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I. Introduction

“The more complicated the system considered, the more simplified must its
theoretical description be. One cannot demand that a theoretical description
of a complicated atom, and all the more of a molecule or a crystal, have the
same degree of accuracy as of the theory of the simplest hydrogen atom.
Incidentally, such a requirement is not only impossible to fulfill, but also
essentially useless. . . An exact calculation of the constants characterizing the
simplest physical system has essential significance as a test of the correctness of
the basic principles of the theory. Once, however, it passes this test brilliantly,
there is no sense in subjecting it to further tests as applied to more complicated
systems. The most ideal theory cannot pass such tests, owing to the practically
unsurmountable mathematical difficulties unavoidably encountered in appli-
cations to complicated systems. In this case all that is demanded of the theory is
a correct interpretation of the general character of the quantities and laws
pertaining to such a system. The theoretical physicist is in this respect like a
cartoonist, who must depict the original not in all details, like a photographic
camera, but simplify and schematize it in a way as to disclose and emphasize the
most characteristic features. Photographic accuracy can and should be
required only of the description of the simplest systems. A good theory of compli-
cated systems should represent only a good ‘‘caricature” of these systems,
exaggerating the properties that are most difficult, and purposely ignoring all
the remaining inessential properties.”

J. Frenkel

This article begins with a qualitative discussion of those fre-
quently neglected aspects of the electrolyte double layer concerned
with discreteness effects. In this discussion, details of the mathe-
matical aspects of the problems associated with the system are
subordinated in favor of a thorough appraisal of the physical
aspects. We have attempted here to give a clear enough account of
the situation that, were the reader to read only this part of the
article, he would nonetheless obtain an appreciation of most of the
phenomena active in the compact layer. The following two parts
are intended to supplement this first part by giving much of the
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mathematical detail and apparatus omitted in the qualitative
discussion. Particularly the latter of these two parts, titled
“Methodology,” should prove useful to the reader interested in
performing accurate potential calculations. The final part of the
paper is a critical review of important work in this field with
emphasis upon comparing the various models and approximations
used as well as the results following from these treatments.

There have been numerous reviews published concerning
electrolyte double-layer behavior, structure, and theoretical
understanding. We have tried to discover and list all major
reviews of this area which have appeared since 1935 and have
dealt with the interface between an electrolyte solution and a
metal. We have appended some critical assessment of the reviews
after the listing of many of them (19,22,24,28,39-41,46,48,58,79,
87,98,100,102,104,105,117). The list of reviews, while longer
than any previously given,is probably not comprehensive. Further,
since the present work is not intended to be a review of reviews,
the assessments are by no means complete and emphasize, when
pertinent, discussions of discreteness effects. To increase their
usefulness to the reader, the titles have been included for all
reviews.

Because of the existence of the many earlier reviews on the
general double layer, we believe itis unnecessary to give a thorough
discussion of this general area and its background. We shall limit
such background material to the minimum required for support
and intelligibility of the succeeding discreteness-of-charge material
we shall cover. We shall not be concerned herein with interaction
of double layers, a subject with considerable literature (29,30,59,
72), some of which is related to discreteness effects (57,73,74). A
useful table of charge and diffuse-layer potential for NaF based on
Grahame’s (50) data has been published by Russell (112).

II. Qualitative Discussion

1. Gross System Considered

A. Double-Layer Structure. A stylized picture of the two
main parts of the equilibrium electrical double layer at the inter-
phase region between a metal electrode and an electrolyte
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solution is shown in Fig. 1. The parts are separated by the outer
Helmholtz plane (OHP), which conventionally defines the plane
of closest approach of the charge centroids of diffuse layer ions.
Such ions are generally solvated and are held in average positions
by the balance between diffusive forces and the electric field in
the region. It may sometimes be more appropriate to define the
OHP as the plane at the perpendicular distance from the electrode
where the dielectric constant of the inner region rises very rapidly

Inner Inner Heimhoitz plane

.. '-.b:ffusé I.ay'e}.

Bulk electrolyte

Fig. 1. Schematic diagram of the usual electrolyte double layer (104).

toward the bulk value (56,95). The inner or compact layer, which
is thought to be a reasonably close-packed monolayer (43,56,84,
106), contains solvent molecules and, in the case of specific adsorp-
tion, contains adions as well. The adions are not considered to be
solvated, at least in the direction toward the electrode. Thermal
equilibrium only applies when the electrode is ideally polarizable.
Note that the term “polarizable” will be used in two entirely
different ways throughout this article. The first usage will always
involve the pair of words “‘ideally polarizable” and corresponds
to the standard usage in electrochemistry that the electrode is
blocking and thus no discharge occurs there. The more frequent
appearance throughout this review of the term “polarizable” (and
different grammatical forms of this word) refers to the induction
of electric dipole moments within the material of the double layer
by electric fields present therein.

DISCRETE COMPACT DOUBLE LAYER 5

Figure 2 shows the specific adsorption situation based on Stern’s
(118) model of the inner layer. When the specifically adsorbed
ions are of a single type, an inner Helmholtz plane (IHP) may be
defined which marks the distance of closest approach of the charge
centroids of the adions. The adions are held at the IHP by both
specific, or chemical, forces and nonchemical electrostatic forces.

Solvated
ion

region Solution

\

Metal

L

Fig. 2. Schematic diagram showing positions relative to the electrode
surface of solvated and specifically adsorbed ions (87).

Specifically
adsorbed ion

A very detailed picture of the interphase region is presented in
Fig. 3. Although it is almost certainly wrong in some of its details,
it well illustrates the possible complexity of this region. Note that
it is unlikely that the average boundary between adsorbed solvent
molecules in the inner region and the ions in the diffuse region
should remain the same distance from the electrode in the neigh-
borhood of adions (87). The OHP is therefore actually not likely
to be a plane at all. All major calculations of double-layer
structure have, nevertheless, ignored this complication. Such
neglect is illustrative of the usual practice of treating what is
actually a three-dimensional problem as a two- or one-dimensional
one instead.
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Fig. 3. Hypothetical detailed structure of the electrolyte double layer
(10).
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B. Definition of Terms. Figure 4 is a diagrammatic rep-
resentation of local potential variation in the double layer in the
direction perpendicular to the plane electrode into the solution. A
number of quantities needed in discussing discreteness or other
calculations are defined in this figure. The electrode surface plane
is here denoted by ESP.

The thickness of the inner region is d = f + y. It is not likely
that # and y vary very much with the average charge density on
the metal, g, or the adion charge density, ¢, (80,84). It will
frequently be convenient to normalize distances with f; the
following quantities may then be defined: Z = z/8; Z, == d/g;
I'=y/p; and 1 = y[d = T[(1 + I'). We define I'-! as B = /.

We shall denote actual local potentials or potential differences
by the symbol ¥ and average potentials (appropriate for smeared
rather than discrete charges) by V. Although Fig. 4 is drawn in
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Fig. 4. Schematic diagram of potential variation in the double layer
showing definitions of pertinent quantities.
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the conventional way with the zero of potential far out in the
solution, it is convenient to define the actual potential y)(z). S0
that 3(0) = 0, as shown. We shall not usually include adion
self-image contributions to the potential in the quantlty‘tp(‘z).
As drawn in Fig. 4, (z) illustrates the local potential variation
along a positive perpendicular line to the ESP which docfs not
pass through or too near any actual charges. The perpendicular

g

@
oC— %
o

o<—11—0®
Fig. 5. Hexagonal arrangement of adions on the IHP. An adion has been
removed from point 0. The letters designate various array points of interest.

line through the point 0 of Fig. 5, where an adion has been re-
moved from a rigid hexagonal array, is of particular interest, as
we shall see later, in micropotential calculations. Note that the
nearest neighbor separation of the array, ;, is shown on Fig. 5
as well as the x, y coordinate system. The distances x and y may
also be normalized with 8 to give X = x/f and ¥ = y/f. Unless
explicitly noted, we shall generally be concerned with local
potentials on the line defined by X = ¥ = 0.

Different authors have employed many different designations
for the various average or local potential differences (p.d.’s) shown
in Fig. 4. We have therefore elected to use here the neutral
definitions illustrated. Thus, pg, = v, — v, = ¥(0) — »(8 + 7).
The corresponding average p.d. is Vo, =V, — V, = V(0) —
Vg + 7).

Figure 4 also illustrates the domains of applicability of three
dielectric constants. The use of a dielectric constant e, in the
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diffuse layer of magnitude not much less than that of the solvent
bulk value is usually a good approximation, especially when a
one-dimensional treatment of the diffuse layer is itself a good
approximation. The rapid transition (here approximated as a
discontinuity) from an inner-region dielectric constant to the
bulk value may not actually occur exactly at the conventional
OHP (95) as shown. The division of the inner-layer dielectric
constant into two separate values by the THP (87) is intended to
allow for the dielectric effect of a partial solvation shell of an
adion lying between the adion and the OHP. It is customary to
neglect this possible complication and employ a single position-
independent dielectric constant, e, = ¢, = ¢, for the entire inner
layer. In some calculations (80, 84), the possibility of field-depend-
ent dielectric saturation in the inner region has been included,
but ¢, is frequently taken independent of ¢ and ¢,. The use of a
dielectric constant at all in this region is certainly a considerable
approximation (5,6,85,87) (see Section II-6) and can lead to
inaccurate results even for ratios of local to average potentials.
In such ratios, even a variable ¢, introduced in the usual way will
cancel completely; nevertheless, such results are still inaccurate
because of errors in the potentials occasioned by the use of a con-
ventional dielectric constant at all.

Let N denote the number of adions per unit area. If N, is the
value of N corresponding to a complete monolayer of adions, then
N = 6N, where the fractional coverage 0 satisfies 0 < 6 < 1.
Now if 2, is the effective valence of adsorbed ions and ¢ the proton
charge, the adion charge density, ¢,, is given by ¢, = z,eN ~
1.602 x 10-'3z, N, when ¢, is expressed in pcoul/cm? and N in cm—2,

If the adions are arranged in a fixed square array, then the
nearest neighbor distance for two adions will be N-1/2, Actually,
the structure that minimizes the interaction energy of adions is
not a square array but a hexagonal one. Consequently, in all
regular array calculations performed for the present system, the
structure is assumed hexagonal. Note, however, that for all but
the highest attainable surface charge densities, the difference in
energy between these two structures is so slight that at room
temperature equilibrium between these two phases occurs when
the two are present in roughly equal concentrations over the
electrode surface. For simplicity, we shall ignore the presence of

Chemistry Library
U. N. G
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the higher-energy structure, as its properties are almost identical
to the hexagonal-structure properties in any case (45,85). If
r, is the nearest neighbor distance for a hexagonal array, then
N = (3)V27% =~ 1.1547r72 Alternatively, 7, =~ 43.011 x 1075[z,/

]2 cm, when ¢, is expressed in pcoul/cm?. It will be convenient
to define R, = r,/f and & = z[r, = Z|R,.

At the point of zero charge (PZC), also termed the electro-
capillary maximum (ECM), ¢ = 0. Another condition of interest,
even though it is infrequently attained in electrolytes, is that for
which ¢ = —¢;. Then g, = 0, and the electrode is sometimes
termed grounded. When ¢, = 0, the value of y(z) a large
(or “infinite”) distance from the electrode will be designated
Yo = V. Here “infinite” means that z >7; but denotes a
distance still small compared with the minimum linear extent
of the adsorbed charge region.

Using an inner-region dielectric constant intended to account
for the electronic polarizability of adions and solvent molecules
as well as the orientational polarizability of solvent molecules
having permanent dipole moments, one may write

V., = 4npz.eNle, = 4nfq, /e,
~ 1.12941 x 1078¢,/e; (1

where in the last equation f§ is in ¢cm and ¢; in ucoul/cm?,
Although V, is an average potential, it has frequently been
denoted as y,, rather than V,,. We shall use the two designations
interchangeably herein. Note that for ¢, =0, Vo, = — V.
In general, a uniform D field contribution, v,, is a part of any
inner-layer local or average potential. The full local potential is
thus given by y(z) = y,(z) + v,(z), where y,(z) is the part
arising directly from the discrete adions and their images. Note
that Vy, may be written Voo = V[T 4 Zy(g/¢9,)], where
Zo =14 T.

C. Experimental Methods. There are two principal ways
of gaining information about the double layer at an ideal
polarized electrode (22,46). The two methods are the electro-
capillary method and the differential capacitance method. To
obtain desired quantities such as charge components from
measurements of interfacial tension or differential capacitance,
differentiation and integration of measured curves are required,

-
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These processes generally introduce some uncertainty into the
results, but differential capacitance measurements are more
sensitive to double-layer structure than interfacial tension ones.

Several methods of employing the above measurements to
yield ionic surface charge excesses have been developed (12,27,87).
Since a statement to the contrary has been made (28), it is
important to point out that although the above kinds of measure-
ments and calculations deal with macroscopic (average) quantities
such as ¢ and g¢,, they may be appreciably affected by charge
discreteness effects as discussed later. No theory or method of
analyzing experimental data which is derived only from a con-
sideration of average charges and potentials can be expected to
come close to representing adequately the effects, even average
ones, of the discrete, three-dimensional structure of the double
layer.

2. Discreteness Effects

Discreteness in the double layer is important because the
dimensions over which the potentials and fields appreciably vary
therein are of the same magnitude as the sizes and separations
of the charged and polarizable entities themselves. Although we
shall concentrate on discreteness effects in the inner layer, they
are also important in the diffuse layer and could be of some im-
portance at the electrode, since even a “smooth” liquid metal
electrode is made up of discrete atoms and electrons on the micro-
scopic scale with which we are concerned. That discreteness
effects in the electrode are not likely to be of much importance for
liquid metal electrodes is indicated, however, by the lack of
much change in differential capacitance when going from liquid
to solid gallium, mercury, and Wood’s metal electrodes by means
of a small temperature change (114). On the other hand, con-
siderable difference between differential capacitance curves
obtained with liquid mercury and liquid gallium has been
observed (44).

Consider the very simple case of an inner layer consisting first
only of nonpolarizable solvent molecules each having a permanent
dipole. Even here the discreteness of the molecules is important.
The molecules, even though adsorbed at the electrode, will be
continually moving in the plane and vibrating and rotating
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because of their thermal energy. The electric field of the per-
manent dipoles will interact with the conducting electrode,
inducing image dipoles therein. By images, we mean that the
charge distribution which is induced in the conducting layer by a
given discrete or continuous monopole or multipole charge
distribution outside the layer produces the same potential out-
side the layer as that which would be produced if a perfect mirror
image of the inducing distribution existed at an equivalent
position behind the imaging plane. Since images do not actually
exist, there is no p.d. between the imaging plane and the images
as there would be if the image were made up of real charges.

The time-average local field acting at any given dipole arises
from several sources, including that of its own image and all
surrounding dipoles and their images. Clearly then, the time-
average dipole moment of the array (regular or disordered) will
depend upon a self-consistent field which itself is different depend-
ing upon whether all surrounding dipoles are discrete or are
uniformly smeared into a real dipole sheet and the corresponding
image sheet. Thus, the V,, potential arising from such a discrete
two-dimensional array of dipoles with at least some freedom to
rotate will depend on the discreteness of the dipoles, even though
Vo is itself a space-average or smeared quantity.

Next consider the important case of an array of polarizable
ions adsorbed on a conducting electrode. Assume that the ions
are hexagonally arrayed and that there is nothing between them,
as would be the case for adsorption from a gas phase. It has been
shown (89) that, even in this simple case, the discreteness of the
charges is crucial in determining V... No e, is explicitly introduced
ad hoc into the calculation of ¥, but the existence of a nonzero
adion polarizability, «, leads to an effective ¢, which depends on
adion spacing, r,. Further, the presence of adion polarizability
leads to other influences on ¥, which cannot be logically repre-
sented by a dielectric constant. The ¥, obtained with « # 0 can
be much less in magnitude than that with « = 0 and ¥, may
even change sign at certain adion spacings.

In the electrolyte double layer with specific ionic adsorption,
one has a situation even more complex than a combination of the
above two situations. Polarizable ions are surrounded by polariz-
able solvent molecules having rotatable permanent dipole
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moments instead of by vacuum as in the adsorption from a gas
phase. Thus far, there have been no treatments of electrolyte
double-layer capacitance or potentials which adequately take
discreteness into account. This may appear surprising since
Frumkin (38,39), in the early 1930°s, seems to have been the first
to suggest that the discreteness of the electrolyte double layer
might be important. Although much of the succeeding discussion
will deal with various theoretical approaches to the discreteness
problem, it is by no means yet solved satisfactorily in the electrolyte
case.

Although Frumkin first drew attention to the possible impor-
tance of discreteness in the electrolyte double layer, its importance
for adsorption from a gas phase was recognized considerably
earlier. Particularly important was the accurate calculation by
Topping (125) in 1927 of the mutual potential energy of a plane,
hexagonal array of ideal, nonpolarizable dipoles. The useful
results of this calculation have been obtained in approximate
form a number of times by authors (34,66) unaware of Topping’s
work, and even today his calculations are seemingly not well-
known by electrochemists (9,10).

In 1939, Esin and Markov (33) reported that the potential at
the ECM (¢ = 0), measured versus potassium iodide concentra-
tion with respect to a constant reference electrode, varied
anomalously rapidly. In accordance with Stern’s (118) theory of
the double layer, they observed a linear dependence of the above
p.d. upon the logarithm of concentration (or activity) but found
a slope greater than the value £ T/e expected from Stern’s theory.
According to this theory, a tenfold increase in concentration at
T ~ 23°C should lead to an increase of the ECM potential by
(kT/e) In 10 ~ 58 mV. The appearance of a considerably greater
increase has been termed by Grahame (52) the Esin-Markov effect.

To help put in focus the attempts which have been made to
explain the Esin-Markov effect, we will briefly review the simplest
theory (32) of it. First let us assume at least for § < 1 that the
adsorption isotherm has the form ¢, = Ac, exp {—ey,/kT},
where 4 is a constant, and ¢, is the concentration of ions in the
bulk of the electrolyte. The p.d. y,., has been termed the micro-
potential by Ershler (32). Next, observe that the ECM double-

layer p.d., V.., is almost surely going to be nearly proportional
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to g;—unless there are strong nonlinearities in the dielectric
response of the compact layer—because the p.d. across the
(nonlinear) diffuse layer is small compared with the p.d. across
the inner layer. Setting V., =~ V,,, and y,,, =~ v;,, and taking
logarithms, one may therefore write

In Vg, [ECM =~ lIncy — (e[kT )y, |ECM+ constant (2)
Accordingly,

dVos |mom _ Voo | AR LT
dln ¢, 02 [ECM kT ) dV,,

| ®
ECM
from which one obtains
Vs | B _ : KT dyy, }‘1(k_T) (4)
dln ¢, eVos |ECM " Vs [mem ¢

The point of the above result is that as |V,| increases the
quantity [kT/eVy,| will tend to become small compared with
|d15/dV sscm»> and we may write for appreciable |g,|

Vo [mew _ (dVO2 )(k_T) 5
dlncy — \dyy; |gem e

Under the simplest assumptions, dV,/dy;slgcu s just a constant
geometrical factor, such as A~ = 1 + B, and we are thus led to
expect a limiting slope for V,|goy vs. In ¢q of 22k Tfe ~ 2k T]e.
It is now clear that whatever the actual form of the adsorption
isotherm, the Esin-Markov effect can be discussed in terms of the
interdependence of V., and y,,, or approximately of V, and
5. The ratio A = y,,/V,, is thus of much importance in dis-
cussing discreteness effects and will appear frequently in the rest
of this article.

In 1943, Esin and Shikov (34) tried to explain the above effect
by recourse to the discrete nature of the double layer. Unfortu-
nately, as we shall see later, their model of the double layer was
very crude and overexplained the effect, yielding about 200 mV
instead of about the 100 mV observed by Esin and Markov.
Parsons (103) has analyzed the Esin-Markov effect in consider-
able detail and shows that it may occur at any point on the
electrocapillary curve, not just at ¢ = 0. Parsons also suggested
that the failure of the Stern theory to explain the Esin-Markov
effect arose not from the neglect of discreteness effects but from

vV,

pom 41n ¢
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the use of an incorrect form of the adsorption isotherm. We
believe the Esin-Markov effect can only be described adequately
with a correct isotherm, which itself takes proper account of
discreteness effects.

Figure 6 shows qualitatively the difference in the dependence of
potential on distance in the neighborhood of two planes of
smeared-out charge and two containing discrete charge. It will
be seen that the full p.d. produced by the layers occurs just across

- +
- * © 9
Z 4 —f © @
- + . S) &) .
- 4| Potential Potential
- + o/ @
e — i _/ @
- + o @
- +
}—\ Distance —> —— Distance —>

(o) ()]

Fig. 6. Schematic diagram of the potential distribution produced by (a)
two parallel planes of continuous charge, and (6) two parallel planes containing
discrete charges.

the two smeared planes of charge, but only a part of this total
p.d. occurs between the two planes when the charges are discrete.
Esin and Shikov’s use of this reduced potential still led to an
overestimate of the Esin-Markov effect. Ershler (32), using an
improved model which we shall discuss later, obtained in 1946
somewhat better agreement between theory and the Esin-Markov
effect.

To recapitulate, discreteness effects are almost certainly im-
portant in comparing theoretical calculations of the average
potential difference across the inner layer, Vo, with experi-
mentally derived values of this quantity. It follows that dis-
creteness is also certain to be of importance in any theory of the
inner-layer differential capacitance of the double layer which
can represent the experimental situation and data adequately.
Finally, discreteness is of great importance in determining the
potential y,,, at the position of an adsorbed ion. As we have seen,
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it is this potential, the micropotential, which appears at least
approximately in an adsorption isotherm and determines the
relation between ¢ and ¢;.

Suppose a given adion is removed from its place at the IHP
into the bulk of the solution. The average energy necessary to
accomplish this is —z.ep,,, provided y,, in Fig. 4 is measured
along the line of removal of the ion.* Most writers in the present
area have ignored in practice the contribution y,, (or V,,) to
¥, and actually have calculated y,, rather than u,.. When the
contribution to ¢, arising from the potential drop in the diffuse
layer, which is frequently small and may often be well approxi-
mated by an average rather than local potential, is omitted the
p.d. significant in determining the energy of adsorption necessary
to move an adion from the OHP to the IHP is y,,. This quantity
must be a local potential difference; it depends strongly on
discreteness effects and has also been termed the micropotential.

Although the importance of double-layer discreteness effects
was suggested more than 35 years ago and a good many calcula-
tions have been made over the years attempting to include the
influence of discreteness realistically, there are as yet no theories
available which incorporate all discreteness effects (discreteness-
of-charge, discrete permanent and induced dipoles, and finite-
size effects of molecules and ions), especially when thermal
motion is also included. One purpose of the present review is to
evaluate the limitations of earlier discreteness calculations and,
hopefully, thereby exhibit the need for and point the way toward
improved future analyses.

3. Types of Imaging

The two boundary regions of the inner or compact part of the
double layer may be quite different under various circumstances.

* As we have pointed out elsewhere (6,92), the energy of adsorption should
generally include a contribution from so-called rearrangement effects (not
included above). On the other hand, the micropotential as defined here,
which properly excludes such effects, may still be used in a statistical-thermo-
dynamic treatment of adsorption. Such a usage may be shown to be exact for
ordered structures, and is often quite accurate even for rather disordered ones.
We shall not take the opportunity to elaborate herein on the statistical
thermodynamics of adsorption isotherms.

DISCRETE COMPACT DOUBLE LAYER 17

Such differences can have profound effects on the structure and
behavior of the compact layer itself. In order to describe possible
situations, we shall for the present employ dielectric constants,
remembering, however, that their introduction is an approxima-
tion which blurs some discreteness effects, especially for the inner
layer.

Let the effective dielectric constant of the material to the left
of the ESP be ¢,. This material may be a conducting electrode,
air, oil, or a dielectric solid. As usual, take ¢; as the effective
dielectric constant of the inner region and ¢, as that of the region
to the right of the OHP. Let ¢, denote either ¢, or ¢,, depending
on the situation considered. Next, recognize that the situations
at the two boundaries of the inner region can themselves affect
the effective ¢;. We therefore regard ¢, as fixed but consistent
with the boundary conditions of the inner layer.

The region to the right of the compact layer will be considered
to be the usual diffuse layer. Three conditions in it are, however,
of special interest. At very high solute concentration, the effective
Debye length in the diffuse layer will be very small compared to
other characteristic lengths in the double layer. The diffuse layer
is then conventionally approximated by a metallic conductor at
the OHP. Second, when ¢ = —¢, and ¢, = 0, the diffuse region
ceases to exist on the average. Note, however, that in the neigh-
borhood of adions, a field will still penetrate beyond the OHP,
tending to create a local diffuse region of opposite charge. Finally,
in the limit of very low solute concentration, the concentration of
mobile ions in the diffuse layer will be so low under some con-
ditions that their contribution to electrical conductivity effects
at the OHP and into the diffuse layer may be neglected (26).
Then, only dielectric constant changes in the neighborhood of the
OHP remain important.

Table I summarizes some of the imaging situations possible.
When ¢, = ¢, = ¢, as in the first row, there is no imaging at
either boundary, and we designate this situation O—0. This is a
limiting condition, not likely to be of physical significance. The
first four rows in the table apply when neither the ESP nor the
OHP is actually conducting or may be well approximated as
conducting. The second row defines the situation where there is
no dielectric discontinuity to induce dielectric imaging at the
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TABLE I

Imaging Possibilities

Left boundary region Right boundary region

Imaging

designation  Djelectric Conducting Dielectric Conducting
0-0 g No q No
0-D € No € No
D-0 N No € No
D-D [ No € No
c-0 — Yes € No
c-D — Yes € No
c-C — Yes — Yes
0-C € No — Yes
D-C < No — Yes

ESP but where there is such a discontinuity at the OHP (i.e.,
€ ;é 61)‘

When the ESP is conducting, the transition from a dielectric
region to the conducting plane also induces imaging. Here, the
image of a charge or dipole is of the same magnitude as the charge
or dipole moment of the real entity. When only dielectric imaging
is present, however, the image magnitude is always less than that
of the real element except in the limit where one of the dielectric
constants involved becomes infinite.

The C-C case was earlier termed “‘infinite imaging.” It is the
situation first defined and partially treated for adions by Ershler
(32). As in a hall of mirrors, a real adion charge is imaged an
infinite number of times, with each image charge having the
same magnitude as the original charge. There are also an infinite
number of images of each adion in the C-D, D-C, or D-D cases
but the image magnitudes progressively decrease as their apparent
distance from the IHP increases. Finally, in the D-0, O0-D,
0-C, and C-0 cases, each adion is imaged only once, again with
full magnitude only in O—C and C-0 cases. The C-0 case has been
termed single imaging (6) and is very important for adsorption
of ions from a gas phase (¢, ~ 1) onto a conducting substrate.

In conclusion, it should be mentioned that the diffuse layer will
in general be neither an ideal dielectric nor a good conductor.
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Then, both its dielectric aspects and its mobile ions are important
in inducing a complicated type of imaging at and near the OHP.
This possibility has not been included in the table and no com-
pletely adequate treatment of the boundary value problem in-
volved has yet been given. Luckily, there seem to be situations of
interest where the diffuse layer can either be ignored or treated
as a good conductor. Theoretical analysis has been carried out
for both of these limiting conditions and some approximate
calculations treating the intermediate situation have been made.

4. The Question of Order

One of the most important and difficult questions to answer
as a prerequisite to any adequate treatment of the compact layer
is that of how the various particles arrange themselves over the
surface. If the electrode surface itself provides preferred sites,
then the possibilities are greatly reduced, and the question is
simplified once the existence of preferential sites becomes estab-
lished. While certain electrode surfaces seem to exhibit this
behaviorandlead to “immobile” or “localized” adsorption, the case
which has provided the greatest challenge and interest to workers
in the field is the opposite situation, “mobile” adsorption. In
particular, the liquid-mercury electrode is widely believed to be
effectively smooth on an atomic scale; even if there should
instantaneously exist preferential sites for ionic or molecular
adsorption, the motion of the mercury ions on the surface of the
electrode would eliminate such inhomogeneities on the time scale
of macroscopic experiments. Accordingly, it is likely that the
mercury electrode has little or no order of its own to impose upon
the overlying adsorbate layer. The same statement should
certainly apply to the diffuse layer as well.

In the absence of an orderly preferred arrangement of the
adsorbed particles relative to any given point on the electrode
surface, there remains the distinct possibility that as a result of the
various interactions within the compact layer, a relative ordering
is established among the particles in the compact layer. The
particles could still form an array, for example, which would be
free to move relative to the electrode. It is this question of the
relative arrangements of particles in the compact layer which we
are going to discuss.



20 C. A. BARLOW, JR. AND J. R. MACDONALD

Even describing the arrangement of particles becomes more
difficult as the number of different types of particles increases;
one has more questions to answer. What do things look like in the
neighborhood of a type-4 particle, a type-B particle, etc.? Even a
single question becomes manifold; in the neighborhood of a type-
A particle, where are the closest type-A neighbors, type-B neigh-
bors, etc.? If the complexity of the description increases rapidly
with number of components, the difficulty of theoretical pre-
diction may increase even faster. Although an adequate picture of
the arrangements applying in the actual compact layer is our
ultimate goal, we will do well to understand a simpler system,
where a single species of ion is present on the surface and the
effects of further adsorbed species, such as solvent molecules, are
either ignored or perhaps crudely accounted for. After we have
obtained a better insight into this idealization, we will be in a
better position to discuss the actual system with its additional
complexities. This plan is not overly cautious; even the idealized
problem has thorny aspects, and no one has obtained a clear
picture of the arrangement even in a one-component system under
the most general circumstances. There are general statistical
mechanical principles which apply, of course, but such principles
alone do not always give a clear picture of the situation. One
must usually augment these general laws with the knowledge of
which approximations to apply, this knowledge usually proceeding
from a fairly adequate intuitive grasp of the situation. It is this
intuition which is most difficult to achieve in the present system.
The usual practice, in view of these difficulties, is to make
analogies with things we understand and have developed arith-
metical procedures to cope with. Thus, we may begin by assuming
that the compact-layer ions arrange themselves on a regular
array as in a solid, an arrangement of great simplicity and famili-
arity, and then test this hypothesis by estimating whether or not
the disruptive influence of thermal motion is sufficient to sensibly
destroy this arrangement. Other authors have sometimes chosen a
different starting guess, such as an almost random arrangement,
Fhe interactions being considered as small perturbations which
inflict slight regularity upon the otherwise uncorrelated particles.
This procedure too is an analogy with a familiar system, i.c.,
with weakly nonideal gases. Yet another guess is that the system
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is highly ordered by short-range steric forces within short dis-
tances, but that at further distances the departures from random-
icity of arrangement induced by the other interactions are small
enough to be considered once again as a perturbation. Again,
this starting point is tantamount to drawing an analogy with
ordinary liquids. Later in this article we will indicate why the
present system is not well described by any of these analogies,
either as a two-dimensional quasi-solid, quasi-gas, or quasi-
liquid.

At this point it should be clear to the reader from the diversity
of description which we note above that there is much to be
desired in our overall understanding of the compact layer. Much
of the published work on this subject employs one of the foregoing
models—this is one of the major sources of difference among the
various treatments. Too few workers have been sufficiently con-
cerned with determining the appropriateness of the models
employed, and too often a physical picture of what is happening
is not provided. In our own work, which is not always free of the
foregoing shortcomings, we have generally taken the regular array
model as our starting point, a procedure which we repeat here.
In the next few sections, however, we will attempt to examine the
adequacy of this model as completely and carefully as is practical.
Not only do we wish to be exempt from our own criticism above,
but also there is much one may learn from such an exercise. After
we have established the limits of validity of this model, we will
consider alternatives when appropriate. Before embarking on
this program, however, we shall illustrate what differences are
to be expected following from different postulated arrangements
in the compact layer.

Consider a system in which nonpolarizable ions are adsorbed on
an ideal polarizable electrode, and assume that they form a
mobile adsorbed layer and that there are no additional species in
this layer. We shall determine the potential for such a system
assuming first that the only correlation between the positions of
different ions is that induced by a steric hard-core repulsion
between ions; the distance of closest approach between ion
centers is denoted by r,,,. Next, we obtain the potential for an
alternative situation where the ions are arrayed on a regular
hexagonal lattice. It is the comparison between the results
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obtained for these two different types of ionic arrangement which
will provide a measure of the importance of ordering in the
compact layer.

In Section II-5 of this article we discuss how the diffuse layer
alters the potential in the inner region. However, for our present
purposes of demonstrating how ordering may affect the system,
it is simplest to avoid the further complexities brought about by
the diffuse layer, and so we shall here make the incorrect assump-
tion that the diffuse layer plays no role in producing and in-
fluencing potentials in the compact layer. Accordingly, the
results we obtain here are only illustrative of the general depend-
ence of various system quantities upon ordering.

Under the above conditions, the potential in the compact layer
arises only from the adsorbed ions and the charges on the electrode
surfaces. In fact, if the electrode is a conductor, its surface is an
equipotential; the potential anywhere in the compact layer may
be determined from a knowledge of the ion positions and the
average electrode surface charge density by means of the familiar
method of images. According to this method, the potential in
general consists of two contributions: The first is the potential
arising from the adions and their electrical images in the ESP
(the images therefore lie on the plane z = —f); the second
contribution is a linearly varying potential, or uniform field part,
¥,(z), arising from the excess charge density on the electrode.
This excess charge density is the amount by which the average
electrode surface charge density differs from that required to
establish the field of the fictitious images. In the present C-0O
single-imaging case, where the only imaging plane is the ESP,
this excess charge density is given by (¢ + ¢,); thus, the uniform
field potential is given by y,(z) = —4n(q + ¢,)z. Remark that
for the present situation there is no electric polarization in the
compact layer, and therefore, there is no necessity to consider a
dielectric constant here. In the remainder of this discussion we
simply set ¢ = —g¢,, corresponding in this case to grounding the
ESP, and therefore we may eliminate further consideration of y,
in what immediately follows.

If we neglect electric multipole moments, permanent and
induced, of the adsorbed ions, then the surface-averaged potential
in the compact layer is independent of arrangement. It is in fact
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identical to the potential one would have if the actual ions were
evenly smeared over the THP—this conclusion incidentally is
indepe}'ldent of the role played by the diffuse layer. The average
potential one obtains is given by V(z) =4nzeNzfor0 < z < 8;
fm: z > B the potential is the constant V, = 4nq,8. How doe;
this compare with the time-average local potential seen by any
partu.:ular lon arising from all other ions and their images? (We
shall ignore the potential arising from the self image of the selected
i9n, as this is independent of arrangement and thus can be con-
sidered as a “chemical” addition to the adsorption energy, for
example. It thus does not add anything to the present discussi,on.
Whep potential is measured with reference to the bulk of the
solution, this quantity, the micropotential, does depend on ionic
arrangement even in the present case of zero «.

For the first arrangement of ions, the local potential y,(8) is
that arising from a uniform surface charge ¢, on the IHP gxcept
for a circular vacancy (about the given ion) of radius r,,,; the
image of this IHP charge likewise possesses a circular Vacafrnlz:y of

the same radius. It is straightforward to show that the potential
for this case is given by

Vo) = 2nq{[48% + 12,112 — 1.}

= Vil + R}, 1Y% — Ry, }2 (6)

where R,, =r,,./8. We see that the potential y,(8) differs from
the average potential at the IHP, the macropotential, by the
constant factor {[4 + R% 1Y% — R, }/2. It often happens that
mtera?tlons other than steric effects cause R,,, to be larger than
one might think. In fact, we sometimes may set K2, > 4, obtain-
Ing v,(f) =~ Ry, ; the micropotential is then smaller than the
macropotential by the factor R}, which by hypothesis is much
smal.lel.' than unity. Let us now compare this result with that
obtaining for the hexagonal array. For this case the potential is
roughly that of a hexagonal array of ideal dipoles, each of dipole
moment 2z.f, at a position removed from the plane of the

d}poles by.the amount f. Carrying out the necessary sum over
different dipoles in the array, we find

Va(B) == 189:82NV2 =~ 3Ry (7)
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Thus, for this case the ratio of y,(8) to v, is not even constant
with surface density N. It is similar to the first result except that
7., has been replaced with the variable 7,. Incidentally, this is
our first example of the fact that an array produces the same sort
of micropotential as a uniform sheet with a circular vacancy of
radius more or less equal to r;. This is a fact which we will use a
great deal later on.

In the preceding, we have had an example of how a local
potential may be drastically affected by arrangement, a detail of
the system structure. This particular local quantity, wu,(8),
essentially the micropotential, has a great influence on system
properties, insofar as it determines the equilibrium density of ions
adsorbed under given conditions. The reader may still be left with
the impression that we have cheated a bit, that we have delib-
erately chosen to examine that local quantity most likely to
influence the system as a whole. He might say, “You show the
micropotential is sensitive to structure, but once you tell me ¢,
I have no further need for the micropotential. How then can one
assert that, given ¢,, the system properties are sensitive to arrange-
ment?” As an exhibit that not only local potentials but also
average potentials might be dependent on inner-layer structure,
we consider a variation on the previous example. This time we
let the ions possess a polarizability «. Under this condition the
average potential for all z > g is given by V =y, + 47Naé,
where ¢ is defined as the electric field acting to polarize a given
ion. It is through the dependence of & upon arrangement that
the average potential becomes structure sensitive. We shall
examine the case of no correlation for r > r,,, and hard-core
repulsion for r < 7y,

The field & at a given ion in this case consists of three parts:
the contribution from the other ions and their images, the contri-
bution from the other induced dipoles and their images, and the
contribution from the image of the given ion and its polarization
P. The first contribution is given by

&1 = E [l + (Rinf2)*]7V2 (8)
where £, = —y_/B. The second contribution may be shown to

be
&y = —2nNPB[R}, (RS, +4)72 + Ry] (9)
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Finally, the self-image contribution is

&3 = (48%) [F'P — z,] (10)
Upon introducing the substantive equation
P=al =a[&, + &, + & (11)

one arrives at the ugly-looking result
Pe —q P¥all + (Rin/2)%] 12 + ze(4p?) 1
U+ 2naNp[RE,(RE, + 4)% = R3] — (T74)
where J = «/f%. Once again invoking R,,, > 2 leads us to
Ve — 4nNa[2p,[fR + z,6/457]
x [1 — (JJ4) + 4ma NIRRT (13)

Perhaps this expression for ¥ is not very illuminating until one
puts numbers into it. It turns out that the factor

[l — (J]4) + 4ma 1R

im

(12)

may become rather small; when this occurs the contribution to
V from the polarization may be appreciable. It is only in the
limit of low surface density that this contribution assumes a
simple form. In this limit we find

V=101 — (2 - (J19)] v, (14)

Now we find the average potential in the array situation,

Once again V =y, + 47 Nad for all z > B. This time one finds,

hf)wevcr, that while &, is the same as before, &L+ 8, is a

different expression: &, + &, —1r73(P + 2z,e6). Employing
the same substantive relation leads to

P —ze(Jj4)[1 + 8RNl + LIRY — (Jj4)] (15)
We immediately obtain
Vi yo [l — ({1 + B8RP + 1IRST — (Jj4)}1)  (16)

Again, the expression we have obtained for ¥V is not very trans-
parent; however, we note that again there is a factor in the
denqmmator which may be quite small. When we take the low
den51t}f limit R, > 2, we find as we should that the expression
for Vis the same as the one found for the random arrangement,
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How is it then that we assert a structure dependence? The point
is that in going to the low-density limit we only consider the
case where the polarizing field is determined almost solely by the
self-image. The structure sensitivity can only exist in the domain
where & is determined by the surroundings of an ion (other than
its self-image). Thus, we find most unpleasantly that the com-
parisons should be carried out in the regime where the equations
are fairly complicated. We therefore resort to a numerical com-
parison for the particular case R, = R,, = 4, J =1 Upon
substituting these values into the exact expressions, one obtains
for the uncorrelated and array cases, respectively, V =~ 0.62y,
and V ~ 0.36y,,. There is thus a 729, change in the inner-layer
potential drop in going from the ordered to the disordered arrange-
ment in our example. The difference between the two types of
arrangement as far as overall potentials are concerned may be
even more than this, but generally it is much less. However, this
example should illustrate how even an average potential may be
structure sensitive. Remark that physically the primary source
of structure sensitivity for such average quantites is the “feedback
term” in Eqgs. 11 and 14 for P. The feedback referred to is con-
tained in such factors as

[ + 4nNaf 'R7L — (J4)]
or

[1 + 1R — (J9)]7

which result from the fact that the system of induced dipoles
produces a field which acts back on the dipoles themselves.
Under certain conditions, this field may be as large or larger
than the field initiating the polarization. When this occurs, the
polarization may grow to a large value, the value very sensitive
to the size of the feedback. In this case, a change in structure would
alter the feedback a bit and perhaps drastically change the
resulting polarization, effective dielectric constant, and average
potentials. (Had we chosen for our numerical example a situa-
tion where J was closer to four, the situation would have been
much more dramatic.)

Having seen that the arrangement of particles in the inner
layer may greatly affect various local and average properties of
that layer, we now return to the main business of estimating the
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degree of order which is actually present in spite of the disorganiz-
ing effect of thermal motion. As stated earlier, our present method
consists in initially assuming perfect order, that is, a rigid
hexagonal array, and then calculating roughly how far away
from its proper site any given ion will typically move at thermal
energies. We remark that the motion we are concerned with is
that of the given ion relative to its immediate neighbors. There
is no meaning to the question of how far it will be able to move
relative to remote ions. In a three-dimensional system such a
question admits of a finite answer; in a two-dimensional system
the correlation between positions of two particles falls off in-
definitely as the separation between such particles increases. We
shall discuss this matter at greater length later in this article.
We note for the present that it is really the motion relative to
immediate neighbors which is the important thing to find any-
way. Only the immediate neighbors have such an influence upon our given
ion that their precise positions relative to it significantly affect system
properties. We have already noted this important fact indirectly
when we remarked upon the approximate equivalence of a
hexagonal array and a uniform distribution with a vacancy of
appropriately chosen radius. It turns out that the approximation
})ecomes quite close when applied to the fields produced by those
ions other than the immediate neighbors. Furthermore, when the
fa.lteration of potential by the diffuse layer is considered, this
1'nsensitivity to relative positions of other than immediate neighbors
1s greatly enhanced over what obtains when the diffuse layer
has no effect. This too will become more apparent later in the
article.

