z)f'P",; infrequently denoted 
bY'PN 

= 'Poof'P~ 
The uniform field part of the total potential 'P 
'Pa(l) - 'Po(Zo) 
Potential arising from a complete array, i.e., one without 

a vacancy 
Potential which includes the contribution <Piz from the 

image of a charge at (O,O,z) 
Ideal dipole potential 
Nonideal dipole potential 
Krylov's constant field potential 
Potentials calculated by Esin and Shikov at points °and 

P of Fig. 26a 
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'POfJ	 'Po - 'PfJ 
Potential at "infinity"; also denoted by V00'Poo 
'P	 when IX = 0 (=0 4-rrzve{3N ) 'Po", oo 
Dielectric imaging parameter =0 (£2 - £1)/(£2 + £1); 

sometimes used as a circular frequency. 
w 
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