Our present rough criterion for the validity of the hexagonal
structure under completely general adsorption conditions is, in
accordance with the foregoing remarks, the following. Consider-
ing all ions except a given one to be fixed at sites on a hexagonal
array, df:termine the energy necessary for the given ion to move
“apprec}ably” away from its proper position. In all cases,

appreciable” motion is taken to mean some given fraction of the
array spacing 7,. The reason for considering appreciable motion
as a-ﬁxed percentage of 7, is that, ultimately, we are interested in
finding the conditions insuring that thermal motion induces a
moderate fractional change in the local potentials and fields



28 C. A. BARLOW, JR. AND J. R. MACDONALD

acting at any ion. This requires that motion relative to the spacing
7, be considered. There is of course some arbitrariness about the
actual choice of the “given fraction.” It all depends on how much
precision is to be demanded from the hexagonal arrangement.
Clearly, if all predictions are to be good to one part in 10° a
much smaller fractional motion (~10-%) should be used in the
criterion than if one demands only ‘“‘good qualitative agreement”’
for the model. We have chosen the latter demand, implying that
our criterion does not establish where the hexagonal model is
good to one part in 10% but rather where the model is just a bit
better than a model which ignores the coulomb-induced arraying
tendencies of the system. (A much clearer picture of the situation
is obtained when one repeats the calculations for more than one
choice of ““‘the given fraction.” This is done later in this article,
thereby removing much of the unpleasantness associated with
having to make arbitrary assignments.) Having established the
energy U required to move the given ion by the significant amount,
we next compare this energy with £7 for various values of the
system parameters. When the ratio is less than 0.1, the typical
random-model expansion parameter, 1 — exp (—U/[kT) =~ U[kT,
is quite small and may be neglected. Under such circumstances
this random model is quite appropriate. When the ratio U/kT
is greater than 0.1 but less than 1.0, we assert that no clear-cut
array is formed, but that the interactions are progressing from a
domain where they may be considered as perturbations to a
domain where they are too large to be so considered. When the
ratio is about 1.0 or so, we assert that array structure is present,
but that thermal motion exercises a nonnegligible influence of
order exp (—U[kT). This is a difficult regime to be handled
accurately by any model. For a ratio somewhat greater than 1.0,
the Boltzmann factor exp {— U/kT} drops rapidly enough that
thermal motion becomes a perturbation on the basically ordered
arrangement. When the ratio is 2.0 or greater, the Boltzmann
factor suggests that thermal perturbation is of the order of a
159 or less effect and may be ignored. We thus say that for
ratios less than 0.1 the system is random, for ratios greater than
2.0 the system is regularly arrayed, and the crossover takes place

about where
exp (—UlkT) ~ 1 — exp (—UJkT) (17)
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or where exp { —U[kT} ~ }. This crossover occurs when U/ (kT ~
0.7; however, to avoid the false implication that a sharp phase
transition is pictured, we round the number 0.7 to unity thereby
underestimating somewhat the pertinence of the hexagonal
model. It will sometimes happen, as we shall see, that the range
0.1 < UJkT < 2.0 is associated with a very narrow domain of
certain system parameters. When this occurs, there is a more
abrupt transition between the regimes of disorder and array
structure, a diminishing of the significance of the difficult inter-
mediate (transition) region, and a reduction in the sensitivity of
the conclusions concerning validity of one or the other model to
specific arbitrary assignments.

We consider first the artificial situation where only the ESP
images the nonpolarizable adions (the only species present)—
actually this is the circumstance for adsorption from a gas phase
of ions onto a conducting or dielectric electrode. We are interested
in the energy required to move an adion from point 0 to point a’
in Fig. 5. This (and the five symmetrically equivalent directions)
is the direction which presents the softest potential barrier to the
ion, and therefore this is the direction contributing most to the
fluctuation of the given ion’s position. For large enough R,, one
may safely approximate the ions and their images as ideal dipoles
ff)r purposes of calculating the potentials. With this approxima-
tion, the electric field produced by the six nearest neighbors at
point 0 is given by —6(2z,f)/r3. The potential produced by
these neighbors at point 0 in the THP is approximately 12z,8-1R 3.
Arguing that the change in potential from 0 to a’ should be
roughly the same size as the potential at 0 and that the total
potential should be roughly that produced by the six nearest
neighbors alone, we find* for the energy U to move an adion
from 0 to o'

U= 12(z,6) %R = (3V3)27) (z,6) Ry, (18)

N_umerically, U= (4/5)z,tR 'y, ; the agreement with what we
will .dete.rmine exactly in later sections of the article is very good
con51de'r1ng the casual way the calculation was done. The
approximate values of 0.08z,ey_, and 0.162z,¢yp,, for R, =10and 5,

. .
" Both of these assumptions represent an error of about a factor of 2, but
€ errors compensate and our final answer is pretty good.
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respectively, compare well with the correct answers, 0.086z,ey,,
and 0.13z,ey,,. Finally, we find U/KT for T = 300° and z, =1

UJKT = 6600R*/B (A) (19)

Picking § ~ 2 A, our equation tells us that UkT ~ 1for R, ~ 15,
or r; ~ 30 A. The ratio becomes equal to 2 for an R, value only
209, smaller: R, ~ 12 or r ~ 24 A. These values correspond
to very low surface charge densities. To obtain ¢, in practical
units (pcoul/cm?), one may use the numerical relation ¢, =~
1.850 x 10%z,77% (A). For the values r, = 30 A and 24 A, we
therefore find when z, =1, ¢, ~2 pucoul/cm? and ¢; ~ 3.2
pcoul/cm?. In terms of the conventional fractional surface
coverage 0, equal to (N/N,) = (Rym/Ry)?% the above surface
charge densities correspond to 6 = 2-3 %. Thus, for the present
single-imaging case, the situation is very clear-cut. For all surface
densities large enough to be of probable interest, the dominant
feature of the system is its array-forming behavior; the hexagonal
model for this case is excellent except perhaps at elevated tem-
peratures. Incidentally, we see from the very strong arraying
tendencies of this system, even at low surface densities, that if a
neutral species is added to the surface, provided its addition does
not significantly moderate the interaction between ions, then the
relative positions of the ions among themselves will be fixed by the
above energetic considerations, and the neutral species will
simply occupy the remaining space on the surface. Thus, in this
case the solution of the two-component problem follows im-
mediately from the emphatic behavior of the one-component
system. As for the question of the possible moderation of the
interaction by the neutral species, this is an interesting question
which is discussed later on.

If it were not for the diffuse-layer effect upon the potential, our
account of order in a compact layer containing only nonpolariz-
able adions could end here with the decision heavily in favor of the
hexagonal array.* It does not happen that way, however, for
reasons which will only become completely clear in the next sec-
tion. We therefore turn now to considering a closer representation

* We have not actually ruled out the possibility of a different lattice structure
and, as a matter of fact, the square array has only a slightly higher energy.
For single imaging, the difference is 1.5%,, so that the hexagonal arrangement
is only strongly preferred for R; & 4.5 or 7y 9 A, an ion density which for

reasons which will become apparent later is probably unattainable for the
single-imaging situation.
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of the actual situation, that where the OHP maintains itself
as an equipotential surface to good approximation, with con-
sequent effects upon the inner-layer potentials. We shall, of
course, have to borrow certain results obtained later in this
article; however, that 1s all right since we are not concerned yet
with deriving potentials so much as we are with examining certain
consequences of them.

In the C-C infinite-imaging regime, the potential arising from
a given ion and its image in the ESP is very effectively attenuated,
or “screened,” at moderate lateral distances (parallel to the IHP)
from that ion. The potential variation in the IHP is drastically
smoothed, and ions can move over the IHP much less inhibited
by interactions than for the case where screening is absent.
Roughly, the ratio of U, the energy to move the ion from point
0 to point a’, to thermal energy is given for f = y by*

UkT a~ 200 x 10-2R/7 (20)

Again desiring the value of R, for which the ratio equals unity, we
obtain that the crossover condition is met for R, &~ 8, or for
r, ~ 16 A. (A closer estimate actually gives R, ~ 7,orr; ~ 14 A))
Note that the interaction is rising very rapidly, doubling for a
change in R; of about unity. (Again, a closer inspection of the
accurate variation shows that in this range of R,, the interaction
doubles whenever R, decreases by about £.) Since the variation is
so rapid with R,, we seem to have an example of the circumstance
referred to earlier where the transition region is quite abrupt and
the decision as to the pertinence of a given model is insensitive to
arbitrary assignments. In this case, the hexagonal model seems
appropriate for charge densities in excess of about 9ucoul/cm.?
This value of surface charge density which approximately marks
the beginning of the lattice domain is just large enough to be
uncomfortable: It falls within the range of typical experiments,
there.by supporting a lattice model over part of the range and
denying its validity over the remaining part. This is particularly
unfortunate because matters yet to be accounted for—such as
Presence of neutral species in the compact layer—in conjunction
with the sensitivity of our conclusions to changes in system
parameters, might alter this critical surface charge density a
significant amount in either direction and, correspondingly,

* As one might expect, the effect of screening depends upon the value of T';

we .will defer a detailed consideration of the dependence upon this parameter
until Section III of this article.
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could affect our final assessment of the lattice model. Nonethe-
less, our later considerations do not change this value very much;
the resulting changes are probably to decrease this critical surface
density somewhat. In essence then, we find that the array model
does not span the whole range of experimental interest, but it
does seem to span the major part of it (ucoul/cm?® to about
40ucoulf/cm?). The fact that the entire experimental range is not
pre-empted by the array model seems to indicate that for this
system no one model is adequate. One must use the array model
where appropriate, a less ordered model at lower surface coverages,
and perhaps develop a joining procedure in the rather narrow
transition region. *

We may again argue as we did for the single-imaging case that
for R, 2 7, the ionic interactions emphatically dominate, and
that therefore the addition of neutral particles to the layer,
assuming they do not reduce the interaction appreciably, will
simply involve those neutral particles filling up the spaces between
the ions. Whereas this is probably essentially correct, we are
beginning to encounter problems with this picture for smaller R,
values. The basic problem is that with R, = 7, the separation
between ionic centroids is about 14 A, of which perhaps 4 A is
accounted for by the hard ionic cores. This leaves about 10 A,
just enough room for three water molecules. For a little lower
value of R,, one of the waters would have to find another spot.
Clearly, when the ionic separations are only a few solvent molec-
ular diameters in size, steric effects become important and our
picture of “filling up the empty space with neutral particles”
becomes less defined. We will have further occasion to discuss the
interesting behavior of the compact layer with its neutral species
in later sections.

Finally, we consider what the state of the system is likely to be
for much smaller surface coverages than for R, ~ 7. It has
already been stated that the motion of different ions is essentially

* One interesting feature which emerges as an outcome of the rapid transition
from disorder to order is the speculation that at the transition, just below a
charge density of 9 ucoul/cm? or so, depending on actual values of § and p,
there will be a large entropy-change contribution to the free energy of ad-
sorption. This would tend to inhibit further adsorption, hastening the onset of
saturation in the ¢, versus ¢ isotherm.

|
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uncorrelated in this regime. We now wish to consider a matter
which will modify this conclusion slightly, but in a very interesting
way. I'n the‘next section, we point out that as a result of the short
screening distance established by the diffuse layer, two ions may|
approach ea.ch other much closer than they otherwise could: the
upscreened interaction energy is many times £7 at those ::lose
distances where the screening first begins to lose its effectiveness
Accort_‘lingly, at such distances, the energy necessary to move thc;
ions slightly closer together may be much larger than the energy
to reach the given starting configuration. As such increments are
typically many times thermal energy, the ions are almost always
}mable to penetrate closer, and the effect is that of a “hard core”
:fltera:(,:tlon between ions. Becausc this hard core differs from the

true hard core of the ions, and because it only acts between ion
pairs, not between an ion and neutral particle, we refer to it as
the coulombic hard core, which is generally effective in preventing
close approaches between ions at ordinary temperatures rather
t}}an the ‘.‘true” hard core. We find that the radius of this coulom-
bic core 15 nearly twice the ordinary steric hard-core radius for
c-¢ imaging. We therefore find that, even at low coverages, the
coulombic interaction plays a role, doubling the effective hard-
core radius of the ions and thus quadrupling the excluded area
per ion. This effect will be discussed later. Next, we consider the
manner in which the diffuse layer so drastically alters the
potentials in the system.

5. Role of the Diffuse Layer

We have already discussed the fact that the diffuse layer modifies
thfﬁ potential in the compact layer. There are three ways in which
this comes about. First, the presence of mobile ions in the vicinity
of the OHP leads to what has been termed a ‘“‘scrcening™ cffect
on the potential resulting from a given ion on the IHP. The
mechanism for this screening is simply the strong repulsion
between the adion and the charges (of like sign) in the diffuse
layer.. The mobile diffuse-layer ions tend to avoid coming close
to adions of the same sign, preferring to take up those positions
near th.e OHP of lower potential energy. This tendency is some-
what d1§rupted by thermal motion, of course, but provided this
€nergy is small compared with the variations of potential over
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the OHP produced by the adions and their images in the ESP
one may approximate the situation—at least for purposes of
visualizing the system—by saying that diffuse-layer ions near the
OHP arrange themselves so as to assume the lowest possible
energy. In this respect, the ions behave like the charges on the
surface of an ideal conductor; hence the approximate effect of
these ions is the same as for an ideal conductor placed in the
vicinity of the OHP. The outcome of this approximate model is
that IHP charges are imaged conductively in the OHP, and their
potentials fall off more rapidly with distance than in the absence
of such imaging. This behavior of the potential, resulting from
induced variations of charge in the diffuse layer, is, except for the
geometry of the situation, analogous to what occurs when a
charged object is immersed in a space-charge region, thus the
name ‘‘screening.”

The second modification which is brought about by the diffuse
layer comes from the fact that the diffuse layer is a dielectric
material. Although the notion of a dielectric constant is question-
able as applied to the compact layer, it is a much more justifiable
concept when applied to the diffuse layer. Indeed, we may with
little error regard the dielectric polarization of the diffuse layer
as though the diffuse layer were a dielectric continuum. The
dielectric constant of this continuum may vary as the OHP is
approached from the solution side; however, it is generally
assumed that the dielectric constant is constant all the way up to
the OHP. Whatever the detailed model of the diffuse-layer di-
electric constant, the effect of this polarization is again to image
charges more or less in the OHP. This type of imaging is not
perfect as is conductive imaging, however, the image charge
being reduced in magnitude by a factor dependent on the size of
the dielectric-constant variation at the OHP.

The third effect of the diffuse layer is, via the first two effects,
to change the degree of order of the adions. Thus, if the first two
effects of the diffuse layer are sufficient for given coverage to
smooth the potential variations in the IHP to magnitudes less
than thermal energy, then the arraying tendencies of the adions
will be too weak, and the arrangement of the adions will be
somewhat random. The effect of such loss of order has already
been discussed in Section 1I-4.
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Let us now estimate the potential in the compact layer assuming
the adions are arrayed on a hexagonal lattice and that both the
ESP and OHP are conductive imaging planes. We will shortly
consider the case of dielectric imaging at the OHP. We begin by
noting thflt ‘the potential variation parallel to the THP has the
same periodicity as the lattice. Accordingly, we may write

y(r) = constant + 42 + Y, fi(2) exp (ik - r) 21
where 4 is a constant to be determined from boundary conditions
at the ESP, Z is here the normal distance from the field point
r, to the source plane, and {k} designates those vectors parallei
to the .II.{P, producing functions {exp (ik . r)} having the proper
periodicity. Now the smallest k vector producing a function
periodic on the array has the magnitude k| = (4=V/3)/3r,. If
we require (r) to satisfy Laplace’s equation almost everywhere in
the compact layer, we find that for this smallest k vector, the
function fi is given by fi = Bexp [—(47V32)/3r,], where B
1§ anotber constant. For all larger k vectors, the exponential
decay in 2 is faster and we ignore these contributions in the
following discussion.

If one refers to the infinite imaging situation of Fig. 26(d), it is
clear that successive nonideal dipole sheets are separated by
Az =2d = 28(1 + T'). The contributions from successive sheets
to the part of the potential which varies in planes parallel to the
IHP are in the ratio exp [—(87V3)(1 + I')/3R,]. For T =1,
this ratio may be written exp (—29R;!). Thus, for all values
of R, = 6.3, the contributions of successive planes are in ratios <
10-2, whereas for R, = 12.6 the ratios are < 10~%. Accordingly,
we do not make too great an error if we replace the infinite
regress of images by three nonideal dipole sheets, the first lying
about the ESP, the second and third lying about the planes
z = 42d4. This approximation may not be accurate enough
for large R, or for a meticulous treatment of the potential near the
ESI_’ or the OHP (for then we would have thrown away contri-
butions as large as the smallest of the three which were retained);
however., for most purposes it should suffice. Now if we employ a:
superscript zero to denote single imaging and define y%(x, y,2)
as the potential arising from the nonideal sheet centered a’t the
ESP, then the actual C-C imaging potential @ (x, »,Z) (which
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does not include a possible uniform field contribution arising from
excess charge on the ESP) is given for z < d approximately by*

P2 (%, 9,2) == v3(x%,2,2) + yi(%0, 2 + 2d)
— yo(%,, 2d — z) — 4mqz(1 + n- (22)

For the present case of conductive imaging at the OHP, we may
readily find the charge on the ESP for which there is no uniform
field contribution. Noting that when the true potential is identical
with p®, the average p.d. across the compact layer vanishes
[because p?(0) = y@ (B + y) = 0], we may use Gauss’s law
to establish that g8 + (¢ + g,)y = 0; thus, there is no excess
charge on the ESP provided that ¢ = —A¢;. Accordingly, the
uniform field contribution, which in general must be added to the
y® of the C-C imaging case, is p,(x,9,2) = —4me'z(g + Aqy),
where the bogus dielectric constant e, should not be taken
seriously but is merely a reminder that polarization effects within
the compact layer must somehow be taken into account. In the
absence of the diffuse-layer effects, the local potential would have
been y°(x,5,2) = —4n(g + q1)z + ¥(x,,z), where we have set
¢, = 1 here and in the following. The whole question of dielectric
effects in the inner layer will be discussed in Section II-6. A
comparison with our conductive-imaging result shows that the
effect of the (conducting) diffuse layer is, for given ¢ and ¢,, to
add apotential, y[x, 7, z + 28(1 + 1)1 — ¥[x, ,26(1 + ) 2,
to that obtained when one neglects the diffuse layer. In Table 11,
we give the values of potential y(x, ,8), normalized in accordance
with W (x,,8) = 9(%.0,8) ¥« for C-0 single imaging where the
diffuse layer is neglected, and for the C-C imaging situation with
[' = 1. The potentials applying to an incomplete lattice situation
are shown for two points in the THP; point 0 corresponds to the
site of a removed adion, and point @’ is a point of three-fold
symmetry before one of the three neighboring adions 1s removed.

* The reader will naturally wonder where the term —4mqyz(l + )7L
came from. It turns out that this is the potential arising from the infinite image
sets which have been neglected up to now. Only portions of the potential
which vary in directions parallel to the THP fall off exponentially by our
previous argument. We are still left with this uniform-field part, which is not
the same as that arising from excess charge on the ESP, y,. This whole matter
is further discussed in Section IV-1.
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The charge density on the electrode in all cases is taken to be
—¢,; however, the difference ¥'(a’) — ¥ (0) is independent of this
-choic.e. There are two sets of numbers listed for the conductive-
imaging situation. The first numbers represent accurate data
acquired py methods discussed later in this article, and the
numbers‘ in parentheses were obtained by the approximate
method just described. One notes the decreasing utility of this
approx1m.ation for increasing R,. The reason that the absolute
accuracy is so poor for R, = 10 is that the terms neglected in the

TABLE II

Normalized Potentials on the THP®

Single imaging Infinite imaging

R, WO0) Wa) A¥® ¥(0) ¥(a') AY

2 0556 0.668 0.112  0.556(0.556)  0.708(0.708) 0

. . . . .152(0.152
5 0284 0413 0.129  0.504(0.46) 0.543(0.54) 0.039%0.08) )
10 0.149  0.235 0.086  0.500(0.35) 0.505(0.49) 0.005(0.14)

¢ Here, AY =Y (a’) — ¥'(0).

rr}odel are less than 109 for a complete lattice (no vacancy).
Since the absolute magnitude of the potential at point 0 diverges
for the complete lattice, our 109 figure arrived at earlier (for
R, = 12.6) is of no use in establishing an upper bound on the
error fo.r this case. Happily, we have the accurate data for direct
companson here.

One of the most significant features shown in the table is the
srnooth-ing effect of conductive imaging at the OHP. While for
§1ngle imaging the potential variation from point O to point a’
1s roughly 10 % of y, over a wide range of coverages, the presence
of C(anuctlve imaging at the OHP causes this variation to drop
to 49 at R, = 5 and to 0.5 9 at R, = 10. Thus, we see that even
thoug_h the. potential at point 0 is actually increased by the diffuse-
layer imaging, the variations of potential over the ITHP are greatly
gecreased; it is therefore the variation in potential which is

screened”’ by the diffuse layer. The effect of screening at given
d naturally decreases for C-C imaging as I' departs in either
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direction from unity; from symmetry we note that for given ry,
the unnormalized potential y{¥ evaluated on the IHP is invariant
under the replacement § <>y and thus T'— 'L Later we will
illustrate more specifically the dependence upon T'. We have used
the data for ¥®(a') — ¥ (0) to calculate the ratio U'®[KT
pertaining to C-C imaging, and this ratio is plotted in Fig. 7.

10— T T T T 7T 17 173
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- g=28 A
El T =300°K —
1 |
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it [ .
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0.03 [ 1 U I T I O SN NN T I
0 8 12 16 20

R
Fig. 7. Normalized single adion energy in the plane of its neighbors, Uk 7,
vs. R, = r,[B, the normalized nearest-neighbor distance for a hexagonal array,
or the pair separation distance for two isolated adions.

Another way of seeing the diffuse-layer screening in action is
to calculate the energy of interaction of two adions imaged in the
ESP and OHP and separated by a distance r;. Taking ' = 1 and
e, = | and making use of the results derived in Appendix I, we
obtain for exp (—#R,) <1 the almost exact (—C result

URalkT = [2/ (A)]350R; Y/ exp (—7R,/2) (23)

where T has been set at 300°K. This energy ratio is also plotted
in Fig. 7 versus R,, and one notes the essentially exponential drop
with R,. We observe that were there only two adions on the IHP,
they would move essentially independently until they approached

DISCRETE COMPACT DOUBLE LAYER 39

each other to within a distance 7, ~ 4.5 = 9 A. At this point
the quantity (U2 /kT) would be about }. The energy increases
rapidly below this distance, and the pair of ions would stringently
avoid encounters of r, less than about 3.58 = 7 A, where the
energy ratio is somewhat greater than unity and rising precipi-
tously. This statement is true whatever the degree of lattice
ordering on the surface. Two adions find it so difficult (at 300°K)
to approach each other significantly closer than 7 A that we may
here neglect such occurrences entirely for (—C conditions. In-
deed, we may regard the adions as having a coulombic hard-core
diameter, r,, of about 7 A. This is the ‘“hard-core” which is
effective in establishing the excluded volume (or area in this
surface problem) for the system of adions, even at low coverages.
Naturally, an uncharged particle on the surface passes unhindered
through this hard core, suffering strong repulsion only in the
vicinity of the usual ionic surface, with radius about half of the
coulombic radius. These facts may also be stated that two adions
must always have enough room for a water molecule to fit between them
when C-C tmaging is appropriate. We note that we may estimate
the maximum achievable surface density of ions at ordinary
temperature, assuming they all maintain their charge, by the
above consideration of the coulombic hard core.* Setting the
minimum separation 7, equal to 3.58, or about 7 A, the maxi-
mum allowable surface charge density works out to be about
38 ucoul/cm?, close to that derived from experimental measure-
ments on many eclectrolyte systems. The fractional surface
coverage, 8, at this maximum value would be about (25/3.58)2,
or approximately 33 9.

* The foregoing argument is satisfactory as it stands for the situation where
the particles are wide enough apart that their coulombic hard cores seldom
touch. The following development represents a heuristic extrapolation of the
concept to the case where the particles are being crowded together and their
cores are touching. Our observation that the energy to ‘“‘compress a hard
core,” or move particles closer together then r,, is large does not rule out the
possibility of such possible compression if the adsorption energy is large
enough. Nonetheless, our estimates indicate that in practice the adsorption
free energy will vanish and further ionic adsorption be prevented by the cou-
lombic hard core interaction before such compression can become a large
effect. Though exceptions may exist, the concept seems generally to be a useful
one.
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It is interesting to compare these calculations with the analogous
ones for single imaging. For this case we would have for large R,
that the ratio of lateral pair interaction energy to thermal energy

is given by U el kT = [2/8 (A)}550R (24)

We see from Fig. 7 that not only is this interaction much stronger
because of the absence of screening, but it is also much “‘softer.”
The variation with R, is not as rapid as with the diffuse-layer
imaging. Thus, the particle motions become correlated when
R, ~ 18, or ny ~ 36 A (this occurs as an average condition at
¢, ~ 1.5 ucoul/cm? and 6 ~ 1.3%); yet they can only approach
to within distances of about R, ~ R, ~ 7, or 1, ~ 14 A when
B =2 A. (This pair separation occurs when ¢, ~ 10 ucoul/cm?
and 0 ~ 8%.)

Based on the foregoing discussion of conducting imaging at the
OHP, we may readily understand what is the effect of dielectric
imaging there. First of all, if the dielectric imaging is very strong,
thatis, if o = (e, — ¢;)/(e; + €;) ~ 1 by virtue of ¢, > 1 (imply-
ing €, >¢), then the overall effect of dielectric imaging is
identical with conducting imaging. If w departs somewhat from
1, the result is that the successive nonideal dipole sheets centered
at +z, = 2dn are of diminished strength, w™. The shielding is
not quite as effective as for perfect imaging. As soon as o departs
considerably from unity, we have problems; when o is consider-
ably smaller than unity, ¢ is comparable with ¢, But for this
case it matters very much what we take for ¢,. Polarization in
the compact layer plays a greater relative role, and it is no
longer a permissible procedure to replace the actual compact-
layer polarization with a bogus dielectric constant. Hence, for
o < 1 one really must be prepared to throw out the picture of
dielectric imaging based on an ¢ and to start again, taking
correct account of the polarization in the inner layer.

It is fortunate in a way that the effect of the dielectric dis-
continuity near the OHP is the same as the presence of mobile
ions in the vicinity of the OHP, that is, to image charges. If it
were otherwise, we should have to worry more about the outcome
when both of these situations pertained. There might have been,
for example, a partial cancellation of the two influences, and we
should then have had to be careful in our analysis to determine
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the result of these influences. As it is, however, the simultaneous
presence of the two reinforcing imaging processes merely increases
our confidence that there is indeed an imaging plane more or less
on the OHP, and that, even if neither of the processes is sufficient
in itsel{ to create perfect imaging, the combination of the two
should make perfect imaging a fairly good approximation.
Although the foregoing considerations allow us to be fairly
confident of the gross influence of the diffuse layer, we are con-
fronted with a more difficult matter in accurately calculating its
effects. We shall now describe some of the complications in the
actual physical system which we have glossed over up to this
point and which, though not affecting the essential validity of
the previous development, do alter the details of the influence of
the diffuse layer upon the inner region and the system as a whole.
First, there is actually an interaction between the processes of
conductive and dielectric imaging; this must be so, for if the effects
were superposable, then it would be possible that the two images
produced by the two processes should add to give a net image
charge greater in magnitude than that of the object imaged. The
simplest way of considering how the two effects actually should
add in the first approximation is simply to regard the diffuse-
layer ions near the OHP as contributing to the net polarizability
of this region of the diffuse layer—and hence to the effective
dielectric constant €, which determines . This is consistent with
our implicit assumptions when we referred to the reinforcement
of the imaging processes, and it agrees with the physically
necessary requirement that the presence of the two processes
simultaneously can at most cause the OHP to more closely
approximate a perfect imaging plane. There is a physical way of
understanding why the two effects do not superpose, the images
produced by one process being influenced by the presence of the
other. Although this physical mechanism is completely contained
in the behavior referred to before concerning the “net polariz-
ability,” it is well hidden there beneath a lot of relationships
which occur in the theory of dielectrics of which the reader would
have to be ever cognizant. What occurs is quite easily under-
stood; the presence of strong conductive imaging by the diffuse-
layer ions would virtually wipe out the potential variations
parallel to the OHP in the diffuse layer itself. Accordingly, the
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dielectric polarization would be left with very little to image.
Similarly, if dielectric imaging were quite complete, the potential
produced at the OHP would be virtually constant even without
the assistance of the mobile ions. These ions would no longer be
compelled to congregate in bunches over the OHP and indeed
would be energetically forbidden from doing so except to the
extent necessary to level even more the slight potential variations
which remained. These examples merely show that, given one
imaging mode at a certain level, the other mode will adjust its
level so that the total effect is no more than perfect imaging. The
actual division of labor between the two and the degree of
perfection actually achieved are matters for a detailed calculation,
which will not be discussed here.

There are two related complications which are more trouble-
some and in fact would have to be taken into account in order to
perform the sort of calculation mentioned in the last paragraph.
These are the finite thickness of the diffuse-layer ionic sheath and
the uncertainty in the position of the dielectric imaging plane.
The first of these results from thermal motion of the diffuse-layer
ions and involves a length of the order of the Debye shielding
distance, 1p, which may be written for z, = 1 as (kT [4mcye?)'/2,
where ¢, is the density of diffuse-layer ions, and the simple
inclusion of €, becomes somewhat ridiculous for the smallest 4,
values. One may use the density in the bulk of the electrolyte to
calculate Ap, or one may argue that the value should be that
applying at the OHP. We shall not try to decide the matter here,
for if the two concentrations differ by very much one needs really
to worry about the diffuse-layer problem from the beginning,
including, for example, finite size effects. In any case, the thick-
ness is not zero but varies from hundreds of Angstroms in some
situations to perhaps only a few Angstroms in others. Corre-
spondingly, there is an uncertainty about where to place the
effective conductive imaging plane (though with the strong
potentials set up by the adions we should not insist that this
uncertainty is equal to or otherwise simply related to the sheath
thickness). For that matter, we are sure that the thermal motion
of the diffuse-layer ions, as small as that may be, will to some
extent “blur’ the images. The extent to which this is liable to
occur, as well as the best estimate of the position of the conductive
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imaging plane—somewhere on or behind the conventional
OHP—is more properly deferred until later in this article. The
similar uncertainty in the location and basic pertinence of the
dielectric imaging plane is one manifestation of two more funda-
mental facts. First, as we mentioned at the beginning of the
discussion on the diffuse layer, the effective dielectric constant in
the diffuse layer most likely varies with distance from the OHP;
it presumably ranges from a bulk value down to a possibly con-
siderably smaller and partly saturated value in the midst of the
higher ionic concentrations and larger fields very near the OHP.
Second, the discreteness of the diffuse-layer dipoles is contrary to
the continuum assumed. While this discreteness is of no import-
ance when viewed from far enough away, it does produce a
somewhat different potential from that produced by the con-
tinuum. This effect is presumably modest, as it tends to be
averaged away by motion in the diffuse layer, and by an earlier
argument we would expect the deviations induced to fall off with
distance z measured from the QHP roughly as exp {—3=z/l},
where [ is a characteristic separation between diffuse-layer
dipoles—probably the diameter of a molecule or so. Since the 7 in
this application is almost surely no less than /, we appear now to be
discussing an effect which is comfortably unimportant (& ¢19).

To return to the mainstream of our discussion, we have
described several effects which might alter the details of the role
played by the diffuse layer. They all require for their complete
understanding a detailed and complex treatment of the diffuse
layer. While several of these matters will be further discussed
latel: in this article, this additional discussion is to a great extent
moltlvated by our duty to give at least some review of all the
topics which are in current popularity in this field. Reminding
the reader that representing the diffuse-layer effect by imaging is
an approximation and that an exact theory requires an ab initio
thef)retlcal treatment of this complex system, we nonetheless
Peheve that it is a very good, and simply applied, approximation
In most circumstances of interest.

6. The Concept of an Inner-Region Dielectric Constant

WP: hfive noted several times that the representation of
polarization effects within the compact layer by means of a
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dielectric constant is a procedure which, though very common
throughout the literature, is generally incorrect unless one takes
particular pains to determine this quantity from first principles
and to avoid extending its application beyond the realm envi-
sioned in its derivation. We shall here amplify this assertion by
giving examples of how diclectric constants could be defined for
the compact layer and how easily such quantities, once defined,
could be falsely applied. Before discussing the compact layer
itself, we shall review some of the properties of dielectric polar-
ization in bulk matter with emphasis upon those features peculiar
to bulk matter which allow a simple and widely applicable
definition of the dielectric constant.

The case generally considered in any discussion of bulk
dielectric effects is the following. An external electric fiel ) Eopt
is developed across a material containing polarizable elements.
This field is either constant in magnitude and direction or else
varies so slowly (in all directions) over regions containing many
discrete polarizable elements that it may be considered constant.*
One thereby reduces the problem to that of the behavior of a
single macroscopically small, microscopically large region of the
material. Under the combined action of the external field and
the field produced by the other (polarized) entities, it is next
assumed that “ne objects acquire an electric dipole moment
P — a&.y, v here « is the polarizability of a single entity and is
a property of the individual entity, and &y is the sum of the
external field and the field produced by the other dipoles, &. It 18
&, which contains the effect of the neighboring dipoles of a given
dipole. Note that we have already been able to incorporate a
great simplification into the picture as a result of the uniformity
assumed for &,y on this scale. All the dipole moments are taken
to be precisely the same; similarly all the fields &, and &gy at
each polarizable element are the same.

Next one defines the polarization # as the total dipole moment
per unit volume arising from neutral species contained in the
region, and again one exploits the microscopic largeness of the
macroscopically small region in defining this quantity. The total

* A generalization of the present discussion is to consider fields which vary

as exp {ik - r}; the resulting dielectric constant is then a function of the wave-
vector k. This description is sometimes called “spatial dispersion.”
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dipole moment contained in the given region is almost exactly
proportional to the volume of the region and independent of the
precise location of the boundaries; hence, # is a well-defined
vector—at least to a precision of the order of the ratio between
t}}e mi(?roscopic spacing between dipoles and the smallest linear
dlI:l’lCl’lSlOIl of the given region. Next, we set &, = 4nS?, where
S is a constant characteristic of the microscopic structure of the
dielectric material, and obtain

P = Nl = (1 — 4nN,aS) 'N,o &y (25)

with N, the volume density of polarizable elements in the inner
region, and « here the polarizability of the polarizable elements.

All that remains in order to find the dielectric constant is to
make the observation that the electric field produced by the
electric dipoles fluctuates strongly on the microscopic scale;
however, if one averages this fluctuating electric field over a
microscopically large region, * one is left simply with an average
field from these dipoles equal to —4x #2. Identifying &, with the
displacement field Z and the sum &4,y — 47 2 with the macro-
scopic field &, we find

=2 — 4aNa(l — 4nNaS) "D (26)
from whence the dielectric constant, e = £/¢&, is found to be
e=1+4+4aN,a(l — 47N,aS — 47N o)t (27)

So defined, the dielectric constant enables us to determine the
average electric field existing in the dielectric from a knowledge of
the external field alone.

Provided we are not interested in the potential exceedingly
close.to one of the discrete dipoles, average quantities will be
sgﬂicwnt, since under such conditions the potential seen by any
given charge will predominantly arise from the action of the
average field over macroscopic distances, and the fluctuation
Potential associated with the nearest discrete dipoles will be
relatively small. Thus, one may usually calculate the interaction
between two point charges imbedded in a dielectric material
and separated by microscopically large distances simply by

* . . .
Th‘e same result is of course obtained if the average is taken over precisely
one unit cell when the dielectric material is crystalline.
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making use of average fields; that is, by incorporating the di-
clectric constant into the calculation. This is an unexpected
bonus, however, for all that was really obtained at the beginning
by defining such a quantity was the average field; furthermore,
it is clear that if one of the point charges resides in atypically
close proximity to one of the discrete dipoles, the fluctuation
potential will be relatively large and the interaction between the
charges will be moderated by the polarization in a highly specific
manner not accounted for by the simple dielectric constant.

To recapitulate, the notion of a dielectric constant naturally
arises whenever a microscopically large region containing discrete
polarizable elements is subjected to conditions such that all field
quantities are very slowly varying over the distances characterizing
the microscopic structure of the region. When such conditions
obtain, the dielectric constant provides a convenient means of
determining average field quantities; however, the significance of
such quantities in specific cases depends upon such details of those
cases as whether or not special importance is attached to atypical
points in the medium by virtue of the particular problem con-
sidered. To attempt to extend the concept beyond the limits
stated here is hazardous, and each extension must be analyzed as
a case in itself, With these thoughts in mind, we are now ready to
examine the dielectric constant concept as applied to the compact
layer.

It is immediately obvious that the conditions which enabled
one to define a useful dielectric constant for bulk matter do not
apply to the compact layer; the adion-image fields vary rapidly
over the dimensions characterizing the microscopic structure of
the compact layer. Furthermore, the distances over which the
fields act are not microscopically large. Therefore, the potential
at any given point in the compact layer has very little to do with
the average fields derivable from a dielectric constant. Nonethe-
less, provided we exercise some care, we may still define a quantity
for the inner layer analogous to a dielectric constant (in that it
conveniently accounts for polarization), although its usefulness
will not be nearly so great as that of the bulk dielectric constant.

We shall set out to define a dielectric constant for the compact
layer in such a way that the effect of polarization upon the average
potential, V(Z), is properly accounted for provided 1 < Z < Z,.
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Once hayir}g found this dielectric constant, however, we may
only use it in this way. To account for polarization eﬂ,"ects upon
other quantities, one would have to derive a different dielectric
constant appropriate to the quantity considered (not always a
p9551blc' procedure) rather than simply making use of the same
dielectric parameter. This is a reflection of the limited usefulness
of t}}e concept itself as applied to this system.

First, we observe that for all Z in the domain | < Z < Z
the contril?ution to the average potential from the con_lpa((:);
layer polarization is simply 47 NP, where now P is the average
normal component of electric dipole moment. Relating N to
N, by N, = d-'N and defining & as the normal component of
average polarization, we find this contribution may be written
4n Zd. Expressing this result in terms of the average field acting
between the ESP and the plane Z = constant, one obtains the
result that the polarization produces anaverage field —(Zy/Z)4n %
between these two planes. As the result depends on ZO we see
that a su?gle dielectric constant is insuflicient even to acc,ount for
polarlzgtlon effects upon the average p.d. between the ESP and
an a'rbltrary plane parallel to it. We shall be content then to
consider the “dielectric constant” which determines the total p.d
across .the compact layer and shall scrupulously avoid applying.
this dielectric parameter to the determination of any other
quantity. Setting Z = Z; we find that the average dipole field is
—4172, just as for bulk matter.

Again we may set P = a&,;, where &,; is now the average
norrpal component of field acting to polarize the entities, but
& . is not necessarily so simple as it was for bulk matter. Tiiings
are not difficult providing there are no adions in the compact
layer because for this case the fields acting on all the dipoles are
equal, the dipoles themselves are effectively equal, and the
external field &, is uniform over the whole layer. F(;r this case

we may again set
Eop = Eext + 4nSP (28)

where § will depend on imaging conditions at the OHP, various
sFrucFural features of the compact layer, and the type of I,)olariza-
tion involved (induced or orientational). Proceeding as for bulk
matter, we would obtain an expression for the dielectric constant
which is formally identical to that obtained for bulk; of course,
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the actual values of N, and § (as well as « perhaps) would differ
for the compact layer from the values appropriate to bulk, so
that numerically the dielectric constant would be different. More
important than the numerical differences is the fact that this
dielectric constant is only applicable to one calculation: finding
the average compact-layer potential.

The whole situation is greatly complicated when adions are
present in the compact layer; no longer will every dipole see the
same field, but the fields will depend upon where the dipoles
reside relative to the adions. Correspondingly, no longer will all
dipoles have the same effective moment; indeed, as a result of
this, no longer will the field &, be simply proportional to 2.
Thus, for this case &g is a very difficult object to determine.
There are other problems as well. In particular, the field ey
is no longer uniform; it acts differently in its roles as a D-field
and as a contributor to the production of polarization. Ilustrative
of this is the fact that for C-C imaging the field contributes nothing
to the average compact-layer potential difference, yet it does
act upon polarizable matter on the THP and therefore cannot be
ignored as a partnerin &q. Thus, we find for this case that even the
limited type of dielectric constant defined before is unachievable.
The average field is no longer proportional to the external field
at all. For such situations, it is better to refrain from defining a
dielectric constant, instead treating the polarization by more
direct means.

Though we might take a hint from the negative results of the
last paragraph, we now turn to a consideration of an entirely
different type of dielectric constant. We wish to consider to what
extent the interaction energy of two adions on the ITHP is modified
by the presence of polarizable matter in the compact layer. This
matter is of extreme interest because of its relevance to such
questions as lattice stability under thermal motion, as noted in
previous sections. For this purpose, we may set y, = 0 with no
loss of generality whatever.

Again we shall assume that P — o&,;. When the electric fields
present are very large and the polarization results from preferential
orientation of permanent dipoles, however, this assumption that
P is proportional to &, breaks down and the whole situation
becomes surprisingly more complex. Under the linear assumption
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we may d'irectly determine, formally at least, the change in the
energy of: interaction between two ions on the IHP as a result of
polarization. Let the first ion reside at the origin and the second
at r. The total energy for the two is then written U = z,e¢(r)
where ¢(r) is the potential arising from all polarizatio;; the
charge at the origin, and all images; it excludes the infi'mite
contribution from the ion itself at r. Now the potential ¢ is made
up of several contributions: that from the images of the charge at
r, that from the charge at the origin and its images, and that from
the polarization and its images. The first of these is constant and
does. not depend upon r; we may discard it if we are interested in
th(? 1nt'eraction energy between the ions. The polarization at any
point is tbe sum of what would be present if only the ion at the
origin existed and what would be present if only the ion at r
?x1.sted. Since the potential at r arising from the latter polarization
is 1nd.ependent of r, we may disregard this contribution. Note
the utility of the linear assumption, We are left with the following
expression for the interaction energy

Uing = 2obo(r) (29)

where ¢, is the potential which would exist if the ion at r were
r.emo'ved and only the ion at the origin, its images, the polariza-
tion it sets up, and the images of that polarization were present.
The problem of finding the interaction energy between two adions
is reducc?d to that of finding the potential set up by a single adion
at the o.rlgin along with the resulting polarization and images.

Consider the case of C—C imaging with ' = 1. From the results
of Appendix I and the asymptotic behavior of the modified Bessel
function, K,(x) — (2x/m)~Y/2 exp ( —x), we may roughly approxi-
mate thc‘ effect of C-C imaging by reducing the potentials and
fields which would exist in the absence of imaging by the factor
(4R)Y2 exp (—mR[2), where R =71/ and r is here the planar
distance from the compact-layer source point to the field point
on the IHP.* If for simplicity we take &oy = &, always a

* Of course, if we reduce the potential by this factor, the field should

actuall‘y be' the sum of two terms; the term we use here and the modified

f:):ltenltla‘l times {(7/2) — 2(4R)—1}{3"1. However, since this is only a rough

o culation and it is .the exponential factor (contained in both terms) which
ominates the behavior we adopt the simpler procedure in the text.
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possible approximation for small a, we find for the induced dipole
moment at a point 7; from the origin, P; ~ az,er2(4R;)V? X
exp (—mR;[2), where R, = 7:/B.

On the other hand, the effect of a given dipole also falls off
exponentially with its distance from the field point for C-C
imaging. The overall effect of a given dipole at a given field point
therefore involves an exponential factor whose argument contains
the sum of the distances from the dipole to the origin and to the
field point. These considerations lead us to consider the situation
shown in Fig. 8, approximately pertinent for B; = 5 and g =2 A.
The solvent-molecule diameter has been set to (3)8, and all
entities not shown may be neglected here. We note that only the
component of polarization in the plane contributes to the po-
tential on the THP and hence to the interaction energy.

To avoid a very long and inelegant calculation, since we only
wish to roughly establish the dielectric effect here, we simply set
the contributions from the first and third row of dipoles equal to
that of the middle row of dipoles. Putting all the numbers together
we find

o %—zve\/_ﬂ) exp (—57(2)
+ 6uz,e(136]4)"2(7/4) 2V exp (—57[2)
_ buz,e(278/4)-2(78/4) "2V 189 exp (—277[8)  (30)

where ¢, is the potential at the site of the removed positive 1on
shown dotted in Fig. 8. It will be observed that the relative con-
tributions of those terms we have considered drop very rapidly
with the sum of the distances to the field point and to the origin.
The first term in the sum is due to the ion at the origin (and its
images). The effect of screening is to make the negative term
negligible, and the interaction energy is actually increased* by
the polarization in this example. The potential ¢, is approxi-
mately given by

do2 10742,ep71[3.47 + 6.72J] (31)

* Since the self energy has not been included here, the total energy of the
system is still lowered by the polarization. As a matter of interest, Fletcher
(36) has pointed out the same basic phenomenon we observe here, in con-
nection with the sign of the depolarizing field in a finite cubic lattice (a thin
slab) of nonideal dipoles.
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Yvhere again J = «/f% and the successive dipoles (and their
images) considered in the sum for the potential contribute much
less than the next most important dipoles—the convergence is of
the nature of one more significant figure for every successive set
of dlp(?les considered. For typical values of J, we find that the
pOtC.l’ltlal ¢, which determines the interaction between two ions
at distance R; = 5 under C—C conditions may be more than 50 ]
larger than the potential in the absence of polarization. In thi:
case then, the effective dielectric constant which modifies ionic

oS
SOCSOS
>

Fig. 8. Schematic dia ili : .
A gram illustrating solvent-adion situation i
assessing planar shielding effects. used in

interaction in the plane may be as small as 0.6 or so for R, =5
For. smaller J values or larger R,, we expect this dielectric coilstané
to increase. (Compare with the Z-dependence noted for our
ez.irher ‘fdielectric constant.”) Finally, when R; is very large this
dlelC'CtI‘IC constant will be more akin in value to usual macro-
scopic quantities. Eventually perhaps someone will make a careful
Calculat19n to show how the interaction in the plane is modified
by pf)l.arlzation including the effects of &,¢ %~ &4y,. This is a very
.ambltIO}lS problem, however, and we must be content with this
illustration of how screening and discreteness effects combine
here (at small R)) to produce a ““dielectric constant” of the order

of and possibly less than unity.
iml?;fﬂr: iendlng our discuss}on of the dif:lectric constant of the
o gion, we wish to point out some interesting properties of
len'tz}tlonz}l polarization in the compact layer. Under most
E(I)_?Ic’htlons in the double layer, the fields acting normal to the
are quite large; large enough to saturate the orientational
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polarization. Such saturation always occurs whenever the
dimensionless quantity \u&x/3kT| appreciably exceeds unity,
for under such conditions the average dipole moment, (), in
the direction of the field is roughly equal to the full magnitude
of the permanent dipole moment . The contribution of this
polarization to the average potential is, under such conditions,
slowly varying and not accountable by means of a usual dielectric
constant.

On the other hand, for C-C conditions we have seen that,
except for the immediate vicinity of an adion, the component of
field parallel to the THP is quite small, certainly very much less
than the normal component. When this inequality exists together
with the saturation of the orientational polarization, one may
readily calculate the component of polarization parallel to the
THP. Since the dipole moment is of magnitude p aligned in the
direction of the vector field, the parallel component must be
given by p times the ratio of & to (&7 + &%)V% where the
subscripts refer to the parallel and perpendicular components
respectively. Under such circumstances, the parallel component
of polarization behaves as though it arose from an entity whose
polarizability is given, for & <&y, by ey~ p/€ . This is
clearly less than the low field polarizability, «g = w2[3kT, by an
amount dependent upon how far into saturation the field has
taken the dipoles. We may estimate o most simply by noting
that the low field polarizability applies until |p&g/3kT) 2 1
the polarization approaches constancy for appreciably larger
values of this quantity. Taking the ratio of the “critical field,”
3kT/u, to the field &, and multiplying by the low field polariza-
bility gives us a rough estimate of ay: oy ~ (3K T|ué | )a,y These
conditions do not necessarily hold very near an adion or if
y, =~ 0; the first of these exceptions is discussed somewhat later
in this article in connection with solvation of adions in the com-
pact layer.

Two more remarks are pertinent to the question of seriously
attempting a dielectric constant calculation for the inner layer.
First, if one may disregard parallel components of polarization
(because of the absence of adions or because of saturated orient-
able dipoles being involved), then the C-C imaging situation
involves a field &, which depends on 2 through the parameter
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Sin a manner quite analogous to what obtains in a crystal lattice;
t.he dipoles in the inner region see image arrays of dipoles uité
like tho_se they would see if the whole structure were an ingnite
cr.ystalh.ne solid. Second, however, if one is interested in the
dielectric constant where orientational polarization is involved
one must be extremely careful in making theoretical calculation;
to be sure t}}at Onsager-type corrections are made in doing the
the.rmal st'fxtlstics. The point here is that, unlike the case in a
solid, t}.le infinite image arrays of dipoles faithfully follow the
fluctuations of their masters on the IHP, thereby complicatin

tk.le eval.uation of the probability that a given dipole points in i
given direction. The problem is quite difficult, and as far as we
kno“f, no one has attempted to treat it properly. However, it is
very interesting, and someday such a treatment will be carrie;i out.

7. Complications in the Compact Layer

A. Nonlinearities. Following our qualitative discussion of
some of the simplest dielectric effects in the inner region, we now
c0n51d(?r briefly some of the complicating features whic’:h might
prove important in the actual system. The reader is forewarned
however, that these complications have never been considered in
any treatment of the double layer thus far published; this dis-
cussion represents work which is still to be done. ,

Ip the last sections, a relationship often assumed but never
derived was that the total energy of the system equals one-half
t}.le sum over all real monopole charges (not images or charges in
dipoles) of the potential at the site of a monopole (excluding
however, the contribution from the monopole itself) times thej
charge of the monopole.

— 1
V=1,2,08 (52)
charges

aAllthough this relation is widely used, its implications are not
ways appreciated. The relation appears “‘simple,” yet it conceals

: %{Z:(;crdlealkof physics, so r_nuch so in fact, that if we start to take
Ea e b00 at 1the equation, our first impulse is to say that it
o € Som[,)’etely correct. The expression on the right-hand
€ treats “‘real” charges completely differently from polarization
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charges, the latter being involved only implicitly through their
effect upon ¢(ry), yet a microscopic view of nature asserts that
there 1s no fundamental difference between the two types of
charge. Specifically, it would appear at first that we have neglected
the dipole-dipole interactions, for example, in calculating the
total energy. Space does not permit a full discussion of all the
physics concealed in this expression for energy; an adequate dis-
cussion of this is in preparation, and may appear elsewhere. For
our present purposes, however, we must present some explanation
of what is involved here.

What terms have been apparently neglected in the expression
quoted for total electrical energy? The image charges are not
included, of course, but we should not be surprised at this because
the image charges are fictitious in any case. This is not a com-
pletely satisfactory explanation for their exclusion, since the poten-
tials produced by the fictitious images are in fact produced by
charges somewhere in the universe. We shall content ourselves
with the above explanation, however, and proceed to the question
of current interest, i.e., why have the polarization charges been
excluded in the summation?

If these charges were included, each dipole would contribute a
term —iP « &, We have here assumed that the dipoles are ideal
and hence have set quadrupole and higher moments to zero. The
factor one-half is introduced to avoid counting pair-wise inter-
actions twice. We have already partially counted the interaction
between dipoles and monopoles inasmuch as ¢(r,) includes the
polarization potential; furthermore, since the term —3P - &4 1s
to be summed (in the proposed addition to the actual energy
equation) over all dipoles, the factor one-half will properly do the
accounting for distinct pairs. It even accounts for the reduction
in interaction energy between charges and images vis 4 vis charges
and charges. In summary, it would appear that the cxtension of
the sum in the energy cquation to include polarization charges
would make everything exactly correct. Yet there is a contribution
to the energy which we have neglected, and which under the
usual (idealized) conditions will exactly cancel our proposed
addition to Eq. 32.

When we consider the encrgy of a given polarizable element in
the field &4, we should include the energy of formation of the
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dipole, Uy (P). The total energy of that dipole would be
Up = Um(P) — P Sorr (33)

and the actual value assumed for P is determined by the condition
Ve Up :.O. Thus Ve Uini(P) = &,z is the equation determining
the pola.rlzatlon produced by &,;. Now if we make the lincar
assumption P = a8y, we may write Vp Uint(P) = a P, from
whence it follows that

Uint(P) = jo~ P2 = IP. geﬂ‘ (34)

But this just cancels the term we proposed to add to the sum in
Eq. 32, so Eq. 32 is correct after all. Remember, however, that
such cancellation depends upon the linear assumption, that
Ve x = 0; that is, that Uy, (P) is quadratic in P. Whenever this
condition brcaks down, Eq. 32 is no longer correct. (It will be
recalled from Section I1-6 that other problems arise as well when
one l§av§s the domain of constant «.) Now since the saturation of
polar1;at1on, or departure from linearity, is more easily achieved
for orientational than for electronic polarization, we must show
how' the foregoing remarks apply to the former type of polarization.
First remark that for the type of polarization just considered,
yvhere Uint depends upon P and the equilibrium condition satisfied
Is that Uy should be a minimum, the entropy of formation of the
dipoles is generally zero. Accordingly, all the properties attributed
to t'he energy likewise apply to the free energy: It is (most con-
veniently) assumed quadratic in P and is a2 minimum at given
temperature for the equilibrium condition. In the case of orienta-
tional polarization, however, it is only the free energy which has
these properties. There is in this case no internal energy involved
in the fgrmation of the average moment (u), only entropy. Cor-
respopdlngly, it is not the energy which is approximately quad-
ratic in P, but the free energy. Finally (and fortunately for our
d1§cu5319n), the minimum principle satisfied at thermal equili-
brium is that of the free energy. The rest of the discussion is
exactly the same as before. When the dipoles become saturated
oneleaves thelinear regime and calculations become more diﬂiculti
The presence of large fields in the compact layer, partially as
a result of the “feedback” effects noted carlier, make it likely that
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in some cases the nonlinearities introduced by dielectric pheno-
mena alone (we exclude from consideration the nonlinearities of
the diffuse layer, or the failure of a simple imaging model to
account for that region) may cease to be negligible. The energetics
of adsorption as well as motion on the THP may be significantly
altered by this phenomenon, thereby affecting the question of
compact layer order as well. It provides an interesting subject for
further theoretical study.

B. Solvation. We next consider how some of the foregoing
observations apply to the matter of solvation of inner-layer adions.
As stated before, the fields acting normal to the THP are typically
quite large enough to saturate the orientable permanent dipoles of
a polar solvent. For example, water molecules with permanent
dipole moments of 1.85 X 10-18 esu will saturate in fields of the
order 105 esu, or 2 x 107 V/cm. Such a field in undoubtedly
attained within the experimental range. Furthermore, the field
parallel to the IHP at the position of a water molecule immedi-
ately adjacent to an adion is also of this order of magnitude. Thus,
in the absence of the large normal component of field, the solvent
molecules immediately surrounding an adion on the ITHP would
be saturated by the field of that adion. In the presence of the large
normal field, the field of the adion only manages to perturb the
already saturated surrounding dipoles so that they no longer
point directly perpendicular to the IHP. Whether or not this
perturbation is small enough to be treated by a linear approxima-
tion depends on the actual numbers involved, but we see that,
under the conditions applying in the compact layer, the free
energy of solvation of adions will exhibit the complexities discussed
above. It is therefore of interest to obtain an expression for the
free energy of an orientable permanent dipole in the orienting
field &q5.

Proceeding as before, we argue that the equilibrium condition
is satisfied whenever

VeFp = VPFint(P) — B = 0 (35)
where F is the free energy of the dipole and Fiy, is its internal free
energy. Rewriting slightly and integrating by parts leads to

&eff
Fo =B 8 — [ P(&)-d6" (36)
0
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Now if we make use of the classical Langevin result

[P| = (u) = p{coth (u |enl/kT) — (u|Eeal[ET)*}  (37)
then integration yields

Fint = 1 |Eenl{coth (u |Eeql[kT) — (u |Eegl/kT) ™2
X [1 +1In {(p |€egl/kT) sinh (u |Eegl/kT)}]} (38)

Finally, by adding the energy of interaction —P - &4, we obtain
the free energy of the permanent dipole in the orienting field

Fp = —kThn {4 |E,al/kT)*sinh (4 |E0l/AT)}  (39)

Expa}ndin'g for small values of the argument gives us the followin,
relationship exactly as anticipated, s

Fp= —%T(u|EqllkT)2 = —3{pt) |Eeql (40)

For large values of lfté’e,f/kT[, the situation of current interest
we find the asymptotic result ’

Fp= —plul + kT (2u 16,4l /kT) (41)
The first term .is just the asymptotic expression for the energy of
the saturated dipole, and the second term follows from the entropy
removed upon orientation of the dipole. The first term is the
}arger of'the two for large |&4| (in the ratio of a large number to
its logarithm), implying an attractive interaction between the
permanent dipole of a water molecule and adions of either sign
No.te that, expressed in terms of P and &4, the free energy asymp-'
'fcioetllg;lrlzoagz}l).roaches twice the value predicted by the linear (low-

Though_we shall not do so here, the above results should be
employed in any adequate classical treatment of adion solvation
The s'olvatl.on of compact-layer ions and the steric effects accom:
panying 'fhls process is but another example of a process involving
polarization of the neutral species which is not adequately repre-
sentable by means of a dielectric constant. b

III. Quantitative Discussion

1. Introduction

In the second section of this article, we have attempted to give

a . S
clear account of the principal effects active in determining the
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structure and behavior of the compact doub.IC layt;r; atd the. 1sar'ne
time, we have tried to subordinate the arlthm-etlcal e}'ial s in-
volved in actually performing accurate c.alculatlor.ls toft e mox(')e}
important matter of portraying the pr'mc1pal physical features
the double layer with reasonable fidelity. o

In the present part, we turn to somewhat more quantita 1;6
matters. We shall herein augment our previous discussion 1y
giving more attention to the quantitative aspects of twc; pﬁe\gf)f;‘ls )‘;
discussed subjects: the question 9f orc'ler .and the role of t eh i ?}ie
layer. We are still interested primarily in re‘su.lts rather.ic Sant.
methods for obtaining them, however, anq it is not until Sec 1.0111
IV of this article that we shall become primarily concerned wit
computational methods.

2. Examining the Question of Order

At this time of writing, the authors are aware of only two serious
attempts to evaluate the appropriateness of the hexagor.lalbarriy
model for a system of adsorbed ions. The ﬁrs't.of these 1s by ; g
present authors (88) and titled “Thermal Stab_lhty‘of an Adsor fe
Array of Charges in the Einstein Approximation .—h.erea tecrl
referred to as TSE. The second, the paper by Bell, Mingins, all)nd
Levine (8) is “Cell and Hexagonal Lattice Models. for Adsor fe
Ions in Electrical Double Layer Theory,”.whlch will be hereafter
referred to as CHM. A somewhat preliminary f.orm of the latter
treatment was presented at the Fourth Internatl'onal Conferenﬁe
on Surface-Active Substances (76) and contains most of the

incipal ideas of the expanded version. . ‘ ‘
prllriflgszslencc, both treatfr)nents parallel the qualit.atlve discussion
given earlier. A given ion is considered to move In the field proi
duced by all other ions regarded as ﬁxe.d at the sites of a hexagona
array. The given ion, which would resxdt? at one of the array sites
in the absence of thermal motion is considered to fluctuate a.b01'1t
that position at finite temperatures. The centr:all problem “fl'fhm
this Einstein-type approx'm;lation is to dcte‘r‘mmtla "c}le conditions

ary in order that the fluctuations are “small.” ‘
nC(':Tclsli a}::tual criteria used in both TSE and CHM differ in det:aul
somewhat from that discussed earlier in this article. In our earlier

discussion, we considered a certain fluctuation in pc_>sition eq}1a1
to the distance from point 0 to a’, hence equal to r,/V'3. Exploiting
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the fact that the activation energy for greater fluctuations than
this amount rises very steeply with distance from the “proper”
site, we assumed that the crossover between array structure and
quasi-random arrangement should occur when the activation
energy for such a fluctuation equals £7. In TSE, a somewhat
smaller fluctuation was considered; the fluctuation distance was

essentially taken to be (3/4V/3)r, for reasons which will become
clearer later. On the other hand, the fluctuation distance involved
in CHM is (3/167%)Y%r, ~ 0.371r,, again for reasons which will
emerge in later discussion. We shall refer to these three fluctuations
generically as “critical fluctuations.” Another slight difference
between the criterion in our earlier discussion and the two treat-
ments of interest is in how the critical fluctuation enters the criter-
ion for lattice breakdown. In our earlier discussion we asked
when the critical fluctuation requires energy £ 7. In TSE, however,
we ask, “When is the critical fluctuation equal to the actual
r.m.s. fluctuation?” Finally, CHM considers the matter by
asking, ‘“When does the probability of exceeding the critical
fluctuation equal one-third 7> As one might expect, the overall
criteria for lattice stability employed in TSE, in CHM, and in our
earlier discussion are so similar that the results are essentially
equivalent, and there is no strong reason for preferring one over
another.

Apart from these slight differences, there are additional details
in which the TSE and CHM treatments differ. Whereas C-0
imaging was treated in TSE, CHM contains a variety of imaging
conditions, C-C, C-D, O-D, and D-D. A number of useful
quantities are tabulated for each case. Second, the CHM treat-
ment approximates the potential y,(x, y, #) by a quadratic cir-
cularly symmetric potential. Such an approximation strongly
overestimates the probability of moderately large fluctuations,
particularly along principal lattice directions. The TSE approach,
on the other hand, is to calculate the exact r.m.s. fluctuations
along particular lines of special interest and then to estimate the
r.m.s. fluctuation radius from a knowledge of the fluctuations
along the selected directions. This method has the advantage of
properly accounting for strong variations, when they occur, from
symmetric, parabolic dependence of y, upon x and y, yet it
requires an additional step to obtain from the data along the
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selected lines the r.m.s. fluctuation radius in the full two-dimen-
sional problem. Such an additional step becomes completely
trivial as soon as the circular-symmetry assumption is employed.
Finally (most important from the point of view of the final con-
clusions reached), the numerical values assumed in the TSE and
CHM treatments for such quantities as f, ¥, and, most critically,
¢, are different. In TSE (applying to the C-0 imaging case),
the values generally assumed for e, for adsorption from a gas or
aqueous phase, respectively, were €; = 9 and ¢, = 6. On the other
hand, the smallest value assumed for €; In CHM was 10; data are
even quoted for ¢; = 15 and €, = 28. In view of our earlier dis-
cussion, we now feel that for these purposes, the appropriate
dielectric constant must surely be of the order of unity. In sum-
mary, the important differences between TSE and CHM are in
the more generally applicable imaging assumptions of CHM and
the more nearly correct (although probably still excessive) esti-
mates of €, in TSE. We next consider these treatments in more
detail.

As noted before, the TSE treatment incorporated accurate
results for the C—0 imaging potential vg(x, 7, 1) along selected
lines to obtain the r.m.s. vibration amplitude along such lines. All
distances in this treatment are normalized by A = (\/ 3r,/2), the
altitude of a basic triangle of side 7, in the hexagonal array. For
present purposes, we set the zero of potential at the “proper site”
of the given adion on the IHP, taken here to be the origin. Denoting
the normalized distance from the origin* along a given line on the
IHP by / = (actual distance) [(V/3r,/2), we may write the nor-
malized r.m.s. fluctuation amplitude L according to Boltzmann

statistics as

Imax 1/2
J 12 exp { —z,ey5(!) [k T dl
g

Jlmx exp {—2z.ey3(l) ek T} dl

0

(42)

L =) =

The quantity € is here an effective dielectric constant intended to
account for polarization effects in the THP; /max is the maximum

* [n the work cited, not all lines passed through the origin, 50 a different
definition was used for these lines; obviously, such lines are not as interesting
as the ones passing through the “proper site.”

N
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excursion }_)ermitted the given ion along the selected line—it i
either 1nﬁn'1ty or, for lines passing through other charge sites wherlfsz
the potentlz'll becomes infinite, equal to the normalized dist

from the 'orlgin to the nearest such charge site. e
What is the relationship between the actual two-dimensional
problem ar_ld the TSE treatment which only considers one-dim iy
sional motion along various lines? It may appear that bccairsl(;
only.one-dlmensional averaging is carried out, the treatment onl
ap.pl}es to a particle constrained to fluctuate al,ong a line ActuallY
tl}ls is not the case; however, the relationship betweer; the oney
fhmenswnal averaging and the proper two-dimensional averagin .
is somewh?lt s‘ubtle. Consider two limiting cases. In the first cgas ;
tbe potent_lal is qircularly symmetric, and the normalized ﬂuctuae,
tlgn an;phtude is equal for all directions. In this situation L} =-
l.,1 + .L‘ = 212 where the subscripts here refer to the dirrfen-
s1ona!1ty of the problem considered; that is, L, is the r.m.s. ampli
tude in the two-dimensional problem and L, is the coére.s -ondIi)n .
v.alue in the artificial one-dimensional problem actuaﬁ c ;
51‘dere.d. In this case, which is the “‘worst” in the sense t'{lato:li
dlrec.tlons'ar.e equivalent and particle confinement the least, the
relationship is simple; L, is obtained from L, by muhiplicatio,n by
V2. Consider next the opposite extreme where the potential is
far from being circularly symmetric and confines the particle
;notu?n to a narrow s.trip about one of six equivalent directed lines
u this case, the particle actually does confine its motion effectivel ,
to one-dimensional traversal along the “easy” directions; once oy
or;le of'the casy lines, it remains there until it passes near tl’le originn
Z)Vn :r‘,lv 1Otuc13n jump tLo one of the Fquivalent easy lines. For this case:
oy expect L, to approximate to L,; this is the “best case’’.
v € actual situation lies somewhat between these two extremes
mOart ;ntall excursions about th_e proper site, the potential approxi:
directlyoti i}l;:giarlz symumetric one; for la:rge.ﬂuctuations, motion
sy towa }olt er c'harg'es in the lattice is strongly inhibited,
P 1n.;) ese directions are strongly bounded, and the
Doy girecti ntri u;c)l'on to Lz_ arises from L, calculated along an
ooy dire F;)n,ga hma.ry axis qf the ba§ic hexagonal array. As
o directii;l , t eldlfference in potential between the easy and
P 3sAlsaidmOS; 0.1V, or about Z%kT, at [ = 0.6 for
, ¢ = 1. The difference is close to £T for an
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[ value in the vicinity of 0.5. Since the L, value considered critical
is also 0.5 in this treatment, the circular symmetry assumption is
seen to be fairly good for all fluctuations of interest. (Exactly
where one should regard the symmetry assumption as being no
longer adequate would, of course, depend on the values of 8, €, T,
and R; as well as imaging conditions.) This serves to justify the
relationship actually employed to convert from L, to L,; if one
can believe that one may carry over this result from the C-0O case
to the C-C case, this also partially justifies the much simpler and
more tractable approach later published by Bell and co-workers
in the CHM treatment. One should of course distinguish in prin-
ciple the question of circular symmetry from that of the quadratic
behavior with / of the potential, assumed in CHM. The latter
behavior implies the former but is not a necessary consequence of
it. Nevertheless, as a practical matter, the two conditions seem
to go hand-in-hand. As we shall see later, Bell and co-workers
justified their approximation to the potential in an analogous but
different way. N
When we combine the relation L, ~ V2L, with the TSE
criterion for stability, L, < 0.5, we obtain the stability criterion

in terms of L;
Vip?) = hL, < (2V2)~1h = 0.35(V'3 r,/2) =~ 0.306r, (43)

The values obtained for L; (along the easy direction) are shown
in Fig. 10, where ¢ has been set equal to the (excessively large)
value of 6 in obtaining that data. Both the exact results and for
comparison the results based on an /2 approximation to the form
of the potential, are shown for the C—0 imaging case considered.
Also shown for comparison are the C—D imaging results of Bell
and co-workers. The data were obtained from the conference
paper (76) adjusted to a dielectric constant value of 6, and divided
by V2 for comparison with the L, values obtained in TSE. The
greater fluctuations induced by diffuse-layer screening are quite

apparent in the results.

When one incorporates the data for L, obtained in the TSE
treatment into the lattice stability criterion, the results may be
expressed in terms of the critical temperature for loss of hexagonal
ordering. For § = 3 A and C-0 imaging, a lattice with R; = 5 is
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stable up to a temperature of approximately 1769/e°K, while f)ne1
with R, = 7 is stable up to about 76(.)/e‘fK. Since the crl(tilca
temperature is approximately quadratic 1n B, the above ?»:1?1
imply that for f = 2 A, the critical temperature for a lattice wi

07— T ] l T 1
[ /
o8- y
Partial imaging / |
T (Quadratic approx.) ,, J
/ yd
0.5 - ; Y
// 7/ i
/7
[ /
/
/ —
0.4 K / '
/ 7/ (Quadratic |
Ly / approx.)
> Single imaging J
021 —
i
L Z=1
T= 2%’ c N
01l 623
€e=6 a
| ] | | L | ] | |
0 2 3 4 5 6 7

Fig. 10. The normalized r.m.s. vibration amplitude L; = [4(X® + Y?)/
3RI[12 vs. Ry = r,[B (88).

R, = 7.5 is about 785/¢°K, while for R, = 10.5 the critical tem-
perature is about 338/e°K, somewhat above room temperature
for € = 1. We would therefore expect the hexagonal {attlce to be
stable at room temperature provided R, 2 11, accm.‘dlng. to TSE
This conclusion, which only applies in the.C—O situation, is in
substantial agreement with our earlier discussion of lattice stability
in the C-O regime.
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Unfortunately, no treatment along the lines of TSE has been
published heretofore for the C-C and C-D situations. Accord-
ingly, the only source of prior calculations pertinent to these cases
is the treatment of GHM. Still, the approximations made there
are likely to be quite adequate, and so with more likely values for
the dielectric constant, this work should be a fairly reliable guide
to the lattice stability situation in the electrolyte double layer,
where single imaging seems inappropriate. It is therefore of great
interest to examine this work in somewhat greater detail.

TABLE III
Results of the CHM Treatment for the C—C Case
N-1(AY (A R, Mie=1) Vi (A) L,
50 7.6 2.5 243 1.3 0.20
70 9.0 3.0 108 1.9 0.24
100 10.75 3.6 46 2.9 0.31
200 15.2 5.1 7.5 7.3 0.55

As we have mentioned, the CHM treatment involves approxi-
mating the potential energy variation on the IHP in the vicinity
of the origin by a parabola of revolution: z.ey, =~ A'p?> + con-
stant, where 1’ is a parameter which is obtained by expanding the
accurate potential expression near the origin. In carrying out this
calculation, the direct image summation method was employed
by Bell and co-workers, and results were compared which involved
truncation after 30 and 40 terms in the image series. In all cases,
the 90 nearest neighbors and their images were included. In
Table ITI we give results for A’ taken from the CHM treatment for
C-C imaging, modified here by taking € = 1 rather than 15.
The value of 8 is 3 A.

There is a particular utility to the parabolic approximation
used in CHM. When the potential varies quadratically with
distance p from the origin, the integrals involved in the theory
may be carried out analytically. The result is that we recover the
equipartition result applying to quadratic contributors to the
energy. Indeed, the expression for r.m.s. fluctuation simplifies to
the result ((p2)¥2 = (kT/A')V2. In the last two columns of
Table III we show the normalized and unnormalized r.m.s.
fluctuation amplitude following from the CHM treatment for
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C-C imaging. Thus, we see from a comparison of the critical r,
value implied by Table III (a little less than 15.2 A) with our
carlier estimate (about 14 A) that the major difference between
the CHM treatment and that contained earlier in this article is
primarily not so much one of principle as what value of dielectric
constant to use in the present context. The difference in viewpoint
on this one matter is sufficient to cause strikingly different ap-
praisals by the present authors vis a vis Bell et al. concerning the
domain of validity of the hexagonal model. The CHM treatment
actually considers several quantities other than the ones we have
discussed here; these are all associated with the cell concept
employed in that treatment, and it is most interesting to consider
some of the features of this approach.
The CHM treatment invokes a concept familiar in solid state
physics, that of the proximity cell.* By definition, the proximity
cell associated with any given hexagonal lattice site is the locus of
all points on the THP closer to that lattice site than to any other
lattice site. From its definition, it is clear that the proximity cells
surrounding each lattice point are hexagons and completely fill
the surface (except for a set of measure zero) like a pattern of tiles.
The area of each proximity cell is equal to the average area of
surface available per adion, and hence is equal to the reciprocal
of the adion surface density N. One of the basic assumptions of
the CHM treatment is that all the lons, including the given ion,
are confined to the interiors of the proximity cells associated with
their respective proper sites. We believe that there is no good
reason for making such an assumption: first, because as we shall
explicitly see later, the actual particle array does not maintain
spatial correlation over indefinite distances (unlike a three-
dimensional solid), and the hexagonal ordering is therefore only
local (88); second, since each particle is not bound to a true fixed
hexagonal site determined by the boundaries of the array and the
remote particles as well as the near neighbors, particle motion
eventually can transport a given particle indefinitely far from its
original neighbors. This latter process can occur even though the
local surroundings of a particle remain hexagonal during most of
the time; nevertheless, the identity of the neighbors will have
changed.

* In solid state physics, the term used is Wigner-Seitz cell.
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Beca}lse Fhe hexagonal boundary of the proximity cell is in-
convenient in performing calculations, Bell and co-workers borrow
another. trlgk from solid state physics, this time originated b
Debye in his theory of specific heats and later more explicitly
empl(.)yed'by Wigner and Seitz to calculate approximate wavz
fl'mctlons m.solids. The hexagonal proximity cell is replaced by a
circular region centered at the lattice site and having the same
area as the true cell. T_he radius, 7, of this circular cell is clearly
(77-]\{)—.”2, Or 73 = (V/3/27)1%, = r,; it plays the same role in the
§tatlst1ca'l.1ntegrals as did /max in the TSE treatment. Clearly, from
its deﬁnlt'lon, the quantity /max represents a true limit to th,e ar-
ticle motion for the situation considered, whereas r represints
an artificially imposed restriction. The use of 7, rat}fér than /
has the eﬁject of underestimating the magnitude of ﬂuctuatigr&;;
by constraining the particles to the interiors of their cells. On the
other h.ar.ld, the error made 1s quite small unless there is significant
probability for fluctuations larger than r,,; when this situation
occurs the fluctuations have broken down the lattice structure in
any case and the whole calculation is pointless. As a practical
matter then, the use made of r;; is permissible provided one does
not apply the calculation in the regime where the Einstein model
itself is nonsense, the quasi-random regime. Since the treatment is
only intended to demonstrate approximately where the hexagonal
lattice begins to break down and not the properties of the system
aft(?r that disorganization has been significantly accomplished
logical consistency is maintained. ,
Next, the CHM treatment defines a critical fluctuation radius
equal to (2)~'/%ry. This radius has the property of dividing the
circular cell into two equal-area halves. Bell and co-workers
finally assert that the lattice structure will break down when the
Prpbablllty of the ion’s occupying the outer half (the annular ring)
is just greater than one-half the probability of occupying the inner
half (the interior of the circle of radius 7,,/V §) Defining the ratio
of the Probabilities of occupation as p (iermed “p” in CHM), we
have » = (probability of occupying outer half) /(probabilit;/ of
occupying inner half). The CHM criterion for lattice breakdown
Eutcfii:lr;tz) > %.d{Xctl}ally, the proba:bility of exceeding the critical
the GHIM cxreron 3 sostenhat ot siingent chan s mighi

gent than it first might
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ear and perhaps more stringent than intended. The probabl}lllty
?gp exceeding the critical fuctuation must be greater than
-1 or 3. o
%(117'ij1_afl)y Bell :::t al. use a peculiar procedure to test the Val.l(}lt};
f their p;lrabolic approximation. They calculate the potentia [i_
(\)/arious points on the THP arising only from the six nearest nel%l -
bors, excluding the contributions from 1mages.’They thel.l comp i
this ;otential with the value obtained from their Earfaboltl}f ippx;(::
imati i ints. They conclude from the fact that agree
imation at various points he | o
is fai ithi f the proximity cell (w
nt is fairly good within most of .
rl?(fundary is the inner hexagon in Fig. 11}, that the parabolic

i { interaction between a

Fig. 11. Contours of equal electrostatic energy ol inf )
mol;igle ion and its six nearest neighbors (without images) in tthc ;egl;o:ulx;vzcrr;

i i i lattice points. Fu
tral lattice point and the six nearest !

g::iu(x:::e energy contours; dashed curves are energy contours follqwgn% i‘rom
arabolic approximation. The energy of interaction at the center6152 zge /(E‘,lgl
1a::nd the numbers correspond respectively to (1) 6.02, (2) 6..1, (3) . fzz(zegle , )
(5) 6.4, (6) 6.5, (7) 6.6, (8) 7.0, (9) 7.5, (10) 8.0, (11) 8.5 in units o A 716)1.
The he’avy hexagon shows the boundary of the central proximity c¢ (8,76).
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approximation likewise applies to the full C-C' problem. Un-
fortunately, we cannot agree with Bell and his co-workers that this
argument is a cogent one. The effect of imaging is to alter strik-
ingly the potential variation in the plane as we have already seen
(refer also to Section V). For example, if one computes the actual
C-C potentials for a hexagonal array with R, = 5 at the points
¢ and a’, these (normalized) potentials are respectively 0.0177
and 0.0395 higher than that at point 0. Since the distances of these
two points from the origin are in the ratio of 1:2, the potentials
relative to the origin should be in the ratio of 1:4 if the parabolic
approximation is valid. Instead their ratio is 1:2.23, and if an
exponent is derived from this, one finds that the average power
law applying from the origin to a proximity cell vertex is
p(p) = A; + A,p*'%, where A4, and 4, are constants. This
points up the desirability of a closer check on the CHM
freatment.

As a short digression, we remark that there is a much simpler
method of determining the parameter 4’ than that used by Bell
et al. From Laplace’s equation as it pertains to a point on a sym-
metry line parallel to the z axis, we may write immediately

w(p:2) == 9(0,2) — i[9*(0,2)/027]5" (44)

where p is the distance of the field point from the symmetry line,
and thus the argument “zero” in y on the right-hand side desig-
nates that the quantity is to be evaluated on the line of symmetry.
This equation, essentially a recipe for 2’, is more general than any
recipe applying only at the IHP or on the line through 0. It
applies for any z and on any axis of n-fold rotational symmetry,*
the only place where such a parabolic behavior may apply. Its
particular advantage lies in the relative simplicity of calculating
values of y on lines of symmetry as compared with calculating ¢
at a general point. Things are particularly simple if we retain only
the leading term in the separated form of the general solution of
Laplace’s equation under C-C imaging conditions. The leading
term has a z-dependence given by sin (7z/d), whence 0%y/92% =
—{(m/d)?p. Introducing this approximation into Eq. 44 yields the

* We exclude the trivial case n = | ; for n = 2, A’ depends on direction, and
our formula gives the average value.
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beautifully simple
p(5:2) = 9(0,2){1 + (mp[2d)%} (45)

From this result it follows that 1’ == (7/2d)%z,ep(0, z).

To conclude this section on lattice stability, we shall briefly
point out the interesting possibilities for applying another type
of basic approximation rather than the Einstein model. In the
Einstein model, the different ions were considered to move inde-
pendently in the potential provided, on the average, by the other
ions. For small motions of the ions, we even ignore the small effect
upon the time-average local potentials of the smearing out of all
the ions into small neighborhoods of their proper sites. In a three-
dimensional problem, we should have argued that since the slight
smearing is almost spherically symmetric, there will be no effect
anyway. In the present system we are not so fortunate, for the
potential arising from a small disk of charge is only approximately
equal to the potential obtaining when all such charge is regarded as
concentrated at the center. Furthermore, the screening effect of
the diffuse layer will cause the approximation to be even poorer.
Nonetheless, being a bit lazy, we prefer to argue that for small
enough fluctuations, the alterations brought about by this effect
will be negligible, that it is a “higher-order effect.”” This is by no
means an unprecedented approach——it is not necessarily all bad,
it simply has its limitations.

Rather than embark upon a laborious program for correcting
the “small” errors in the Einstein model, it might be just as easy to
employ another approach which to some extent takes into account
the correlations in particle motions as well as the simultaneity of
their motions. This approach is the phonon picture, harmonic
approximation, or normal-mode method (14,109,110, 132).
What it involves is a solution of the coupled equations of motion
for small displacements; it generally describes the vector displace-
ment directions and frequencies versus wave-vector k for wave
disturbances proportional to exp i{k - r}. At thermal equilibrium,
the energy contained in each mode is determined from an Einstein-
Bose distribution, and for all modes for which the circular fre-
quency o is much less than k77 the equipartition principle
applies. The energy in each such mode is £ 7.

Consider such modes, which can be analyzed classically.
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The total ene 1 i i i
PNt zlvg}}lfercfi)ntalznec}l1 In a mode will be given by E, =
714,02, m = the mass of each particle, N, = total

number of particles in the system, w; = circular frequency of the

?ode, a.md. 4; = complex amplitude of the mode. The equiparti-
Lon fprmcxplf.: tells us that |4,J2 = 2kT/Nyme?, Given this fact
the requencies {w.}, and the reasonable asslumption that the
p.hases of the different modes are uncorrela :
ciple determine many thermal-equilibrium
various quantities of interest. We shall not
this here, but we are presently working alo
tﬁ [ilresent a detailed treatment in the futur
shall merely illustrate some part;
ticular
e p consequences of the phonon
" eL(;;c ;Stiﬁt V:that 1s the mean-square fluctuation in the position of
0se proper site is the origi i
: . gin according to the
phonon picture. Each mode contributes its 4, to the displfcement'
3

the CXPCCtatl()Il Value f()I tll(: S(lua](f ()i t]le I)al t1c le (llSI)Ia( ement
.
18 thCI Cf()le

ted, one can in prin-
expectation values for

%) = 2. 3, (4. 4%) = 3, (14,%) (46)

¢ .
the sumAsl bimg over m(?des and the expectation values for Cross-
t.erms‘,/é A¥) with t #J, vanishing by the random-
'0n. Ve next consider the contribution to (p% from the “acoustic

branch,” modes for which ™
s S .
wave with wave-number . We ﬁn’::i where §'is the speed of the

phase assump-

%) = 3 KT Nynot = QKTINms?) 3,0 (47)

IK\IZWdthe numbt_ar of acoustic modes with wave number between
(273\/' ) fl -+ di will be propor.tional to Ny and to «: something like
o ok dk, where N is the surface density of particles

anging the sum to an integral then yields .

#?) = (KT/mmNs?) f T (48)

0
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end of integration (where our expression for w applies). There is
no way of arguing the lower limit of integration effectively away
from zcro provided we are dealing with a truly macroscopic
system. The prediction is unequivocable. The long wavelength
types of collective motion contribute a divergent amount to the
thermal motion of a given ion away from its proper site. This
would not have occurred in a three-dimensional system, where
the number of modes in the wave number range dx about « is
proportional to x% but here we are definitely stuck with the
divergence.

But what is the physical meaning of such powerful long-wave-
length oscillations? Such motions merely translate large sections
of surface relative to other very remotc sections of surface without
significantly affecting the relative positions of closer neighboring
particles. Hence, these modes do not affect the local environment
of a particle even though they do allow it (and its neighbors) to
work its way through the large collection of particlesin a Brownian
motion fashion: many “microcrystals” moving relative to each
other, diffusing away from their starting points, occasionally
exchanging member particles where their (fuzzy) boundaries
meet, but each one a microcosmos, containing whatever internal
order in its constituent particles is allowed by the amplitude of the
short-wavelength modes, which, of course, do not contribute any
divergenccs (88). Such is our physical picture of the two-dimen-
sional system we treat, this picturc obtained in the most painless

way from the phonon method.

3. Diffuse-Layer Screening

In the previous sections, we have repeatedly been concerned
with the screening effects the diffuse layer provides, both from
dielectric imaging and from the -effects of mobile ions near the
OHP. In the present section, we cxamine a few aspects of such
screening which did not seem appropriate to include in our carlier
discussion. First, we will consider the cffect upon screening of
I' £ 1. Next, we examinc the restrictions on the validity of the
Poisson-Boltzmann equation (23,55), in conncction with the
statistical treatments of the diffuse layer. Finally, we shall briefly
discuss the usual sort of approximations involved in such statistical
treatments. The discussion of the diffuse layer will be brief, first
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because this article is really concerned primarily with the compact
Lay:r, and hsec.ond because the usual approximations seem to fs tCo
O:ic 2{11;111; és‘iza;ilt:sr}d Inappropriate that the subject itself is not
We have' already pointed out that for given d, the combined
causes leading to diffuse-layer screening have t,heir maximum
.eﬁ'ect for T' =1 and for C-¢ imaging are invariant under the
1ntercha'.nge f < y. Therefore, in the preceding discussion where
the choice p =5, or I = 1, was made the diffuse-layer screenin
effects were at their maximum, particularly significant wit}%r
regarq to lattice stability. What we now consider is how th
scrIee'mng effects depend on y for given 8. )
18 most convenient to return to the m i i
energy be_twecn two adions separated by t}?;tggs(t):xqt?: Tm:;;c;fm
ductively imaged both by the ESP and by the OHP, Wclshall talr(lf-:
€; = 1 for our present discussion., Using the results of Appendix I
we have calculated the normalized interaction U/k T as a functi ’
of 7, for various valucs of y, 7 — 300°K and # = 2 A. (The int .
action energy is proportional to p~! for given R, = » ./ﬁ and I’ esr(;
the conversion to another temperature or B value Irllay be ca;il
aCCOII.‘lp!IShed.) .As anticipated, the approximately exponentia)l/
grop 1‘r‘1 lrllteraf:tlon energ?f’ with particle separation is characterized
}3’ a “rclaxation length, or _characteristic screening distance of
the order Qd/w_. Hence as y is increased, the slope of In (UJkT) vs
R, decreases in absolute valuc as anticipated. An interestin :
consequence. 9f this behavior is that for larger and larger valuef
gf I" the cr.1t1c.al Vfilue of R;, termed here R, at which UkT
;:comes unity 1s shifted upwards. Based on our earlier discussion
?th/le for C-0 imaging, we would anticipate that as I' — @,
resul\;z.;(x)c ;f R, shou!d appro‘ach the C-O result: R, — 8.2. The
behavior,r c Summarized in Table IV seem to verify this limiting
R /IgnﬁTabhlf: }I)V we hav? also shown values of the function G(IN =
ool 1’ \;rt 1(}:] 1sl the ratio of R, for a general value of T to that for
ﬂuctua.t' sd(?u d be a reasonable approximation to obtain r.m s.
diametclr(;n 1sct1anﬁes, crossover values of R,, coulombic hard-core
N, ria,t ar; the like for I' 3£ | simply by multiplying the
ppr pre =1 vah.ze by Fhe function G(I'). Note that the
€Ol R, for I' = | differs slightly from that used elsewhere in
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i — 3.6. is the more accurate.
is article; the present value, R, , :
tl;lelZa?lse of the possible usefulness of G(I'), we have also ob.:;llnif}:i

a Chebychev rational function fit to the tabular data w1

result 117 4 0.24T

R M el (49)
G(I) =228 — e 77080 + [

Such a function will prove particularly significant for any situati(})ln
where the effective imaging plane differs appreciably from the
conventionally defined OHP.

TABLE IV
Effect of T' upon Screening

r R G r R G
R sy
56
1 927 075 5 56 L
\ %.6 1.0 6 693 193
11 425 118 W 75 215
s 48 133 2 80 22
23 525 146 o 82 22

e T s

Much of the theory of the difftzlsg 312277625 ;1?.75111‘71;()11{165 f;l(t)? f;ésslgré-
1 equation (13,16,37,62,63,67,68,71,70,119,12, 2472

llggit)z,?j rvae mc/lill now (examinc briefly the a'pprox_lrr.latl'oncs1 m:;;r)?:t
in such an equation and attempt to assess its validity in f}sl ¢ IHPg
the diffuse layer in the vicinity .Of adsorbed charges ;)lnt Oncem:
Much of our discussion here is directly analogous to thatc
i ncept of a dielectric constant. ‘
mgir:htels?gg tﬁe Poisson-Boltzman'n .equatlon, one ﬁ;st 1§tri121reess
discreteness of charge in the Statls'tIC?.l as'seml.)lagile ) pa;n i é
approximating the actual particle dlStI‘%butIOnS in that asse b t}gle
by continuous smoothly varying functions. For pos.lt}ve 10 » e
spatial distribution function may be written p,(r); olr r;lel;gmber
ions, p_(r). Thus, in this section p ‘dCI:IOtC.S a _pa;ltlc ? e
density, not a distance. The charge distribution 1s there oh taken
to be the smoothly varying function ¢p +.(r) — ep_(r),x;/ e o
convenience we consider only a uni-univalent elect}rlo yte o
|z,| = 1. Note that although we still may allqw for the pres;aded
ofvdiscrete charged particles, such as adions, which are notrega
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as part of the present statistical assemblage, the diffuse-layer ions
are smoothed out into a continuous distribution. The smoothed
electrical potential therefore obeys the equation

Vip = (dmefe)[p_(x) — p.(r)] (50)

The next step is to assert that the distributions obey the Boltzmann

law, which we write approximately in a form consistent with our
smoothed potential

px = poexp {Fey(r)/kT} (31)

where we have defined p, to be the density of either species at a
point where the potential vanishes, taken here to be the remote
bulk of the electrolyte.

On combining the two equations, one finds the usual result,
Vey(r) = (8mpyefe,) sinh {ey(r)/kT} (52)

This equation is so often employed as the starting point for
statistical theories of the diffuse layer that it seems almost heretical
to remark its approximate character. Nonetheless, there are
clearly several assumptions* involved if the Poisson-Boltzmann
equation is to adequately describe the system.

First, if “local field corrections,” or “fluctuation potentials’ as
they are sometimes called, are to be unimportant, we require that
the potential at r arise predominantly from those charges other
than the closest neighbors. If this condition were not fulfilled, then
the actual potential at r would have very little to do with p, (r)
but would mainly involve the detailed locations of the close
neighbors to r. Since the actual potential at r and not some sort of
smoothed y 1s what properly enters into the Boltzmann expression,
we clearly require that over most of a microscopically large
neighborhood of r, the actual potential should not fluctuate by
an amount significant compared with (kTJe) if the Poisson-
Boltzmann equation is to hold. From this restriction, we obtain
two necessary conditions. Since the fluctuation potential is at least

. ep'®[e,, where p is the larger of p, and p_, we find that p, must no-
| where exceed the value implied by the inequality (¢? p*/3/kTe,) < 1.

* We will allow here the assumption of a well-defined dielectric constant

€, inasmuch as this type of approximation has been flogged enough herein
b already.
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Introducing the concept of a local Debye length
Ap(r) = (kTe[4me®) 2 {|p,| + |p_[}7? (53)

we may rewrite the above inequality in the form [r,/Ap(r)] <1
where 7, is here the mean separation distance between diffuse-layer
ions. The Debye sphere of radius Zp,(r) must everywhere contain
many ions. The second necessary condition follows from the con-
dition for validity of the Boltzmann statistics, that y should be
essentially constant over a microscopically large region, a region
containing many particles. We have that p='/3 |Vy| < £ T/e. How-
ever, p includes the effects of external charges; so specializing to
the case of a single adsorbed adion imaged in the ESP, we would
have ey (r) == 22,60z]e,r3, where the origin is at the ESP on the
line connecting the adion with its image. (Note that we do not
consider the effect of diffuse-layer ions here; there is no need to do
50, since we are only determining roughly the rapidity of variation
of y near an adion, and the effect of the diffuse layer is to increase
the rate of such variation in any case.) We find that

| Vy| = 2 1z,] (1 + 322[r1) 2 [ea® = 3 |2,] effe,® (54)
Finally, our necessary condition for this case becomes
(3 1z, epr,Je Pk T) < 1 (55)

where the meaning of r, here is the same as just above. Again
using the concept of a local Debye length, this time evaluated in
the vicinity of the adsorbed ion, we find that in order for the
Poisson-Boltzmann equation to apply it is necessary that we con-
sider no values of r smaller than those satisfying the inequality
3> pri(r,/Ap)?. Finally, the maximum density of ions must not
be so large that short-range forces become important.

When all of the foregoing conditions are satisfied, the Poisson-
Boltzmann equation approaches exactitude. Unfortunately, in the
vicinity of the OHP, particularly near an adsorbed ion, these
conditions fail very badly in almost every case of interest, thereby
vitiating all theories based on this approach in this regime.

In spite of the limitations of the Poisson-Boltzmann approach
for our present system, we go on to consider a popular approxi-
mate method of solving this equation when an infinitesimal per-
turbation is applied. The methoed is useful when it is applicable;
again, because the actual “perturbations” involved near adsorbed

| charge density vanishes; the approach
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1on_sfha.ppen to be quite l:arge (we leave this for the reader to
verify), the methpd seems mapplicable here, even if the Poisson-
Boltzmann equation itself were a good approximation "
. T}flefessenc'e of Loeb’s linearization method (77,78,129) consists
glo ltt cr:n ollowmig).I Suppose we have found a solution to a Poisson
zmann i i ¢

Y problem which we designate by a superscript 0. That
PL = poexp {Fey'(r) [k T} (56)

VAT = —(dmefe,) (p2(x) — pO(r)) (57)

What will occur if we chan infinitesi
hat ge ¥ by an infinitesimal
b;lnglng up* an external charge? The potentiall y? V\ii?cl))lg:l:)r?ly
¥° + 0y, the particle densities will become p? dp :
=+

sumably the Poisson-Boltzman i i
modified quantities. 1t equation will still app

On writing p? + 6. —
. + P = po eXp { Fe[y? S
expanding for (¢ dy/kT| < I, 0216 obiaingtp ¥} Op(x))AT) and

P+ O poxp (TP ATHI F eophT)  (3)
therefore

and pre-
ly to the

9P+ T po exp {F ey () kTe dp(x) kT

= Fepl oy(r)[k T (59)
The linearity of the Poisson equation gives
VA(3y) = (—dmefe) {3p..(x) — 5p_(x)) (60)

Combining these e
tion potential
VEOP) = (4mekT) (62 (x) + po(x)} by (61)

It is readily seen that ;
. n terms of the local Debye | i
€quation may also be written VE(dy) = Izx(r) (Sz; gliaﬁr;%:ﬁilg};:f

quations leads to an equation for the perturba-

t in i
- Ing the perturbation approach from which it was obtained

We next mention another t

favored by some (17,121), ype of perturbation procedure

but which in its application here

L 8enerally suffers from the same drawbacks. The typical expansion

ara
Parameters are not small, but often much greater than unity

* For < ..
or simplicit i i i
plicity, we only consider regions in the system where the external

1S not restricted to this, however.
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The approach In question 1s commong k{lozgvn as 1\t/ilaey ecrluzsltrfg
i d. was introduced by Ursel, Yvon, T,
expansion method, rodu > e
k in the rapidly growmng
thers, and represents a bI'.IC :
;)node;n statistical mechanics. There are several rf_:latedhcsor;::S
utational techniques in this field, and eac}} technique ?‘ I
gwn set of boring (but useful) theorems, graphical r}fl:p.rf:senrtaila bl;)lit ;
1 outlook for the growth 11 ou
and proponents. The general ¢ K  Browth I O od
1 tic assoclated with many y
the bookkeeping and arithme .
Zisf:ms is very hopeful. Howevcr, there is always the danger that

‘Il learn the arithmetic and the formalism for per-

ome of us wi etic. . :
:"orming the bookkeeping, and g1ve¢ insufficient attention to the

hysics of the situation, the validity of th‘e approx1ma;10ns;]?;rcr;
%his is a temptation which is hardest to resist when the orm .
itself has a ccrtain beauty and the investigator the sophistication
to appreciate it. _
Tﬁg cluster expansion method relies upon the fact .that tlk[)e
partition function & involves the palrwise interactions U;

between particles i and J in the following manner

Z = > exp {— Usorar[* T}
All system
configurations
(ASC)

= Y exp {*7}7 2 U,-,.; (62)

ASC

One defines the Mayer J-bond f; according to the equation

fi = exp {—U[RT} — ] (63)

from whence we find

= ) = |d’r Jdarz e |y H (1 +fi,) (64)
’ ig?-g) BN J 1 (=D
Now the cluster expansion procedure extracts out of the pro?xzt
of N(N — 1)/2 factors all of those terms containing ze.ro,soxl‘:rfi;1 bé
three, ctc., f-bonds. All but a i.?ew of the 11'1tegra‘t1(1>(riz. ; Ztem
carried out for these early termsn the expansion '(Ylel ing t}ef o
volume raised to a power) and one 1s left with “‘simple”™ integ
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to do, involving the interactions between only a few particles. The
method is particularly suitable for short-range forces. One notes
that | f;;t is guaranteed to be less than unity, so there is no great
problem there. Occasionally the method is used in conjunction
with approximations to f;, however, and then the expansion
obtaincd may actually be in terms of a large parameter. For
example a possible but hazardous procedure is to replace the
proper definition of the f-bond by the linearized approximation
Sz —Uy[kT valid for |U,;| <&T. This is most dangerous for
strong long-range interactions such as the Coulomb interaction
Uiny—(UinifkT) is roughly 500r-! for two charges separated by
distance r (in Angstroms) at 300°K with € = 1; for € = 80, the
quantity Uy, /& T is greater than unity for all 7 < 6.25 A. In any
given problem, one must naturally consider the strength of the
interactions, including the moderating effects present, before
making approximations of this kind. Finally, it sometimes happens
that the basic cluster expansion is very slow to converge, even
without making the linearized approximation. This occurs
whenever f;; drops off so slowly with particle separation (as a
result of a long-range interaction) that for the first terms in the
cluster expansion the growing number of equivalent permutations
(among the if indices involved in a product of f-bonds) dominates,
and the magnitudes of successive terms may at first actually
increase. This behavior is similar to what occurs when a large
number I is considered in the series expansion of ¢ =1 + L +
(21)-112 4 (3!)=1L3 + . ... Under such circumstances the cluster
| expansion method becomes difficult to apply in a meaningful way.
To close this section on the diffuse layer, we give a crude deriva-
i tion (using the foregoing types of approximations which we do not
believe in) of the effective plane modification presumably first
- calculated by Levine, Mingins, and Bell (77). The present deriva-
- tion is our own; it is so crude that we feel compelled to claim it lest
| Levine and co-workers or some other innocent persons be unjustly

associated with it. Still, we believe that the present derivation
} Contains most of the basic ingredients contained in the other more
} Carefully prepared treatments.
Consider a single adion on the IHP and for simplicity consider
, the ESP as nonimaging. Let the ion charge density (not number
 density) in the diffuse layer be given by p(r). Now assume that
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) is approximately of the form
p(r) = —ex(x»2)f(2)
he surface charge density which would be

induced on a perfect conductor bya charogiiI eP at [tjhed poisnutc(}?,c(;,r ;}21 i
igin 1 lying on the . Under :
the origin is taken here as lymg e S s ke
, each plane slab of the d1ffu§e layer o
Satz;;lgf:l condgctor, except that the images .prod.uced are not of the
usual full magnitude. The total potential is evidently

¢ =elx® 4+ (z+NNT
—efat 42+ (2 AN Lf (§) ¢

- ejwdcf(é){[% by — 2P 4 a Y (66)

p(x (65)

where —ex(%,0,2) is t

Using the fact that i}
[ Ao a=
0

we rewrite Eg. 66 as

b — e s atgpe £ 2
z C e 4 20y = AT (67)
Specializing to the case ¥ =7 = 0 and expanding for large y, we
obtain the simple approximation

b 2y fdcfm(c 2 (68)

1 21-1 and the charge density ob-

But since %(0,0,z) = [2n(y + 2)¥17" a ty ob

t;nfs:d fr)cc)gn lincarizing the Poisson-Boltzmann equation 15

po — 2Bk T where ¢, is the bulk ionic concentration, we
= 0

obtain , Flz) o [mceely + 22k T} (69)

. . .on
On inserting our expression for ¢, we find the integral equatio

Fl2) = e+ 220 [ itz = AF@ 0

But

Lwdm -2/ —:—ﬂd@’f:dw(?’) (71)
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therefore by neglecting 2z compared with y, consistent with our
earlier approximation, we are able to write down a very simple
differential equation for f

(KT 8amcye®) (0%]02%) = f(2) (72)
from whence it follows that
f(z) = Apt exp (—z/1p) (73)

where 4, is here the bulk Debye length. The average plane of the
induced charge thus lies a distance iy bchind the OHP. Within
our approximations, to the left of the OHP the total potential is
$ox efa® 5 (2 4 )Y = e 0 4 (2 — 2ip)2) R

(74)
This essentially represents the modification in the effective position
of the imaging plane derived by Levine et al. The only real dif-
ference between our result and that of Levine and co-workers
is that in the latter work the Debye length which is involved is
evaluated at a point in the diffuse layer where the potential
reaches a certain finite value. In view of the approximations

involved in the approach, this distinction is not likely to be of
practical significance.

IV. Methodology
1. Some Exact Array Methods

In the discussion up until now, we have suggested that provided
the arrangement of adions on the IHP is known and the actions

of the electrode and diffuse layer is representable by some type of

imaging at the ESP and on or near the OHP, the determination
of the local potential becomes simply a matter of arithmetic.

b While this may be true, the arithmetical problem of computing
- such potentials is a practical matter of some difficulty. Several
i Procedures have evolved for performing such calculations readily,
t and we here present the most widely used methods in just enough
| detail that the reader may recognize possible applications to other

Problems as they arise. References 86 and 126 contain useful
| reviews of the subject.
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The least useful method of all, generally speaking, is to perform
the unmodified array sums coming out of the image treatment.
These sums too often converge so slowly that accurate results are
difficult to obtain even with the aid of large digital computers.
The simplest array sum to perform, it would appear, would be the
expression for the field at point 0 arising from an array of adions
singly imaged in a conducting electrode, considered to form with
their images an ideal dipole array. Yet, the first evaluation of this
quantity seems to have been by Topping (125), who employed
analytical methods based on formulae of Lennard-Jones and
Ingham applying to the generalized zeta-functions of Epstein.
According to Topping, the field at a vacancy site in an otherwise
complete hexagonal array of dipoles, each of moment P, is given
by & =~ —11.034176Pr;®. In Section IV-2 of this paper, we shall
see how knowledge of this exact but rather limited result is of
great assistance in developing approximate methods for computing
potentials in 2 much wider class of imaging situations and for
other than ideal dipole arrays.
We shall be discussing methods of obtaining potentials for
C-C and C-D imaging. Before doing so, it is necessary to point
out a somewhat troublesome distinction between the discrete
adion-image potentials appropriate in the C-C case and the
potentials appropriate for C-D imaging in the limiting case
¢, — o0. We have already remarked that given the arrangement
of adions on the IHP and the mean charge density g on the ESP,
the total potential ¥ = ¥ + p, is the same for C—C imaging as it
is for the C—D case with €, — . On the other hand, we have seen
that the condition y, = 0 for C—C imaging obtains when ¢ and ¢;
are related by ¢ + 41 = 0; in contrast, the p, = 0 condition is
met under C—D imaging when ¢ + ¢, = 0. Thus the y, potentials
for C—C and C-D imaging, though both referring to the potentials
produced by the adions and the infinite set of images, equal the
total potential under different ESP charge conditions. Put another
way, if the ESP is grounded and the OHP is the surface of a
dielectric whose dielectric constant is as large as we please, the
surface charge density on the ESP is just the negative of ¢1
provided there is no free charge on the dielectric surface. This is a
description of the conditions pertaining under C-D imaging
conditions when v = ¥, If instead of a dielectric, a perfect

DISCRETE COMPACT DOUBLE LAYER 83

grounded conductor is substitu
ted, charge will flo
t_}ie twgllcondugtors such that only the fraction y/d ofV:h: ectl::;.ien
5 I{{IIPWIIJ HEZT?}IIES:H the -ESP; the remainder will reside on tEZ
. Un new circumstances y = ¥, ain, and

SCh :l‘ﬁzagrutlg.t }’}‘ocdlst}ngui§h these two differen% Vo ,potent?aelshavzz
shal refer }(:e e;—IC imaging y, with a superscript two, thus ;p(”'

y, the o = 1 C-D  y, will be designated y’. The relation

between the two is readil : .
the result (91) ily obtained in a number of ways with

(2)

Y (xa,yaz) = q)fz”(x,y,z) - 4‘n'q1(1 + F)_—lz (75)
In normalized form this relation becomes
YO ¥ _ 7)Z, (76)

imfgi:gw};:?a?rf etthe two potentials one obtains if he sets the C-D
g ot er k?u = (e, - .61)/(€“ + €) directly equal to
calcuiation r than taking the limit @ — 1, depends upon how the
Gevelon o g;agr};q out. It turns out that the series we shall
e —D imaging case are only conditionally conver-
e oved '11’ (;wever, .the particular grouping of terms actually
dielect};ic ;Vl always give pV', even for w = 1. Physically a
dieiectr éon(zl matte.r how strong, is fundamentally different from
an tdeal con tﬁctgr, only the lat.tcfr has mobile free charge on its
‘ dielectr’ic d E . oundary conditions applying at the surface of a
el conductzi 1];rary str'ength are different from those applying
Ly - Et the important thing to know here is not just
. r(:) o p2s ould.dlﬂ‘er‘, but which of the two our equations
| producing at any given time. It would be disastrous to com-

" bine v wi _
yYwitha gy, = —4m(¢ + A¢;)z to get a total p, for example;

b this is the reason i “ ” uni
| Eq’f}?g i thiv:f; rtg(s;:rl in the “extra” uniform field part in
e he ;::;}:Od of calculating C-C, C-D, and D-D potentials
workers (66 57 1rrll(:;slt }?opular, particularly among the Russian
 oronst (éFpl I), is what we shall term the Green’s function
opproach (G ). In Fhe GFA one first determines in some manner
 Single wnis Chexpressmn for the potential everywhere due to a
e e ¢ arge on the IHP; this potential is required to be an
:v ution to the problem in the sense that all boundary
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conditions are satisfied, yet we must not write this solution in the
form of an infinite-image sum. The last restriction is simply to
avoid arriving back at our starting point, an infinite-image array
triple summation. We have already employed this single Cha.rge
solution, or Green’s function, for the C—C case. It is the solution
derived in Appendix I; it still involves a single summation, but
the summation is now a rapidly convergentone and generally may
be truncated after the first few terms.* The actual array potential
is then obtained from a further two-dimensional sum. Thus, if
the Green’s function evaluated at r is designated ®(r,r’), where
the charge is placed at r', then for an array of charges whose

positions on the THP are the set {r,,}, the discrete potential is
wff’(r) = Zyf Zm zn ®(r,rlmn) (77)

In our C—C imaging case, Appendix I gives

(rx) = 41 3 sin (1 Zf F) sin (md-12p)Ko(md-pnn)  (78)

p=1
where
pn = (& — F)? (= P (79)
r = (4,9,2) (80)
and
SR O ) (81)

The GFA would be unattractive were it not for the fact that
the remaining sum over the two-dimensional array may generally
be truncated after a few terms as a result of screened behavior of
®; that is, G rapidly approaches zero for large p. One has reduced
the problem to that of evaluating a triple sum, rapidly convergent
in all indices of summation.

The GFA applied to the C-D case is less attractive from the
point of view of actually performing computations. The problem
lies, of course, in the less convenient form of the Green’s function.

It is now a Fourier-Bessel integral rather than a discrete sum, and

* The only way to fully appreciate the improvement over the direct image
sequence is to attempt 2 hand calculation of the potential using both the image
series and the Green’s function series.

f  adio i i
. ns do not form a regular lattice, hence its popularity in statistical theory.
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is given by

G(r.x,,) = ~f0°°duo<zpm>{[w — exp (24d)]

X [{w —exp 24)} exp { -4z — f)}

+ o[l — exp (246)] exp {A(z — B)}]
—exp {—4iz — fl}} (82)
.Since the Green’s function must still be summed over m and #, it
is questionable how much has been accomplished by t,his
approach.*
An easily applied method of computation pertinent to the
regular lattice structures for the C-C imaging case, which has
been employed by the present authors, derives from the Ewald
method for calculating lattice sums in crystals (35). This useful
m.czthod was placed in a broader, more general perspective by
Nljboer. and de Wette (99) and stimulated by their work several
generalizations have recently appeared, notably by Adler (1)
Grant (54), and the present authors (5). The basic approach

Lmllolvcd in the generalized Ewald method (GEM) is described
clow.

First one writes the sum to be evaluated,
| § = S f(R)
in the form
§ =22 fRYORys) + 2 fRI{l — O(Ry5)}  (83)
wh.ere the sums are over the three-dimensional regular lattice
points {R,}, and the function ® is chosen so as to make the second
sum converge rapidly; this function may depend on a parameter

s which is chosen conveniently. The remaining problem is to
evaluate the first sum, which still converges slowly.

.This'may readily be accomplished with the aid of a three-
dlmensw.nal analog to the Poisson summation formula. Writing
the Fourier transform of f(R)®(R,s)

Ghg) = f BR F(R)D(R,s) exp {27ir - R} (84)
this analog reads

Sk SRYOR,,5) = |ay - a, x ag]™t 3y G(Ay,s) (85)

N N
Notice, however, that in principle the GFA may be applied even when the
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e the vectors {A,} are the reciprocal lattice vectors and a,, a,,

wher In terms of

and aj are the basic lattice vectors of the actual array.
the a vectors
A = 2y - @y X A5l

integers.
where k;, kp, and k3 are 1n
Finally, one chooses s such that the convergence of

Zkf(Rk){l - (I)(Rk,s)}

1ka, x ag + ko X 2 1+ kea, x a,} (86)

well as
- |2, - @, x a5l 2k G(M9)
I .d. - - .
° T‘ZF: have applied these steps to find the potential arising from

C-C imaging conditions
line through the origin but
the effect of its images. The

a hexagonal array of ions under
omitting the effect of the ion on the

i ining
for reasons of convenience retain . :
function ® was chosen to be the error function. After considerable

manipulation and choosing the origin of coordinates at the missing
adion site, the result is the following (5).
bu() = L(rs) — zel(1 + D)y + ™
. (erfc (w274 R, — r|)
T2 zk{ R, — rl

erfc (n¥/%51 R, — (1 + IM-lag — rl)} (87)

R, — (1 + I)'a; — x|
where the summation excludes the point at the origin, the vector
a, lies in the z direction and is of length 2d, and

erfc (x) =1 — erf (x) =1 — 2#‘1/2J exp (—t%) dt (88

Q

The quantity I, is evaluated by taking Fourier transforms
I,(r,s) = 3z,6d V3 i m ™ (M2 exp {—ms? | M2}
x {exp {—2midky + 1}
—exp {—2min - [r + (1 + Mag]}}

- ﬂ“”zzve[lrl" P (3, w5~ |xl?)

_plhmtie 4 (L D)) (59)

(
(
e+ (1 + ') la,|
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Again the sum excludes the point at the origin; the y-function
in general is related to the incomplete I'-function: y(nx) =
[{n) — I'(n,x); for n = &, y(},4%) = =12 erf (x).

Having come so far, the work is not finished, as one still
requires convenient expressions for the vector dot products and
cross products which occur. This is a matter too boring to discuss
here, and the reader is referred to the original literature.

Having found ¢, in order to find ¥,, one must still subtract out
the effect of the line of images through the origin. There are
special means of doing this in terms of y-functions for special
choices of r; however, in general we may make use of the Green’s
function discussed earlier to effect this subtraction, provided we
are careful to note that the Green’s function includes the potential
of an ion at the origin. As a practical matter, more heroic efforts
may be needed in determining v, from ¢, very near the missing
adion but not on the normal line through its site. Again, such
details are inappropriate to consider here.

As we shall see, the C—D imaging case is most easily treated by
summing C-0 imaging results, therefore we next consider exact
methods for computing C-0 imaging potentials.

Although the GEM with certain modifications is applicable to
the case of C-0 imaging, we have found that the best technique
for this case is one described for other series by van der Hoff and
Benson (127), presumably originated by Mackenzie (93), which
is based on Jacobi’s imaginary transformation for theta-functions.
The method converges most rapidly for R, — 0 and results in an
almost closed form expression for the potential, with the remaining
summations contributing small amounts generally. The basic
ingredients of the method, denoted here as the MHB method, are
described below (6,86).

First, one writes all inverse powers of distances, which occur
in the image sum for potential, in terms of an integral by means of
the identity

b —

1 o L
F(n)fo =t exp (—ut) dt (90)

which follows from the definition of the I'-function. The number
n is typically one-half, and x is here the square of the distance

between the field point and a given source point (adion or
Image).
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The next MHB identity which one finds handy if he is alert to
the opportunities present is

0 00

3 exp{—(m +a)t}=(nf)V® 3 exp {—n*m?[t}cos (2mam)
(91)

m= — 0 m=-

This quantity will come from the factor exp { —xf) in the integral,
and one will be left with something akin to

© 12 po { n2m2}
n—3/2 k% — —
mzw o) L ¢ exp ¢ ; dt

where additional factors independent of { may appear.

Third, one exploits the fact that the integral is expressible in
closed form; it involves the ubiguitous modified Bessel functions
of the third kind. In particular

o 2,2 n—1/2
J; =32 exp {——kzt — f_;n.} di = 2(?%”—!) K12 (2mk |m})
(92)

Finally, one performs the summations; one of the original
indices of summation remains, and the other summation has been
accelerated by the transformation effected by the MHB, Again
the double sum remaining is rapidly convergent in both indices.
The “‘almost closed form” of the expression for potential is
associated with the single sum over the leading term (m = 0} of
the transformed series. Generally, some care is required to
evaluate this leading term, taking proper limits and that sort of
thing; however, the final result is well worth the effort. With this
road map we now exhibit in greater detail how the MHB has
been used to find the potential y,,,(r) arising from a complete
lattice of adions singly imaged in the ESP. It is of course a trivial
matter to relate this to the incomplete lattice potential y,.

If we place the origin of coordinates on the ESP as is the usual
convention in this article and express the adion-image summation
in rectangular coordinates we may write

o0 s}

Voult) = 2ep 33 [S; -8+ ST -8 (99)

=—00 m=—20
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where
). s 3
S}:[(—al——r) (__ - V3R [Z4 e
z 2) T \m —VIm - +( z ”

(94)

If we define P+ = [§x]-2 . .
(P#)172 and € PF = [$¥]72 then the expression for y,,, involves
r and we may use the first of our identities

Youll) = VB, 3 S { f “lexp (—Pyt) — exp (—Pi)

I=—w m=—w
T exp (—Prt) — exp (—Pje)j12 dt} (95)

We next perform the summation over / only by factoring out of

the exponentials that part which is inde
. ] pendent of [/ and em -
ing the second of the identities, This yields employ

Vaie(¥) = zer! § g m{exp (—Vg5) — exp (— V)

m=-—w 5s=—0c0 0

+ (—1)[exp (— V) — exp (—V1) 13! cos (2m g—) dt (96)
where 1

Ilext W€ usc t}le t}lll d n 1[:}‘ to evaluate t] 1€ Inte T al all(l
d ident 1
> g )

Vaelt) = 2200 5 S (K,(Ta) — Ko(Ty)

m=—w 5= -

FDTRT) — K Tl cos (2m5 ) (o)

where !

Lo =20 5 {IV3(m + 1) — ROY] 4 [R(Z + 1)Jpe (99)

If i
one now evaluates the s = 0 terms by taking limits, it is possibl
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to rewrite Y, in the form

© © X _ B T+
) = dzart| S Foos (2 ) e To) = Kol T2
S 3 T,T.OT%}}
(K To) — KTl + 1 5 In (2272

(100)

The final single summation may be expressed in closed form as
2 (Toolm
22ver;1mzmln{ N

cosh {4m(Z + 1)|R;V/3} — cos (4”Y/R1‘/§)‘ (101)
= 2o {cosh {4n(Z — 1)/RyV/3} — cos (4mY|RV3)

The above expression is the MH1-3 closed form pa}tlrt 01;7 1,0,1_,.0 gvh;flg
generally dominates; it only applies for VA lhw erslult t—o a,form
special procedures arc necessary to transform the re foa o
ble for Z — 1 =¥ = 0. These procedures merely 1b on
?:E?ng several limits, and will be allowed to ;_leszl Lz}r:drlrsluél; t:ﬂeldn
ce 6, where the interested reader may Hn e .
refl‘?‘ruelr:llly, we consider the case of .C—D 1rr1.ag1ng.fIt fsh;::\:llcci3 ST
abundantly clear from an examination of Flg. 1 of refe enee Y
that the potential ¥, applyi?% inO the f‘—garlsgt}n}f:i Slst;);:rzf o
terms of a superposition of (—C potentiais. Super
iti also employed qualitatively by Grahame in
f;ztﬁ:n:’v ?;2) of C—Cpirr?aging. The present superposmonC ;rll;stt
take the diminishing dipole moment mz.a.gmt.udes 1nt? ac aren;
In particular, in the inner region, the infinite set 20da};§duces
nonideal dipole arrays lying about the planes z = +2nép

the potential

E: o {yl(x, ¥, z + 2nd) — ¥o(x, 9, 2nd — 2)}

n=1 .
The real adions and their direct images produce the potential
¥?(x, »,2) ; hence the total p, potential is given by
"/’a(xs.ysz) = ‘Pg(x:}’,z)
§ $ anlpilng, 2 + ) — il 20d — 2} (102

n=1
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If one has an adequate method of obtaining %2, the C-O
potential for a lattice with a single vacancy, then one may
readily determine the C-D potential. But of course we have just
described a method of determining y,,,, from which ? is obtained
trivially by subtracting out the potential due to a single adion and
its image. Therefore, the MHB method provides us with the
solution for the C-D case as well as the C~-0. (As a matter of
interest, note that the potentials y,,, could be used in the C-D
summation and the line of images of the missing adion itself
subtracted out of the final answer in one step by use of the C-D
Green’s function.)

To complete our C-D imaging discussion we note from Fig. 2
of reference 91 that in the region z > 4, the potential y, is simply

due to the “‘apparent nonideal dipole arrays.” Thus, in this
region

Yu(%,2,2) = (neifes) 2 o0™i(x, 2, 2 + 2nd) (103)
n=0

where 7e;fe, =1 — .

To complete this section on exact methods, we merely remark
that there are always certain inelegant procedures available for
exact computation when all the clever methods have failed. We
may always perform an unmodified sum for awhile and approxi-
mate the remainder by an integral, for example. This method is
somewhat related to certain approximation techniques discussed
in the next section. Another approach is to modify the terms in
the series by a convergence factor, calculate the sum for several
values of the parameter involved in this factor, and extrapolate
through the range where the sum becomes slowly convergent
again, all the way to where the convergence factor becomes unity.
Such extrapolations are often long, and one frequently needs
recourse to an extrapolation aid such as the e-algorithm (83) in
order to carry it through. Such methods as these last described
may not be as elegant as some, but for some future problems we
may need to depend on them nonetheless.

2. Approximate Methods

The first part of this section will be concerned with approxi-
mate methods of calculating potentials arising from fixed, known
distributions of ions. For several cases of prime interest in the
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electrolyte situation, the methods discussed later in this section
are much superior to those first discussed, and therefore, the
initial discussion will be relatively brief.

One way of evaluating a lattice sum is just to numerically sum
the terms of the original series until the remainder becomes
negligible. This method is unavailable for the triply infinite
series of the hexagonal-array (~C imaging situation. The series
is only conditionally convergent, and many millions of terms
would be required to be summed with very great accuracy (in
the proper sequence) before the remainder could be ncglected
for R, values of interest. In this case, then, the methods discussed
in the preceding section of transforming a series to one of more
rapid convergence are essential if accurate numerical values are
required (5).

Grahame (52) has applied the direct summation method for
single imaging, where the series involved is only doubly infinite.
His results are approximately 4%, too small in magnitude, showing
that summation was ended too soon.

Another method, which has been widely applied both for single
imaging (45,119,123) and for NaCl-type solids (126,127), is that
of direct summation of the first few terms of the series in question,
then the approximation of the remaining terms by an intcgral.
This method thus smears out the charges whose contribution is
replaced by the integral. Although this approach should be
capable of good accuracy, it has sometimes led to rather poor
correspondence between accurate and approximate results (6).

Stigter (119) has applied the above method to find the potential
at point 0 and Z = | for a plane hexagonal array of charges. He
first divided the array into equivalent charge groups by means of
a series of concentric circles centered at 0. Each circular annulus
contained only charges of equal distance from 0. Stigter then
compared the results obtained for the contribution of successively
distant groups of equivalent neighbors calculated by direct
summation and by integration. The normalized results, written

as (exact, smeared), found were (10.39, 13.20), (5.20, 5.47), (7.86,

7.73), and (5.77, 5.93) for the first 6, next 6, next 12, and next 12

equivalent charges. We see that there still remains almost a 3%,

error between the discrete and smeared results for the last group.

Further, the error in the last group is nearly twice as large as that
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present bct.ween the two results for the preceding group. N
thelc:ss, Stigter concluded that sufficient accurac g)ulcllwir-
obtained by. summing only the contributions from }::he first ix
(nearest).nelghbors, then accounting for the rest of the cha o
tzy smearing and integration. Had a nonjdcal dipolec sin lc—imrges
situation been appropriate, much better results could hga balgc
obtglned from. this general procedure, as we shall see ve heen
Sm(;:c? the simplest way to calculate potentials an.d ficlds for
Ccloe :Onsltsr:l(t)e?a;lliesiscetigi (:)I; lO s.-in.gle_-imaging results, as we have
: -1, 1t 15 importan i
as mmple meth(.)c.is as possible for calculaF:ing thte tl?ng:le izrilvaslilfxblle
g’n;gmg quantties needed when w s 0, In the genel?,al gcasego(;
Se,ct,i fnarrb\l/trlary, the complicated exact w — ( results discussed in
oy Lv- must 'be use{i for hexagonal-array calculations,
den & > 1, the series contributions become negligible, however
;n only an easily handled closed form exprcssion, remains,
urther, for X = Y = 0 (point 0) or point @ and a few other hj h
symmetry positions, a much simpler and approximate, but hj hgl
accurate, appxjoach may be used which applies for all,E o
_ The approximate method is based on Grahame’s ( 52). pioneer-
Ing cutoff approach but extends it considerably, Graha
.cons1dere§ a si.ngle-imaging situation such as that c;f Fig. 2(?[:(‘?
i.}fé,aO—C m;agmg. Ij'or convenience, we shall instead illustrate’
o hpproac using imaging at a conducting ESP, C-0 imaging.
rahame replaced the discrete planar distributions of nonpolar,
zable adloqs and their images by smeared uniform charge Is)heet:
::ﬁil containing a colinear, circular, charge-free hole having it;
1[‘Ormero fo?h the line tbrou'gh 0. His method is thus a degenerate
e ehsulmma.t'lon—mtegratl.on approach already discussed.
e avai? blo e radlu's, Toy associated with the average circular
G able to a single charge. Throughout this article, we
-l use 7,, and R, = r,/p for this Grahame radius, which neces-
is._ﬁrlly Sf‘itlSﬁCS the relation N = 1. We may aI;o write e~
wgzglr;, Jl\ivhfen 91 1s expressed in ucoul/cm? and 7o In Angstr?)lrn?.
distanci requently use the hexagonal-array nearest-neighbor
ance, ry, as a.convcmcnt measure of ¢, cven in situations where
853§6c§7array !5 not appropriate. Then 7, — (V/ §/2ﬁ)1/2rl o~
. 6 r;, and ¢, ~ 18502, with ¢, in #coul/em? and r, in

Angstroms.
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Although the Grahame model takes discreteness into account
to some extent, its applicability to a real situation needs establish-
ing. Grahame himself pointed out the way to do this by com-
paring cutoff model predictions with those of a hexagonal array.
As we shall see later, his treatment was approximate and incorrect
in part but his general idea was correct. In most of the work of
Levine and his associates, the Grahame cutoff model has been
used without adequate examination of its applicability and
sometimes without reference to Grahame. Recently, however,
Levine, Mingins, and Bell (77) have examined the applicability
of the model to some extent, and generalized it in a semiquantita-
tive way. This work will be discussed at some length in Section
V-2-D.

The present authors (90-92) have followed Grahame’s lead and
shown in detail some of the deficiencies of the ordinary cutoff
model and how it may be modified to yield hexagonal-array
potentials and fields with high accuracy and concomitant ease of
calculation. Consider a cutoff model with two parallel circular
areas of the same but arbitrary radius, r,. It is easy to show by
integration that when ¢ = —¢,, one obtains

YAZR,) = MR} + (Z + 1)°] — [R} + (Z - 1)?}V%} (104)

where the superscript 0 again denotes single imaging, ¥? = y%/y,
R, =r1,/p, and Z = z/f is measured from the imaging ESP as
usual. This result applies to a nonideal dipole situation; of course
the equation will still apply when one array of charges is not
made up of images but of real charges. It is also useful to consider
the transformation of Eq. 104 which takes place when the non-
ideal dipoles formed by an adion and its image become ideal
dipoles. To effect this change, let § — 0 and R, — o but hold
the dipole moment, u = 2z,8, constant. Then g, originally
4mz,eNf|e,, becomes 2mNu/fe,, and Eq. 104 transforms to

Folzr) = [1 + (n/2)7] 72 (105)

We have termed the use of a cutoff model with a disposable r,,
not necessarily equal to 7y, the modified cutoff approach (90,91).
Let us now see what form the modifications take for a rigid
hexagonal array of nonideal (and ideal) dipoles. Let us write
p(&) = r[ry, where & = z/r), equal to Z|R, when g # 0. For
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}rlxggzgc;;sl :?izes of 51 and R,, we have used (90) our accurate
: o8y sigleimaging results (6) ¢
function p(&R,), usuall i ey ke the
_ Ry, y abbreviated here as £
which allows the above cutoff for i v e b
: : mulas with r, replaced b
to yield highly accurate hexagonal lattice potgntigls. Somz gfg é21::1

0.60
p(§)
0.58

0.56

0.54

0.52 0
1 2 3

Fig. 12. The hexa i
: | gonal array function (& = f =
 (ideal dipoles) plotted with an expanded (ozdin::tbe/rslca(l); (};b)# 533 and

}r)zsslslilgsl of such calculations are illustrated in F ig. 12. The smallest
betweei \izi;ue of ry, 11,y enforce'd by the steric hard-core repulsion
N Jo s, 1S usually approximately an ionic diameter,
nced o expanded ordm.ate scale of Fig. 12. Evidently, p(&)
formun ! :r){ (}ée;; a very wide scale to allow the modified cutoff
it B ev};le e})]{agonal-array results. Further, the variation
for i all ;. Oln mlilc less than that with &, The R, = o curve is
sl i) ;;(tg)e p'%é}z showrlx enters Eq. 105 through (n/z) =
(\/5/277) i’ ¢ smallest value of p1sp, =

" ‘ rolry =
== 0.525, which follows from Grahame’s choice (i)‘orl r
o
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i i ropriate when & — oo (hence the sub-
— V?I?CP;S anc};nigfionp of practical importance only when
. %ut \:vhen 2>, Yo 1; thus, the original Grahamei
iaiél'pw, is hardly ever needed when c.lea.li.ng with a ?eﬁagi?lrézl
arrayi In contradistinction, the & — 0 limiting value of the )
dipole curve, po = 4m|V'30 = 0.6575206, turns out to be aqulbz
appropriate since many actual d.ouble-!ay'er 51tuat1o}rlls r?lazrltit
well approximated by the ideal dlpqle limit. Here, 2t7e q ol by
s ~ 11.0341754 is the Topping lattice sum (125,1 h) g%vt .n;f
o =8 Y, r7% The distance 7; is that betw.een the ith point 1 2
fixed lplanel hexagonal array of negrest—nelghbor dlstapCf rli1 athe
point 0 of the lattice. The index ¢ ranges over all points
lni}?lltfhgr;?éste)rl:’: g.rticle, we omit much discussion of ﬁelq Fali
culations. It should be mentioned, however, that tlk)le c]);;lagil:llead
paper (90) discusses how hexagonal-a'rray fields may 1e orithmic
from the modified cutoff approach using p(€) and its oga ithmic
derivative —F =dIn p(&)]dIn &. Fu'rther., when 1t s esi -
simplify the calculation of ‘}’g by ignoring the varlat;?lr;s oy
completely, the carlier work gives best least-squares v;R o
to use in various situations. A best. choice for all & a;l ; lm :
binations of experimental interest 1s 0.607, not very zlir roC ™/ toé
Although the curves of Fig. 12 should yle'ld su$01enthy ac urate
values of p(&) for most calculations, occasions arl.S(;1 \Ail Crgl)oggl) '
accuracy is needed. We have, ther.efore‘, publishe C(hf) )
number of rational function approximations of the C §1 ysand
type to p(£) and F (&) for several ﬁxed.values of R, (§ varia e)C d
for Z = 1 (R, variable). These pro(\lzlc(lie even greater accuracy
i i e calculations when needed.
Sm’%l}felrc?i%es of Fig. 12 need not extend beyond & = 3.5 l?ecalgi
for larger values exceedingly accurate clos§d-form expressu‘.l)ils(G)
the point 0 may be derived from the exact single-image results (&)
These expressions are (90) )
YO(ZR,) = | — (VBAmIR(Z® — 1] (106)
and
Yo(z,r) = 1 — (V3[4m)§ (107)

for nonideal and ideal dipoles, respectively. They }.101d to withlg
one part in 107 or 10° for Z~1 4 3R, in the nonideal case an
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for £ ~ 3 for ideal dipoles and are even more accurate for larger
& values.

We have seen how the cutoff approach may be modified to
deal with a rigid hexagonal array. It turns out that its applicability
may be extended even beyond the hexagonal-array regime. We
have stated elsewhere (90,92) and show explicitly in Appendix II
that the mean distance, (r;), of nearest neighbors for a random
array without interactions between the discrete elements of the
array is (4N)~V2 If we set {r;) = r, for such an array, then the
corresponding p is approximately 0.465, even smaller than p.
We do not expect to see such behavior, however, even at the
highest possible temperatures because of the hard-core repulsion
between adions. In the high-temperature limit (abbreviated
HTL) situation, the nearest distance of approach of adsorbed
ions will be r;,,. Let us consider identical, spherical adions with
charge centroids at the sphere centers. The presence of a given
adion at point d then ensures that the charge centroids of neigh-
boring adions remain on or outside a circle of radius r,,, centered
on d. Further, at high temperatures, the planar motion of the
adsorbed charges may be considered quasi-random; the discrete
charge will be smeared, or space averaged, over the time required
for a measurement. Notice now, however, that we have just
described the physical conditions of a cutoff model with r, = ry,,.
Thus, in the HTL, the cutoff model with r, = r,,, should be
fully applicable, not approximate (92). Observe that with this
value of r, and Z = 1, the cutoff Eq. 104 reduces to the expression
already given for this case, Eq. 6.

If a fully close-packed adion array could be achieved, it would
be hexagonal with r; = r,,,. The corresponding value of , would,
however, be p(&,)r,,, here, where &, = z[r;,,. We have taken this
full monolayer condition to correspond to 6= 1. We may

therefore write 0 = [¢1/¢1 max) = (F1m/r1) % oF (Ry,,/R,)? for non-

| ideal dipoles. As we have seen, however, the § = 1 limit will
. not usually be reached in an electrolyte adsorption situation

because of Coulomb repulsion between adions. The earlier

. discussion shows that such repulsion leads to a coulombic hard
- core of diameter 7,. Although 7, varies with temperature, reducing
L tory, in the HTL if r, > ,,, at low temperatures, and with ESP

and OHP shielding conditions as well, it is a useful concept.
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If r, > r,m, as secems to be the case except for the largest ions
under C-C imaging, then the maximum possible valuc of 6 at
a given temperature will be about (r,,/r.)2 If one tries fo in-
crease N beyond this limit, breakdown and discharge will occur
and the electrode will not remain blocking to charges.

At ordinary temperatures and closest enforceable packing, the
adion array will be essentially hexagonal with 7, equal to the
larger of 7,, and 7,. Wc shall assume 7, the larger from now on.
As we have scen, as N decreases at constant temperature from that
corresponding to 7., a value will be reached where hexagonal
structure begins to disappear. Then occurs a transition region
where long-range coulombic interactions still remain of some
importance. Finally, even smaller N or |g;| leads on to the quasi-
random region, which we shall term the low-density limit (LDL)
regime. In this region, the widely separated adions move essenti-
ally independently except for the short-range coulomb inter-
actions represented by r, which come into play when two charges
happen to approach one another closely. We see that this situation
may also be represented, essentially exactly, with a cutoff model
for which 7, = 7,. We qualify the word “exactly” here because
there is a certain arbitrariness in the definition of r,. The ESP-
OHP shielded coulombic hard core is not as hard as the steric
one; that is, the coulombic two-particle interaction energy is not
as rapidly increasing a function of interparticle distance as is the
steric interaction. It thus becomes somewhat a matter of what
definition one wishes to usc to define a useful 7,.

The foregoing results for R (R,) are illustrated in Fig. 13. We
have elected to portray a C-C imaging situation since we believe
this is approximately the condition which will obtain in the
electrolyte inner layer, especially at high solute concentrations. As
we have seen, (—C imaging is physically cquivalent, as far as the
overall potential conditions are concerned, to C-D imaging with
o = 1, a situation which can be treated using a summation of
o = 0 results. We use the value § = 2 A, rcasonable for KI, have
taken y = B, and have employed the value R, = 3.5 calculated
for C-Cimaging in Section I1. The R, values at the two boundaries
of the transition region are also taken from the results in Section
IT and are therefore somewhat uncertain as well but are quite
adequate for illustrative purposes. The R, = 7 value is that which
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- . , he hexagonal
'egms. 1o go, 1s somcwhat fuzzy; Vl\/C be(;ir(::vt . ¢ the
:;Lllltl?e;s tzla]c;ur;ite to within about +0.5. Forei?lh 3:;3\;:20;}125\/}?;
N r;ca,t the}z;e will be a good }}exagonal array; for values

T %alu cr; lan 7, the array will be poor.

e uncle N e ;) 2.6,.where the LDL regime begins, is the
Uhr oSS l11151_0 a}lll. It is the value of R, which corresponds to
o b;ne;ir] Tg(tj € proper curve of Fig. 7. Actually, the array
array e }ffl andom here, not hexagonal, but the hexa onal
y result should give a much closer estimate, neverthele%s, of
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than should the two-ion result of Eq. 23

ition value of R
$§iz;arslséglects the modlerating effect of the ot}}er chzfrgesh(ar;ed
their images) present at the [HP. For comparison with the 1t

values of 3.5, 7, and 12.6 used in Fig. 13 for the C—.C ca}s{ez had;/;l;:1
considered single imaging in;gead éh;;orrespondmg LS wo
; imately 7 an . '
ha}j ?}igioa;) g;ot)}?:l f?gflr};, 2’1 ql’scale has been addcq appropriate
for p =2Aand z, = 1. The corresponding 6 scale is also shown
and indicates that the hexagonal regime covers the Iargesctl paif
of the adsorption range of inicerest.f 1§;t;: the Jﬁtct;elg g‘zioth ctohe
of the value o .7 upco ‘
:ﬁii?;ﬁlﬁqﬂ of 42.%llmifcoul/cm2 found from experiments on
Grahame (51).
U\;rll( PI‘lgy 13 the dash-(soli)d-dash line lgives the vSa-lue of ZRb 21 p(hég il
i igid hexagonal array. Since 4 = ,
zp?—r%gﬂla\tf"e E(l);v: tzi%n Ry, =g2; since R, = 3.5 at the tempera-
tu;a sﬁo;/vn, the minimum value of R, will be R, and 'Fhe lovs;cltr
dashed part of the p(§) Ry line is largely l?eyo'nd t.haF CXpCI‘lan.t? y
possible. Similarly, the upper dashed line 1s within the traanm lcﬁl
region where the hexagonal p(&)R, should no longer apply zlve ";
Tt is interesting that the full p(&)R, curve 1s almost exac by !
straight line. Although p(¢) varies herc.frc?m about 0.62 tlo af?}\:
0.653 as R, varies from 2 to 10, the variation is very near on N e
form p(€) = a — bé, where a and b are independent of ¢. It thus
follows that over the range shown Rp(&) =~ aRy — b, the linear
ident.

de%zd}f;\«'c: si:\;le — R, in the LDL region and have shown fomi
possible dash-dot lines joining the p(&) R, curve of the hexagorg
region with the limiting value R,. Since no theory [.)res?n y
exists which can take us very far into the transition region rom
cither side, we are forced to join the regions of known R, behavior
by guessed interpolation curves. For .the value; of 1;311 show\/[r;
defining the transition region boundaries, we believe t ;t Slrg, :
b is most plausible. Certainly for these R, values and ; =5
there is a very high probability, we belicve, of a peaerkl) r,;
exceeding the limiting value R,. On t.he other hapd, hadh vd ii ’
considerably larger, raising the horizontal R, line, orR a o
right hexagonal region boundary occurred at a smaller R, v::: uic,
there might very well not have been a peak but only a monoton
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rise in R, from p(R;1) R, to K, as R, increased from R,. Nevertheless,
we believe that our value of R, and the transition region boundary
R, values are sufficiently accurate for the case considered that there
will be a peak in this situation. Since ¥? at fixed Z decreases as
R, increases, the presence of a peak in R, leads to a minimum in
o,

If we assume that the curve for R, in Fig. 13 which involves the
choice & 1s a good approximation to the actual dependence of R,
on R, or |¢,|, of what use is 1it? Since it was constructed for a C-C
imaging case, it may be used in Eq. 102 with @ = 1 to calculate
vo(Z,R,), equal to v¥(Z,R,) here, for infinite imaging. The
series requires different effective values of Z at constant R, ; thus,
different known values of & will also be involved in the p{&)R,
hexagonal lattice part of R,. There will probably also be some
(unknown) changes with effective ¢ in at least part of the curve
spanning the transition region as well. Thus, as we shall see later,
we can calculate accurate ¥, curves for the hexagonal array
region of the C—C case. Accurate values of ¥',( Z,R,) may also be
obtained in the LDL regime when R, is known, but current
uncertainty in R, values in the transition region precludes
accurate potential calculations there. Note that R, curves like
those of Fig. 13 are required for ¥, calculations for every value of
o of interest and that R, and the transition region boundary R,
values will all be functions of w (and of any ionic shielding as well
when o < 1).

The line p . R, = R, is shown dotted in Fig. 13. Notice that it
differs appreciably from p(&)R; and greatly from the likely full R,
curve. In the region where R, < R,, the use of the Grahame R,
will result in an overestimate of ¥ and vice versa mutatis mutandss.
In the transition and LDL regions where R, may exceed R, very
appreciably, the use of R, will result in a great error in ¥ In
most of their work (75 and earlier references given therein)
Levine and co-workers have, however, used R, in these disordered
array regions, assuming that the cutoff model with R, = R, will
allow thermal disordering effects to be taken into account some-
what, if only in a temperature indcpendent way. Although we
sce that this approximation is indeed somewhat better than the
use of a fixed hexagonal array in these regions, since Ry << p(&) R,
there, it remains a very poor approach. In fact, it has been shownl
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t only when & — oo does p(&) — P and R, .—>R0. At
;z(e)sezt,h}?owevzr, this corresponds to R, — 0, the opposite end of
the R, region from that considered by Levine and co-workers.

Finally, the nondegenerate cutoﬁ: model, or summaglor.l-
integration method, may be used quite conver.nently to cidtam
approximate values of hexagonal array potentla.ls and fields 'a';
high symmetry points other than 0. Suppose we wish the_potttsr}tla
at point a of Fig. 3, i.e., for a complete hexagonal lattice. Since
there are three symmetrically situatftd nearest charges, we m_ag
obtain the potential at a by calculating the c1.1toﬁ‘ potential w1}t1
a circle of radius 7,, where 72N = 3, then ad.dmg to the result t E
potential at a arising from the three neighboring charges and their
images. The larger the circle of remove‘d charge (.and hence the
more charges taken into account in a discrete fashion), the more
accurate will the potential calculated by this method be. As .an
example, for R; =95 and R, =1,/ = V3 ?le’ the .relatl.on
appropriate for point 4, the above metbod yields for this pom';
and Z = 1, ¥'9 ~ 0.529 as compared with the accurate value o
0.5193.

V. Discussion of Results: Nonpolarizable Adions

1. Local Potentials

A. Single Imaging. The discussion herein on local potentials
starts with the simplest case and progresses through more com-
plicated situations. Therefore, it cannot, perforge,. folloyv the
historical development in proper order. Field variation will not
be examined in detail but does appear in some of t}.le bz%sm
papers (6,60,61). We shall ﬁrst‘ be.conqerned with C-0 m}aglrlg
(6) produced by perfect conductive imaging of an array of dlslcre e
monopoles in the electrode. All eff(?ct of t.he d1ffu§e ayer
is ignored ; thus, the dielectric constant 1n the diffuse region, e;, is
taken equal to ¢; and there is no specific OHP. The situation 1S
therefore not very close to that usual in a real electrolytt? douple
layer but does provide a useful limiting case for comparing w1t}i
more complicated situations. Further, 1t 1s C!OSC to tbe actua
situation expected for adsorption of low polarizability ions from
a gas phase.
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The zero of local potential is taken at the imaging plane. No
potential variation thus appears for Z < 0. Were the images
real, however, there would be variation in this region. The
present results may easily be extended to the situation of two
matched arrays of real charge of opposite sign, as in Fig. 6, by
extending potential curves into the — Z region in an antisymmetric
fashion. Thus, v(—2Z)/y, = —y(Z)/y,. We shall initially be
concerned only with the potential variation perpendicular to the
ESP along a line through point 0 of Fig. 5, the position of a
removed adion in a hexagonal array, or the center of the circular
disk of removed charge in the cutoff model. In this case, X =
Y =0.

Figure 14 shows a comparison of normalized average and local
potential variation in the Z direction for a fixed, hexagonal array
of adions for the value R; = 10, which corresponds to the low

coverage 8 = 0.04, assuming R,,, = 2. The average potential may
be expressed as

V(Z) = =V,[Z(qlq) + (Z = Due(Z —1)]  (108)

where u,(<0) = 0 and u,(>0) = 1. The top curves are pertinent
when ¢ = —¢, and thus show the discrete charge and image
contributions to the normalized potential: y(Z) = y,(Z). Com-
pare the qualitative curves of Fig. 6 starting at the center and
progressing to the right. The uniform D field contribution, y,(Z),
equal to —V_Z[l + (¢/q,)] in the present single imaging case,
enters also in the ¢ = 0 bottom curves and greatly changes their
character. Note that the ¢ appearing on this and later figures is
€;, the inner-layer dielectric constant. The y(Z)/y, curve in
Fig. 145 is almost but not quite a straight line, and there will be
more and more curvature as R, decreases.

Figure 15 presents results for the actual potential variation for
three pairs of associated ¢, ¢, values. The ¢, values appropriate at
each ¢ correspond to small, medium, and maximum anion ad-
sorption derived from Grahame’s (51) 1N KI data and analysis.
Further, the curve denoted v,(Z)(= w(Z) + ¢,5) includes the
contribution to the local potential arising from the image of a
given adsorbed anion, ¢,, = —z,¢/2¢,8Z. This image contribu-
tion, of course, becomes more and more important the closer and
closer to the imaging plane an adion moves. Of course, the adion
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Fig. 14. Dependence of normalized average and local potentials on Z = g 12 ]
: s W2Z) ]
z/f for a hexagonal array with Ry = 10 and for (2) ¢ = —g¢,, and () ¢ = 0 (6). ,g - -
g 8\ W w2 —
iy ' Viz) B
actually moves no closer than the IHP; thus, those parts of the - i ]
v,(Z) curves lying at Z < 1 are not of physical significance. Note oK | Ry = 2196
that for con\{enience € = ¢, has been taken as unity in Fig. 15. The -4 [ Vo = —14.438 volts
potentials given there should, therefore, be reduced by a factor -gl_ T
arising from polarization effects. At position 0 in the IHP, there © 0 1 2 3 3 5
‘. zZ

is a field (including the image contribution) of about —8 x 107/¢;
V/ecm urging anions away from the IHP for the conditions of
Fig. 15a. The actual small adsorption present would, therefore,

Fig. 15. Variation of several potentials with Z for ¢, = 1 and g=3A

and three different set i i
K poree o sets of ¢;(g) values associated with Grahame’s (51) 1.0N
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arise from overriding specific, “‘chemical” forces if the present
model were actually completely applicable. The field is about
—7 x 107/¢; Vjem and +5 X 10%¢; V/em for the situations in &
and ¢ respectively, showing that the field behavior at the IHP is
indeed consonant with increased adsorption as one goes from a
to ¢.

The value § = 3 A used in Fig. 15 has been extensively used by
Levine et al. (8,75,77) but seems inconsistent with Grahame’s
IN KI data. The value |g,] = 42.61 ucoul/cm?, the largest
derived from the data, leads when g = 3 A to R, = 2.196, overly
close to the limiting value of about 2. These figures, in fact,
correspond to Op,, =~ 0.83. It therefore seems necessary that f
be somewhat less than 3 A. If one takes § = 2 A, the smallest
value likely for an anion such as I, the ¢, value in ¢, the maximum
lg. observed, leads instead to R; = 3.294, corresponding, for
R, = 2 to 6§~ 0.37, a plausible value.

Figure 16 illustrates the dependence of the normalized local
potential, as in Fig. 14, upon Z for a variety of R, values in the
grounded electrode case, ¢ = —¢;. It is of considerable interest
that these curves almost coincide when the variable & = z/r, =
Z[R, is used instead of Z. Figure 17 illustrates important limiting
conditions using this variable. The R; = 2 curve represents the
smallest R, value that generally needs to be considered. The
R; = oo curve is that for an array of discrete ideal dipoles, the
limit of nonideal dipoles of charge-image separation 28 when
B — 0. The near coincidence of the two limiting curves means
that for many purposes, either a distinction between ideal and
nonideal dipoles need not be made or all nonideal dipole nor-
malized potential curves may be calculated versus & using an
intermediate value of R, say R, = 4 or 5, provided the actual
R, value is used in obtaining Z from ¢&.

What happens to the single-image local potential when either
r; becomes so large at fixed temperature that a rigid hexagonal
array no longer exists (the LDL) or the array disappears because
at fixed r; the temperature is too high to allow a reasonably stable
regular array (the HTL)? We have already seen that in the HTL,
where the cutoff model is fully appropriate, p — r,,/r;. Then in
the nonideal dipole case pR, — R,,, while for ideal dipoles
p/& — 71,/ z. In neither case does the normalized potential depend
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Fig. 16. Dependence of normalized local poten
Zforg = —g,and a variety of R, values (6).
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Fig. 17. Normalized local potential for a hexag

R =2and (ideal dipoles) (90).

onal array vs. £ = zfr; for
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itself in this limit. Let us therclore introduce the new nor-

idcal
. able &, — zlrm (or Z|Ry, for nonid
4 e e f /571- The/n: for the HTL we may write,

on 1y
malize
dipoles), anatogous to E=2z

when ¢ = —¢1
v Do = [} + &1

1 2 a1/ __ Riim + (Z o 1)2}1/2]
vl Z) e = H{Rin + (Z + 12 — | o

(109)

. . .
where the 7 and 7 subscripts here denote ideal and nonideal, r

spectively. the predictions of the above for

igure 18 illustrates : u .
plciltgél(lir is the ordinary nonideal-dipole curve for R, = 3. It 1s

included not because it is theoretically appropriate tfhorl ;gle lf){t'tl“cld,
but because when the £y = 3 normap.zed potentia }?

vers u& = Z/2, it lies, as shown, surprisingly close to the \élery

S?i?;sengy calcu’lated HTL curves. We have not ln.céudle ang

R,,, =4 curve in Fig. 18 because it falls between the 1dea

mulas. Also

10

08

WD N

0.2
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° 15
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&m

Fig. 18. Normalized local potentigl under HTL c

zlry, With ¢ = —¢1 for ideal and nonideal dipole (Rym = 4

ﬁxég hexagonal lattice R, = 3 curve is included for comparison.

onditions vs. &y =
= 2) situations. The
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nonideal curves, and, in fact, lies very close to the ideal-dipole
curve throughout. As R,,, — oo, the ideal dipole curve is ap-
proached uniformly. T'urther, as the figure shows, the relative
differencc bectween the idecal and nonideal curves decreases
towards zero as &, or Z increases at fixed R,,,.

Although the adion array may also become virtually random
at low coverage and fixed temperature, the minimum average
distance of approach between adions, r,, will be somewhat larger,
as we have seen, than the steric limit, r,,,, because of “hard-core”
Coulomb repulsion effects. The above HTL cutoff model results
therefore apply as well in the LDL case with R, replaced by
R, =r/p and &, by & = z/7,. Since R, > R, the ideal dipole
curve will usually be a good approximation to the actual situation
in this case. Note that at constant temperature the curves of Fig.
17 will apply well for sufficiently large 6 while those of Fig. 18
must apply for sufficiently small 6 that the adion distribution is
essentially random. There is, as yet, no accurate interpolation
theory available to cover the intermediate range of &s between
these values. Further work should fill this lacuna.

Next, we shall consider variation of the normalized potential
(including all image contributions) for a complete, fixed, hex-
agonal array and compare, where appropriate, with correspond-
ing results for an array with an adion (and its image) at X =
Y = 0 missing. In all the succeeding single-imagce curves we shall
take ¢ = —¢;. Figure 19 shows the variation of normalized
potential with R, at various points (see Fig. 5) located in the
IHP. The closer one is to a charge, of course, the less rapid the
decrease of normalized potential with R;. The curve marked 0
corresponds to the incomplete array and is appreciably different
from the others because of the larger distance (r;) from point 0
in the plane Z = 1 to a neighboring charge.

The R, scalc of Fig. 19 probably extends to somewhat larger
values of R, than are likely to be associated with a good hexagonal
lattice, the structure for which the curves were actually calculated.
At extreme values of R,, probably considerably larger than those
illustrated, LDL behavior will be appropriate for adion adsorp-
tion from either a gas or electrolyte. Equation 110 with Ry,
replaced by R, shows that in this case the conditions Z = 1 and
R, = 4, for cxample, lead for point 0 to v,(1)fv. = 0.236.
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Normaiized potential

Fig. 19. Normalized local potential for a fixed, complete hexagonal array
vs. R, for Z =1 and ¢ = —g¢; and various array positions denoted by the

letters (6).

Since this value is somewhat larger than those achieved by
R, ~ 15 for the point 0 hexagonal model curve, it appears that
the actual normalized potential curve for point 0 may reach a
minimum as R, increases, then increase to =20.24 and remain
constant for larger R,. Since gy, decreases as R;% the actual
potential, y,, will continuously decrease as R, increases. In the
HTL or LDL situations, the distinction between points a, b
and ¢ disappears. For the HTL case where R,,, ~ 2, v,(1) [y, =
V2 — 1 =~ 0.414, an even larger limiting value.

Figure 20 illustrates the variation with normalized distance
& of the normalized potential for lines perpendicular to the ESP
through the indicated points in the array. With the ¢ distance
variable used, there is very little difference in the R, == 5 and
R, = 10 curves. The short vertical lines on the curves indicate
the position of the THP.

Let us next examine potential variation in Z = constant planes.
Figure 21 shows such variation along the line from d to b of Fig.
5 for Z =1 and 2. Since the potential is identically zero for
Z = 0, we have shown instead the normalized field variation in
this plane. For these field curves, we have normalized with
E, = —4ng,/e;. The normalized distance L, is defined as
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i _Y=0and Z=2.
= ¢ ti the full array potential at X= An
fI‘}Te% tl_f_n‘;; va?ue is just that arising from a single positive charge
L=

(0,0,—1). The present

i i 11 as C-0, of course. Further
results all apply to 0—-C1magng as we C-0, of cours o for

g = g S ppear 1
()mpaIISOIl VVltll ICSUItS CaICLllath fOI Other lmaglng COndltl()nS.
C

B. Other Imaging Condijtions. As we shall see in a lat.er1
ti.on there has been much more wqu on mlcropotfzrigl(;in
SCClcula,tion in complicated imaging situations than on(;;arlaemS
f)? local potential under such conditionls. .Krylov (§0, f())rs1’ufz(z)
blish an explicit expression 10T ¥
to have been the first to pu pression (o Vi
ini following types of hexagonal-ia .
}()I'erg'agli%g afr(:f:l %1—66' (Zwoi E1 }(;Ix)lly). In this work Kryl9v approxi
rr:at,ed th,e diffuse layer as an equipotential plane lying at z =
B+ylie,Z= Z,y).

Krylov uses the dielectric imaging parameter
w = (€ — er) /(€0 + €)

i i lier micropotential
i Levich and Krylov (69) 1n an ear . ;
mtrOduce}(liebZong\i/tion o — 1 is implicitly taken as C—(.Z' imaging,
«. As we have seen earlier, an mteres'ﬁng
. ases. Further,
:<tinction may be drawn between these two ¢
(x;téﬁzsgrn w <Yl, Krylov implicitly considers only an uncl_l_arig_ed
dielectric-solution boundary at the ESP and a chargehq ; Onill
on the equipotential OHP. He assumes a complgfe exag na!
ress:
lattice and calculates po2 — p,(Z) for 0 < 'Zd<d Z_(,.t : 1tsh<::£) o
for this potential difference may bC.C!IVI ed in > L
a constant field potential ¥.; a part arising from a Ilfne‘ % s
which is only nonzero for points on the line X = 1 _—h fom '8
through point  of Fig. 5; and, for the cases @ = +1, the hgve
cated triply infinite sum of modified Bessel functions we have
already discussed in connection with the GFA: Asf :vc; =
mentioned before, the GFA is not at all attractive (} tions’-
involving as it does complicated integralshof Bf:ls:):(liiﬁuerécadiox;
the un
rdingly, for |o| # 1 Krylov reverts to tf a
?rilcz:)ge suganations but carries out calculations .on.ly foer -
In view of the above assumptions and restrictions, Kry

y, becomes

valence unity) at (0,0,1) and its image at

paper. T
not D-C with €, =

vo = — Vo b1ulh + (40012 — Zal (111)
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which is only nonzero when o = 1, for which the Kronecker
6,0 = 1. This agrees with Krylov’s implicit choice of ¢ = —¢,
when w # 1. For further reference, it is useful to give an expression
for y,(Z) here which applies generally both for C-C, C-D, and
C-0 (and D-C and 0-C) imaging. Taking the zero of potential
at Z = 0 as usual, we find

ve(Z) = =V Z[1 + (4/91) + (2 = 1) 8] (112)

where d,, =1 and 6, = 0 for x # ¢. It will be seen that this
more general result agrees with Eq. 111 when it is remembered
that the latter is written for zero potential at the OHP rather
than at the ESP and applies when w # 1 only for ¢ = —g¢,. The
¢ = —¢, condition is almost always appropriate when the ESP
is nonconducting (e.g., D-C or O-C imaging), but it is not
necessarily appropriate for the C-D imaging or the (-0 imaging
of Section V-1-A,

Probably because of the very considerable difficulty in evaluat-
ing his triple series, Krylov does not present many calculated
curves of potential variation. Those that he did publish are shown
in Figs. 23 and 24. These results were calculated with the specific
choices ¢ = 0 for w = 1 (C-C imaging) and ¢ = —g¢, for v # 1.
The lengths # and y were taken as equal (I' =1). The 6 =
(2/R,)? values shown are (implicitly) based on the usual value
R, = 2 and correspond to choices of R, = 4 and 20. Figure 23
shows the variation of normalized potential perpendicular to
the plane along a line through point a of Fig. 5. The normalizing
potential is y, for all the conditions considered. The normalized
abscissa scale extends from the ESP at the left to the IHP at the
center and to the OHP at the right. Note the increased curvature
- of the curves as one goes fromw = 1t0 0 to —1 and from 6 = 19
(not a condition under which a z, = 1 hexagonal electrolyte
double-layer array could be stable at room temperature for any
o) to 6 = 259,. The w = —1 case corresponds roughly to an
air-solution interface. For example, if ¢, = 1 and ¢ = 6, w =~
~0.71. A table containing a few values of normalized potential
 for the perpendicular line through point d is also included by
Krylov.

_ Finally, Fig. 24 illustrates the variation of normalized potential
In the plane Z = 0.5, a strange choice since adions do not move
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Fig. 23. Varjation of hexagonal array normahz.ed floc;l f(;tzﬁsa;’la :(:1 :
position along a line through point of a complete lattice ord _to and various
imaging conditions. Here x/6 is equal to our (Z - 1}/2 and @, .
zero of potential is taken at the OHP (60,61).

into this plane. The variation is that along the line connecftir}ll%
points 4 (our d) to B (our a). Notice t}}at. alt}?ough nolne o e
curves quite reaches zero at a, the variation in the plane o
considerable magnitude. The v = 0 curves here are In g];)enethe
agreement with those presented in Sfecuon V-1-A. (remem ei he
different positions of zero potential chosen) buth car;{no~ e
quantitatively compared with them because neither ity Ezed
nor R, = 4 was a chosen value there. The value of no;mFg S
potential for Z = 1 and R, = 4 taken from CUI(')VC ao 1?]_:‘ .
of Section V-1-A and the present & = 0, 6 = 259, curve o élg
93 agree very well, however. A Fomphqated but vz‘:lr'y ripil es};
convergent (except for B, < 2) tr1pl<? series for the discrete o
potential contribution, »?(X,Y,Z) in the C-C case, was iEro-
sented by the authors (5). lbut only used to calculate m
1 ot local potentials. _
po{}ils'ligzlsz; nmethod ililvolving only a single, rapidly convergent

series and expressions for C-0 single-imaging potentials (which
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can be readily calculated from the modified cutoff approximation
at small £ and from very accurate limiting expressions for appreci-
able £), we have recently investigated the hexagonal lattice C-D
imaging situation in considerable detail (91). The quantity
was defined as (e, — €;)/(e; + €,) and €, was taken either as e,
(C-D imaging) or €, (D-C imaging). In view of the relationship
given in Eq. 75, the results also include C—C imaging. Figure 25
illustrates potential variation results obtained for the complete
range of w, for ¢ = —g¢,, R, = 5, and three values of I" probably
encompassing the range of I likely in most electrolyte situations.
Here the normalized potential v~ is 9(Z)/y,, and pertains to the
usual line through point 0. The normalized distance & = Z/R, is
again employed for the abscissa scale. Although only incomplete

x==-%8
1, w=1
3 2, w=0
50 — 3 w=~1
2
3
40F >
1
1 6=1% 2|~ 8 =25%
30
¥
v
20(
1_
o o
0
A B

Fig, 24. Variation of hexagonal array normalized local potential with
Position along the line between points 4 and B (our 4 and g, respectively) in the
plane Z = } for ' = | and various imaging conditions (60,61).



118 C. A. BARLOW, JR. AND J. R. MACDONALD

<—61|€2—> |

05 04 0.8 12 16
T Tomr__ lo=1 |
1.0 0.8
i %o = -
0.8+ 0 5 6'0-4
B "-||P | -08 ) _
0.6 | -1 |
2 |
04 | =2 .
— |
0.2} | -
i <€ lea— (c)
R IS T BU RER RS
0 04 0.8 12 16
£

Fig. 25. Hexagonal array normalized potential vs. § = Z[R, for ¢ = —qy1»
R, = 5,several T’ values, and the complete range of w (91).
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array potentials, particularly useful in discussing the micro-
potential, were calculated, the paper discusses how potentials for
any X and ¥ and an incomplete or complete array can be obtained
with much less work than needed using any previous methods.
Further, the method is sufficiently general to apply to any cutoff
model as well as the hexagonal array. It may therefore be used to
investigate HTL and LDL conditions for any pertinent w.

As Fig. 25 indicates, there is a discontinuity in field (but not
displacement) at the OHP (e, = ¢,) or ESP (e, = ¢,) for all w
values but zero. Further, a larger and larger proportion of v,
occurs outside the inner region the more w departs from unity.
When €, = ¢, and (-D imaging is considered, the largest likely
value of €, in an aqueous solution is about 80, leading, with
€; = 6, to w =~ 0.86. Even this large a value of w does not give a
very close approximation to w = 1 behavior, but one should
remember that (-D imaging alone ignores the shielding arising
from mobile diffuse-layer ions and is therefore applicable only
at low solute concentrations unless I' > 1.

2. Micropotentials

A. Early Work. The first attempt to explicitly calculate the
work of adsorption (or, equivalently, the micropotential) for a
discrete electrolyte double-layer system was that of Esin and
Shikov (34). Their model, illustrated in Fig. 264, applies only for
¢ = 0 and corresponds to the 0—0 case of Table I. They consider
that rigidly associated with each adion located at the IHP there
is a counterion at the OHP. Each such ion pair thus forms a
finite-separation dipole, and Esin and Shikov assume an infinite,
hexagonal plane array of such dipoles. Although they devote
some attention to the effect of thermal motion, their main calcula-
tions assume a rigid array. Even though we have seen that this
approximation can be a good one under many conditions of
interest, the additional approximations of neglecting the effect
of the electrode and subsuming all diffuse-layer effects in
rigidly associated counterions are inadequate under almost all
conditions.

Esin and Shikov essentially calculate the p.d. y,, =y, — ¥,
between points at the centers of the dotted circles marked 0 and
¢ of Fig. 26a. Let the average p.d. produced by the entire dipole
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Fig. 26. Discrete charge models for early microp(_)tential calculatiqns.
Image charges are shown dotted and the p.d. of interest is that between points
0 and p.

layer be V,. This is the drop across it if all charges were smftarcd;
it is also the p.d. across a discrete array between two points at
distances from the array large compared to 7, (see also Fig. 6).
This p.d. is given by

Vo = 4myqyfe, =TV, (113)
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where as usual ¢, is intended to account for the dielectric constant
contributions arising from solvent molecules in the inner layer and
possibly also those arising from adion polarizability. The quantity
V, 1s not quite logically equivalent to the ¥ introduced earlier.
For V., layer spacing was 28 rather than the present y, and half
of the layer was composed of images. The p.d. sought in that case
was measured from the center of the array to “infinity.”” These
differences so compensate that V' is, however, just the above ¥V,
with y changed to §.

We have earlier introduced the normalized distance R; =
r,/p appropriatc for an array of adions and their images a distance
28 away. Here, the adion-counterion separation is y, so it is
convenient to redefine R, for the present situation as 2r,/y,
structurally the samc quantity. We may now express the basic
Esin-Shikov result as

A =1y, Ve = 0.74p[r, = 1.48R;! (114)

Note that the effective dielectric constant €, has cancelled out in
this ratio.

In their actual calculation of the ratioc A, Esin and Shikov
tacitly assume ideal dipoles rather than charge pairs a distance
y apart. Their method is thus logically correct only in the
associated limits y — 0, R, — oo, and &— 0. In addition, not
knowing of Topping’s earlier accurate calculation of the sum o,
Esin and Shikov established the following bounds to it (termed
K; by them) by partial summation: 10.8 < ¢ < 11.1. Unfortu-
nately, they actually used 10.8 in their calculations rather than
their upper limit, which is close to the more exact Topping-van
der Hoff and Benson (127) valuc o= 11.0341754. When this
value is employed, one finds that the proper R; — co limiting
behavior of A in the present situation is

A = (poR)~" =~ 1.5209R;1 (115)

This may be compared with the result of the approximate analysis
given earlier in Eq. 7.

Equation 115 is represented by the bottom straight line in Fig.
27. We shall explain the other curves subsequently. At this point,
we only remark that the bottom dotted line marked B = oo
is the accurate solution of the Esin-Shikov problem without the
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Fig. 27. The micropotential quantity A = Vopl Vo V8- Ry for various
situations and values of B = ffy.

approximation of ideal dipoles. It was obtained using our highly
accurate modified cutoff method for hexag(?nal arrays. ‘

Figure 27 illustrates that the asymptotic Jaw of Eq. 113 1s
reasonably accurate for R; > 8. For R, as ilmail as 3;2;»:;;/;:;,

ere a rigid hexagonal lattice is an excelient appr n,
:ﬁ; results ;gf the asy%nptotic line are about 13% high. When Esin
and Shikov compared their result, Eq. 114, with the Esm-Marlfov
experimental findings, they obtained a value of y[r; correspond}ng
to R,~ 2.6, a result they considered to f:orrespond to an 1m}-1
probably high adion surface coverage density. -For example, \'«11};
y =2 A, |g;1 =280 pcoul/cm?, much too high a value. e
same data lead to an even larger value of |g,| when the accurate
nonideal dipole treatment is used. )

Fsin and Shikov ascribed the failure of their treatment to
explain the Esin-Markov results entirely to their neglect of
thermal effects. More important, we believe, is the general
crudeness of the model used, which neglects the effect of the
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electrode, oversimplifies the effects of the diffuse layer, smears out
discrete diclectric constant contributions in the inner region, and
treats nonideal dipoles as ideal. In spite of these deficiencies,
which are easy to see in retrospect, the Esin-Shikov treatment
was a pioneering attack on the problem of discreteness effects
in the double layer.

Ershler’s (32) trcatment is strongly founded on that of Esin
and Shikov but makes a number of valuable modifications. The
three different models considered by Ershler are illustrated in
Fig. 264, ¢ and d, where the circles denoting image charges are
shown dotted.

The model of Fig. 265 is based on imaging of adions in the
diffuse layer. As Ershler points out, the regular array of counter-
ions at the OHP assumed by Esin and Shikov will be disorganized
by thermal motion and, if the concentration is sufficiently high,
the charge in the diffuse layer may be well approximated as all
lying in the OHP. The resulting imaging of the adions is of the
0-C type of Table I. This conductive single imaging in the OHP
(rather than in the electrode) should be distinguished from the
different, perfectly polarizable (e, = o0) dielectric imaging
(O-D) with which it might possibly be confused. In the latter
case, there would be no real charge at the OHP.

For the model of Fig. 265, Ershler obtains the result

A = 0.74(2pr)) = 2.96R; (116)

We have maintained here and will continue to maintain the
meaning of y as the distance between IHP and OHP. In the
present case, it is only half the distance between charge layers,
whereas it was the full distance in the Esin-Shikov model. Never-
theless, it is convenient to retain the same definition, R, = 2r,[y,
in the two cases, allowing direct comparison between them.
The result of Eq. 116 arises because both y,, and the average
p.d., here identified with the quantity V, defined earlier (with
B replaced by y), are measured only over half the distance between
charge layers, since one of them is here composed of image
charges. Thus Eq. 116 is fully equivalent to Eq. 114, since 2y
here measures the distance between layers which was given by y
in the Esin-Shikov treatment. Numerically also, the actual layer
separation is, in the present case, twice that in the former. The
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use of the more accurate value of ¢ changes the factorf2.96t ltlo
3.0418. On employing this number and y :22 A as be %re, ble
Esin-Markov results lead to |¢,| = 70 ucoul/cm?, still consi 1ertah y
too large a value but much closer to a.reasonab‘lc result kag
before. The nonideal dipole curve for tl}ls model is that mar ed
B = 0 in the figure. The derivation of this .result.wﬂl be. dlsculs'se
later. Since it lies below the asymptotic .sohd straight line,
accurate treatment of the model does not improve agreement
ory and experiment. .
be;vr:eoezigeforycalculatins taking some discreteness into account
to explain the Esin-Markov effect, it is necessary for A to belarger,
for reasonable values of 8 and y, tban predicted by the last tv}vlo
models. Ershler’s next attempt [Fig. 26¢] reverted back to the
real charge pairs of the Esin—Shikoy mode_l. He added conduc}:we
imaging in the ESP of the nom(.ieaI dlpOlf;S form.ed by t }?se
charges. This, then, is single imaging of nonld.eal d1poleshrat er
than single charges, but Ershler aFtuall.y again treats them as
ideal dipoles. Ershler shows that, in t.hls limit, the. asym;l)_tot.ltc
result is again given by Eq. 114 and is 1ndep§ndent, in the 1r11;11 >
of f. Thus, this calculation also cannot explain the Esin-Markov
eﬂ:\cy’;en the dipolcs and their images in the metal are no longfcr
treated as ideal, it is of interest to examine the resulting curves for
A, which will, in this case, depend on B = gy as well as R;.
To do so, we shall use the modified cutoff modeI: For th.e present
model with conductive single imagi_ng of nonideal dipoles, it
leads directly to the following expression

A = (B 20y + @R — piRy)

AR o]
- (=) (]

- :{” (4181;1L 3)}2+ (4BRT 2) ]
NI R
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The first term in curly brackets arises from the right dipole
layer and the remaining square-root terms all originate from the
left (image) layer. This expression involves the nearly constant
function p(&) introduced earlier for fixed hexagonal arrays,

The broken-line curves of Fig. 27 illustrate results calculated
from Eq. 117 for several values of B. In these calculations, (&)
was obtained from a 22 rational function approximant in order
to yicld high accuracy. It was found, however, that for this
particular expression for A, the & =0(R, — ©) value of p,
Po = 0.6575206, yielded results within 3% of the accurate oncs
for all B values shown over the range 2 < R, < 30. It may,
therefore, be used in practical calculations of this type with a
great gain of simplicity and insignificant loss of accuracy. Note
that all the broken-line curves g0 to unity as R, — 0.

The B = o broken-line curve was calculated from Eq. 117.
In this case, imaging disappears and the model reduces to that
of Fig. 26a for a single nonideal dipole array of real charges.
Note that the B— oo limit must be taken before the R, — oo
(ideal dipoles) limit used in obtaining the bottom straight line.
Thus, the B = c broken line is asymptotic to the bottom
straight line, while all finite B curves arc asymptotic to the top
solid line. It is evident that no distinction need be made between
the B =2 and B = « curves when R, 2 4. Since all the B
curves lic below the top solid line, the accurate treatment does
not lead to a better cxplanation of the Esin-Markov effect.

The B = 0 curve of Fig. 26¢ is of special interest because when
B =0 the central (—q1) — (¢;) dipole charges coalesce and
vanish. The model then becomes essentially equivalent to that
of Fig. 26b (separation of charge layers 2y). An excellent internal
check on the accuracy of the results is afforded by the recognition
that the B = 0 curve can be derived from the B — o curve by
picking a given R,, finding the point on the B = o curve at
R,[2 (because when Y =2y, R, - R,[2) and then moving this
point back to the line defined by the original R, choice. This
is equivalent, of course, to moving a given point on the B — oo
curve horizontally to the right by a factor of 2. We find very close
agreement between the curves when this process is carried out
even though the actual B — o curve was calculated with only
the first part of Eq. 117 and the B =0 curve with the entire
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1 >s wi i lues of & This
involving p(&)’s with several different va : '
t:grrrz:rfeIllrtw of cgourse, establishes a comphcatledh rejlxa?orrlrsl}:lllg
’s, since it is possible to set equa the A for
?(;!: Og?%e;h;?ffr)ld B — o with the more complex A formula for
= d R, half the B = o R, value. o
? Th(:, al‘:st Elrshler model, Fig. 264, corresponds to the 1nﬁn}1:e
:maging, C—C case of Table 1. Ershler does not really treat this
1cr;:seg asg ’an infinite imaging problem, however. Instead, by a

judicious averaging of results obtained from some of his earlier

models, he obtains
A =0.5[1 + 0.37(y/r)] = 0.5[1 + 0.74R"] (118)

This result, like the earlier ones, was taken to apply or;lyA forn({:1 -th(e)
and is appropriate only for § =y. If we use ylg 2 A 1.'21 d the
Esin-Markov result A >~ 0.58, we find from Eqg. 1 tla %Er .it
and |g,| = 86 pcoul/cm? The |g,| value is still too grge, o

to be as small as 30 ucoul/cm?, y must be about 3.4 A, pro y

alue. . .

to%lx‘z}rﬁ:rau:ed his result in a simple isotherm to explz.un ;he Emz:
Markov results. (See Section 11-2.) Although he obtlz{une rils(())1

ably good agreement with experiment, .he tO{) y[ry and.o%
probably too small over much of the expe'rlmenta range, 1o
course, made the specific and not necessarily accurate assurtxplft)hose
y = B. These approximations, takeq togejcher with most 0 ose
discussed in connection with the Esm-Sh.lkov calculaélon}f, m e
Ershler’s agreement with experiment quite suspect. uch agr -
ment may also arise from the use of an inadequate 1sotl erm.te

spite of these strictures, the Ershler treatment was a f(1)ng sinp
forward, and, in particular, provided t.he ieedtfl(iz ntt};e owering

ingle- and infinite-imaging trea .

Ofglrea}r::zg:n(lf);) gwas next to carry out _signi{.icant. dlsqetenfts}s1
calculations. He first considered a smgle-lmagmg'snua;m;l V:his
discrete charge layer separation of & = 2y, as in Fig. 26 ..t}rll ;
work, Grahame compared results of his cutoff tregtmept w1f p: a;
results obtained by directly summing tbe contributions irom 2
finite number of hexagonally arranged ions and their 1mjges n
the diffuse layer. For the cutoff model, he used the Yalue p = pﬁi ;—é
0.5250376, which we have seen is only appropriate for 3 e

hexagonal lattice when & — o (since we are presently dealing
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with imaging in the diffuse layer, § — o is equivalent to r;, — 0
and/or distance measured from the imaging plane at z =d
approaching “‘infinity”’). By comparing v,, values obtained from
the cut-off and summation methods, Grahame found that as
R, = 2r,/y became sufficiently large, the summation result
approached about 0.805 of the cutoff prediction.

Now in the limit R, — oo, ideal dipole results should be ob-
tained. In this limit (§ — 0), the appropriate p is not p, but that
of Topping: p = p, ~ 0.6575206. The ratio p,[p, is about
0.7985, close to Grahame’s value of 0.805. Part of the difference
arises because it has been shown (6) that Grahame’s direct
summation results for y,, are about 49, too small.

Grahame did not recognize that in order to employ the cutoff
approach to yield accurate values of y,,, one should use (90) p,
for R, — o and p, for R; — 0. He instead used g, throughout,
and, for reasonably small y, merely multiplied the g cutoff v,,
result by 0.805. Except for the minor difference between 0.805
and 0.7985, this procedure should be valid for sufficiently small
y[r, that only the first-order expansion term in the cutoff model

(involving y/[r;) be significant. Grahame expanded to second
order, however, and obtained

A = 3.064R; — (3.5465R;1)?
~ 3.064R;" — 44.61R;® (119)

Expansion to second order of the cutoff expression for y,, using
b = p, actually leads for R; > 3 to

A ~ 3.0418R* — (3.0418R")?
~ 3.0418R* — 28.144R? (120)

Grahame’s result is quite close for the number in the first-order
term, but his second-order term is too large and needs to be
multiplied by the factor (0.7985)3/0.805. Grahame would have
obtained nearly the correct second-order term also had he
applied his factor 0.805 twice more to it instead of using this
factor only to multiply the p = p,, cutoff expression for wu,,.
Actually, the second-order term should not be given anyway
because by the time R, is sufficiently small that the second-order
term becomes a significant fraction of the first-order one, p(§)
itself can no longer be accurately approximated by p,.



128 C. A. BARLOW, JR. AND J. R. MACDONALD

Grahame also carried out a semiquantitative calculation of the
C-C infinite imaging situation. His treatment, while seminal,
contained several errors (6) and even though some of them
compensated for others, he arrived at the result (see Fig. 264)

A =90,/00 =912/ Voe = 4 =7[( +7) (121)

supposed to hold exactly for all ¢ and ¢, combinations. This
result corresponds to the assumption of a constant field in the
inner region. It actually neglects the direct contribution to yq,
from the discrete adions themselves and implies ;5 = Vi,.
Thus, the potential varies linearly across the inner region and V3,
is reduced from V,, by just the proper distance ratio A.

When ¢ = 0 and R, is sufficiently large, we shall see later that
an exact treatment of this problem (5) shows that Eq. 121 is
indeed a good approximation. On the other hand, the constant
field approximation may be very poor for ¢ and ¢, values found
experimentally with, for example, 1.0N¥ KI in water. Then Eq.
121 becomes a poor approximation. We will now revert to the
more usual definition, R, = r,/B.

B. Conductive-Conductive Imaging. The first exact treat-
ment of a simplified double-layer model taking discreteness of
charge in the inner layer into account seems to be that of Levich,
Kir'yanov, and Filinovsky (70), presented at a symposium
honoring David Grahame in 1960. An almost identical paper by
Levich, Kir'yanov, and Krylov (71) appeared a few months
later. Besides the replacement of Filinovsky, the only important
change in the published version is that the original conclusion
of “insufficiently close agreement” between some of the theoretical
results and known experimental data is converted to “quite close
agreement.” Can we conclude that Filinovsky was cautious and
Krylov optimistic ? Insufficient results are presented in the paper,
unfortunately, to allow one to answer this question readily.

The Levich et al. calculation deals with the C-C infinite
imaging case for an infinite fixed, plane hexagonal lattice of
adions. An inner-region dielectric constant is introduced and a
general analytic expression for y,, is quoted. Few details of the
calculation are included, but the authors seem to use the GFA
Fourier-Bessel integral technique (115) which finally leads to a
triply infinite sum of modified Bessel functions of the third kind.
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This series is difficult to evaluate and no numerical results for
Y12 Or A =y, /V,, were given. Although it is thus difficult to
check the correctness of their series against later accurate values
of A calculated by simpler methods (see later discussion), the
author§ reached the Ershler-Grahame conclusion that ’X,N A
for. adion surface coverages of 25-30%, correspondin : t?e
believe, to the maximum found experimentally, ® ’
For. the C—C case, whe:re. the deviation in linearity of the potential
rAnz?}fl rlcr)lltl:lge}t:d be small, it is convenient to introduce the quantity
A =yu/Viy = A1 + A] (122)
where‘A measures the relative deviation from linearity. The
potential difference y,, is made up of a uniform D ﬁeld. art
v (1) —y.(Z,), and a part arising from the discrete acII)ions,
themselves: 'wa(l) —¥(Zy) =9, (1) = v2(1), in the present
case. On noting that Ye(l) — 9, (Zy) = AV,, = PV (2 + (g9/9)],

we obtain
A =2 (1)/aV,, (123)

The various Russian writers have usually expressed the de-

f\g: ;)on: frlom linearity in a slightly different fashion, They write,

Y12 = AV + o'V (124)
from which it readily follows that
©=BY (1) = [2 + (g/g,)]A (125)

where W#/(1) = y)éz’.(l)/zpm. Note that this « has nothing to do
with the polarizability « used earlier. When g=0,let A=A,
an.d w}.len y =8 de'ﬁne A = A% Most authors have dealt prim-
arily with the combined case, for which A = A% and & — 0.5A0,

We now see that the Levich et al. conclusion A =~ Als equivaler;]t
to neglectmg A compared to unity or, equivalently, the term
Involving «, at least when g =290.For 6§ =0.30, R, =2 g =
;}ierQ isé w‘(z) ({)ié;u;l‘ 7 };g 7.3 A and work to be discussed later

1§ Bo= U.U4 for the hexagonal-array situatj i

negligible but nearly so. i Y SHuaon, mot endrely

Tlhe next significant work on C-C imaging was that of Levine
et al. (75) who used the Grahame cutoff model with Grahame’s
constant p value, p_. The micropotential v, was written as
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5 51 - bation potential.
V,. + ¢5, where ¢51s a self- atmosph(_fre pertur
Silnce ¢;pis written as ¢,(0,0) by Levine in later.work (77), we
shall here denote this quantity by ¢,. We may write

Pre = Vig + 61 = Iyl + (9/91)] + 1 (126)

showing how v, differs from the average value V;,. Further,
Levine et al. (75) introduce the quantity g through

$1 = — Pl (127)

and write g as g4(5) in later work (77). We shall use the simple g

designation, o
On comparing Eqgs. 122, 123, and 126, one readily discovers

that

¢ = w2 (1) — AV, (128)
e g=1—211r2(l) (129)
We may also write
A =[1 =gl + Zy(q9/)]7" (130)
nd
? 2= Al — g (131)

Note that when ¢ =0 and y = §, A=A =2a=1—¢
Since A varies from 1 to 0 as R, changes from 0 to oo, g will
correspondingly change from 0 to 1 in this case. Since they are
almost exclusively concerned with ¢; and g, Levine et al. do not
generally specify ¢ when they deal with ¢,. Never-theless, g and ¢,
cannot really be separated and should be considered together.
The above relations show how terms involving ¢ enter the
various equations when ¢ is arbitrary and is not necessarily
taken as zero. ]

In order to treat the (—C case with the restriction B =y,
Levine et al. (75) summed an infinite number of qutoff model
single-image potentials in a way which follows dlrec.tly fI.‘OIIl
Grahame’s (52) more qualitative treatment of C-C imaging.
After applying the Poisson summation formula, they obtained a
result which may be written

A = (87fm) 3 (2m — 1)7K[(2m — Lmr]  (132)
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where K, is a modified Bessel function of the third kind and
r =r1y/d = pRy[2. Thus, R, ~ 3.80937, and R, =~ 0.6349 x
10%r, when g =3 A. For R, > 5, it is a reasonably good ap-
proximation to retain only the first term in the series and replace
K, by its asymptotic expansion. One then obtains

Aj = (4[m)(p o Ry) 2 exp [ —mp o Ry [2] (133)

where (mp,[2) =~ 0.8247. Thus, for R, > 5, the linearity param-
eter AS rapidly decreases and soon becomes negligibly small.
No numerical values of g (or AY) vs. » or R, were given by Levine
et al. It should be stressed that the above results for A9 apply for a
cutoff approximation only, not for a hexagonal array; thus,
R, = (ro/pB) 1s just a normalized distance measure, not a
hexagonal nearest-neighbor distance, in this case. The constant-p
cutoff approximation smears out much but not all of the discrete-
ness contributions to the potential. It is not possible to use
Levine’s method for a hexagonal lattice approach to C—C imaging
because p must vary with & in this case. Each term in the original
series then requires a different p, since each pertains to an image
plane at a different Z, and the Poisson summation formula is
inapplicable.

On the other hand, since g is independent of Z in either the
HTL or LDL situation, the above limitation does not apply
in these cases. The Levine series and its asymptotic approxi-
mation will, therefore, apply for these conditions if we replace
1o by ry,, or 15 p, by Ry,./R, or R /R, and by R,,,[2 or R,/2 for
the HTL and LDL cases, respectively. For example, the choices
R, =2, 4, and 7 in Eq. 132 with R 2 replacing 7 lead to A] =
0.087, 5 x 103, and 6 X 105 respectively. These results
indicate virtual linearity of the local potential for 0 < Z < Z,
when R, > 4 in the LDL case. Note that they are independent
of R, provided the latter is sufficiently large that the LDL con-
dition is indeed appropriate.

In 1962, Levich and Krylov (69) gave new expressions for the
hexagonal lattice micropotential (|w| = 1) pertaining when
B = y. No numerical results for y,, or « were given, possibly
because complicated triply-infinite series were involved, but the
series were, in fact, used to derive curves to compare (for o = +-1)
with data illustrating the Esin-Markov effect. Using a Henry
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(Boltzmann) isotherm, Levich and Krylov achieved qualitative
agreement with experiment provided they allowed y to vary
from 0.847 A to 0.780 A over the experimental range of V,,
from zero to maximum |V,,| in the @ = 1 case and from 2.112 A
to 1.860 A in the o = —1 case. Further, in these cases €, varied
as well from 14.11 to 13.00 and 28.16 to 24.80, respectively.
The use by Levich and Krylov of an overly simple isotherm, the
choice B =y, and probably unjustified magnitudes and vari-
ation of y and ¢, all combine to render the qualitative agreement
found of little if any significance in our opinion.

Later, Krylov and Levich (64) applied their results to a con-
sideration of surface tension for @ = 1. Calculations using
hexagonal and cutoff (p = p,) models were compared, and it
was found that interaction between adsorbed charges led to an
increase in surface tension with increased coverage. The cutoff
increases were somewhat smaller than those following from the
fixed hexagonal lattice situation. Further, the changes were
greater for « = —1 than for w = 1.

The hexagonal array model was next used by the present
authors (5) to treat the C-C imaging case. A modification of the
Ewald method was employed to yield a rapidly convergent
triply infinite series for (1), and many curves of A vs.r, or
R, were presented. This work was not restricted to the conditions
¢ =0 and B8 = y. Figure 28 illustrates, however, the results
obtained for this simplified case. The cutoff model curves, shown
dashed, were calculated using Eq. 132. It is clear that in the
range of possible r, values, from perhaps r, = 5 or 6 A on, A}
is small and decreases almost exponentially with increasing r,.
For large r, there is substantial difference between the hexagonal
and cutoff curves but such difference is of little or no significance
in this region where A is too small anyway to be important.

To illustrate the g £ y, ¢ 5 0 case, we include Fig. 29 which
uses Grahame’s I N KI ¢, ¢ results (51). Here z, = —1, and the
A,y curve shows the behavior if ¢ were zero for each ¢, value.
When corresponding ¢, and ¢ values are used, the A curve given
is obtained. It has a pole at the point where V,, changes sign. We
thus see that when experimentally derived pairs of ¢ and ¢,
values arc used, u;, may be far from the proportion 2 of V.
Nevertheless, ¥'{# (1) may actually be quite small over the entire
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range of ¢,. For example, at ¢, = —42.61 ucoul/cm?, r, =~ 6.59 A,
When B = 3, we then find that the hexagonal A, is approximately
0.09. Since A, = ¥»(1)/AT, we obtain in this case ¥¥(1) ~
0.0075. On the other hand, the corresponding

Y1) = ¥@(1) + AB

is approximately 0.7575. This value is close to the fraction
Bl =1 — 1 = 0.75 which the local potential V(1) should be
of p, for o =1 in the ¢ = —¢q, case (see Fig. 37) provided the
potential variation is linear.

It is of interest to show how ¥(1) = y(1)/y, may be readily
obtained from published C-C and @ = 1 values of A, for ¢ # 0
and § = y. Since V(1) = ¥V(1) + {y.(1)/y,}, we may use the
above relation between ¥{U(1) and ¥¥(1) plus the identity
¥ (1) = AT'A, to obtain

‘F;l’(l) = A[TA, + B] (134)
and

F(1) = Z7 [T, — T{l + (q/g)} — (9/g)]  (133)

This result of course only applies for C~-C imaging or for C~D with
w = 1. In the above KI case with B = 3, ¢ = 18 ucoul/cm?
when ¢; = —42.61 ucoul/cm? The quantity ,(1)/y,, then turns
out to be about —0.578. Thus, ¥ (1) itself is about 0.18 in this
case. In the single imaging case, ¥'(1) is much smaller, less than
0.01, since most of the potential variation lies beyond the THP
for this situation.

Next, Krylov (61) extended some of his earlier results and
calculated values of « for the 8 = y case. His results are shown in
Fig. 30 and compare the hexagonal lattice and ordinary cutoff
model predictions for « for both w = 1 («, scale) and v = —1
(¢4 scale). Note that for « =1 and § =y, a =a, = AY/2. The
abscissa scale measure, é/r,, equals 28/r;, = 2/R, in our notation.
For the choice Ry, =2, éjry thus also equals V6. We have
compared some 2o, values with the corresponding hexagonal and
cutoff values of A shown in Fig. 28 and find good agreement even
though the methods of calculation differed tremendously. The
o = —1 results for «, will be discussed later along with more C—C
and @ = 1 imaging results included under partial imaging.
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ﬁ';l(f” m}agltng;ha = oy ﬁl)r @ = —1) upon dJr, = 2/R,. Here, curves marked
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cutofl medet (65} o the ordinary Grahame

F inaIly,.it should be mentioned that Levine et al. (77) have
rcccntly.glven an expression for the C-C quantity g, for # not
necessarily equal to y, which involves three separate singly infinite
series. It was derived using the ordinary cutoff model with an
arbitrary r,, denoted r- Thus, this expression may be used in the
HTL and LDL situations as well as in the ordinary Grahame
case for which g =rpand p = p_.

Although no curves of g vs. r = rs/d are given by Levine et al.,
they do present some numerical values of (I — g) for six ’s lying
between v =1 and 2 for § = 3 A and y =1 and 2 A. When
plotted,. one finds that in both cases (1 —g) is very nearly
Proportional to exp (—2.857). )
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i :der C—0 imaging with a
i Imaging. Let us first const :
C(iusclt;:lsg,leelectro%e.gAll imaging effects of 'glehdlﬂ'ulsetéacyoe;;;e
tha id i = nd the solu -
‘lv neglected, valid if e, = €, 2 : !

ol neci:s\s:? ylow.gThere is good reason why the ¥n1cropot\c>\r;}t}1al

tratl(r)::ther t}?an ¥ should be considered in this case. en
Y12 w

g # —4» the uniform field potential
v(2) = —¥Z01 + (/9]

1 1 = oo. Thus, itis
is nonzero and is of infinite mag_mtude when Zd flon erti,n i
cferable to consider the theoretical p.d. ;2 and, W 1e P (O;
(rid to it the actual small p.d. across the diffuse layer ¥s«
a

Vs derived from experimental results.
®© .
We may now write

Y12 = %(1) - QPG(ZO) + '(Pe(l) - %(Zo)
= Paz, + Tvall + (g/91)]
_ It then follows that

(136)

(137)
where Vea12Z, = %(1) - %(Zo)

Vi (138)
Il + (g/g] + &Y.
T+ Zo(‘]/‘h)

. The quantity A may now be written

1 + (1 + B) AY, (139)
T + Zo(9/91)

These results also apply for partial i.magi'ng (g—ftitgffe) provided

-« calculated for the pertinent imaging sitd . .
A‘il‘):‘:);SOCfC imaging with the OHP approx1mated1as atcom:fxéigﬁg

i 1 i ill involves tran
. Sotential surface, specific adsorption sti ring

Zglil(ii(s) From the OHP to the IHP. In this case, howgvgr, (;;—1 1;
almost always pertinent to tak'e g1 = —92 2 gifouOnHeP o
situation. If we measure potential and Z from the O e is
than from the ESP, as in the C=D case, the actual situ o
equivalent to that of C—0 imaging with ¢ = —f1 ztin(if‘ari?lr;r "
ing ESP except that the roles of g and y are reversed. 111 her, )
potential is then zero at the OHP and thus p;5 = ¥(1) = ¥a

where AY, = va1z2,/¥
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for this situation. It then follows that
A= tP12/V20 = ’Pa(l)/nl’w = \Fa(l) (140)

In this equation V,, equals — ¥V, except that the roles of y and g
must be interchanged. If] for convenience, we maintain our usual
definitions of I' = y/B, B = B/y, and 4 =T'/(1 + T'), changing
from C-D to D-C imaging as above causes y,, to change to I'y .
Since Z, however, is now measured from the OHP, it is logical to
take Z = z/y; then Z = 1 still corresponds to the ITHP. It will be
clear that Eq. 140 applies for either O-C or D-C imaging if
y,(1) is calculated for the imaging pertinent. Clearly, A values
for —1 < w < 1 D-C imaging lead directly to the normalized
potential at the IHP. If they are given as a function of R,, then
R, must be interpreted as r,/y in this case. The same values of
A(R,) may be used to obtain ¥,(1) directly in the C-D case also
provided that in this case R, is once again interpreted as r,/f and
D-C imaging TI' values are transformed to numerically identical
C-D B values and vice versa.

The early work of Esin and Shikov (34), Ershler (32), and
Grahame (52) already discussed, involves various approximations
to O—C or C-0 single imaging. Before discussing further work in
this area, it will be valuable to summarize the modified cutoff
model predictions for quantities such as A and A. For simplicity,
take ¢ = —¢;. Then for C-0 imaging we obtain

Fo(1) = H{(pR)* + 4312 — (pR))]
=~ (pR)7T — (PR3, (PR > 2) (141)
in agreement with Eq. 120 if the R, = 2y/r, used there is replaced
by 28/r, before comparison and the p here set equal to p,. Similarly,
VYa(Zo) = A(PRY)® + (Zo + 1)PP2 — {(pR)* + (Z, — 1)*}7]
=~ Zy(pRy)™t — HZ3 + Z,)(pRy) 7,
[(pR) >(Z, + 1)] (142)
Using these results and Eq. 138, we find for pR, > (Z, + 1)
A= —AY¥, =~ T(pR)™ — §(Z] + Z, — 2)(pRy)~*  (143)
for g = —g,, and for g =0
A=A, = B[l + (1 + B)AY,]
~B — (1 + B)(pRy)™* (144)
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We see from Eq. 144 that the limiting value of A, is not ze;o lz;:;
B. also the limit for C-0 imagifng wtllen.R; — I’?m allfl lewi s}’lould

’ iate value of p in these formulasis po-. , we
apPr:f }31;11? ti:t in Vie£ of Eq. 140, in the 'O—C case A is given bz
jL(l)Slt the ¥,(1) of Eq. 141 provided R, in this equation s interprete
® Ir:1/y1-961 Mott and Watts-Tobin (94) c'arried out an apprdo_x1-
mate C—O,single image treatment in whlchd:che dlscre.tte Tf ;?;s
i lv smeared while the adion array 11s€
by Bl 1 le of the usual Grahame

the cutoff method with a hole ot t .

traedaitfsd P Y: fﬂ?\fu)—l’z. Such a treatment retains very little pf the

f)rigin;l :;liscreteness of the system. Further, 1t includes thiilrréf]if;
i int “d” his image over a
dion at point ““d” but smears out t

(r)(t; aiIclnfl rlr(l):kingp its potential contribution .erroneously dep(?rild (})ln
Ngand’ r.. In calculating the energy equivalent t0 1y V\ig ht e
self imagle energy included, Mott and Watts-Tobin shou ha}vE

roperly considered the difference [¢; 2(1) — ¢: Z('Z};))]}’l w 1ca :
gllows the image of an ion being adsorbed to move with t e.lgn .
it progresses from the OHP to the IHP. Instead, they considere

__(1) and smeared its effect. .

On{}/\}j iia(w): shown (6) that the Mott and Watts-Tobin model leads

to the following expression for Awhengqg= —q
= —P1afPo = —AY,
— [T + (puR)) — {(pRD)* + rep/2) (145)

where we have replaced 7o/ by poRy. Inthe limiFs pmlil > I' and
poR, < T, the above equation reduces to approximately

A= T — (P22)(pR)T, (B> D) (146)

e A b(poR) — (PRMED)T) (Pafa< T) (.1‘.}7)

Mott and Watts-Tobin implicitly considered only the condl_tlosr;
pRy> T from the outset and obtained Eq. 146. Dlscretenecsls 1ts i
liototle evident that the corresponding ¥ p.d. does not d(?;;fn -a
on B. The cutoff model for this case lea<.:ls to Eq. 143 wit dp —% [iﬁe
In addition to the difference in the sign and magnitu 4e60 e
coefficient of (pR;) !, thereis an ad.ditlonal term in Eq. lh wvelrl
does not disappear as R, — o0. Th‘ls term arises from t le ccl)ed 1371
approximate treatment of the self-image charge, not inclu
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the cutoff model but easily incorporated in it properly when
desired. These results indicate that the Mott and Watts-Tobin
result is less appropriate even than the earlier Esin-Shikov (34)
expression. When I'> p_ R, the image term becomes of negli-
gible importance. In this case, in fact, the cutoff model leads to

A= 3{(poRy) — {(Z5 + 3)/4(Z5 — 1)}(pR)?]  (148)

the same to first order as Eq. 147 and nearly the same to second
order when I' = 1.

Next, Levine et al. (75) used the Grahame cutoff model to
examine an O-C situation for which ¢, (pertaining to a colloid
plate region to the left of the ESP) was taken as 15, as was ¢,.
Further, ¢, was assumed infinite as well and the OHP taken as an
equipotential surface. Since the average potential at the ITHP will
be 'y, for O-C imaging, again measuring Z and potential from

the grounded OHP, we may write in the spirit of Levine’s
approach

vo(l) = Ty + 1 = Ty — Ayog (149)
and
Y, (1) =A=1— ABg (150)
where we have used Eq. 140. It follows that
g=(1+D[ = ¥,1)] (151)

considerably different from the equation for g in the C-C case.
Had C-0 imaging been considered, Eq. 151 with (1 4+ T)
replaced by (1 4 B) would have obtained. Both Egs. 150 and 151
apply for —1 < w < 1 as well as w = 0 provided ¥,(1) is cal-
culated for the pertinent o value.

It is important to remember that in equations such as Eq. 151,
which involves defined quantities taken from treatments by differ-
ent authors, all constitutive parameters such as g and ¥,(1)
must refer to the same model. Thus, ifin Eq. 151 ¥,(1) is given by
Eq. 141 with p equal to the Grahame p,, then the corresponding
g refers to the ordinary cutoff model. Note that since ¥,(1) =1
and 0 when R; — 0 and oo, respectively, g changes from zero to
(1 + TI') over the full range of R,. Levine et al. (75) give a curve

of gvs.7 =p R,/2fromT =2tor = 10 for B =y. By 7 = 10,
gisnearly (1 + T') = 2.
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In 1963, Bockris, Devanathan, and Miiller (10) derive.dt:rri
i 1}11 m (,the BDM isotherm) intended to account for u;l
e tion: between anions and the metallic‘ electrodt? and t QSGi
ac.tl}(l)i?ls the anion layer. Discussion of their result 1s'o}£ spearz;_
Ymtt rest because they found rather good agreement w1tk _ex;ieal
1;:1“ using this isotherm. In this C-0 treatrnent},1 B(o)cHrI;st(:) thé
i ion from the
that the work of transferring an 10n 1
SItlz-lItlg w:.s neglected. Instead, the potenttial }zllt t}g:1 e(gilél;ezzclz
i the quantity (1) was used wherc :
ne%;ec—fed’(lZn )t}sliz)uld Eave be)fl:n. Thus, their treatr.nent essentlal(liy
IiprS\folves#())nl; the single imaging p(1). Their expression corresponas
v dmgf  MeofP TNV 1y gpenN] (152)
w(l) = I,

€

Bockris et al. used the
, o and M are undeﬁ_ned. Bo . -
;fézgesiset’e;z rei’ation wN(r,/2)? = 1 in arnving at this rc;sult. :E:;Sl
differs from the relation between these quz;lntl}fles for 31 esxz% nal
i i 0.68. Although these author
lattice by a ratio of about hese alt e oome
ion the adion array structur¢ they con: , ) :
m(zg:aftn later that their approach 1s only logically COI:)SISt%ntt th};
zeivﬁxed hexagonal array. The use of the above1 relztl‘on i vgieceal
52 is not fully related m 2 20
N and r, means that Eq. 152 1s by relate e o 152
-on to the model from which 1t was derives. = :
Etsa}sugnparently used in comparing theory and .experlment, hc3wn
ever Sve shall compare it as is rather than derive the expressio
: ding to the model begun with. .
Coflf‘;sé) Orrxlmaltlt]gr of the meaning of undeﬁr.xed z.mcll unspecf;ﬂ]
1 10 is somewhat clarified in later wor:
Problowa, K e and - (130). There, € and ¢, are written
blowa, Kovac, and Bockris (130). , e ten
ZZTGO t}?e dielectric constant. Unfortunately, the region of z%ppllcea
bilit,y of € and its value are not discussed; we shall takfjA ithasu1 1},1
the effective dielectric parameter for t}l;e 11}11ner layeirt.u deto(; t%l "
is sti i the magn
till undefined, we assume 1t to be : .
ee(ielcstrsoxll charge, e. Finally, M is defined as a two-dlm:;nslo?}zlltl3
analogue of the Madelung constant. It was taken as;h onOnal
authority of Langmuir (66). Langmuir consuiersé) a fixe rﬁﬁfﬁon_
i i d obtains 11.044 by a su _
array of ideal dipoles an e,
1 i 4 must, therefore, be a misp
t tion method. The value 11. , th ) ‘
;nngg\rniz hazard a guess that in the comparisons with experiment
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carried out by Bockris et al. the value 11.044 was used. It is now
clear that Eq. 152 must involve a hexagonal lattice model and
that M actually equals the Topping quantity we have denoted
o (~11.034).

In the later paper, the term (7 N) is written as (7¢;N/F), where
N i1s Avogadro’s number and F must be the Faraday. Now ¢, is
negative for adions, so F must also be negative to avoid the appear-
ance of imaginary numbers. Then ¢;N/F = |q,/e|, equal to our
N, the adion surface density, for |z,| = 1.

There is one remaining difficulty before Eq. 152 may be com-
pared with other approaches. The second term in Eq. 152 is
negative there but positive in the later work (130). Equation 8
in the Wroblowa paper indicates, however, that the plus sign
must be a misprint.

We shall compare the modified cutoff model prediction (with
p = po) for p(1) with Eq. 152. To maintain the same order of
approximation, we employ the form of ,(1) valid when p R, > 2.
Note, however, that the unexpanded form of y,(1) with p = p(§)
would yield higher accuracy for smaller R, values. We obtain

p(l) = (1) + (1)
= [(poRe) ™ — (poR) > — {1 + (9/9)} 1y (193)

Let us now take z, = —1 and express the above result in terms of
N where appropriate. We obtain

p(l) = — 28 _ drdib
_ (3\3;“50)61925\173/2[1 B (S;ia:)ﬂzN} (154)

which may now be directly compared with Eq. 152.
It is first evident (see also Eq. 136) that the constant field

contribution ¢, has been incorrectly taken into account in the
BDM expression for ¢(1). Since ¢, < 0 for the present case, it

turns out, however, that —(478/e,)(¢; + ¢) will generally remain
positive and vary qualitatively with ¢ roughly like the BDM term

(4mBle)q for ¢ > 0. Next, taking M = o, it is evident that we

should compare (#%2/4) and (3%4/v/2). These numbers turn out
to be about 1.39 and 1.61, respectively, adventitiously close to
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one another. Similarly, for the N*? term we should compare
(3w/4) and (3%20%(257%). Most surprisingly, these numbers are
also accidentally close, about 2.36 and 2.02 respectively. Further,
the term involving ¢? involves %, but p, is only strictly the right
value for a hexagonal array (if it could exist) with R, — co. For
R, > 2 but finite, p is slightly less than p,, leading to a decrease
in the difference between the last pair of numbers above.

We thus see that in spite of its theoretical inconsistencies and
inadequacies, the BDM ¢(1) turns out to be reasonably close to
the C—O hexagonal lattice y(1). Nevertheless, the use of single
imaging, of a hexagonal array (at the lower concentrations), the
introduction of €;, a p, &, > 2 expansion over the entire range of
R,, and the neglect of the potential at the OHP are such in-
admissible approximations that the usefulness found by Bockris
and co-workers of the BDM w(l) as the micropotential in an
adsorption isotherm can only be considered fortuitous. No valid
theoretical basis for the use of this y(1) in an electrolyte adsorption
isotherm should be asserted. While its empirical usefulness has
been unquestioned, its considerable agreement with experiment
nevertheless does not allow one to infer from it much of significance
about the structure and behavior of the electrolyte inner layer.

Recently, the present authors (6) have presented a C-0 single-
imaging treatment of the hexagonal lattice micropotential for
comparison with C-C results. Using an accurate summation
method, many curves of A, A, and AJ were calculated and
presented. It was found, for example, that A} varied from about
0.4 at R, = 2 to unity as R; — <. As expected for single imaging,
A departed considerably from its approximate value A pertinent
with C-C imaging and appreciable R,. In fact, since A¥, — 0 as
R, — 0, ¥, becomes dominated by [y,(1) —v,(Zy)]/y, in
this limit, and A thus approaches unity when ¢ = 0. Although
the micropotential results of this paper (6) were calculated using
a rather complicated formula, similar accurate results may now
be obtained in a much simpler fashion using Egs. 141 and 142
and the appropriate p(£& = R;') and p(é = Z,/R,) functions.

In Fig. 31 we have presented single-imaging A and A, curves
calculated using Grahame’s (51) 1.0N KI ¢,¢, pairs. These curves
should be compared with the corresponding C-C curves of Fig.
29. As expected, both A and A, values are generally larger in the
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single-imaging case, They are not as
h‘ow.,vever, as are the C—C ones sinc
ditions must approximate C—
In fact, were single imaging

pertinent to the real situation,
. e.the actual inner-layer con-
¢ imaging more closely than C-Q
1 appropriate in the

the large 7, pertinent in this ' e oo, case

situation would limit the maxi
: m
lg;] to a value considerably smaller than that derived fr:)lrI:l]

10

/
/

/ .
a_”’ Negative
Piteg branch

0.1

0.01

-40 =32 -24 -16 -8 0
1 (ucoul/cm2)
Fig. 31. Dependence of Ay and A on 9

_ for C—0 i i : _
?=14,a0d Z, = % using Grahame’s (31) ‘naging with § = 34,

1IN KI ¢ and ¢, results (6).

experiment. The value 7, — i i

magimun} A .of onlyez:cboutl‘l}gX ﬂdchilll/szfr(lizf:arher comesponds o a

C_%niillz 1rinag1ng represents on.ly one point on the continuum of

G ging possibilities ranging from —1 < o < 1. Although
s the onl.y maging case of importance for adsorption fr

8as phase, it is primarily of significance in th . ’case

> ! € €
only for historical reasons a Py

the o stor ons and as a special limiting case for which
Y818 becomes simpler. As we have seen earlier, however
b

1 : .
3 Otllllglug}; not of: muc}.l ph}.fsmal significance for the electrolyte
pout € layer, single imaging is of mathematical importance
oo ;1:121 resulctis f(‘:flzlu ? 0 calculations can be combined to yield
S and fields for any other pertinent o val
i : ues. Such
mode of calculation, using the ordinary or modified cutoff mlflzihog1

143
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i 1 imagi tentials, represents
late the input single-imaging po
o OEZLCI‘; ’fclhe simplest method of calculating o # 0 results. Such
P rtial imaging situations are considered in the next S.e‘itl.on' _
paD Other Imaging Conditions. Some D-C partia 1}rlr1a1396§
resuits based on the ordinary cutoff mod'If‘:}ll were Enc/lenfl:a 1tC uclation
i thod o
f Levine, Bell, and Galvert (75). e me a
PaPC;(?t described, but curves were glven of gvs. T for § = y5 ;mc}
e 1. 0.9, 0.7, 0.5, 0, and _0.5. This g is that of Eq. 151 o
w = 1, U.I, Vel Vel
jon V-2-C. . o
Seglllci)’fr‘land Stillinger (17) then published a comphcated §tat}115t1ca1
theory of the double layer with specific adsorption. T?lsht 2311;2;,
applicable for —1 < © < 1 at the OHP, made use ot the ha
FF())urier-Bessel integral technique (17,.77f;1 }t5) 1'1;06 (S)l;r?m;lgf)es, .
tribution to the potential from an ininie .
(c:l(())rllll;iyuinﬁnite sum of integrals had then tc;>Sbf:1lf:arr1egy;1;;S ;g
ion 1 HP. Buff and Stllinger
account for every adion 1n the 1 DT B ed
i heory approach which 1nciu
this sum by means of a cluster t oach . 1dec
i ion-i lations in adion position.
ly low-order interaction-induced corre .
%‘I;lzy ('zkvlven considered only the thermally averaged, or expectlau;)r;
value, potential. Although this approach accouiltcs1 propzr zm ;)11
, as
- e forces, long-range forces are treatec :
;}:;ﬁnfs:ﬁon and all Mayer f-bonds are 11near1fzed 1fn the}}t;r;ﬁy
i i i t is valid, therefore, for a it
range interaction. Thl.S treatmen L e napplic.
‘sordered situation, either the HTL or the , [
ii)sl(z:rv:}ien an array with appreciable long-range ord}fr beglrrls vt(;
i 1 i-random situation, however,
form. Even in the applicable quasi-ran :
l?erlriréve that our modified cutoff methods. are as valid as ghe a;bt(})l\;i
approach and are far easier to apply. It. is perhaps signi 11can Jhat
Buff and Stillinger present no numerical r?sults at a 121;11 0
assessment of the range of applicability of their analysis. Alt O}l:(it
the Buff-Stillinger approach might he!p one penetrate 2 sdom
distance into the difficult transition region between qua51—rzt1r%bute
and regular array behavior, it cannot be expected to con rllized
much in its present form to bridging the gap. Were 1t geﬁega zed
to include higher-order interactions, bojch analysis metho s1 <
computational techniques would be strained outside the realm
resent practicality. .
’ Next followed Krylov's (61) a(w =1) and ﬁz.(w}?i 30).
hexagonal lattice and cutoff curves already presented 11 g.
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These results also pertain only for § =y. The w =1 a =,
curves have already been discussed. For o = —1, Krylov deals
with a D-C imaging situation and writes & = a, and

y12 = al'y,, (155)
Comparison with Eq. 140 of Section V-2-G shows us that a, =

W,(1) in this case. Comparison of Krylov’s hexagonal lattice o,
values with our corresponding W,(1) values calculated entirely
differently also yields good agreement. Note that as in the C-C
case, the p = p, cutoff o’s always exceed the hexagonal array
ones.

Levine, Mingins, and Bell (77) next presented an extension of
the earlier work of Levine, Bell, and Calvert (75). This new
treatment is also based on the Grahame cutoff method, but the
cutoff model hole size variable, ry, = (7N)~12, is often replaced
by 74, a quantity which may vary with r, differently from r,.
This replacement leads to what the authors term the revised cutoff
model, equivalent :a principle to our modified cutoff approach if
their 7, is identitied with our general cutoff model radius variable,
7,. Since no complete qualitative or quantitative relation between
rgand N or r, is presented, the authors frequently use 7, in place of
7, and sometimes seem to confuse the two quantities. Although
some curves and tables are given with 7, as the independent
variable, the results cannot be related to the appropriate values of
¢, without a definite relation between 7, and V.

In the new work, Levine et al. included dielectric imaging at
both the ESP and the OHP, took the ESP either conducting or
insulating, and also investigated the effect of diffuse-layer screen-
ing as a function of the solute concentration and the potential
drop across this layer, ;.. Their treatment is thus both ambitious
and comprehensive—and correspondingly complex and approxi-
mate. Although Levine and his co-workers have applied the cutoff
model primarily in the regime where thermal motion is of some
importance, the model can be extended outside this range, as
we have shown in the prior discussion of cutoff approaches, by
using r,,, for 7, in the HTL case, 7, for r, in the LDL situation, and
p(&)ry for 7, in the rigid hexagonal-array case.

Since the quantity 7; is of considerable importance to the
Levine et al. approach, it warrants additional discussion. Using
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a grand canonical ensemble, Levine and co-workers arrived at the
i 1t
(approxunate) resu
S*(p) = qlexp (—=V(P)/ET) — 1] (156)

where S*(p) is the fluctuation surface charge density, p‘tlie dflSta::z
ions 1 d V(p) the potential of m
een two ions in the IHP, an I .
?(frt; between the two ions under the actual confhtlons applying
in the inner region. They used this result to obtain

=2 ol — e (FRD &

e of e[l —exp (—V(AKTI dp  (157)
Tim )
ition V(p) = oo for p < Tims cor.151.stent w§th Tim
V(\::lhe:cftetgea fgﬁiet paper(li)r)l question) being the minimum dlstam;:
of approach in the plane because of .hard-core sterl}i: eff;cts), _“_, 5
used to arrive at the second form. Tt is clear that when V(p) =
as well, 7; = T1me .
fOI‘F#())r>51711i;‘niciently srflall lq,), the .aut-hors approximate Vl(]PZ:S a
function of ¢; and the imaging-shielding .condltlons as »;eadionps
by Ve(p), the interaction energy of an 1sola.tedh pz(ijl.rlcfose dion
separated by the distance p in the presence of the dI tu - Zhi;
The above equations are probably rriost n?}:);;‘rtohirzr th e
imi s of an approximate treatme ' f
g:rflfll_tls? }’a}T’T;ia I:clhey thenpfalculate for various imaging ilqndltttl;)r;s
first Vol(p) then (75)e which is the quantity correg)or}( t)nfg X ;
when V(p) is replaced by Vo(p),. itself independen 5 q;han
definition. Asserting that V(p) _w111 decay morehrapl zr than
Vo(p), Levine and his associates interpret (7p)o a5 t bcl upp1 i
to the value of 7,. This limit must c}early be applicable clmdys nen
7, —~ 0 and r; —+ o, the LDL regime. Thus, one COl’lClél creases
r; must vary from some mininllum vatlun:l to (r5)¢ as lg} dec
rom its maximum possible value towards zero.
: Since we may idel?]tify Ry = rﬁjﬁ.wu}} the &, of Fig. _Ii, :;16 Sr:ag/f
compare our conclusions concerning its variation wit O, o
Levine and co-workers. The latter athors_ take ry,, < ga <'th0’the
R,,, < R; < R,. They seem to be primarily concerned wi e
qtllrgsi-random region and perhaps somcwhat‘ with the t;aniatter
region, although they do not discuss the existence of the
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region explicitly. Certainly, they do not intend their treatment to
cover the regular-array region.

From their definitions, it is clear that our R, and (R;), = (75)¢/f
are identical in principle, even though the ways used to calculate
them by ourselves and Levine et al. differ. For given imaging
conditions, R, is approximately the minimum distance of
approach of two isolated ions. It i1s generally greater than ry,,
because of the coulomb repulsion effective under the given con-
ditions. In our calculations of an approximate R,, diffuse-layer
shielding has been ignored for C-0 single imaging, while it has
been included in our ¢—C imaging treatment and in the work of
Levine and his associates.

Reference to Fig. 13 shows us that indeed R; < Ry, as expected
by Levine et al., in the quasi-random region where R; = R,, a
constant. We also see, however, that while R, is the ¢, -0
limiting value of R, it is not necessarily the upper limit of R; as
stated by Levine et al. Depending upon the value of R, and the
widths of the hexagonal and transition regions, R; may or may
not reach a greater value than R,. For the C-C imaging con-
ditions of Fig. 13, it almost certainly exhibits a peak, as shown.
Using our modified cutoff approach, we are able to extend
consideration of R; into the regular-array region. In this region,
we have seen that the cutoff equations can be made to represent
a hexagonal-array model provided 7,/ = R, is replaced by
p(E)R;. This quantity, R, is only equal to B, when p(&) = p,,
Grahame’s value, which we find to be appropriate for the
hexagonal array only for & > 1. Figurc 13 was calculated for
Z = 1; thus, £ (= R;') ranges from 0.5 down towards zero. For
this range, (&) varics only from about 0.62 to 0.657, nearly cqual
to po. Therefore, in the available hexagonal-array region, from
R, = R, to the transition region, R; = R, is roughly 0.64R,, not
equal to R,, which is given by 0.525R,;. In this range we see that
R; > R, opposite to the Levine et al. conclusion. If the adions
could actually be close packed in the plane, R, would equal R,
but the appropriate R; which should be used in the cutoff model
formulas would be p(£,)R,,.. about equal to 0.62R,, = 1.24
tor Ry, = 2.

Let us compare our and Levine’s results for r, for as analogous
situations as possible. Initially, let us restrict attention to the
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situation where the dielectric constant of the region to Lheﬁeft. of
he ESP is taken infinite. This appears to cor‘respond in the ev1rlle
zt al. treatment to taking the ESP clectrically cc()ind;ct‘ng(.)OCn
this case, with g =3 A e = 89.1, e = 10, ?gn : =: 1 s
Levine and his co-workers obtain (rﬂ)o =95 oi yti;—l . ,
a solute concentration of 0.1 moles/liter, and the 1{)(} en * in
taken zero. They further find (75)o = 9-3 apd 11.0 A for 1)/ —a o
and concentrations of 0.1 and 0.01 n.noles/hter, respective yt,h gt !
ith V,, = 0. The situation considered approximates that ©
giD irrf:ging with e, ~ oo and hence perfect infinite 1maging.
In this case, concentration chingis §houlzi lbe relatively un-
i i as found evine et al.
lm%)to;st?rlltt’e?zsgr(lige et(i chompare thz above results with the valuii
r ~69Aforg=3Aandy = 1 A and rcg9.2Afor{3 ':?ih
achi_ y=2A obtained from the results of Appendix 5 in Secel
simpler and more physically transparent manner 1lscus1 d
previously for the C-C case. These rfésults are surprisingly cfo ¢
to those found by Levine and his assocw;ltes,d althou§}f1 ;};e\:rrll; iois
i i i 1 egree
with y is opposite. We belleveeglzllt\I (t)t eonl 5 ce o g
Levine’s (r5)¢s calculated in quitq different ways ford .slllgckgli};
different situations, but our analysis used a shielding diele rie
constant of unity, a value we belie\(fie to be 1c(l)ose to that approprl
i ituation, while Levine used € = 1U. L
. ;Hfhf)ugh no value of (7;), for 0-C single imaging 1s given lkg,l
Levine et al., they do present values.for. 0-D 1mag1§g \'Z h
¢. — 80.1 and some ionic diffuse-layer shle_ldmg.. Th'e combinatio
osf this high value of ¢, and some copdu§tlve .shleldu}g mally alga.llnf
be taken to approximate conductive 1maging quite chosg y. .
we convert from 0-C to C-0 imaging (ye.—> B), then the 1ndptO
values used by Levine and co-workers 1n this case corresp(l)nl.t >
f =1and?2 A, T =20°C,a solute concentration of 0.1 mo es/ ée
and e, = ¢ = 15. The quantity (rg)o was found.to. be_ 1 .Our
for f =1 A and 16.4 Afor f=2A. In contrad}stlnc;lon, ar
semiquantitative single-imaging result, appropriate : grAelf;r
e, =1, leads to r.~95A for ﬂj——lA and 7,2 AL
ﬂs — 9 A. We note especially the considerably smaller vadue o df
for p = 1 A and the lack, in the Levin_e resul}s, of much e;ienbe
ence of (r;), on f. We believe this virtual independence to

primarily an accident, howev
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incorrect. Had we also used in our calculation a value of 15 for
the dielectric constant effective in shielding the interaction, our
values of 7, would have been reduced by a factor of more than
2.4, making the above disagreement even more pronounced.
Lack of space prohibits us from giving a detailed discussion of
the lengthy and courageous work of Levine, Mingins, and Bell
already discussed. We believe, however, that the following
additional brief comments are worthwhile. Since a general form
of V(p) valid for all ¢, is not given, r, cannot be calculated as a
function of g, or r;. When |g,| is sufficiently large that Vy(p) is no
longer a good approximation, we believe that Eq. 157 is also no
longer likely to be an adequate approximation even were the pair
interaction potential V(p) known exactly. Certainly this equation
isinadequate when a regular array forms; we believe the combina-
tion of it and the cutoff model to be also inadequate over most of
the transition region as well. Next, the treatment of diffuse-layer
screening is based on the linearized Poisson-Boltzmann equation.
The inadequacy of this equation for many pertinent electrolyte
double-layer situations has already been discussed at length in an
earlier section. It is easy to show that the linearization used by
Levine et al. depends on the perturbation potential at the OHP
being much less than 1.7(kTJe), about 42 mV at 20°C. No check
of the validity of this stringent condition was presented; it is not
likely to be satisfied, for example, when |V, | = 97 mV, a value
frequently used by these authors.
Finally, of less basic but of considerable practical importance is
the lack in the Levine, Mingins, and Bell work of any experimental
or theoretical correlation between ¢, ¢;, and ¢,. No values of ¢
are given and potentials are calculated as functions of 7, or 7,,
hence presumably of N and ¢,. The potential V,, related to g¢,,
is taken, however, as an independent parameter not directly
associated, as it should be, with appropriate values of ¢ and g¢;.
In Figs. 32 and 33 we reproduce results for ¢f and A¢, calcu-
lated by Levine et al. The fluctuation potential ¢,(0,0) = ¢,
already discussed is written as ¢}(0,0) + A#,(0,0). The quantity
#f is calculated for an infinite Debye length; then A¢, represents
the correction arising from the ionic screening produced by
mobile ions in the diffuse layer. The ordinate designations of
both curves should be multiplied by —e¢, as should similar
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12 ]
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#% O, 0)/kT

5 8 11 14 17 20
ro(l'\) . . .
Fig. 32. The Levine et al. (77) unscreened discrete-10n potg(r)lt;angb 1 vze(;os(l;s
ro(A)g..Th;a ordinate designation should be —ep*[kT.Heree; = 80.1, 1" = .

Curve < 0 BA) vA)

A 15 10 3 2
B 15 10 3 1
Cc 15 15 — 1
D o 10 3 2

quantities presented in the tables included in the papeli. gr; r'rcl};(i
text of the paper, the abscissa is referre'd to as 7y, n:ot e In ;)1 na
tion received by private communication makes it clear that 7o

s actually meant here. . )
waNote tha}; had a more realistic value of g~ 6 beerll useclf ;I(l)
calculating the curves of these figures instead of thelgahues c}w) o
and 15 actually used, the maximum values of ¢, '13;]1011 ti\;; beer

i 1 hown. The per
t twice as many times (kTJe) as s ' :

aE?:ntial at the OHP would then be even less likely to satllslfy
Ec)he condition of being much smaller than 1.7(kTe). Incidentally,
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Fig. 33. The Levine et al. (77) diffuse-layer screening correction Ag¢, vs.
ro(A). The ordinate designation should be —eA¢;/kT. Here ¢, =80.1, T =
20°C, ¢ =15, ¢, =10, B =34, p =1 A. (4.) MJ10; (B.) M/[100; (C.)
M/[1000. The numbers 4, 3, 2, 1, and 0 refer to the value of |&;], equal to
|V 1/24.36 when V¥, is in mV.

Levine, Mingins, and Bell expect the results shown in these
figures to be most reliable for the smallest 7, values. They seem-
ingly set 7, = r, in some of their work and calculate ¢, from the
Grahame cutoff relation ¢, = z,¢/mr3. Their minimum value
Tg =Tp = 5A then corresponds to about 20 ucoul/cm? the
l¢,] region where they expect a hexagonal lattice to start to form.
Since we believe their approach does not adequately span the
transition region, we feel that their curves are most appropriate
near the LDL region specified by 7, = (7;), where a smeared-
charge model is most applicable.

There is a further interesting anomaly. It is clear from the form
and derivation of Eq. 157 for 7, that Levine et al. expect r,, to
be the minimum value of 7,. But 7,,, is the close-packed hexagonal
array nearest distance of approach of ion centers, enforced by
steric effects. On the other hand, 7, is a mathematical cutoff model
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variable which specifies the radius of the circle of removed charge
in this model. It is thus not limited in the same way that r, is,
and instead of taking 7, i, = 7,,, Levine et al. should have used
Tgmin = P(&)T1, @ considerably smaller quantity. Since a close-
packed array is not attained experimentally nor expected theo-
retically for either C-C or O-C imaging, this matter is not of great
practical importance. It is confused, however, by Levine’s choice
of the minimum value of 7, (or 7,) as 5 A, a value he and his
associates also use consistently as that of r,,,. Ifr,,, were equal to
5 A, the corresponding |¢,| would have the far-too-large value of
74 ucoul/cm?.

The most recent work on partial imaging is that of the present
authors (91). The entire range of —1 < o < 1 was covered for
both C-D and D-C imaging. Calculations for o # 0 were made
by the method described earlier which sums individual single-
image contributions. It thus involves only a single infinite series
for o = 0 and converges rapidly for small w. Convergence is
slower the larger £, = Z,/R,, and the closer |w| to unity. It may
be greatly speeded up, when needed, by application of the
epsilon algorithm (83).

Figure 34 shows some A, results obtained for ordinary (-D
imaging, covering the range 0 < w < 1 of interest in this case.
The dashed and dotted lines of Fig. 345 were calculated using the
ordinary cutoff model, not a hexagonal array (solid lines) for the
fixed values p = p_ (dotted) and p = p, (dashed). The differences
between these curves and the corresponding hexagonal-array
lines is not great out in the large R, region where they all run
approximately parallel. The difference is large, however, for
smaller R, values and becomes greater the smaller R, (R, > 2)
and the closer w to unity. Because p, and p,, are the largest and
smallest values, respectively, attained by the p(&) of a fixed
hexagonal array, it is not surprising that the limiting hexagonal
lines lie between those for p, and p ;. Since the region of maximum
deviation between the cutoff model predictions and those of the
hexagonal array is for small R, where the hexagonal array is
likely to be the best approximation to the actual structure,
the hexagonal array results are definitely preferable in this region.

Comparison in the case o = 1 is interesting. Let us temporarily
denote the present C—D A for @ = | as A{Y and the C-C imaging

1156 q1 (ucoul/cm?
4625 | 503020 12 8§ 6 )4 3 2.06

(a)
L ]
Ay ’

1071 =
— — 3
- —
:F =% 0995/’-;

102 0.997
1

(8)

. Rl
Fig. 34. The nonlinearity parameter for g =0, A, vs. R =18 for a

hexagonal array, three T values,
from the cutoff model using the G
2o- The ¢, scale at the to
B =24 @90,

and @ > 0. Dotted lines were calculated
rahame # = P, and dashed lines with P =
p of the figure is only appropriate for the choice
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A, of Section V-2-G as A, Since ¥V(Z,) = 1, comparison of
the relevant definitions shows that A and A{¥ are identical,
as they should be. Comparison of numerical values of the two
Ay’s calculated from ¢ and ¢'® values obtained by tremendously
different series, bears out this identity. To obtain the normalized
potentials from A, values, we need only use either ¥?(1) = il'A,
or ¥{¥'(1) = A[T'A, + B]. Finally, note that for any » but unity the
limiting value of Ay is B as R, -~ w or 0. For w =1, A, - B
only for R, — 0.

Figure 35 shows C-D curves of the micro/macro potential ratio
A calculated for several w values using the paired values of ¢ and
¢, which follow from Grahame’s (51)1 N KI data. Here, A is
presented both because it is more directly significant than A in
the present case of many o values and because it lends itself to
the interesting comparison discussed below. The dashed lines in
Fig. 35a denote negative parts of the curves and arise because the
theoretical V,, passes through zero for I' = } within the ¢,
range covered. Note that all curves go to the limiting value
A = 4 when ¢; = 0 and there is no adsorption. In the opposite
limit of large |¢,|, A — 1, again when ¢ = 0. The curves of Fig.
35 cover the full range of ¢, derived from the data.

In Fig. 36 we show the results of some calculations by Grahame
and Parsons (53) using their KCI data and the above Grahame
KI data. The quantity 42 = y/(f + y) given as the ordinate
designation in the figure was calculated in two different ways.
The lack of agreement found bespeaks one or more inconsistencies
in the model and equations used to obtain A. The curves marked
“equation 8” were calculated from experimentally derived values
of ¢, Vo9, and V, using a simple Boltzmann distribution adsorp-
tion isotherm. The quantity obtained, although termed y/(8 + ¥),
is operationally equivalent to y,,/V,, = A in some sense, how-
ever.

Let us write Vg, for the experimentally derived Vy, and V¢, for
the theoretical V,, which enters our A. Further, employ the same

superscripts for y;,, A, and 4. Then the “4” obtained with the aid
of “equation 8" is actually

A = W1/ Vé) = (Wial Vao) (W5alvis) (Vi V)
= A yio/via) (Veal Vi)
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i i = for K1 (51) and KCl
1 _ The putative quantity 4 = p[(B +¥) Vs g
(5;1g.cilﬁculatedpfrom experimental results by two different methods (53).

st two ratios were each unity, A¢ would e.qual Fhe
{}fle:)};itilcaally calculated A. There are a number of dlffli:ultlef.
First, even if the proper value of w were kqown the resu 1rtlg wr]i:
would probably differ from ¢, because of 1na.dequa:te tre? m::lm
of diffuse-layer screening and the use of the d1telec:r1c‘con 1tnu m
assumption in the inner region. Second, (VI Ve) 18 n;)] eVAt
unity, as we shall see later, when ¢ and g, vary togeth ter. ;
present, we cannot even calculate the average qu;entl ”},‘hir(oiz
sufficiently accurately to achieve E}gre?ment leth' o2 tf;
¢ is derived from an isotherm which is certainly 1ncor1.rec .(t)
the higher |¢,| values. Note that if the Ershler-Grahame meattlrlle;y1
condition applied, as assumed by Graharpe and Pz'Lrsons, e
A = A and “equation 8” would indeed give an estimate of A;
still not likely to equal A" Finally, 'the determlnatéon oaried
requires its independence of q, .when g is held fixed ar;l 71 r:/dence
by changing solute concentration. A?though such 1nﬁ§pe e
was found, this restriction does not give us great confidence b2
the resulting A®, which involves variable diffuse layer scre.erill t(g)
as pointed out by Payne (108) will be a good approximatio ©
A* calculated using experimental data taken at constanthC(zhe
centration and with ¢ and ¢, var}fing .together.. Altboug ey
diffuse-layer shielding will also vary in this latt.er situation, 11t\ ! ny
be expected to vary differently from that involved in A’
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dielectric imaging is dominant (w ~ 1), however, such a dif-
ference in diffuse-layer shielding behavior will be unimportant.
Finally, it should be mentioned that Parry and Parsons (101)
have suggested an improved, but still nondiscrete, method of
calculating y,, which seems to yield somewhat better agreement
between the A obtained from an adsorption isotherm and that
obtained by the method of “‘equation 11>’ discussed below
(101,107).

Although the *‘equation 8 A’ curves cannot be expected to
agree closely with our theoretical A curves for the reasons already
discussed it is still of interest to compare them. In making such a
comparison, note that the Af curves of Fig. 35 are plotted versus
q, while the A?’s of Fig. 36 use ¢ as the abscissa. In the range
q > 0, where most of the variation in the “equation 8” curves
occurs, —gq, and ¢ are approximately proportional. Thus, the
difference in scales is not of much importance here. Comparison
shows that for KI reasonable values of I' and w, such as 1 and 0.9,
respectively, can be selected that yield at least semiquantitative
agreement between A* and A°. Nevertheless, too much should
not be read into such agreement.

The curves marked “equation 11 were derived in a different
way. It is found possible to derive the average quantities ¥ =
Py, and 9** = (¢/q,) Zgy ., which together make up our usual
Vye, directly from manipulations of the experimental results,
Then, if y* and 9 are well approximated by the above equations,
the ratio (g/q,)(y*/¥*®) is (I'/Z,) = A. The result is thus really a
measure of A, not A as is the other approach. It is helpful that the
4 obtained from “equation 11” is nearly independent of ¢, in
keeping with one’s expectations that y and § should not vary very
much with ¢ and might tend to vary together if they did depend
on q appreciably. Although the two sets of curves do not generally
measure the same quantity, as we have seen, they should become
identical at the right, where ¢, — 0 and A! — A* = y/(8 + ¥).
Although such identity is by no means perfect, we note con-
siderable tendency for the curves to come together on the
right side of the figure. We shall further discuss these results in
Section VI.

Finally, in Fig. 37 we present some curves of A(=Af) taken
from our partial imaging work (91) calculated for the D-C case.



(a)

A ~02 (®)
10 ~04
~0g
~0»
~0g
N
w==1 %
- 1
1072 ;'15' ' 5 11 13 15
1 R

1 —
0.8
0.6———
04
X"f
A (©)
e ~02
U 20
— o
- ~0%
n ~z,
w=-1
-2 [ 1 I
0 1 l ‘l: ‘ 5 7 9 11 13 15
By
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In this situation, the OHP is taken conducting and a dielectric
discontinuity (except at ® = 0) occurs at the nonconducting
ESP. As we have seen earlier, in this case A = ¥ (1). Thus, the
curves shown give the normalized potential at the IHP directly
for the case of overall neutrality, ¢ = —¢,. Note that for D-C
imaging, the quantity R, is r,/y.

If, as before, we keep the same definitions of # and y for both
C-D and D-C imaging, such quantities as I" and B also retain
their usual definitions in passing between these cases, but their
numerical values change. If fixed values of B and T" are used first
in a C-D calculation, then in a D-C one, the value of I" appropriate
in the first case becomes equal to the value of B in the second, and
vice versa. The same curves may thus be used for either C-D or
D-C situations with the proper changes of I', B, and R;. The
pertinent values of these quantities for both cases are shown in the
caption of Fig. 37. Note that in order to obtain the actual un-
normalized potential y,(1) from the A values shown in the figure,
one must multiply A by I'y_, = 4#y¢,/e; in the D-C case and by
Yo = 4mPgi/e; in the C-D situation. When o = 1, the final
limiting value of A[=¥{)(1)], is A for D-C and B2 for C-D
imaging. The curves shown span the entire range of w since the
partition —1 < w < 0 is usually of most pertinence in the D-C
case and its complement 0 < @w < | of corresponding interest
for C—D imaging.

The results of Fig. 37 may be used to assess the magnitude of the
fluctuation potential ¢, used by Levine et al. (75,77). Normalizing
as usual with I'y,, for D-C and y, for C-D imaging, we may write

B, = P (1) — 1 (158)

Note that when ¥, (1) &~ O the fluctuation potential ¢, is nearly
equal in magnitude to the average potential. This result is, of
course, in agreement with g ¢ 1 + I' (O-C imaging) or (1 + B)
(C-0 imaging) in the same situation of negligible ¥, (1).

In this part of the article, we have considered potentials and
micropotentials over R, ranges which frequently cover the low
R, excluded region, span the hexagonal-array region, and some-
times even reach through the transition region into the LDL
regime. No real effort has been made by anyone thus far to try
to bridge the transition region properly; currently the most
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advanced approach, albeit still so.mewhat' qualitative, RIS that
contained in the present work, leading to Fig. 13 for Ry( i)
Although a full and adequate account of discrete-¢ ement
dielectric effects in the inner region may be long m coming,
perhaps even longer than an accurate treatment of the transition
region, we believe that something us.eful can be learned b}l con-
sidering how some of the curves of Fig. 37 would c}}ange if some
account were taken of the transition and LDL regions. We cz;n
readily do this for the @ = I(r = 1) and o =0 casF]s?'usull:% the
R,(R,) numbers discussed in Section IV and curve 6 0 1§. h
The peak of curve b of Fig. 13 occurs at R(%)N 7.4, wotltze
R, ~ 4.4. This value of R, leads, cventgally, to ¥(1) =~ 0.5014,
very nearly the same as the corresponding w =1 .Vah%e shown 1ri
Fig. 37b. Similarly, the LDL value of Ry, 3.?{, which 1s pcrtlnen1
for R, z 12.6, leads to w(V(1) ~ 0.5052, again very gearly equz
to the o — | final limiting value 2B = 0.5 shown 1n Flg. 376.
Thus, in this case, the change in the — 1 curve using R,
instead of p(£)R, is negligible. '
msCalculaf;E)n)s ;re sirr%pler in the o = 0 case. We estimate that
the peak value of R, is about 9.6 and occurs at Ry ~ IQ. Afs‘1 Ri
increases beyond this point, R, will decrease towards 1ts 1na
limiting value of 7, appropriate for R; > 32. For the two va ules
R, = 9.6 and 7, we find ¥i(1) = 0.10 and 0.14, respectively.
Thus, the normalized THP potential will reach a shallow minimum
of about 0.10 near R, = 16, then finally increase t0 0.14 by Rl =
39. For this case, only for R; > 16 will there be appreciable
difference between the hexagonal array ¥o(1) and the LDL
¥9(1), providing our estimate for the Val'u.e of R; at the cross%vgr
between the hexagonal-array and transition region, R, ~ 1 ,f is
reasonably close to the correct value. An interesting project for
future work would be the calculation of curves like those of Fig. 317
covering the full range of w, indicating excluded, hexagonali
transition, and LDL regions for each curve (the bour_xdarlf:s a
change with change of ), and using the most plausible 1nter-
lation values of R,(R,) in the transition regions. .
pOThere has, thus fabg, geen little experimental evidence .dlrec.tly
bearing on the question of the importance and type of 1mag1'n§1
at the OHP. Dutkiewicz and Parsons (31) have, however, carrie

out differential capacitance studies of the specific adsorption
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behavior of the KI 4+ KF system at constant overall ionic strength.
In such a system, the Debye shielding length should remain
constant with KI concentration change, asopposed to its variability
in a simple KI system. Dutkiewicz and Parsons conclude that
although such an experiment is unlikely to provide information
about dielectric imaging, which is expected to remain relatively
unchanged when the Debye length varies, it should allow some
conclusions about the effect of diffuse-layer mobile-ion shielding
with change in I~ adsorption.

In the mixed system, both types of imaging should be essentially
independent of I~ adsorption, while for adsorption from a simple
KT solute, conductive imaging at the OHP should change with KI
concentration and Debye length. By comparing their results for
the mixed system with Grahame’s KI results (51), Dutkiewicz and
Parsons in fact conclude that ionic imaging in the diffuse layer
must be taken into account and is imperfect at least in solutions
of lower ionic strength. If these conclusions are correct, we may
further conclude that dielectric imaging is also imperfect and/or
takes place on a plane further from the ESP than that associated
with the conductive imaging effect of the diffuse-layer ions, since
if it were perfect and took place at least as close to the ESP as the

conductive imaging, changes in diffuse-layer imaging potentiality

would have no effect on the overall (perfect) imaging present. In

spite of these conclusions, we believe that the overall imaging at

the OHP is likely to be much closer to perfect (or infinite) imaging,

even at low ionic strengths, than to the single-imaging situation

of no imaging at the OHP at all.

VI. Discussion of Results: Average Quantities
1. Permanent|Polarizable Dipoles

We have already discussed some of the difficulties which occur
when two or more different discrete kinds of entities are present
in the inner region. Here we shall briefly and approximately
consider the dielectric effects of a single species, namely solvent
molecules, and shall usually take these to be water, the species of
greatest interest. The situation we therefore consider is appro-

priate in the absence of specific adsorption, thus probably in NaF
over most of the ¢ range.
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Since a review of work on some of the dielectri§ propertlc}:f of
a monolayer of water molecules has already bf:fgl gléenhelsew ( Zg)t
i biect only briefly. Grahame
we shall here discuss the subj _ 9)
iSZr)ns to have been one of the first to suggest that the high electrlce
field strength generally present in the 1nn§r layer Pr?iﬁcesi;on;n
i i i ression of the material therein.
dielectric saturation and comp e han
i implicati trary by Bockris, Dev ,
ite of an implication to the con
an Miiller (10), one of present authors (80) was the.ﬁrs.t tcl) t;eri‘;
the above qualitative suggestions of Gral;lam_e quarlltltatlven}(/1 nd
i i i jon in both the inner layer a
nsider dielectric saturation 1n |
ilci)ffuse region. By including compression as well, good agre;(r)nenr‘i
with the results of differential capacitance m(l:(as‘uremer}ts r(1 A )thoat
i From this work, 1t was 1ou
NaF was obtained for ¢ < 0.‘ . v
the effect of dielectric saturation in the diffuse layer, but not the
inner layer, was negligible. B
This Zariy work further introduced the \{alue €p =D §or th(;
completely saturated part of the dielectric ?onstant. t1 wl':
pointed out there (and also several times later 1}r11dependent fythy
t equal n?, the square of the
other authors) that €, shoulq no 1 he
optical index of refraction, which only includes c?lectron_ pcilatrii)zn
ability, and that it should include no permanent dipole or;en. a .
contribution. It should differ from n?® because of 1%(: USIOr:r }cl)e
unsaturated librational and atomic .polarlzatlon. e e(i,ts.1 r
actual value of e, is of considerable importance 1n ca culating
inner-layer behavior and that of molecules 1mmf.:d1ately ac(lljomlrf
jons in solution. The value €, = 6,.wh1ch we.lntrodugg : Ls}o?as
what later on the basis of new experimental evidence ( ,84) o
been widely used thereafter. Now, however, recent ev1denc§ ( i
seems to indicate that the high-frequency limiting valueho € o
water at 20°G (appropriate at frequencies below those wh ereb e
librational and atomic polarization effects begin to relax) is abo '
4.3-4.6. These measurcments, which were carrled. out at wla\; -
lengths between 0.1 and 0.01 cm, yield val.ues whlc}}, in at eu
an approximate sense, may be identified with t}}e o.rlentatlonal }é
saturated value of ¢, .. We therefore currently 1nclénse to a valu
een 4.5 and J.
of e, for water at 20°G somew.here‘betw S and O e in this
The earlier paper (80) also introduced for the fir 1 -
context the concept that a completely unsaturated monohagei‘ow
water dipoles should exhibit a dielectric constant, €,, much b€
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that of bulk water. One reason suggested there for the low value
of about 15 which was found necessary to achieve agreement with
experiment near ¢ ~ 0 was the absence of the usual bulk number
of water molecules surrounding a given monolayer molecule.
Considerably later, Watts-Tobin (128) [without reference in this
connection to the earlier work of Macdonald (80)] and the
authors (82,84) independently carried out at essentially the same
time detailed treatments of the matter which largely explained
the low effective value of ¢, in terms of the different surroundings
of the monolayer of water and the concomitant likelihood of low
association between molecules.

Actually, Watts-Tobin’s treatment involved a two-state treat-
ment of the dielectric effects of a water molecule. It was assumed
that the molecule would lie against the surface with either a
lone-pair bond or a proton bond to a surface mercury atom. Later,
Mott and Watts-Tobin (94) adopted the somewhat simpler
picture of the full dipole moment of the water molecule lying
perpendicular to the surface, either parallel or antiparallel to the
normal field. A similar model was later used by Bockris,
Devanathan, and Miiller (10) and Bockris, Green, and Swinkels
(11). In contradistinction, the earlier treatments of the authors
(80,84) allowed all intermediate positions of the adsorbed water
molecule and used either an empirical saturation law proposed
by Grahame (47) and/or in the later work (84) a Langevin
function or a more complicated function which took some account
of imaging of the water dipoles in the mercury electrode. Although
we now believe that the two opposite orientations of the water
molecule at the surface are the most likely states, other less likely
intermediate positions should not be entirely neglected. The actual
differences in behavior of the different saturation functions may,
however, be sufficiently small that distinction between them is
unimportant at the present level of attainable experimental
and theoretical accuracy.

One of the present authors (81) also suggested that there would
be a “natural” field, &,, present at the surface of the electrode
and directed perpendicular to it, even at the ECM, which would
tend to orient dipoles along it. This effect was incorporated into
the later treatment (84,87) and used, in part, to explain the
appearance of a hump on the ¢ > 0 side of the NaF differential
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capacitance Curves. Such an egplanation required tha'lc the vcsl/:tz
molecules lie with their positive poles next to the € ﬁCtligoasis o
the ECM. Frumkin et al. (42), however, suggest on the o
other evidence that the orien;latlgr(ll i\s/{ with the oxygen (neg
he mercury at the . ‘
poiilg)t‘lzatﬁ;tment of th}; differential capacitqnce in NaF <§4)ti V;/rel
suggested a number of causes for prefeantlal ahgn};nen C(l)into
adsorbed molecule at the EGCM (all of which were s1}11 sume nt
the natural field or anisotropy energy). Among such causes thei};
be mentioned nonspherical molecules, .rpolecules }:la;;ll’lg thett
effective dipole at a noncentral position, the 1In ut::lnhi o
inhomogeneous polarization of the moles:ule, quadrupolean ; grit
moments, electron overlap and bond{ng, and the nonplana bly
of the metallic surface on an atomic scale. The a;l>pr.eiflta z
electron wave-function overlap at_the surface of a metzli wi erndS
to polarize adsorbed molecules_w1th their negative (1;0 es 1r;\(;vc211uce
(84). There is another interesting effect V‘Vhlch tends to phar §
the same response. A metal will tend to 1mage n(:rgatllye cl Sig;) s
better than positive ones because as a result of the Pauli elxc zons
principle, or statistical degeneracy of the conductlorfl e ecf the,
a depletion region can be formed near the surface o
metal with less expenditure of energy than can an accurrcll-S
ulation region of electrons. Thus, a dipole directed oz.twa:ed
from thegnetal would be imaged at less expense than one direc
rd it.
tO‘llsgzj)ckris, Devanathan, and M}‘iller §10, see also 11) }11'211:/? aiﬂ:;
suggested that the outward orientation is the rr_lore1 i ety or
adsorbed water dipoles because the oxygen atom 18 closer to n
surface of the molecule, allowing that end of the c_hpole to be
nearer the metal than would be possible for the positive pole 13
the opposite orientation. Further, measurements by Il’arsons r;a}:)lst
Zobel (106) also suggest that when .the.wat.er molecules arte ot
free to rotate, their natural orientation 18 _w1th the oxygen tow o
the mercury. We now believe that thg weight of the ev1de1nce it.n
mechanisms discussed above are against the possible exp z.ma1 102
of the hump we have given, and thus that the watelr dlpc(;e :lt
more likely to lie with its negative pole toward the electrode :
and near the ECM. Hills and Payne (56), on th? basis of the refll.l }i
of differential capacitance measurements carried out under hig
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pressures, believe that the occupation of the surface by water
molecules in a nonadsorbed electrolyte situation increases (at
constant external pressure) with increasing positive polarization.
This is one possible effect that we can’t claim we suggested and/or
treated first in earlier work, although our treatment of electro-
static compression in the inner layer considered a reduction in the
thickness of the layer as the field there increased in magnitude.
Finally, Frumkin et al. (44) ascribe the appreciable differences
in the differential capacitance curves they obtain with liquid
mercury and gallium electrodes in part to differences between
the two metals in their orienting effects on water molecules at
the ECM. Such differences would probably involve different
natural fields.

The foregoing discussion indicates that even the “‘simple”
case of a monolayer made up only of water molecules is still far
from being understood in its entirety as far as its electrical prop-
erties are concerned. We shall conclude this section by giving a
general expression (85,87,89,90) for the average p.d., Vi,
across a layer of such discrete elements in the C—0 imaging regime,
ignoring compression effects but including the polarizability of
the elements, «, and their permanent dipoles, treated as ideal
dipoles. We ignore the Onsager-type corrections here which
should be included when permanent dipoles are involved.

In order to account for possible changes in the surfage density
of adsorbed molecules, take their number per unit area as N,
assume a regular hexagonal array (exact on close packing when
N = N,), and write r, = ($)V4N-1/2, the nearest-neighbor distance.
Note that in most of this article r; has measured the average or
hexagonal nearest-neighbor distance between adions. Here, we
have switched to molecules. Let AV = —4x #d be the difference
in the potential at the electrode when the adsorbed layer is
present and the potential in its absence. Here & is the average
volume polarization of the layer and d is its thickness. Then it is
readily shown that V, = 4nqd + AV. Note that AV is the change
in the average electron work function of the surface on establish-
ment of the layer.

Although we shall not give the derivation of ¥V, in detail
(85,89,90), it is worth pointing out that single imaging of the
induced and permanent dipoles is taken into account accurately
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ment employs a self-consistent ficld. Work is in
an(C)l rt:sz tt;ei;tend thisptrzatment to the infinite image regime.
}I)Jretgﬂ be here the distance between the effective centers of the
(ideal) dipoles (both induced. and.permanent) of the a_dsolgbei
molecules and the clectrode imaging plane. Then agzalr‘lN 1 ;
r,/B, and we shall here take Ry, = 2 so tha.t 6 = 4/R111. e us1
the modified cutoff method to deal with the e)éagoglad
array of image dipoles. The field inducing dipoles in adsorbe
molecules is thus required a distance Qﬂ in front of the 1magi)e array,
at the position of an adsorbed. entity. Thus, & = g/rls . ecomei
98/r, = 2[R,, and for the choice Ry, =2, 0 = &2, .1nlce‘ou§
result involves p(&) and F(§), we shall express it entirely 1n
rather than in terms of N, 6, 1y, or R,. Then

Vy, = 4mqd — (2m/V/3) &2
q % [JBldmg + En) -+ BHu(&)] (159)

 \ POPL + FE)
R [CLLE (2\/3) [0+ {s—lp@)}ﬂw] (160)

The above equations contain a great deal of meat which we
shall expose bit by bit. First, J = «/B? as ever. Since « for wa}fer
seems (15) to be about 1.3 A3 or more, J ~ 0.53. On the ot ;‘1;
hand, o for cesium atoms may be (7,96) as large as 535 or 6?3 o
and B ~ 2.35 A. Using this value of § and « ~ 53 A ; Jhm .
and might (90) possibly exceed 4. The quantity €; 1s .ere.l?.n
effective dielectric constant arising entirely from ,t,he polarizability
«. Note, however that this “dielectric constapt does n(?t .enter
into the expression for Vi, in the usual way; 1n.generf11, it is not
possible to meaningfully define a monolayer dielectric constanc:
which does enter in the usual way. Takipg J = 0.51.3, &= l,ﬁarz1
evaluating p(£) and F(¢) for the ideal-dipole situation, one rl{lhs
that the maximum likely value of €, for water 13 about 1.7. The
three terms within the square bracket in Eq. 160 arise, g.olllng
from left to right, from the induced dipoles in the plane with a
given dipole, the image of that dipole, and from all remaining
i ipole images. o
lanllfqui;};c;ity (o@ngi in Eq. 159 is the n{ltural field eﬂ"ectlveil in
inducing polarization in adsorbed polarizable molecules when

where
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g = 0. The field acting to orient permanent dipoles, &,, is
approximately &,, + n72&,4. Here &,,, not necessarily equal to
& .1, 1s the natural field orienting permanent dipoles at ¢ = 0 and
n? is a shielding factor taken here to be the square of the optical

index of refraction. Using the proper expression for &4, we
obtain

Ey = Eny + 1% dmg + a7H 1 — ) {xd + (u(€))}  (161)

Since &, occurs as the argument of (u(&,)), this equation must
generally be solved for &, by iteration when the form of (u(&,)),
such as a two-state or Langevin function, is known. This process
is of course unnecessary when the dipoles are completely pinned
and |(u(é&,))| = p, the full dipole moment. We still require &,
in this case, however, in order to see whether full pinning is
likely.

Let us return now to the expression for V, for water adsorbed
on the electrode. Then & = 1, and we find (85) that the two main
terms in the equation are opposite in sign and nearly equal in
magnitude at the extremes of the g range. Thus, although AV may
be quite large, several volts or more, V,, will be much smaller, as
observed, throughout the full variation of g. We have found, in
unpublished work, good but not excellent agreement between the
predictions of Eq. 159 and experimental determination of V,(g)
for NaF using both two-state and Langevin functions for (u(&5)).
Slightly better agreement can be produced if compression effects
are included. If any variation of 6 (or &) with ¢ were present and
known, Eq. 159 could be used to account for this effect as well.
Finally, it could be used, at least as a fair approximation, to
account for the effects of displacement of solvent molecules on the
electrode by adions during specific adsorption.

Although the permanent dipole moment of water of about
1.85 x 101 esu dominates its induced polarization, it is of
interest to examine briefly the different situation of an inner
layer composed of polarizable molecules or atoms with u = 0.
The present description which ignores Onsager corrections is
most appropriate for this case, as no such corrections are necessary
for induced polarization. Such a system occurs, for example,
when cesium or potassium atoms are adsorbed from a gas phase
onto a conducting electrode such as tungsten. Equation 159
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2. Nonpolarizable Adions

In this section, we shall be less concerned with discreteness
effects than with indicating some of the deficiencies of the simple
space-averaged treatment of V, which we have used throughout
most of this work when adions are present in the inner region.

Consider nonpolarizable adions and smear the dielectric effects
(moderated by appropriate imaging and screening) of the
surrounding water molecules to yield the ¢, and €, of Fig. 4.
For greater generality, we shall not initially take ¢, = ¢, = €. As
usual, however, we assume that ¢, ¢,, y and § are independent of
¢g- Then, simple electrostatics yields

Voo = (4mquyfe,) + 4mq{(Bles) + (v/e,)}
= 4ngs[w + (1 + w)(q/q,)]
= 4nqit + (s + )(g/q1)] (162)

where we have set s = fes, ¢t = y/e,, and w = (/) (efe,) =
t/[s = (egfe,)T'. Note that when e; = ¢,, w becomes simply I

We have used Grahame’s (51) 1N, 0.1N, and 0.025N V,, g,
and ¢, results for KI to calculate values of s and ¢ by a least-
squares procedure. Some of the results obtained are presented in
Table V. In this table, s and ¢ are expressed in Angstroms. The

[ !

AV
AV(@=1)

TABLE V

Parameters Obtained from Least-Square
Fitting of Vy, Formula Using KI Data

Normality

6 08 10
0 02 04 0 0.025 0.1 1

i i i k function change,
Fig. 38. The normalized C-O imaging electron work
AV, %s. 8 for a hexagonally arrayed adsorbed layer of polarizable molecules or
atoms with ¢ = 0. The parameter is J = % (90).

s 0.1805 0.2017 0.2459
t 01306  0.1389  0.1493
w 07234 06885  0.6071
A, 04197 04085  0.3777
simplifies considerably in this situation, and we have presentleg ; 0.0135 00250 03777
in Fig. 38 some resulting curves of AI/"/AV(B = 1) for sevezlathe

values. Here AV/AV (6 = 1) becomes just fei (0 = 1) /ey, arcl1 the
curves are appropriate for ¢ zero or a constant. Itis assumekt ;ln
&,, is independent of 6. The curves for J =2 show peaks, o
agreement with experiment for such a material as cesu}m o4
tungsten. Note that the treatment breaks down (90) when J > .

s 0.21 0.21 0.21

¢ 0.1518 0.1418 0.1482
w 0.7229 0.6752 0.7055
A 0.4196 0.4031 0.4137
o 0.0239 0.0250 0.0746
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1 A
antity 4, 18 defined as w/(1 + w), equal to the ordinary

u - .
3vhen the assumption € = €, 15 made. Finally, o is the standard

error obtained in the fitting. Tts units are volts.'It may ilrrrll\écr)ll;ei
contributions from both randf)m. and -sy'fstematlc.exgeruac "
errors as well as systematic deviations arising from 1nadequacy
el. ' .
th?l‘?:: ({lirst set of results in Table V was obtained vx;llth 50a2nld }i
both free to vary. In the second set, s was held ﬁxe at 0. A
and the least-squares ¢ obtained. Twelve data pomtls A\;velre uaCh
for the 0.025N calculation, 14 for 0.1N, and 20 for 'b1‘ nr:ater
case, they covered the ¢ range where |g,| was sens;1 }cfl gree o
than zero. Although the ¢’s seem reasonably low, the deg - o
fit between theory and experiment was actually rather goqr.tions
the top set of results shown in Table V, the greate;t ev11?.11 s
between predicted and experimental values occurre r];)ugt 1}6 ;
the ends and middle of the ¢ range ;Lnd amounted to abou A
hree concentrations shown. ‘
Of\K’off rfl(:)rtea 1flrct)m Table V that none of s, t, or w is very c.onstant
with concentration change. Furthe?, when it 1s free, s varies e\aaln
more strongly than ¢, a surprise since a posmble. changeh:nhavi
average imaging plane distance with concentration mig ne
been expected to affect y more than . I.n fact, it seems reasona ¢
to define the OHP operationally as b'elng located at the sverag-
imaging-shielding plane. The results in the tablfi S}.IOW t a;c s)v;?h
vided e, remains relatively constant, y apparent (}1/ 1bn(;1rea.se
increasing concentration, contrary to the expected be av10r1. o
Another anomaly appeared when we looked at t.h'e correla >
factor, 7, obtained between s and . The'se quantities may velg
well be correlated, since if they do vary with ¢ and ¢y, or;:: wou !
expect them to depend in much the same way on tdeo 36151';13
physical factors. We found that r,, was 0.7309, 0.51?2, anG 05
for concentrations of 0.025N, 0.1, and LN, rfespect}vely. ues(sllr_lg
that the vast changes in 7, with concentration might depend 1n
part on the different number of points and parts of thf: q r;r;}glz
employed in the fitting for these three cases, we 1nvest1gatt)e the
1N situation in more detail. Table VI shov.vs 'fhe results o tal}?
with different selections of the data, all w1th_1n the range1 w! eie
Ig,] > 0. We see that taking every other point makes 1{‘:16 atlvteh}é
little difference in the results, but that restricting the fit to
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high end of the ¢ range makes a great deal of difference. This
same effect was doubtless operating to affect the results obtained
in the variable concentration case of Table V.

Least-squares fitting has also been carried out for similar KCl
data (53). In this case, s and t were roughly 0.3 and 0.1, re-
spectively, but again they showed considerable variation with
concentration and generally poor fits between theoretical and
experimental values of V,,. The variation of r;, was again wild,
changing from essentially zero at 2.449N to —0.53 at 0.02N.

TABLE VI
Parameters Obtained from V), Fitting of 1N KI Data

Data choice

Results
No. of  Ginitia1/ q step,
points Giinal ucoul/cm? $ ¢ o Tt
20 —20/18 2 0.2459 0.1493 0.0586 0.0553
10 —20/16 4 0.2529 0.1486 0.0603 —0.0428
12 -8/14 2 0.2023 0.1278 0.0196 0.5054
12 --4/16 2 0.1703 0.1203 0.0186 0.7716

We can conclude quite unambiguously that s and ¢ should
really depend on ¢ and ¢; and that the equation for ¥, used here,
even with its unusual generality of taking e; # €,, is quite in-
adequate for representing the data well. It is not even a good
caricature of the system. Delahay and Susbielles (25) have also
stated that an equation of the form of Eq. 162 is not justified for
the cation specific adsorption situation they investigated.

In Section V-2-D, we discussed the method of obtaining 4,
considered purely as the distance ratio y/(f + y), by the average
“capacity-ratio” method denoted there as “equation 11.” To
emphasize that the result is a distance ratio some authors (101,107)
have written (x, — x,)/x, in place of y/(f + y). We prefer, how-
ever, to use 8 and y as nothing but distances in all our work, so
do not need to make this distinction.

If ¢, # €,, the “equation 117 approach actually yields, to the
degree that Eq. 162 is appropriate at all,

h =w[(l + w) = ey/le,f + e57] (163)



172 C. A. BARLOW, JR. AND J. R. MACDONALD

rather than 2. The quantities € and e, mig}}t be expef:ted th
decrease, (probably somewhat dlffer.ently). with mcreasnllg 'i]és
because of the displacement (?f neighboring water mo e;u
which contribute their dielectric effects to produce €; and é,.
We must emphasize, however, that the mOfiel rt.:ally ;eerr}s tO(}
crude; an all-discrete treatment (w1thp_ut direct intro 1}11ct19n o
dielectric constants at all) of all entities present 1n 1t] ¢ 1ntner1
region is a greatly preferabl.e approach.. Althougl.l t eh ac LE].
procedure of the capacity-ratio ‘rr.lethod involves using the .rablo
of average quantities, such quantities can depend very app;leaa y
on the presence of discrete partlcle. interactions, and we avg no
real assurance that the A or A4 Wthh' results frqm the procedure
has much connection with a simple dls'tgnce ratio. , ,
One must also be particularly suspicious because the ’ ~r 4;
which results from the “equation 11 approach or the 1leas'.(-
squares procedure (which yields nearly the same resu tiz lii
considerably larger for KI than for KCl, yet the radii er; aboth
2.05 and 1.64 A, respectively (63). If y were about 1.5 \ 1nd l(:))
cases, A for KI would be about 0.42, near‘the value ol:.)taln‘e , but
the KC1 1 would be about 0.48, a change 1n the opposite direction
from the value of 0.2 or less founq for this system by the abIC)Ye
approaches. Although one could think of many reasonls to exp alE
this result, we Lelieve they should not be 1nvqked unless a mucd
more exact theory of Vy, yields similar anomalies when compare
i : nt- . . .
WIXISC:IECELTIZ stated before in this article, an equation 1S s.t111
needed even for such a space-averag?d quantlty as Voz'wh}ch
adequately takes into account the: contrl.butlons to the polar1z2htlgn
arising from all discrete entities in the inner layer, n"lodilaﬁe }}i
imaging and shielding effects present at the boun('ia.rles.‘ t uotl)lga
no such equation is currently available apd obtaining it will be .
most difficult task, it is clear that 1t will not subsume overa’
polarization effects entirely into either constant or Yarlable di-
electric constants. Further, until an average quantity such as
V4o can be calculated accurately, i't seems misguided for o(gle1 E))
spend much more time refining a discreteness-of-charge mode ‘
calculate ;5 OF Y1 We believe that the current uncert?lrtlhz
concerning both the proper form of Pie and the form 0k <
adsorption isotherm for adion adsorption combine to make
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more important first to improve the theory of V,, (and so of the
differential capacitance), and only when this is in a satisfactory
state then to apply the models developed and insights gained to
evolve a much improved theory of y, .

3. Polarizable Adions

In this section, we consider the situation of an adsorbed layer
populated only by polarizable adions which only undergo C-0O
imaging (85,89). The results will apply therefore primarily to
adsorption of ions from a gas phase, although they shed light on
the behavior of an array of adions adsorbed from solution in
situations which approximate C-0 or O-C imaging when all
effects of inner-region solute molecules are neglected. For ex-
ample, the present results will be relevant in the O—C situation of
high ionic concentration where the OHP can be well approxi-
mated as an equipotential and the (nonconducting) ESP dielectric
constant approximately matches that of the inner region.

The expression for y, =V, we have used throughout this
article applies, for ¢, = 1, when the polarization of adions (and
all effects of solute molecules) is completely neglected. How much
will the space-average quantity ., change when «, here the ionic
polarizability, is taken into account in a treatment which properly
includes discreteness effects? This question will be answered in
this section. The approach used is very much like that employed
for polarizable molecules in Section VI-1; thus, we shall give the
principal results and explain their genesis rather than setting out
the entire somewhat complicated calculation in detail (89).

First, let us consider V,, for arbitrary g and ¢,. It is straight-
forward to show that in the present case

Vas = 4my(q + 1) + 4mfq — 4n Pd (164)

where & is the average volume polarization of the layer. It is
given by
P = (aN[d)[Ey + &4 + 47(g + 1)) (165)

In this equation, &, is a depolarizing field made up of five distinct
contributions arising from: (a) the image charge of a given adion;
(b) the image of the induced dipole of that adion; (¢) the induced
dipoles of the adions surrounding and in the plane with the given
one; (d) the nonideal dipoles surrounding the given adion and
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isi i d their z,¢ images, and; (e)
rising from the other adions an € image
2tlhe digpole images of the induced dipoles of all adions in the plane

with the one considered. . . .
The calculation of 2 and Vg, 18 carried out on the assumption

that the induced dipoles are ideal and leads to

Voo = w1 + Zola/s) + §(Ry)] (166)
i h = 0 and
where 9% = 4mg,f, the proper expression for v, when « T

i les. From now on,
here are no surrounding solute molecu : ] .
flsz the symbol y,, to denote the generalized quantity which
applies when « # 0. Further, let ¥, = p[y%. It turns out that

v =1—gR) (167)

and that when ¢ = —q1, Vo2 = —¥w> consistent with our general

definition for ¢ . . '
All that now rwemains is to give an expression for the complicated

function g(R;). To do so we shall again uselthe modified cutoft
method and assume a hexagonal array qf adions. Here, we must
distinguish between p(&) for nonideal dipoles, which we ?erkllote
p,(€) and that for ideal dipoles, p;(&). The arguments o these
fSnctions are somewhat different, so we shall write the entire
result in terms of R;. We find ~

2(Ry) = (J[2€))[(87[VI)R*My + § — 5] (168)
where § = 2Aplz)BE ) (169)

2 — [Rll’n(Rfl)]an(Rfl) o [Rubn(RII)Fn(RII)] (170)
[{Rip. (RO} + 417

7T )[ﬁi(2RI‘)]2[1 +Fi(2RI1)]i|

¢ =1+ J[URI:* — 14 (2\/—3— T {Rlpi(QRfl)/Q}z]s/z |
(171

M, =

and

Here, the expression for ¢, turns out to be identica! with 'i};a;t
given in Eq. 1607 it is merely written 1n terms of 1.31 in Ec(ll.'f h.
For many purposes, sufficient accuracy will be ma:ntame if t g
small F, and F, terms are ignored and all p, and p,’s are replace
by pg = 417/\/30 or even by 0.607. We have not given before tHe
accurate expression for g(R,) above but have instead essentially
made the above simplifications in our prior work (89).
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When R, — o, it is easy to show that ¢, — 1 — (J/4) and that
g(Ry) —g(0) =J(1 —258)/(4 — J). The quantity J = «/f* will
never approach 4 for ions and will usually be of the order of unity
or less. Further, [S| will probably not exceed 0.25 for reasonable
values of &,,, f, and z, = 1. Thus, g(0) is not likely to exceed
0.5. The quantity g(R,) may, however, approach and even
exceed unity for small R, and J = 2. Thus, we see that under
favorable conditions, the inclusion of adion polarizability may
affect V,, quite appreciably.

In Fig. 39 we show how v [(¢% at R} = 1) = R*Y_, here
termed 1"}, varies with R;%. The ordinate is thus proportional to
¥ . The abscissa may be converted into a ¢ scale by multiplying
by RZ%,. The solid curves were calculated with § = 0 from Eq. 167
with essentially the slight simplifications mentioned above (89).
The dashed curves are very approximate, do not include all the
proper contributions to &;, and approximate nonideal dipoles by
ideal dipoles. We see that even J values considerably less than
unity can make g, considerably different from 3% (see the J =0
curve). Note that to represent v as y%/e, where € is even a
“variable” dielectric constant, would be stretching the concept of
a dielectric constant past bearing when g, changes sign and %,
doesn’t.

If AV is the change in average electron work function on
establishing the adion array, then for the ¢ = —¢; grounded
electrode situation appropriate for adsorption from a gas phase,
AV = —y_. Thus, Fig. 39 also shows how the work function
change depends upon surface occupation. Note that we here
define AV as the difference in the potential at the electrode (with
reference to “infinity”) with the adion array present and that
with the array absent (a bare electrode).

In earlier work (89), the foregoing formula for v, was fitted to
experimental data for the adsorption of cesium (as ions) on
tungsten. A good fit to the data could be obtained for the range
5 < R, < o using reasonable values of the parameters. The
tungsten temperature was sufficiently high that the appropriate
single-imaging R,, even including the effect of nonzero ionic
polarizability, should be less than 4, however. Thus, the R, > R,
restriction still allows R, values as small as the smallest values

contained in the good fit range. Note that the room-temperature
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Fig. 39. The hexagonal array quantity r, = wm[[wg at R1~_1)1]a3<:.0erled

for C-0 imaging of a hexagonal array of pf)larlzable;f)ns (\zi,l\ '1_{ e

on a conducting electrode. The parameter is J = «/f%; note the teltheory ta0).
top. The dashed lines were calculated using an overly approxima

R, ~ 7 value does limit the applicable parts of the curves of Fig.

treme left region where R{* 2 0.Q2. o
39\;\(’)et}111(:)\ixbelieve thatgthe following situation 18 hkelgr1 f?;igzi
phase adsorption, at least at room temperature. In 'Ft ewﬂ] .
phases of adsorption v;henthl is lirg:;t;:iislizllg\e/eaésorbed ¢

i favorable for the discrete .
ggr:.gf\:/t\;f;ﬂle becomes smaller than about 15, the }?dlﬁ;l :rrai;f
should tend to become hexagonal and Eq..167' Sh9uh L g)&)gh
quite well. Finally, when the surface occupation 15 hig
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that R, approaches 7, we believe that either the entities will be
adsorbed as atoms, or electrons will be shared with the electrode
and |z,] will begin to decrease (decreasing R,), or perhaps both
processes will occur concomitantly. In any event, for R, < R,
and approaching Ry,,, we believe that most if not all of the discrete
adsorbed entities can be considered to be atoms. Thus, in the
range R,,, < R; 2 R,, the polarizable atom or molecule results
of Section VI-1 should apply.

Finally, it is of interest to give some results for J for ions of
interest in electrolyte situations. We shall use some recently
calculated (111) values of « and shall use the radii of the ions for
B (65). The most likely choices of « and § then lead to J ~ 0.15,
0.27, 0.38, 0.56, 0.67, and 0.73 for Na*, K*, Cs*, F-, Cl-, and I,
respectively. Particularly because of uncertainty in appropriate
values of 8 (which enters as %) to use, these values must be
considered very crude. The values used probably lead to the
smallest likely values of J. Using more favorable but probably less
likely values of a« and f, we found elsewhere (89), for example, a J
of about unity for Cs*.

V. Discussion of Results: Local Potentials—
Polarizable Adions

In this concluding section, we shall discuss briefly the potential
variation through point 0 arising from an array of polarizable
adions. The difficult case of partial or infinite imaging of a
polarizable array has not yet been treated in detail; thus, again
we consider only the C-0O imaging situation of a layer consisting
only of polarizable adions. The potential with which we are
concerned, y(X,Y,Z) = (0,0,Z), is actually ¢3(Z) since we shall
take ¢ = —g¢; here and it is a single imaging situation; for sim-
plicity, however, we shall omit both the superscript and subscript.

Again we shall use the modified cutoff approach and shall write
the equation for ¥(Z) = y(Z)/y, on the basis of a regular
hexagonal array of adions. Some consideration of the LDL
situation will follow. The quantity ¥(Z) is made up of a part
arising from the nonideal dipoles formed by the adions and their
monopole images and another part stemming from the induced
dipoles and their images. Let us again make use of the p,(£)
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and p;(§) functions and introduce the function
BF (&) = [Rup() + (Z £ D)2 (172)
Then, it turns out (92) that ¥(Z) may be written
W(Z) = HBi(ZIR) — B.(Z[Ry)

— g(RY{(Z + D[BI{(Z + 1R

+(Z = DB{Z — DRI — g(Ry]™ (173)
where some of the Z dependence is not shown explicitly since
only the Z’s occurring in ¢ appear in the arguments of the B
functions. The function g(R,) appearing here is that of Eq. 168.

Figure 40 shows curves of ¥(Z) calculated from Eg. 173 with
the relatively good approximation of setting p,(&) = pi(&) = Po-
Note that the abscissa scale is Z[R, and that we have taken
§ = 0. The most interesting feature of these curves is that for
J > 1, ¥(Z) can exceed unity over part of the Z|R, range. The
table in Fig. 40ashows ¥, = v /¥ for various situations, where
again y%, = 4mq,p. Since ¥, = 1 — g(R,), the values listed may
be used to illustrate how g(R,) varies as well.

The work on which the curves of Fig. 40 were based was carried
out before we realized that R, for single imaging is likely to be of
the order of 7 for room temperature. The R, = 5 curves shown
apply, therefore, only for temperatures sufficiently high that
R, < 5 and yet a hexagonal array is maintained and the HTL
is not reached. The R, = 2 curves are really nonphysical. For
R, = R, = R,,, = 2, the HTL situation should apply, not the
regular hexagonal array on which these curves were calculated.
At room temperature, a regular hexagonal array with R, > 7
would lead to curves which showed a peak only for appreciable
J values, probably beyond the experimentally likely range. It
should be further mentioned that even when ¥, exceeds unity,
the quantity y(Z)/y% decreases for all Z as J increases.

Let us now define f as the ratio of the change of ionic work
function to the change of electronic work function (92). Then
one relatively crude definition of f, which we shall term f;, states
that £, = 1 — [we(1) /9] = 1 — ¥a(l). Compare the Levine per-
turbation potential ®; of Eq. 158, which is, of course, written for
a = 0. If we write /0 for f; whena =0, then @, = —f?. The quan-
tity f, may be readily written from our foregoing equations and is,
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Fig. 40. The normalized local i
¢ ] potential ¥'(Z) = y(Z) [y, equal to y,(Z
¥, here, for C-0 imaging of a hexagonal array of polarizablot!:D adions (] z,:[p‘zi l) )/

vs. § = Z|R, for two different R, values. The parameter is J = a/f? (92).
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for a regular hexagonal array

_ S —e(R)[L — 0.5{1 + [Ripu(2/R)[2]}717]
where

S =14+ 05Rp,(RY) — {1 + [Rup(RTY)21*  (175)
It turns out that a definition for f which takes nonzero polariza-
bility into account more fully is f, = f; + T, where

T = (V3[/64m R[] — ¢(R)17[g(Ry) — g(@)]  (176)

None of the above f’s includes redistribution of the adion array
upon removal of an adsorbed ion. As we have mentioned, re-
distribution effects should not be included in the micropotential
used in an adsorption isotherm. On the other hand, redistribution
exerts an effect on the energy necessary to remove to infinity an
adion from a regular array provided the redistribution occurs in
a sufficiently short time that the adion being removed is still
within the influence of the surface array during the rearrangement.
In such a case, redistribution makes it easier to remove the ion.
Naturally, if the adion is removed from the neighborhood of the
surface so rapidly that little or no redistribution has time to take
place, redistribution effects are unimportant and f = f,. Let
us denote the f which includes redistribution as f;.

Figure 41 shows curves of f, and f3 vs. 6 for R,,, = 4 (probably
appropriate for cesium on tungsten) and § = 0. Also shown as
broken lines are two curves derived from cesium-tungsten experi-
mental data (124). We see that the agreement between theory
and experiment is not excellent. Although the adsorbent tem-
perature was sufficiently high that R, £ 4 and thus there was
no R, restriction leading to § < 1, we believe, as mentioned in
Section VI-3, that for some nonzero 6 appreciably less than unity,
z, may begin to decrease and/or additional adsorption will occur
as atoms, not ions. Since these possibilities were not incorporated
in the calculation of the theoretical curves of Fig. 41, agreement
with experiment beyond a maximum of § ~ 0.6 should not
necessarily be expected. Further, the agreement should be poor
also at very small #’s because the curves were calculated for a
fixed hexagonal array, not the transition region and LDL situation
pertinent for 8 less than 0.1 or 0.2.
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F ig.'4I. Com[?arison of experimentally derived curves for cesium on tung-
szge;; with theoretical fresults for R,,, = 4, z, = 1,8 = 0, and various J values

. Although we shall not illustrate how the curves would change
in th.e transition region, we will point out how the theory may be
.modlﬁcd to calculate such curves. The quantity R, p.(&) occurs
in f;’. and g(R;) while R p;(&) occurs in Ji» for g(Ry) and e,. All
that is necessary to effect the transformation is to replace all these
R,p’s by R,, a function of N (or Ry). The quantity oR* which
appears in €, merely needs to be written as 47R;2/V'3p,R,, then
replaced by 47R;%/V/3R,.

We shall illustrate the result for Jf2in the LDL, where R, =R
ﬁrsF for the specific choice R, = 7. One might think that in thic;
hmlt.only the 2,p,’s should be replaced since they only are
associated with the monopoles and their images. The induced
dlpolt‘:S are a part of the adions, however, and are thus also
restrained from approaching one another any closer than R,.
Thus, all R, p, terms should also be replaced by R,. '
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In the LDL case, one first makes the _Rb = R, replacements
discussed above, then lets R, — o keeping R, constant. Qne
finds then that ¢, — 1 — (J/4) and g(R,) — g( o). The quantity
T does not go to zero, however, but to

JI4(E — 2011 + (R[2)%]'

For J = 0.5 and R, = 7, T = 0.011, essentially negligible. For
R, = 7, we find /9 ~ 0.86 and

J12=[0.86 — 0.863g(0)]/[1 — g(0)]

For this value of R,, therefore, it turns out that f, ~ f? upless
g( o) is very near unity. Even for g( ) = 0.5, t_hc largest likely
value of this quantity, f; = 0.857. The largest hke.ly value of f,
is thus about 0.87. For the more reasonable choice of R, = 4
in the present high-temperature situation, we find f Y~ 0.764,
and on using J = 0.5, f; =~ 0.761, and f, ~ 0.780, in exccllcqt
agreement with one of the experimental curves at f = 0. Inc1;
dentally, on taking « = 0, the appropriate expression for f3
leads to about 0.825 for R, = 7 and to 0.705 for .Rc = 4, These
results suggest that redistribution does not appreciably affect the
[ values determined from experiment in Fhe present case.
Finally, it seems pertinent to discuss briefly the appropriateness
of the classical image force law used throughout this article and
in most treatments of ionic adsorption. We have taken the
electrostatic potential at z = f arising from the image, at z = —p,
of a charge of effective valence z, at z = § to be ‘f’iz. = —2z,e[28.
No contribution from the charge at z = § appears n ¢, z- How
applicable to the actual adion situation is this expression for $iz?
First, quantum-mechanical calculations (4,21,1. 13) lnd_lcate
that the classical image potential may be too large in rr.lag'mtuc.le
by about 9%, for § as small as | A. Further, no deviations in
emitted current from the Fowler-Nordheim theory of field
emission, which is based on the classical image law, were obs§ervcd
experimentally by Barbour et al. (3, see also ref. 97) until the
field magnitude exceeded about 5 x 107 V/em. Even at 108 V/cm,
the deviation was only 4 to 59,. Cutler and co-workers (20,21)
have discussed a correction to the classical law which would lead
to ¢,z = (—2,/28)(1 — nB~1). Values of the constant # used
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ranged from about 0.07 to 0.09 A. For 8 = 2 A, the correction
amounts therefore to about 49,.

Although a correction of the above form has been suggested as
appropriate for ions by Andersen and Bockris (2), it is important
to note that the correction and the above discussion all pertain
only to electron imaging. There is perhaps some room for doubt
concerning the applicability of electron-derived criteria for the
usefulness of the classical image potential to cation adsorption
situations. For 8 = 2 A, we believe, however, that it is as appro-
priate to use the classical law as the corrected one for simple ions.
Even were the corrected potential the more appropriate, the
correction could be neglected compared with the greater uncer-
tainties which abound in the inner layer.

There is, however, an jon correction to the classical image law
which should be mentioned. An ion is not a bare charge and its
charge will tend to be somewhat self shielded. Such a reduction
in ¢,z is likely to be very small for the usual jons of interest in
electrolyte situations and can either be ignored to good approxi-
mation or incorporated, again to good approximation, by a small
field-independent change in the ion-image distance. Finally, we
have already mentioned the possibility of a difference in the
imaging by a metal of positive and negative charges. This effect
too may be small enough to neglect to good approximation,
although the situation is not so clear for permanent dipoles
inasmuch as any slight difference would exhibit itself as a contri-
bution to the natural field &,,,.

The treatments of discreteness effects discussed in this article
have been meant to help expose and elucidate a number of gross
features of the equilibrium double-layer system without incor-
porating all high-order effects which could be imagined. Although
double-layer theory is still in an early stage of development, we

hope this article will help advance the subject a step closer to
maturity,

Appendix I
C-C Imaging for a Single Charge

We first consider the potential produced by a point charge at
X =y =0, z =8 between two perfect imaging planes each a
distance § from the charge. This corresponds to the potential
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produced by a charge on the IHP and its infinite regress of
images in the C-C imaging situation for § = y. The first derivation
here is extremely simple and relates back to some of the physical
arguments in the main text, but unfortunately it is somewhat
difficult to generalize; a less amusing but also more generally
applicable method is considered afterward. Throughout this
Appendix the dielectric constant ¢, is taken as unity.

According to the method of images the potential at r = (x, 3,2)
is given by

$(x) =z 3 (=1)"[p* + (2 — B + 2uf)*] 77

where p = (x2 4 »)V2, This expression for ¢ is not very useful as
it stands, since the convergence rate is extremely slow. Therefore,
we seek another expression for this potential. According to

Laplace’s equation

0% L9 ( a¢)

- -1 2|22} =0

0z% te op P dp
everywhere in the domain 0 < z < 28 except at the site of the
charge. Separating the variables and requiring that ¢ vanish at
the two imaging planes z = 0 and z = 28, one obtains

& sin (nwz[28) nmp
) = 2 A~y K°(2,6)

n=1

where for convenience the unknown constants have been written
A, {sin (n7/2)}7, the function K, is a modified Bessel function of
the third kind, and the particular way we have written the
unknown constants requires that the sum extend only over odd
values of 7 as indicated by a prime on the summation. (Thus, that
we are able to live with our “convenient” manner of writing is
somewhat fortuitous.)

We now determine the values of 4, such that the potential
properly behaves as zg[p? + (z — f)2]"V2 very close to the
charge.* Taking z = § we require

< nmwp
L P
n=1 25

* It turns out that it is easier to maintain rigor by requiring that the field
behave as z,¢e[p2 + (z — B)2]2 close to the charge, but the results are the same
in any case.
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Now defining An = (28)"'nmp, Ay = p~'mp as the difference
between successive values of A~ 10 the sum, we find

5 4K 5E) = 08 5 4Kl o

n=1

= f(mp)-1 f A Ko(y) dy

proyided the function A(y) is smoothly varying as p — 0. We shall
verify that this is indeed the case, for we shall obtain that A(y) =
4, a constant.

Write

ﬁ A Koy) dy — 4 f “Kol) dy = ymd

where we have employed the frequently useful relation.
|, Katon cos (0) &y = (mi2y(0n + o1y

whic}}l1 applies for real 0 and 6 provided § > 0. Thus our condition
on the potential near the charge implies 1p-184 — p—lz ,-
therefore, 4 = 2z,8-1 and s ’ ey Pne

r = ef—1 wISin (nﬂ'Z/Qﬁ) nm
$(r) = 22,8 ,,gl sin (nm/2) KO(Q_ﬂP)

The more mundane (and more rigorous) derivation of ¢ for the
more general case, § and y not necessarily equal, proceeds from

tht? appropriate expression for potential obtained by the method
of images

$(r) = z, Ew {{p® + (2 — B — 2nd)n)12

—[p* + (2 + f — 2nd)?]1)
where d = § + y. We prefer to write this sum in the form
$(x) = (2d) 72 3 {g*(n|x) —g(n]| 1)}

n=—o0

with

g (n| 1) = [(p/2d)® + {n — (24)~1(z F p)}-12
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Next, we define the Fourier transforms G*(k | r)
Gtk |x) = -[w dE exp (2niké) gt (£ | x)
— 2 exp {in(k|d)(z T B)}Ko(mp |kl [d)

Finally, we use the Poisson summation formula, relating the sum
? . -
of the g-functions to the sum of the G-functions to obtain

o) = (2d) 1z 3 {GH(k|7) — G(k|T))

k=—00

This is readily shown to give

mw

$(x) = 4-2—; (1 + F)“gsin (1 : r) sin (177121‘)](“(1”1})1*)

where here P = p/f. . . |
When T' = 1, all terms of even n vanish, and our earlier result

is recovered. As a simple corollary to our genera} eq.uation above,
we find that the potential on the THP (Z = 1) is given by

(P, 1) = 4(zglp)(1 + D)7 élsinz (%) KO( lw_f%)

We note that the potential on the THP is invz.irian-t under the
interchange of f with y, as it must be for C-C imaging. All the
foregoing series involving the modiﬁec.l Bessel functions converge
quite rapidly, and usually the summations may be truncated after
several terms with little loss of accuracy.

Appendix II

Distribution Function for Nearest Neighbors without Interaction

Define P(r) dr as the probability of finding tl_le nearest neighbor
of a given particle somewhere in the annular ring of w1.dth a_.’r and
inner radius r about that particle. In order for such a situation to
obtain, two conditions are necessary: (1) the nearest neighbor
must not lie within the circle of radius 7, and (2) the nearest
neighbor must not lie outside the circle. of ra.dius'r + dr. The
probability that the first condition is satisfied is evidently given
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by the expression
1 L P() dt

Given the first condition, the probability of realizing the second
condition depends upon the correlation between particle positions;
however, if it is assumed that no correlation exists, that is that the
particles do not interact, then the probability of realizing the
second condition is simply given by 27 Nr dr, where N = mean
surface density of particles. We obtain

P(r) dr = 2 Nr dr {1 _ fo "PLg) a’E}

from whence
P(r) = % {-[’rP(g) a’f} — QnNr{l —Lrp(e) ds}

Solving the differential equation for

fo "P(g) dt

produces

[ty de =1+ dexp (—miy
]

where 4 is a constant yet to be determined. Differentiating, we
find

P(r) = —2nNAr exp (—nNr?)

and integrating again we may determine 4 from the normalization
condition on P(r). When such a normalization condition is
imposed, we find* 4 = —1, and therefore

P(r} = 27 Nr exp (—nNr?)

Now we use the distribution function just obtained for nearest-
neighbor distances to find the expectation value of nearest-neighbor
distance in the absence of interaction-induced correlations.

* Had there been a hard-core interaction excluding particles from the circle
of radius r,,,, the lower limits of integration would have been ry,,, 4 would

become —exp (nN73,), and P(r) would be 2xNrexp { —wN(r* — 13,)} for
7 > 11, and zero for 7 < ry,,.
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Writing this expectation value as (r,), we find

(rp) zjwrP(r) dr = 277NI 7% exp (—mNr?) dr
Q

0

On transforming the variable to & = 7 Nr2, we obtain
) = (V)| "z exp (—8) df = (xN) V2L (H)
0

Finally, noting that I'(}) = 14/7, we may write
() = 4N

which is a very simple result.*

List of Symbols

Abbreviations

ASC All system configurations
BDM Bockris, Devanathan, and Miller
CHM Cell and hexagonal lattice model: the approach of Bell,
Mingins, and Levine
ECM Electrocapillary maximum (potential)
ESP Electrode surface plane
GEM Generalized Ewald method
GFA Green’s function approach
HTL High temperature limit
THP Inner Helmholtz plane
LDL Low density limit
MHB Mackenzie, van der Hoff, and Benson: a method for
transforming lattice summations

OHP Quter Helmholtz plane

* Again, were we to consider a hard-core interaction, the low.er limits of
integration would become finite and the final resulting expression for (ry)

would become
(1) = 1y m(mNT3 ) U2 exp (mN72 ) T(3m NPE )
= 1y (TN VB (=3, —F; 7N )

where the first manner of writing involves the incomplete gamma fl.mctlon1 Ia2nd
the second, the confluent hypergeometric function. The function x4/ X
¥ (—4,—3, x) diverges as V#[4y for small values of the argument; for larng
values its asymptotic behavior is as 1 + 20+ O™, whlle' fory =1,2,
and 3 its values are approximately 1.36, 1.21, and 1.14, respectively.
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PZC Point of zero charge: according to theory, equivalent to
ECM
TSE Thermal stability according to an Einstein approximation:
the method of Macdonald and Barlow
C-0, C-C, etc Such abbreviations refer to the imaging conditions
applying in the double layer; the first letter pertains to
the ESP, the second to the OHP. The letter O desig-
nates that the plane in question does not image; the
letter C designates ideal conductive imaging, and D,
dielectric imaging.
Standard Mathematical Functions
z
erf (x) Error function = 27-1/2 f exp (—t%) dt
erfc (x) 1 — erf (x) ’
J (%) Bessel function of the first kind
K, (x) Modified Bessel function of the third kind (Macdonald’s
function)
ac
T'(x) Gamma function = J *lexp (—1) dt
0 0
T'(x,) Incomplete gamma function = f = lexp (—t) dt
v
y(n,x) U(n) — I(nyx)
y(a,b;x) Confluent hypergeometric function
Main Symbols
o Tonic concentration in the bulk solution
d B + y = compact layer thickness
D Electric displacement
€ Protonic charge
¢, & Generic symbols for local electric field; when the symbol
is not boldface, it generally refers to the component
normal to the ESP.
Eoxts Boxt External field
Cotts Bott Field effective in polarizing elements
&, &, &, Depolarization field arising from dipoles
1, 61 Field components parallel to and normal to the ESP,
respectively
E_ —y,/B, a normalizing quantity having dimensions of
electric field
SiSvSoSs The penetration parameter, the subscripts referring to
specific situations
F = —dInp(&)fdIn &
g A discreteness parameter used by Levine et al. tocharacter-

ize the perturbation potential
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N,
NO
N,

p Ep(é)) p()’po:;

7, x

T, Ty Ty, .

>

PP

P, P
q
151
92

i .
"
()
..TN
To

£

fc
™

A function involved in the effect of nonzero ionic polari-
zability upon y N

A function characterizing the effect of I' upon critical

fluctuation lengths

Green’s function at r for charge placed at Trun

Height of a basic array triangle = (3)112r,/2 . '

A parameter measuring the increase in effective polariz-
ability as a result of imaging = aff?

Generic symbols for wave-vector, wave-number

Boltzmann’s constant

Characteristic distance in the compact layer; also
normalized distance from symmetry line = pfh

Maximum normalized motion allowable along given line

r.m.s. normalized (with h) fluctuation distance: the
subscripts refer to one and two dimensional motion,
respectively; the symbols L, and L, also refer to a
normalized variable in the IHP applying to Figs. 21
and 22.

Particle surface density

Particle volume density

Total particle number

Maximum possible particle surface density for a mono-
layer

Ratio of cutoffmodel radius, 7, to ry for hexagonal
array; the subscripts 0 and o refer to the values
pertaining when & —0 and § — respectively. In
particular, pg o2 0.65752, p,, =< 0.52504. Sometimes,
the subscripts i and n are used with p(€), €.g., £;(§), to
indicate ideal and nonideal dipole situations.

A probability ratio defined by Bell and co-wquers =
(probability of occupying outer half of proximity cell)/
(probability of occupying inner half). ‘

Dipole moment of an element; a subscript refers to which
element is involved.

Polarization = volume density of dipole moment.

Charge density on ESP

Charge density on THP

Charge density on OHP )

Variously used as an unnormalized position variable

Nearest-neighbor distance

Mean nearest-neighbor distance

Positions of particles in statistical assemblage

Grahame cutoff radius: #Nrj =1

Generalized cutoff radius

Coulombic hard-core diameter

Quantity analogous t0 [gmax used in CHM and there set
equal to 7,
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"im Minimum possible value allowed for 7, ; usually the hard-

core diameter

R Normalized r(= 7/f)

R, Normalized value of 7,: generally R, = r,/8. However,
when no hexagonal array is presumed, R, = (r4/p,0)
in the cutoff model. For D-C imaging, R, = r,/y.
When y is the separation between discrete layers of
charge, we have also used R, = 2r,/y.

R, =1/

R, =B

R, Normalized r, (= 1,/8)

Rim Normalized 74, (= 73/8)

Ry Vector position of k’th lattice point

S Structure factor relating &, to #. Also the quantity
2(B[246) (P En1)-

T Absolute temperature

U Generically employed to designate interaction energy:
a superscript zero refers to single image conditions;
a superscript two refers to C—C conditions; the subscript
“pair” designates that a single pair is being considered;
Uy is the interaction energy between the ’th and j'th
particles; Uotar is the total interaction energy; Ur is
also used for total energy; U is sometimes used to
mean interaction cnergy, and sometimes, internal
energy.

12 Generically employed for average potentials and po-
tential differences. A single subscript determines the
plane where the average is taken: (0, 1, 2, “ ) refers
respectively to the ESP, the IHP, the OHP, and *“ o™
(see discussion concerning ‘“ 0’ in the text). A double
subscript denotes a potential difference; for example
Vog = Vo — Vo, etc.

Ve This 15 also used to designate the average p.d. across
charge layers. In terms of the definitions above, V; is
analogous to V.

x Component of r parallel to THP

X Normalized x: = x/8

y Component of r parallel to IHP

Y Normalized y: = y/f

z Variously used, but most often the distance from the ESP

2, Effective adion valence

Z Normalized value of z: = z/f

Z, Valueof Zat OHP =1 4+ I' = d/f

z Partition function

@, &g, Polarizability of an element; low field limit = u?/3k T for

permanent dipoles; “parallel component’ of polariz-
ability givingdipole-moment component parallel to IHP
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a, (ll, ALy

Pmn

Po

Potential parameter used by Krylov and Levich. The
subscripts 1 and 2 refer to @ = +1 and @ = —1,
respectively.

Distance from ESP to IHP

Bly = the ratio of two dimensions

Distance from IHP to OHP

The ratio p/p

Small perturbation in the potential and positive and
negative diffuse-layer ion number densities, respectively

A parameter measuring the nonlinearity of the potential
in the compact layer. A subscript 0 refers to the situation
¢ = 0; a superscript 0, to the condition § = 7.

The difference between the Z = | normalized potential
at point ¢’ and point 0: AY, = ¥, (a") — ¥,(0)

Generic symbol for dielectric constant. Subscripts § and
y refer to the values pertinent for the regions 0 < Z <
1 and 1 < Z < Z,, respectively. ¢ pertains to the
region to the right of the OHP (Z > Z;). ¢, pertains to
the region to the left of the ESP (Z < 0). ¢ isthe value
pertinent to the compact layer when ¢; and e, are
considered identical. The quantity e, is either ¢, Or ¢
depending on which plane is considered to be a di-
electric imaging plane. e is a2 quantity involved in the
C-0 imaging calculation of €.

A dielectric imaging parameter: ne;fe; =1 — @

Fractional surface coverage = N/N,

The ratio y[/(f + y) = (1 + I')™ = I'Z?

The Debye shielding length = (kTe f4mce?)t/?

A local Debyelength for a uni-univalent electrolyte:
Anle) = (kTe,[4n®)V2p. (x) -+ p(r) ]2

The coefficient in the parabolic approximation to the
the potential on a line of n-fold symmetry

Reciprocal lattice vectors

A potential ratio playing a central role in the theory of the
double layer: A = y,/Vy,

Magnitude of the permanent dipole moment and thermal
average value of its z-component, respectively

The dimensionless ratio z[r;

The ratio zfry,,

The ratio z/fr,

Used both as a radial coordinate and as a charge density

Mean square unnormalized fluctuation distance

Radial distance from line of symmetry

Radial distance from (m,n) lattice point:

prn = {(5 = T + (7 —yma) P2

Equivalent to ¢,
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F Positive and negative ion number densities
% Positive and negative ion number densities pertaining
when p = y® (before a perturbation is applied)
P Normalized radial coordinate = p/f
a Topping’s parameter o~ 11.034
T A parameter used by Levine et al.: » = p_R,/2
¢ A generic symbol for potential when it is desired to avoid
identification with one of the more specific y potentials
b An artificial potential used to calculate interaction energy
of a pair in the presence of polarization
bir Potential arising from the image of a charge at (0,0,2)

$psb1, $1(0,0)

v

Ve
Ya1z,
Yaic
Yi

Y;
Yn

Yos ¥p

These symbols are various representations of the self-
atmosphere perturbation potential of Levine et al. ¢, is
generally used in the present article.

A generic symbol for local potential and for p.d. There
are many variations on this symbol, and not all will be
listed here. The basic rules for interpretation are as
follows: (1) a capital  designates that the unnormalized
potential has been normalized by v ; (2) a superscript
zcro usually refers to C—0 imaging (except when the
quantity 9 is the value of y for & = 0; (3) a super-
script (1) refers to the C-D limit @ — 1; (4) a super-
script (2) refers to the C-C imaging situation; (5) a
subscript a designates a lattice with a single vacancy;
(6) single subscripts (0,1,2,00) designate respectively
the ESP, ITHP, OHP, and ‘“‘,” as for the case of the
V’s; (7) doubly subscripted symbols containing two
numbers out of the set (0,1,2, ) refer to the appropri-
ate potential difference along a line through point 0,
analogous to the usage in the case of the I’s. Thus,
Yo = Y — Yg = w(l) — ’(p(ZO). In addition to these
general rules, we have the following specific definitions.

Normalized potential = y(z)/y,,; infrequently denoted
by y¥

= Yool¥,

The uniform field part of the total potential

va(l) — val(Zy)

Potential arising from a complete array, i.e., one without
a vacancy

Potential which includes the contribution ¢;, from the
image of a charge at (0,0,z)

Ideal dipole potential

Nonideal dipole potential

Krylov’s constant field potential

Potentials calculated by Esin and Shikov at points 0 and
p of Fig. 262
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Yop Yo — ¥p
Yy Potential at “infinity”; also denoted by V,

vY, 9, when & = 0 (= 4mz,efN)
o Dielectric imaging parameter = (e5 — €1)[(€a + €1);
sometimes used as a circular frequency.
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